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Abstract We consider a class of production/inventory control problems
that has a single product and a single stocking location, for which a stochas-
tic demand with a known non-stationary probability distribution is given.
Under the widely-known replenishment cycle policy the problem of com-
puting policy parameters under service level constraints has been modeled
using various techniques. Tarim & Kingsman introduced a modeling strat-
egy that constitutes the state-of-the-art approach for solving this problem.
In this paper we identify two sources of approximation in Tarim & Kings-
man’s model and we propose an exact stochastic constraint programming ap-
proach. We build our approach on a novel concept, global chance-constraints,
which we introduce in this paper. Solutions provided by our exact approach
are employed to analyze the accuracy of the model developed by Tarim &
Kingsman.
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1 Introduction

The study of lot-sizing began with Wagner and Whitin [34], and there is
now a sizeable literature in this area extending the basic model to consider
capacity constraints, multiple items, multiple stages, etc. However, most
previous work on lot-sizing has been directed towards the deterministic case.
For a general overview over deterministic lot-sizing problems the reader may
refer to [14].

The practical problem is that in general many, if not all, of the fu-
ture demands have to be forecasted. Point forecasts are typically treated as
deterministic demands. However, the existence of forecast errors radically
affects the behavior of the lot-sizing procedures based on assuming the de-
terministic demand situation. Forecasting errors lead both to stock-outs
occurring with unsatisfied demands and to larger inventories being carried
than planned. The introduction of safety stocks in turn generates even larger
inventories and also more orders. It is reported by Davis [10] that a study at
Hewlett-Packard revealed the fact that 60% of the inventory investment in
their manufacturing and distribution system is due to demand uncertainty.

As pointed out in [15] one major theme in the continuing development
of inventory theory is to incorporate more realistic assumptions about prod-
uct demand into inventory models. In most industrial contexts, demand is
uncertain and hard to forecast. Many demand histories behave like random
walks that evolve over time with frequent changes in their directions and
rates of growth or decline. Furthermore, as product life cycles get shorter,
the randomness and unpredictability of these demand processes have be-
come even greater. In practice, for such demand processes, inventory man-
agers often rely on forecasts based on a time series of prior demand, such
as a weighted moving average. Typically these forecasts are predicated on
a belief that the most recent demand observations are the best predictors
for future demand.

An interesting class of production/inventory control problems there-
fore considers the single-location, single-product case under non-stationary
stochastic demand. This class has been widely studied because of its key
role in practice. We assume a fixed procurement cost each time a replenish-
ment order is placed, whatever the size of the order, and a linear holding
cost on any unit carried over in inventory from one period to the next. Our
objective is to minimize the expected total cost under a service level con-
straint, that is the probability that at the end of every time period the net
inventory will not be negative. Early works in the area were heuristic (Sil-
ver [25] and Askin [2]). Bookbinder and Tan [7] proposed another heuristic,
under the static-dynamic uncertainty strategy. In this strategy, the replen-
ishment periods are fixed at the beginning of the planning horizon and the
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actual orders at future replenishment periods are determined only at those
replenishment periods, depending upon the realized demand. The expected
total cost is minimized under the minimal service-level constraint.

We focus on the work of Tarim & Kingsman [31], where the authors
proposed a mathematical programming approach to compute near-optimal
policy parameters for the inventory control policy known as the replenish-
ment cycle policy or (R,S) policy. A detailed discussion on the characteris-
tics of (R,S) can be found in [11]. In this policy a replenishment is placed
every R periods to raise the inventory level to the order-up-to-level S. This
provides an effective means of damping planning instability (deviations in
planned orders, also known as nervousness [12,16]) and coping with de-
mand uncertainty. As pointed out by Silver et al. ([26], pp. 236–237), (R,S)
is particularly appealing when items are ordered from the same supplier
or require resource sharing. In these cases all items in a coordinated group
can be given the same replenishment period. In [17] Janssen and de Kok
discuss a two-supplier periodic model where one supplier delivers a fixed
quantity while the amount delivered by the other is governed by an (R,S)
policy. In [27] Smits et al. consider a production-inventory problem with
compound renewal item demand. The model consists of stock-points, one
for each item, controlled according to (R,S)-policies and one machine which
replenishes them. Periodic review also allows a reasonable prediction of the
level of the workload on the staff involved, and is particularly suitable for ad-
vanced planning environments and risk management [28]. For these reasons
(R,S) is a popular inventory policy. Under the assumption of non-stationary
demand it takes the form (Rn,Sn) where Rn denotes the length of the nth

replenishment cycle and Sn the corresponding order-up-to-level.

Tarim & Kingsman’s formulation operates under the assumption that
negative orders are not allowed, so that if the actual stock exceeds the
order-up-to-level for that review, this excess stock is carried forward and
not returned to the supply source. This event is assumed to be rare, and
therefore its effects are ignored. As a direct consequence of this, the model
only computes suboptimal policy parameters and an approximate expected
total cost.

In this paper we exploit stochastic constraint programming, a novel
modeling framework introduced by Walsh [35], to fully model the original
stochastic programming formulation for computing (Rn, Sn) policy parame-
ters. In our approach we extend the original framework with a new concept,
global chance-constraints, and we employ this to compute optimal (Rn, Sn)
policy parameters and the exact expected total cost for a given parameter
configuration. By using optimal solutions provided by our model we gauge
the accuracy of the solutions provided by Tarim & Kingsman’s approach
for a set of instances. In our experiments we show that the assumption
adopted in Tarim & Kingsman’s model are justified and that their model
constitutes a valid trade-off for computing near-optimal (Rn, Sn) policy pa-
rameters when a short computational time is required.
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This paper is organized as follows. In Section 2 we provide some for-
mal background about different modeling techniques employed in this pa-
per: stochastic programming, constraint programming, stochastic constraint
programming and inventory control models. In Section 3 we review the
existing approaches developed in the literature to compute (Rn, Sn) pol-
icy parameters. In Section 4 we introduce global chance-constraints and we
present a novel stochastic constraint programming approach, based on this
new concept, to compute optimal (Rn, Sn) policy parameters. In Section 5
we compare results produced by our exact approach with those provided
by the state-of-the-art MIP approach for computing near-optimal (Rn, Sn)
policy parameters. In Section 6 we draw conclusions.

2 Formal background

In this paper we employ and merge several different modeling techniques.
In this section some formal background and references are given for each
technique exploited.

2.1 Stochastic Programming

Stochastic programming [6] is a well known modeling technique that deals
with problems where uncertainty comes into play. Problems of optimiza-
tion under uncertainty are characterized by the necessity of making deci-
sions without knowing what their full effect will be. Such problems appear
in many application areas and present many interesting conceptual and
computational challenges. Stochastic programming needs to represent un-
certain elements of the problem. Typically random variables are employed
to model this uncertainty to which probability theory can be applied. For
this purpose such uncertain elements must have a known probability dis-
tribution. The typical requirement in stochastic programs is to maintain
certain constraints, called chance constraints [9], satisfied at a prescribed
level of probability. The objective is typically related to the minimiza-
tion/maximization of some expectation on the problem costs. There are sev-
eral different approaches to tackle stochastic programs. A first method deal-
ing with stochastic parameters in stochastic programming is the so-called
expected value model [6], which optimizes the expected objective function
subject to some expected constraints. Another method, chance-constrained
programming, was pioneered by Charnes and Cooper [9] as a means of han-
dling uncertainty by specifying a confidence level at which it is desired that
the stochastic constraint holds. Chance-constrained programming models
can be converted into deterministic equivalents for some special cases, and
then solved by some solution methods of deterministic mathematical pro-
gramming. A typical example for this technique is given by the Newsven-
dor problem [26]. However it is almost impossible to do this for complex
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chance-constrained programming models. A third approach employs sce-
narios, which are particular representations of how the future might unfold.
Each scenario is assigned a probability value, that is its likelihood. Some
kind of probabilistic model or simulation is used to generate a batch of such
scenarios. The challenge then, is how to make good use of these scenarios
in coming up with an effective decision.

2.2 Constraint Programming

A Constraint Satisfaction Problem (CSP) [1,8,20] is a triple 〈V,C, D〉, where
V is a set of decision variables, D is a function mapping each element of V
to a domain of potential values, and C is a set of constraints stating allowed
combinations of values for subsets of variables in V . A solution to a CSP is
simply a set of values of the variables such that the values are in the domains
of the variables and all of the constraints are satisfied. We may also be
interested in finding a feasible solution that minimizes (maximizes) the value
of a given objective function over a subset of the variables. Alternatively, we
can define a constraint as a mathematical function: f : D1×D2×. . .×Dn →
{0, 1} such that f(x1, x2, . . . , xn) = 1 if and only if C(x1, x2, . . . , xn) is
satisfied. Using this functional notation, we can then define a constraint
satisfaction problem (CSP) as follows (see also [1]): given n domains D1,
D2, . . ., Dn and m constraints f1, f2, . . ., fm find x1, x2, . . ., xn such that

fk(x1, x2, . . . , xn) = 1, 1 ≤ k ≤ m; (1)
xj ∈ Dj , 1 ≤ j ≤ n. (2)

The problem is only a feasibility problem, and no objective function is de-
fined. Nevertheless, CSPs are also an important class of combinatorial op-
timization problems. Here the functions fk do not necessarily have closed
mathematical forms (for example, functional representations) and can be
defined simply by providing the subset S of the set D1 × D2 × . . . × Dn,
such that if (x1, x2, . . . , xn) ∈ S, then the constraint is satisfied.

We now recall some key concepts in Constraint Programming (CP): con-
straint filtering algorithm, constraint propagation and arc-consistency [22].
In CP a filtering algorithm is typically associated with every constraint. This
algorithm removes values from the domains of the variables participating
in the constraint that cannot belong to any solution of the CSP. These
filtering algorithms are repeatedly called until no new deduction can be
made. This process is called propagation mechanism. In conjunction with
this process CP uses a search procedure (like a backtracking algorithm)
where filtering algorithms are systematically applied when the domain of a
variable is modified. One of the most interesting properties of a filtering al-
gorithm is arc-consistency. We say that a filtering algorithm associated with
a constraint establishes arc-consistency if it removes all the values from the
domains of the variables involved in the constraint that are not consis-
tent with the constraint. As a consequence of results in [23], where authors
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proved that any non-binary constraint can be translated into an equivalent
binary one with additional variables, several studies on arc-consistency were
limited to binary constraints. However modeling problems by means of bi-
nary constraints presents several drawbacks. Firstly these constraints are
poor in term of expressiveness. Secondly the domain reduction achieved by
the respective filtering algorithm associated is typically weak. In order to
overcome both these problems constraints that capture a relation among a
non-fixed number of variables were introduced. These constraints not only
are more expressive than the respective aggregation of simple constraints,
but they can be associated with more powerful filtering algorithms that
take into account the simultaneous presence of simple constraints to further
reduce the domains of the variables. These constraints are called global con-
straints. One of the most well known examples is the alldiff constraint
[21], both because of its expressiveness and its efficiency in establishing
arc-consistency.

2.3 Stochastic Constraint Programming

In [35] and [32] a stochastic constraint satisfaction problem (stochastic CSP)
is defined as a 6-tuple 〈V, S, D, P, C, θ〉, where V is a set of decision variables
and S is a set of stochastic variables, D is a function mapping each element
of V and each element of S to a domain of potential values. A decision
variable in V is assigned a value from its domain. P is a function mapping
each element of S to a probability distribution for its associated domain.
C is a set of constraints. A constraint h ∈ C that constrains at least one
variable in S is a chance-constraint. θh is a threshold value in the interval
[0, 1], indicating the minimum satisfaction probability for chance-constraint
h. Note that a chance-constraint with a threshold of 1 is equivalent to a
hard constraint.

A stochastic CSP consists of a number of decision stages. Solving a
stochastic CSP implies a two step process.

In the first step a policy of response has to be defined. A policy of re-
sponse states the rules that decide when decision variables have to be set.
There are two extreme policies: here-and-now and wait-and-see. The here-
and-now policy sets all decision variables before observing the realization
of the random variables. A solution can be therefore expressed as an assign-
ment for decision variables in V . The wait-and-see policy delays as much as
possible the assignment of a value to a decision variable. Therefore a deci-
sion variable xi ∈ V is set to a value only after the realizations of stochastic
variables y1, . . . , yi−1 ∈ S have been observed. Under this policy typically
the solution of a stochastic CSP is represented by means of a policy tree
[32]. A policy tree is a tree of decisions where each path represents a dif-
ferent possible scenario (set of values for the stochastic variables) and the
values assigned to decision variables in this scenario. Hybrid policies can be
defined by stating at which stage k, 1 ≤ k ≤ j a decision variable xj has to
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be set. The solution for any policy that is not a pure here-and-now will be
expressed in general as a policy tree.

In the second step we solve the stochastic CSP under the given policy by
finding specific policy parameters. In a one-stage stochastic CSP, the decision
variables are set before the stochastic variables and the chosen policy is here-
and-now. Under any other policy, that is wait-and-see or hybrid, we have
an m-stage stochastic CSP where V and S are partitioned into disjoint
sets, V1, . . . , Vm and S1, . . . , Sm. To solve an m-stage stochastic CSP an
assignment to the variables in V1 must be found such that, given random
values for S1, an assignment can be found for V2 such that, given random
values for S2 . . ., an assignment can be found for Vm so that, given random
values for Sm the hard constraints are satisfied and the chance-constraints
are satisfied in the specified fraction of all possible scenarios.

In [35] a policy based view of stochastic constraint programs is proposed.
The semantics is based on a tree of decisions. Each path in a policy repre-
sents a different possible scenario (set of values for the stochastic variables),
and the values assigned to decision variables in this scenario. To find satisfy-
ing policies, backtracking and forward checking algorithms, which explores
the implicit AND/OR graph, are presented. Such an approach has been fur-
ther investigated in [3]. An alternative semantics for stochastic constraint
programs, which suggests an alternative solution method, comes from a
scenario-based view [6]. In [32] the authors outline this solution method,
which consists in generating a scenario-tree that incorporates all possible
realizations of discrete random variables into the model explicitly. The great
advantage of such an approach is that conventional constraint solvers can
be used to solve stochastic CSP. Of course, there is a price to pay in this
approach, as the number of scenarios grows exponentially with the number
of stages and such a growth is particularly affected by random variables
that contain a wide range of values in their domain. To deal with this prob-
lem the authors developed dedicated scenario-reduction techniques, which
unfortunately affect the completeness of the approach when applied to im-
prove performances of the search process. Another limit of the approaches
in [35] and [32] is that they provide implementations only for a wait-and-
see policy. The reason for this is that, when decision and random variables
are split into disjoint sets V1, . . . , Vm and S1, . . . , Sm containing more than
one element, the computation required to find policy parameters usually is
special purpose and it is unlikely to be performed by a general approach.

2.4 Inventory control and (Rn,Sn) policy

In this paper we consider the class of production/inventory control prob-
lems that refers to the single location, single product case under non-
stationary stochastic demand. We consider the following inputs: a planning
horizon of N periods and a demand dt for each period t ∈ {1, . . . , N},
which is a random variable with probability density function gt(dt). In the
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following sections we will assume, without loss of generality, that these vari-
ables are normally distributed. We assume that the demand occurs instan-
taneously at the beginning of each time period. The demand we consider is
non-stationary, that is it can vary from period to period, and we also assume
that demands in different periods are independent. A fixed delivery cost a
is considered for each order and also a linear holding cost h is considered
for each unit of product carried in stock from one period to the next.

We assume that it is not pos-
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Fig. 1 (Rn,Sn) policy. d̃i + d̃i+1 + . . . +
d̃j is the expected demand over Rn;
b(i, j) is the minimum buffer stock re-
quired to guarantee service level α; X̃n

is the expected order quantity in period
i for replenishment cycle n; Ĩi−1 and
Ĩj are respectively the expected closing-
inventory-levels for periods i− 1 and j.

sible to sell back excess items to
the vendor at the end of a period.
As a service level constraint we re-
quire the probability that at the
end of every period the net inven-
tory will not be negative to be at
least a given value α. Our aim is
to find a replenishment plan that
minimizes the expected total cost,
which is composed of ordering costs
and holding costs, over the N -period
planning horizon, satisfying the ser-
vice level constraints.

Different inventory control poli-
cies can be adopted for the described
problem. A policy states the rules
to decide when orders have to be placed and how to compute the replenish-
ment lot-size for each order. For a discussion of inventory control policies
see [26]. In what follows the problem described above will be solved adopt-
ing the replenishment cycle policy (Rn,Sn). We recall that Rn denotes the
length of the nth replenishment cycle and Sn the respective order-up-to-
level (Fig. 1). In this policy the actual order quantity Xn for replenishment
cycle n is determined only after the demand in former periods has been
realized. Xn is computed as the amount of stock required to raise the clos-
ing inventory level of replenishment cycle n − 1 up to level Sn. In order
to provide a solution for our problem under the (Rn, Sn) policy we must
populate both the sets Rn and Sn for n = {1, . . . , N}.

3 Existing approaches

Early works in stochastic inventory control area adopted heuristic strategies
such as those proposed by Silver [25], Askin [2] and Bookbinder & Tan
[7]. The first complete (MIP) solution method, which operates under mild
assumptions, was introduced for this problem by Tarim & Kingsman [31].
Tarim & Smith [33] introduced a more compact and efficient CP formulation
for the same model. Dedicated cost-based filtering techniques for such a CP
model were presented in [30] and [29]. This latter enhanced model proved
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to be able to solve real world problem instances considering up to a 50
periods planning horizon in a few seconds. In the following sections we
discuss the assumptions adopted by Tarim & Kingsman and we propose
a stochastic constraint programming approach in which these assumptions
are dropped. By means of this approach we can compute optimal (Rn, Sn)
policy parameters and the real associated expected total cost. Of course
there is a price to pay for dropping Tarim & Kingsman’s assumptions, in
fact our approach is less efficient than the one proposed in [29].

3.1 Stochastic programming model

The stochastic programming formulation for the general multi-period pro-
duction/inventory problem with stochastic demand can be expressed as
finding the timing of the stock reviews and the size of the non-negative
replenishment orders, Xt in period t, with the objective of minimizing the
expected total cost E{TC} over a finite planning horizon of N periods. The
model is given below:

min E{TC} =
∫

d1

∫

d2

. . .

∫

dN

N∑
t=1

(aδt + h ·max(It, 0))

g1(d1)g2(d2) . . . gN (dN )d(d1)d(d2) . . . d(dN )

(3)

subject to, for t = 1 . . . N

δt =
{

1, if Xt > 0
0, otherwise (4)

It = I0 +
t∑

i=1

(Xi − di) (5)

Pr{It ≥ 0} ≥ α (6)
It ∈ R, Xt ≥ 0, δt ∈ {0, 1}. (7)

The demand dt in each period is a continuous random variable with prob-
ability distribution function gt(dt). Each decision variable It represents the
inventory level at the end of period t. The binary decision variables δt state
whether a replenishment is fixed for period t (δt = 1) or not (δt = 0).
Chance-constraint (6) enforces the required service level, that is the proba-
bility α the net inventory will not be negative at the end of each and every
time period. The objective function (3) minimizes the expected total cost
over the given planning horizon.

Although this stochastic programming approach fully models our pro-
duction/inventory problem, a solution cannot be expressed before a response
policy is chosen. We have already seen that a policy states the rules to de-
cide when decision variables have to be set. By using the general approach
proposed in [32] a solution can be found under wait-and-see policy. In this
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policy a replenishment decision Xk for period k is made only after all the
outcomes for random variables associated with former periods 1, . . . , k − 1
have been observed. The solution therefore is expressed as a policy tree,
which can exponentially grow in dimension even for short planning hori-
zons.

In order to avoid this intractable solution, approaches based on order-
up-to-level strategies have typically been proposed for this model in the
literature. Expressing replenishment decisions in terms of order-up-to-levels
instead of order quantities is a convenient way to find optimal policy param-
eters without employing an exponential solution tree. An order-up-to-level
for period k represents the level to which stocks have to be maintained at
the beginning of such a period. Therefore at the beginning of each period k,
k = 1 . . . , N , in our planning horizon we can observe the actual inventory
level and we can decide if an order has to be issued to bring the inventory
up to the required level. There are two well-known order-up-to-level policies
for the general model proposed.

The so-called (sn,Sn) policy [26] is a pure wait-and-see policy where at
the end of period k we observe the inventory level and if this level is below
sk, then an order is issued to raise stocks up to level Sk. It is easy to see that
this policy is wait-and-see since every decision, placing or not an order and
the actual size of the order, is taken at the very last moment, by observing
the demands that have been realized in the former periods. Furthermore a
solution under this policy can be expressed by using only N pairs (sk,Sk),
in contrast to the exponential solution tree required when the problem is
modeled using order quantities.

A hybrid order-up-to-level policy is the so-called (Rn,Sn) policy [7], also
known as replenishment cycle policy, which we described above. In this
policy the inventory review times are set under a here-and-now strategy
at the beginning of the planning horizon. These decisions are not affected
by the actual demand realized in each period. On the other hand, for each
inventory review we need to observe the actual demand realized in former
periods to compute the actual order quantity. This makes the (Rn,Sn) policy
hybrid, since the order quantity for each review is computed in a wait-and-
see fashion only after previous demands have been realized. Also in this case
the solution can be efficiently expressed. In fact we only require M (≤ N)
couples of values (Rk,Sk), k = 1, . . . , M , where Rk is the length of the k-th
replenishment cycle and Sk is the respective order-up-to-level.

From these considerations, and from the well known Jensen’s inequality
[6], it is easy to see that an (sn,Sn) policy always has a lower expected
total cost than an (Rn,Sn) policy. The optimality of the (sn,Sn) policy has
been presented in [24]. In what follows we will focus on the (Rn,Sn) policy.
In fact, as already discussed, despite being suboptimal this policy presents
several interesting aspects.

In the next section we will recall a CP model proposed by Tarim and
Smith [33] and based on a deterministic equivalent mathematical program-
ming (MIP) model originally introduced by Tarim & Kingsman in [31] to
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compute (Rn,Sn) policy parameters. This model can only provide near-
optimal policy parameters because it relies on assumptions that affect op-
timality. In the following section these assumptions are discussed.

3.2 Tarim & Kingsman’s approach

In this section we provide a description of the deterministic equivalent CP
formulation for the (Rn,Sn) policy proposed by Tarim and Smith in [33] and
based on the approach originally introduced by Tarim and Kingsman in [31].
It should be noted that this formulation is the discrete version of the model
presented in Section 3.1. Since the normal distribution is the limiting case
of a discrete binomial distribution Pp(k|n)1 as the sample size n becomes
large2, in the discrete model an uniformly distributed random demand with
mean µ and variance σ2 can be modeled as a discrete random variable
following a binomial probability mass function Pp(k|n), where np = µ and
np(1− p) = σ2.

The deterministic equivalent CP formulation for the (Rn,Sn) policy pro-
posed in [33] is

min E{TC} =
N∑

t=1

(
aδt + hĨt

)
(8)

subject to, for t = 1 . . . N

Ĩt + d̃t − Ĩt−1 ≥ 0 (9)

Ĩt + d̃t − Ĩt−1 > 0 ⇒ δt = 1 (10)

Ĩt ≥ b

(
max

j∈{1..t}
j · δj , t

)
(11)

Ĩt ∈ Z+ ∪ {0}, δt ∈ {0, 1} (12)

where b(i, j) is defined by

b(i, j) = G−1
di+di+1+...+dj

(α)−
j∑

k=i

d̃k. (13)

Gdi+di+1+...+dj is the cumulative probability distribution function of di +
di+1 + . . . + dj . It is assumed that G is strictly increasing, hence G−1 is
uniquely defined. Unfortunately the computation of the binomial cumula-
tive distribution function is time consuming. For this reason it is common

1 The binomial distribution gives the discrete probability distribution Pp(k|n)
of obtaining exactly k successes out of n Bernoulli trials [18]

2 In which case Pp(k|n) is normal with mean µ = np and variance σ2 = np(1−p).
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to adopt an approximate approach that exploits the respective normal cu-
mulative distribution function3, whose computation is much easier. In what
follows we will adopt this approach not only for its efficiency, but also be-
cause it lets us comply in the discrete model with the original problem
definition that assumes a normally distributed demand in each period. We
will therefore compute buffer stock levels as

b(i, j) = round
(
G−1

di,di+1,...,dj
(α)

)
−

j∑

k=i

d̃k,

where di, di+1, . . . , dj are normally distributed random variables. The term
G−1

di+di+1+...+dj
(α) is rounded to the nearest integer — function round(·)

— according to the known concept of continuity correction (see [13]) in
probability theory. For a detailed discussion on this CP model see [30].
Each decision variable Ĩt represents the expected inventory level at the
end of period t. It should be noted that the expected inventory level at
the beginning of such a period is simply Ĩt + d̃t and if a replenishment is
scheduled in t this latter value denotes the order-up-to-level (Sn) in period
t. Each d̃t represents the expected demand in a given period t according to
its probability mass function gt(dt). The binary decision variables δt state
whether a replenishment is fixed for period t (δt = 1) or not (δt = 0).
The objective function (8) minimizes the expected total cost over the given
planning horizon. The two terms that contribute to the expected total cost
are ordering costs and inventory holding costs. Constraint (9) enforces a no-
buy-back condition, which means that received goods cannot be returned
to the supplier. As a consequence of this the expected inventory level at
the end of period t must be no less than the expected inventory level at
the end of period t− 1 minus the expected demand in period t. Constraint
(10) expresses the replenishment condition. We have a replenishment if the
expected inventory level at the end of period t is greater than the expected
inventory level at the end of period t − 1 minus the expected demand in
period t. This means that we received some extra goods as a consequence of
an order. Constraint (11) enforces the required service level α. This is done
by specifying the minimum buffer stock required for each period t in order
to assure that, at the end of every time period, the probability that the net
inventory will not be negative is at least α. These buffer stocks, which are
stored in matrix b(·, ·), are pre-computed following the approach originally
suggested in [31].

The CP formulation operates under the assumption that negative orders
are not allowed, so that if the actual stock exceeds the order-up-to-level for
that review, this excess stock is carried forward and not returned to the

3 This approximation is a huge time-saver (exact calculations of Pp(k|n) with
large n are very onerous); it can be seen as a consequence of the central limit
theorem [18] since Pp(k|n) is a sum of n independent, identically distributed 0-1
indicator variables.
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supply source. However this event is assumed to be rare, therefore in the
model it is ignored (Fig. 2).
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Fig. 2 In Tarim & Kingsman [31] the event that actual stock exceeds the order-
up-to-level Sn for a given review Rn is assumed to be rare. In other words, in
their model observing a low demand during Rn−1 has negligible probability. This
implies that probabilities p1, p2, . . . , pm are assumed to be low.

Let us analyze the effects of this
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Fig. 3 Negative inventory levels.

assumption on the solutions pro-
duced by the CP approach.

1. The cost of carrying excess
stock as a consequence of a low de-
mand before a given replenishment
is ignored, therefore the actual cost
of a policy can be higher than the
one provided by the model.

2. The event of carrying excess
stock as a consequence of low de-

mand before a given replenishment can have an impact on the service level
of next periods. In particular, when the probability of ending up with a
stock level higher than the order-up-to-level fixed in a given replenishment
period is sufficiently high, it could be possible to exploit excess stock to
provide the required service level, keeping lower expected closing inventory
levels in following periods.

Furthermore, the CP approach models holding cost by considering ex-
pected closing-inventory-level values Ĩt in each period (Fig. 3), while in the
original stochastic programming formulation negative inventories do not
contribute to the actual overall expected holding cost, which may be there-
fore higher than the one computed by the CP model.
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4 A stochastic constraint programming approach based on global
chance-constraints

In this section we provide a novel CP approach to find optimal (Rn, Sn)
policy parameters. Our approach avoids both the assumptions adopted in
Tarim and Kingsman [31], therefore it considers the effect of excess stock
on the service level of subsequent replenishment cycles and on the expected
total cost of a given policy. It also considers the fact that a negative closing-
inventory-level does not contribute to the overall holding cost. The core of
our modeling strategy is the new concept of global chance-constraints. By
means of this novelty we are able to dynamically compute the exact service
level provided by a given policy parameter configuration and the expected
total cost associated with it.

4.1 Chance-constraints and policies

The techniques proposed in [35] and [32] for solving stochastic CSPs are
general-purpose but limited to wait-and-see policies. Since in the inven-
tory control problem presented we apply a hybrid policy, we adopt a dif-
ferent and specialized approach. By recalling that we can define a con-
straint as a mathematical function, in a similar fashion it is possible to
define a chance-constraint, originally introduced by Charnes and Cooper
[9], as a mathematical function. Depending on the chosen policy the do-
main of our function f will change. For instance if we restrict ourselves
to a here-and-now policy, so that the solution for our stochastic CSP can
be expressed as a simple assignment for the decision variables, the func-
tion will be f : D(x1) × . . . × D(xn) → {0, 1}, where V = {x1, . . . , xn},
and f(x1, . . . , xn) = 1 if and only if x1, . . . , xn is an assignment such that,
given random values for y1, . . . , yn, where S = {y1, . . . , yn} the hard con-
straints are satisfied and the chance-constraints are satisfied in the specified
fraction of all possible scenarios. In a wait-and-see policy as we have seen
V1 = {x1}, . . . , Vn = {xn} and S1 = {y1}, . . . , Sn = {yn}. Therefore the
function f(x1, x2, . . . , xn) will map each possible policy tree in the solution
space identified by our chance-constraint to the two possible values {0, 1}.
f(x1, x2, . . . , xn) = 1 if and only if the assignment for the variable x1 is such
that, given a random value for y1, an assignment can be found for variable
x2 such that, given a random value for y2 . . ., an assignment can be found
for variable xm so that, given a random value for ym the hard constraints
are satisfied and the chance-constraints are satisfied in the specified frac-
tion of all possible scenarios. These functions can obviously be expressed in
theory for any possible policy.

4.2 Global chance-constraints

We recalled a known concept in stochastic programming: chance-constraints.
We also saw in former sections how CP can be extended to consider ran-
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dom variables and chance-constraints. This leads to what is called stochastic
constraint programming. We now aim to extend stochastic constraint pro-
gramming with a new concept in analogy to what has been done for CP. We
already saw in Section 2 that in CP the simultaneous presence of several
simple constraints, for efficiency and expressiveness, is typically modeled by
means of global constraints. Also in stochastic programming we can identify
simple chance-constraints of the form Pr{D ≥ r} ≥ α, typically involving
a decision variable D and a random variable r. An example is given by the
service level at period t in our inventory control problem, Pr{It ≥ 0} ≥ α.
These simple chance-constraints in stochastic programming typically appear
as a set. In our inventory model we enforce a service level constraint for ev-
ery period in our planning horizon, that is we replicate Pr{It ≥ 0} ≥ α, for
t = 1, . . . , N . In a stochastic constraint programming framework it is there-
fore natural to group this set of simple chance-constraints and to define what
we will call a global chance-constraint over a set of decision variables and a
set of random variables. The general signature for a global chance-constraint
will be

globalChanceConstraint(D1, . . . , DN , r1, . . . , rN , α),

where D1, . . . , DN are decision variables r1, . . . , rN are random variables
and α is a value in the interval [0, 1], indicating the minimum satisfaction
probability for the chance-constraint. According to the probability distribu-
tion functions of random variables, the filtering algorithm of this constraint
will prune values from domains of D1, . . . , DN that cannot guarantee the
chance-constraints are satisfied at the required threshold probability. De-
pending on the given problem and on the response policy chosen, dedicated
efficient filtering algorithms can be implemented (see the forward checking
technique proposed by Walsh [35] for wait-and-see policies, and the improved
algorithm in [3]).

This new concept defines much more than a notation extension. In fact
it should be noted that stochastic programming is a very high level mod-
eling framework. An apparently simple constraint like the one presented,
Pr{It ≥ 0}, actually hides in the stochastic programming model interde-
pendencies between several, and often all, decision variables and random
variables in the problem. Usually evaluating these dependencies requires
the computation of a convolution integral. Therefore in general it will not
be possible to express a global chance-constraint in stochastic constraint
programming as a set of simple and independent chance-constraints. An
immediate example is given by Tarim and Smith’s model [33]. Here the
chance-constraints in the stochastic programming model are modeled as in-
dependent deterministic equivalent constraints according to the approach
proposed by Tarim and Kingsman [31]. As discussed in the former sections
this leads to several approximations, since many dependencies between deci-
sion and random variables are ignored. In the following sections we introduce
a global chance-constraint able to model these dependencies.
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4.3 A global chance-constraint for (Rn,Sn) policy

We focus on the (Rn,Sn) policy, which is hybrid and therefore cannot be
solved by means of the approaches in [32,3] that only cope with wait-and-see
policies. As already discussed, by reasoning in terms of order-up-to-levels,
under this policy a solution for our stochastic model can be efficiently ex-
pressed as an assignment for our decision variables, that is replenishment
decisions and order-up-to-levels, and it does not require a tree represen-
tation. We developed a dedicated global chance-constraint that identifies
feasible policy parameters for our inventory control problem. As in the case
of hard constraints the function does not necessarily have closed mathe-
matical form. In our case this function is defined by providing an algorithm
able to identify feasible assignments for decision variables, i.e. policy pa-
rameters. Within the same constraint we also developed an algorithm to
compute the expected total cost for a given policy parameter configuration.
The signature of our global chance-constraint is as follows

serviceLevelRS(C, a, h, Ĩ, δ, d, α)

where C is a decision variable denoting the expected total cost, a is the fixed
ordering cost, h is the holding cost per unit, Ĩ and δ are arrays of decision
variables, d is an array of discrete random variables dt with probability mass
function gt(dt) and α is the required service level. This constraint ensures
that, at the end of each time period, the probability that the net inventory
will not be negative is at least α. It is therefore semantically equivalent to
Constraint (6) for t = {1, . . . , N} and it can be used to express these con-
straints in a CP model. The decision variable C represents a lower bound
on the expected total cost (Eq. 3) for a given partial assignment for decision
variables Ĩ and δ, and such a bound is tight when all the decision variables
Ĩ and δ are ground. It should be noted that the global view provided by
this constraint allows us to consider joint probabilities during the search
when service levels and the expected total cost are computed. These joint
probabilities are ignored when the same condition is expressed by means of
many independent constraints as in Tarim and Smith [33]. In the follow-
ing sections we will describe the deterministic equivalent CP model that
incorporates our global chance-constraint and the propagation logic for the
constraint.

4.4 Deterministic equivalent model

The deterministic equivalent model that incorporates our constraint is

min E{TC} = C (14)

subject to

serviceLevelRS(C, a, h, Ĩt∈{1,...,N}, δt∈{1,...,N}, dt∈{1,...,N}, α) (15)
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and for t = 1 . . . N ,

Ĩt + d̃t − Ĩt−1 ≥ 0 (16)

Ĩt + d̃t − Ĩt−1 > 0 ⇒ δt = 1 (17)

Ĩt, C ∈ Z+ ∪ {0}, δt ∈ {0, 1}. (18)

It is easy to see that the model is similar to the one proposed in [33] and
presented in Section 3.2. Again we observe two sets of decision variables: the
replenishment decision in period t, δt; and the expected closing-inventory-
level in period t, Ĩt. The buffer stocks needed to provide the required service
level α and the expected total cost C for a given policy are computed by
the special purpose global chance-constraint.

4.5 Propagating the service level global chance-constraint

In order to propagate our constraint and compute a feasible assignment
for the expected closing-inventory-levels Ĩ, we will consider now a two-
replenishment cycle case (Fig. 4) in a four-period planning horizon, then
we will extend the idea in a recursive fashion to the case of M subsequent
replenishment cycles {R1, . . . , RM} over N periods. Two consecutive re-
plenishment cycles are planned over the planning horizon considered, let
us call them R1 and R2. R1 covers periods {1, 2}, R2 periods {3, 4}. Let
Si be the opening inventory level for Ri and Pr{di ≤ D} be the proba-
bility of the event “observing a demand in period i less than or equal to
D”, where di is a random variable that represents the distribution of the
demand in period i. In a simple newsvendor problem [26] over one period
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Fig. 4 Two replenishment cycle case.

with random demand d, the opening-inventory-level that provides a service
level α can be computed as G−1

d (α), where G−1
d is the inverse cumulative

distribution function of d. It is easy to see that S1 = G−1
d1+d2

(α) and the
correct minimum opening-inventory-level S2 for R2, which guarantees the
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required service level α, can be computed from the following relation that
mixes scenario-based approach and chance-constrained programming

Pr{d1 + d2 ≥ S1 − S2} ·Gd3+d4(S
2)+

S1−S2∑

i=0

(
Pr{d1 + d2 = i} ·Gd3+d4(S

1 − i)
) ≥ α,

(19)

where Gdi+di+1+...+dj (·) is the cumulative probability distribution function
of di + di+1 + . . . + dj . For the two replenishment cycles case, this can be
rewritten using the following extended form

(1−Gd1+d2(S
1 − S2 − 1)) ·Gd3+d4(S2)+

S1−S2∑

i=0

(Gd1+d2(i)−Gd1+d2(i− 1)) ·Gd3+d4(S
1 − i) ≥ α.

(20)

Notice that if S1 is smaller than S2, obviously the former cycle has no
influence on the computation of S2 and Condition 19 becomes Gd3+d4(S

2) ≥
α. Furthermore, if the computed S2 is such that S2 < S1 − d̃1, we just set
S2 to the minimum value allowed, that is S1 − d̃1.

Finally observe that the term

S1−S2∑

i=1

(Gd1+d2(i)−Gd1+d2(i− 1)) ·Gd3+d4(S
1 − i)

in Condition 20 has to be multiplied by the normalization term

Gd1+d2(S
1 − S2 − 1)

/ S1−S2∑

i=0

(Gd1+d2(i)−Gd1+d2(i− 1))

in order to guarantee that the sum of all the event probabilities is one. In
fact negative demands are disregarded, but the respective probabilities must
be taken into account to cover the space of all possible events.

In order to propagate (Algorithm 1: propagate) this constraint in the
case of M subsequent replenishment cycles over N periods, at each node
of the search tree we look for the first M consecutive replenishment cycles
(Algorithm 1, line 2) identified by the current partial assignment for deci-
sion variables δ. Two replenishment cycles Rm, Rm+1 are consecutive if the
last period of Rm is g and the first period of Rm+1 is g + 1. A replenish-
ment cycle Rk over periods {i, . . . , j} can be identified by a full assignment
over δi, . . . , δj+1 where δi, δj+1 are set to 1 and δi+1, . . . , δj are set to 0
(Function listCycles()). The opening-inventory-level S1 for the first re-
plenishment cycle R1 covering periods {1, . . . , j} can be easily computed as
G−1

d1+...+dj
(α). In what follows we will describe a recursive scenario-based

approach [6] to compute the opening-inventory-level Sj required in replen-
ishment cycle j ∈ {1, . . . , M}. We will assume that opening-inventory-levels
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for R1, . . . , Rj−1 are known (Algorithm 1, line 8) and we will use a gen-
eralized version of Condition 19 to compute such a value (Algorithm 1,
lines 19 to 21). A generalized version of Eq. 19 for the case of M replenish-
ment cycles can be introduced by observing that Sj , j ∈ {1, . . . , M}, the
opening-inventory-level for opening-inventory-level for replenishment cycle
Rj , is affected only by former replenishment cycles {Ri, . . . , Rj−1}, where
i = min {v ∈ {1, . . . , j}| (Sv ≥ S1) ∧ . . . ∧ (Sv ≥ Sv−1)}. If i = j no for-
mer replenishment cycle affects Rj . Now since we know the distribution of
the demand in replenishment cycles {Ri, . . . , Rj} and under the assumption
that former opening-inventory-levels {Si, . . . , Sj−1} have been already set,
it is easy to recursively compute the expected service level for replenishment
cycle Rj by using a scenario based approach. We can therefore extend Con-
dition 19 to compute Sj for Rj given that {Ri, . . . , Rj−1} are the former
periods affecting service level of Rj .

Let Pj(Sj) be the probability of observing an inventory level of Sj , that
is the opening-inventory-level Rj , at the beginning of Rj .

Let Pj(Sj , h) be the probability of observing an inventory level of Sj +
h, that is h units higher than the opening-inventory-level of Rj , at the
beginning of Rj .

Given q ∈ Z+ ∪ {0} and k ∈ {i, . . . ,M}, the probability associated with
the event “observing a demand less or equal to q in replenishment cycle Rk”
can be easily computed. Such a probability is in fact Gd

Rk
(q), where dRk

is the demand distribution in replenishment cycle Rk, that is, if Rk covers
periods {m, . . . , n}, dRk = dm + . . . + dn. Let Ĝd

Rk
(q) be the element of

probability Gd
Rk

(q)−Gd
Rk

(q − 1).

– if Sj−1 ≥ Sj , then Pj(Sj) is computed as

Pj−1(Sj−1) · (1−GdRj−1 (Sj−1 − Sj − 1)
)
+

Si−Sj−1∑

k=1

Pj−1(Sj−1, k) · (1−GdRj−1 (Sj−1 − Sj + k − 1)
) (21)

that is Pj−1(Sj−1) multiplied by the probability of the event “observing
a demand greater or equal to Sj−1 − Sj in replenishment cycle Rj−1”,
plus the summation, for k = 1, . . . , Si−Sj−1, of Pj−1(Sj−1, k) multiplied
by the probability of the event “in Rj−1 we observe a demand greater
or equal to Sj−1 − Sj + k”.

– if Sj−1 < Sj , then Pj(Sj) is computed as

Pj−1(Sj−1) +
Sj−Sj−1∑

k=1

Pj−1(Sj−1, k)+

Si−Sj∑

k=1

Pj−1(Sj−1, Sj − Sj−1 + k) · (1−GdRj−1 (k − 1)
)

(22)
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– if Sj−1 ≥ Sj + h, then Pj(Sj , h) is computed as

Pj−1(Sj−1) · ĜdRj−1 (Sj−1 − Sj − h)+

Si−Sj−1−h∑

k=1

Pj−1(Sj−1, k) · ĜdRj−1 (Sj−1 − Sj − h + k)
(23)

– if Sj−1 < Sj + h, then Pj(Sj , h) is computed as

Si−Sj−1∑

k=Sj+h−Sj−1

Pj−1(Sj−1, k) · ĜdRj−1 (k − Sj − h + Sj−1). (24)

Obviously Pi(Si) = 1 since, for the way Ri is chosen, no former replen-
ishment cycle may affect its order-up-to-level Si. By following a dynamic
programming [4] scheme, Sj can be computed as the minimum value that
satisfies

Pj(Sj) ·GdRj (Sj) +
Si−Sj∑

k=1

(
Pj(Sj , k) ·GdRj (Sj + k)

) ≥ α. (25)

Since this paper is not focused on efficiency issues, the dynamic program-
ming algorithm developed to implement Eq. 25 simply employs a recursive
code structured as the functional equation itself. Nevertheless we want to
underline that the proposed recursion only aims to describe a correct func-
tional equation to compute feasible assignments. As in every dynamic pro-
gram, efficiency can be obtained by adopting a forward recursion and by
trading memory and time to avoid computing the probability of a given
scenario more than once.

In the recursive computation sce-
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Fig. 5 Normalization.

narios with negative demands are
not considered, therefore we must
normalize the probabilities of other
events in order to ensure that their
sum covers the whole space of the
possible events. In other words we
need to ensure that the probabil-
ity associated with area A in Fig.
5 is one. This is a known approach
in inventory control and it is usu-

ally justified since the distortion introduced by this normalization typically
does not affect the quality of the solutions. A possible way to perform this
normalization step is to divide the term

Pj(Sj) ·GdRj (Sj) +
Si−Sj∑

k=1

(
Pj(Sj , k) ·GdRj (Sj + k)

)
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in Condition 25 by the following normalization term

Pj(Sj) +
Si−Sj∑

i=k

Pj(Sj , k) (26)

in order to guarantee that the sum of all the probabilities of the events
considered in step j is one.

In order to speed up the search for the optimal opening-inventory-
level associated with a given replenishment cycle Rk, recall that opening-
inventory-levels computed as shown in [33] are always greater than or equal
to optimal opening-inventory-level satisfying Eq. 25. Therefore an efficient
strategy (Procedure setBufferForCycle()) for finding optimal opening-
inventory-levels is to consider sequentially the first M replenishment cycles,
Rk, k ∈ {1, . . . , M}, identified by the current partial assignment for replen-
ishment decisions δ. For each replenishment cycle Rk an upper-bound for the
optimal opening-inventory-level can be computed as dG−1

d
Rk

(α)e (see [31]).
Starting from this upper-bound we can decrease it and search for the mini-
mum value that satisfies Eq. 25 (Procedure setBufferForCycle(), line 4).
Opening-inventory-levels computed as in [31] are close to optimal because
probabilities associated with negative order quantity scenarios are typically
low, therefore this strategy requires only a few steps to reach the optimum
levels.

4.6 Computing holding cost

In this section we address the problem of computing the correct holding
cost for a given replenishment cycle R covering periods {i, . . . , j} when the
expected closing-inventory-level Ĩt for each period t ∈ {i, . . . , j} is given. We
recall that Ĩj denotes Sj minus the expected demand in replenishment cycle
j, d̃Rj . The problem of computing the exact holding cost arises from the
fact that negative inventory levels do not contribute to the overall holding
cost. Therefore the term hĨt in the objective function of the model pre-
sented by Tarim & Kingsman is not a complete representation of this cost
component. Once Ĩj is known every other Ĩk, k ∈ {i, . . . , j−1} can be easily
computed as Ĩk = Ĩj +

∑j
t=k+1 d̃t. Let h(R, Ĩj) be the expected holding cost

for replenishment cycle R when the expected closing-inventory-level Ĩj is
given. This cost component is made up of individual cost components for
each period in our replenishment cycle R. Let us consider a given period
k ∈ {i, . . . , j}. The opening inventory level for R is Si = Ĩj +

∑j
t=i d̃t. We

recall that the probability of observing an overall demand r over the time
span {i, . . . , k} is denoted by Ĝdi+...+dk

(r). By letting r range from 0 to
Si we obtain every possible scenario for which a holding cost is incurred in
period k. Therefore the expected holding cost for period k can be expressed
as h

∑Si

r=0(Si − r) · Ĝdi+...+dk
(r) and the expected holding cost for replen-

ishment cycle R will be the sum of the contributions from every period
k ∈ {i, . . . , j}.
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Algorithm 1: propagate

input : C, δ1, . . . , δN , Ĩ1, . . . , ĨN , α, a, h, d1, . . . , dN , N

begin1

cycles ← listCycles(δ1, . . . , δN , Ĩ1, . . . , ĨN , N) ;2

n ← # elements in cycles;3

if n = 0 then4

return;5

cost ← a · n;6

condition ← true;7

for each element e in cycles do8

let {i, . . . , j} be the span covered by e;9

if no decision variable Ĩi, . . . , Ĩj is assigned then10

condition ← false;11

else if ∃k | decision variable Ĩk, i ≤ k ≤ j is assigned then12

Si ← cycle opening inventory level of e, linearly dependent on13

Ĩk;
holdingCost ← cycle holding cost of e with opening inventory14

level Si (Eq. 27);
cost ← cost + holdingCost;15

if condition then16

C ← cost;17

else18

setBufferForCycle(cycles, d1, . . . , dN , α);19

let e be the last element in cycles, a replenishment cycle over20

{i, . . . , j};
Si ← cycle opening inventory level of e, linearly dependent on Ĩj ;21

holdingCost ← cycle holding cost of e with opening inventory level22

Si (Eq. 27);
cost ← cost + holdingCost;23

Inf(C) ← cost;24

end25

4.7 Computing the objective function

In order to compute the expected total cost for a given replenishment plan,
or a lower bound for such a cost associated with a given partial assignment
for replenishment decisions δ, we look again for the first M consecutive re-
plenishment cycles identified by the current partial assignment for decision
variables δ. Therefore we will assume that R1, . . . , RM are known (Algo-
rithm 1, line 8) and we will follow a reasoning similar to the one developed
to satisfy our chance-constraints.

The expected holding cost for replenishment cycle Rj , j ∈ {1, . . . , M},
is affected only by former replenishment cycles {Ri, . . . , Rj−1}, where i =
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Procedure setBufferForCycle(cycles, d1, . . . , dN , α)

input: cycles, d1, . . . , dN , α

begin1

let R be the last element in cycles, a replenishment cycle over2

{i, . . . , j};
S ← dG−1

di+...+dj
(α)e;3

decrease S to the min value that satisfies Eq. 25, with former cycles as4

listed in cycles;
Ĩj ← x− d̃i − ...− d̃j ;5

end6

Function listCycles(δ1, . . . , δN , Ĩ1 . . . , ĨN , N)

input : δ1, . . . , δN , N
output: cycles

begin1

cycles ← {};2

lastCycle ← null;3

pointer ← 1;4

for each δi, i = 2, . . . , N do5

if δi is not assigned then6

return cycles;7

else if lastCycle 6= null then8

let {i, . . . , j} be the span covered by lastCycle;9

if no variable Ĩi, . . . , Ĩj is assigned then10

return cycles;11

if δi is assigned to 1 then12

lastCycle ← a replenishment cycle over {pointer, ..., i− 1};13

add lastCycle to cycles;14

pointer ← i;15

lastCycle ← a replenishment cycle over {pointer, ..., N};16

add lastCycle to cycles;17

return cycles;18

end19

min {v ∈ {1, . . . , j}| (Sv ≥ S1) ∧ . . . ∧ (Sv ≥ Sv−1)}. If i = j no former
replenishment cycle affects Rj . Now since we know the distribution of the
demand in replenishment cycles {Ri, . . . , Rj} and since we assume that
former opening-inventory-levels {Si, . . . , Sj−1} have been already set, it is
easy to recursively compute the expected holding cost for replenishment
cycle Rj by using a scenario based approach.
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The expected holding cost (HC) for Rj given that {Ri, . . . , Rj−1} are
the earlier periods affecting Rj can be computed as

E{HCRj} = Pj(Sj) · h(Rj , Ĩj) +
Si−Sj∑

k=1

(
Pj(Sj , k) · h(Rj , Ĩj + i)

)
. (27)

Also in this case, since negative demands are not considered in the sum-
mation, event probabilities must be normalized accordingly using the term
given in Eq. 26 as shown before.

A valid lower bound (Algorithm 1, line 24) for the expected total cost
of a given partial assignment involving decision variables δ — tight when
the assignment is complete (Algorithm 1, line 17) — can be computed by
considering a fixed ordering cost for each replenishment cycle Ri identified
by the assignment (Algorithm 1, line 6), plus the expected holding cost
for the first M consecutive replenishment cycles R1, . . . , RM computed as
explained above (Algorithm 1, lines 14 and 22).

4.8 Cost-based filtering

In order to improve the search process we employed a cost-based filtering
method similar to the one proposed in [30]. We will not describe in detail
the whole method. We will rather try to give a high level description of it.
The reader may refer to [30] for further details.

Firstly we recall that, in Tarim and Kingsman’s model [31], upper bounds
for decision variables Ĩi, i = {1, . . . , N} can be computed by considering a
single replenishment cycle covering the whole planning horizon. The buffer
stock required to guarantee the required service level is b(1, N), as defined
in Eq. 13. Since b(i, j) is an increasing function [33], it directly follows that
the maximum value for the domain of ĨN is obviously b(1, N) and that for
every other decision variable Ĩi, i = {1, . . . , N − 1} the maximum value in
the domain is b(1, N)+

∑N
k=i+1 d̃k. These bounds are still valid in our model.

In fact the effect of excess stocks from former periods may only decrease a
buffer stock needed to provide a given service level.

A lower bound for the cost of an optimal policy associated with a given
partial assignment can be computed as shown in [30]. In this work the
authors solve in polynomial time, by using a shortest path algorithm, a re-
laxation of the original problem where inventory conservation constraints
between subsequent replenishment cycles are relaxed. This means that neg-
ative order quantities are allowed in this relaxed model. The bound is dy-
namically computed during the search process and it takes into account
partial assignments for both decision variables δt and inventory levels Ĩt, by
respectively forbidding or forcing stated nodes in the optimal path to re-
flect assignments for δt variables, and by modifying costs in the connection
matrix to reflect assignments for Ĩt variables.

A similar approach can be adopted in our case by noticing that Tarim
and Kingsman’s approach underestimates holding cost in each period. Firstly
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Period 1 2 3 4 5

Decreasing d̃t 400 130 150 60 35

Table 1 Expected values for a decreasing demand pattern.

because it considers the contribution of negative inventory levels on the hold-
ing cost. Secondly because it does not consider the effect of excess stocks
from former periods not only in the service level computation, but also in
the cost computation. This means that Tarim and Kingsman’s model al-
ways computes a cost that is less than or equal to the actual cost associated
with a given policy. On the other hand, as seen, such a model overestimates
buffer stocks.

In our cost-based filtering approach we relax not only the inventory
conservation constraints, as in [30], but also the constraints that force buffer
stocks at the end of each replenishment cycle. Therefore we simply solve a
deterministic production planning problem under fixed ordering cost and
linear holding cost. The same algorithm proposed in [30] can be employed
to efficiently solve this problem. Since we do not take into account buffer
stocks, and from the former considerations on the cost structure, this relaxed
Tarim and Kingsman model provides a lower bound for the cost provided
by our exact model. Also in our cost-based filtering approach this bound is
dynamically computed during the search process and it takes into account
partial assignments for both decision variables δt and inventory levels Ĩt as
discussed above.

5 Comparison with Tarim & Kingsman’s approach

In this section we compare the results obtained by the approach presented
in [30] with the exact solutions provided by the new model.

The following assumptions are valid for the rest of this section. We as-
sume that the demand in each period is normally distributed about the
forecast value with the same coefficient of variation τ . Thus the standard
deviation of demand in period t is σt = τ · d̃t. In all cases, initial inventory
levels, delivery lead-times and salvage values are set to zero.

All experiments here presented were performed on an Intel(R) Cen-
trino(TM) CPU 1.50GHz with 500Mb RAM. The solver used for our test
is Choco [19], an open-source solver developed in Java.

Firstly we consider a decreasing demand pattern over a 5-period plan-
ning horizon. The planning horizon considered is short since this demand
pattern is particularly hard to treat.

The forecasts for the demand in each period are given in Table 1. As
input parameters we considered a ∈ {1, 100, 200}, τ ∈ {0.15, 0.25} and
α ∈ {0.95, 0.75}. The holding cost h is fixed and equal to 1 for all the
instances, since replenishment decisions are affected only by the ratio be-
tween ordering cost and holding cost. In Table 2 experimental results are
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Total Cost
parameters T&K Exact

a τ α E{TC} Ê{TC} gap(%) sec E{TC} gap(%) sec
1 1 0.25 0.95 324 370 12.4 1 358 3.35 469
2 100 0.25 0.95 773 814 5.04 1 799 1.88 254
3 200 0.25 0.95 1152 1189 3.11 1 1176 1.11 165
4 1 0.15 0.95 197 205 3.90 1 200 2.50 372
5 100 0.15 0.95 637 644 1.09 1 640 0.63 249
6 200 0.15 0.95 984 990 0.61 1 985 0.51 30
7 1 0.25 0.75 135 178 24.1 1 172 3.49 219
8 100 0.25 0.75 573 613 6.53 1 607 0.99 161
9 200 0.25 0.75 886 910 2.64 1 907 0.33 22
10 1 0.15 0.75 83 101 17.8 1 100 1.00 282
11 100 0.15 0.75 517 535 3.36 1 534 0.19 181
12 200 0.15 0.75 797 810 1.60 1 809 0.12 8

Table 2 Decreasing demand pattern. Columns “E{TC}” are the expected total
cost computed by Tarim and Kingsman’s approximate approach (T&K) and by
our exact approach (Exact). In order to compute T&K E{TC} we employed the
efficient CP approach proposed in [30]. In columns “sec” we report, in seconds, the
time performance for each model. Since T&K provides an approximate expected
total cost, in column “Ê{TC}” we report the actual expected total cost of such
a solution, which is computed by simulating demands according to the given
distribution in each period and by observing the realized total cost over 10000 runs.
The two columns “gap” for T&K and Exact report respectively: the difference
between T&K E{TC} and T&K Ê{TC}, in percentage on T&K E{TC}, and

the difference between T&K Ê{TC} and Exact E{TC} in percentage on Exact
E{TC}. Holding cost h is set to 1 for every instance.

presented. For each instance considered “Exact E{TC}” is the expected to-
tal cost of the optimal solution (i.e. set of policy parameters: replenishment
cycle lengths and order-up-to-levels) obtained using the complete approach
we presented. “T&K E{TC}” is the approximate expected total cost of the
solution obtained by using the model proposed in [30], which adopts Tarim
& Kingsman’s approach. “T&K Ê{TC}” is the actual expected total cost of
the solution obtained using the model proposed in [30]. This actual expected
total cost has been computed by simulation. Notice that for some parameter
configurations the solution obtained with the approach in [33] differs from
the optimal one, while for other cases the approximate approach produces
a solution close to the optimal one. The reasons are different depending on
the particular parameter configuration.

Instance (1) has a low ordering cost a, therefore we expect to order
frequently. The expected total holding cost and the buffer stock levels re-
quired to provide service level α are affected by the negative trend of the
demand and by excess stocks carried from former replenishment cycle as a
consequence of this trend (Fig. 6). Since the model in [30] does not take
into account these effects the expected total cost of the optimal solution it
provides (T&K Ê{TC}) differs from the actual optimum (Exact E{TC}).

Instances (10), (11) and (12) have a low service level α and coefficient of
variation τ . In this case the policy parameters computed by the approach
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Fig. 6 Comparison between inventory levels computed by the exact and the
approximate approach.

Period 1 2 3 4 5 6 7 8

Seasonal d̃t 50 75 90 75 50 25 10 25

Life cycle d̃t 20 25 30 35 40 25 20 10

Erratic d̃t 50 30 70 15 60 10 30 15

Table 3 Expected values for Seasonal, Life Cycle and Erratic demand patterns.

in [30] are optimal, in fact T&K Ê{TC} is close to Exact E{TC}. The
effect of excess stocks is so low that it can actually be ignored, but the
approximate expected total cost computed by the approach in [30] (T&K
E{TC}) differs from the exact one (T&K Ê{TC}) by respectively 17.8%,
3.36% and 1.60%, since negative inventory levels affect the expected total
cost of the policy. This follows from the fact that we require a low service
level and we keep low buffer stock levels, therefore the probability of ending
up with negative inventory levels becomes high and the effect of negative
inventory levels on the expected holding cost increases as the length of the
replenishment cycles decreases.

It should be noted that the computational effort required by our exact
approach to compute policy parameters is directly affected by the number of
replenishment cycles in our plan. This is the reason why we observe higher
run times when the ratio between ordering cost and holding cost is low.
This is true in general also for the instances that will be considered below.

We will now consider three other demand patterns that typically arise in
practice. These patterns were originally proposed by Berry in [5] and they
were also adopted for the experiments in [31]. The patterns are presented in
Table 3. We did not consider a constant demand pattern, which is instead
included in Berry’s test bed, since it is obvious that for this pattern the
solutions provided by our approach would not differ from the ones provided
by Tarim’s and Kingsman approach. In these cases as input parameters we



28 R. Rossi et al.

Total Cost
parameters T&K Exact

a τ α E{TC} Ê{TC} gap(%) sec E{TC} gap(%) sec
13 1 0.3 0.95 205 213 3.76 1 207 2.90 2774
14 50 0.3 0.95 566 570 0.70 1 564 1.06 478
15 100 0.3 0.95 858 864 0.69 1 859 0.58 104
16 1 0.2 0.95 139 140 0.71 1 139 0.72 1412
17 50 0.2 0.95 498 499 0.20 1 498 0.20 180
18 100 0.2 0.95 771 772 0.13 1 766 0.78 66
19 1 0.3 0.75 88 108 18.5 1 106 1.89 908
20 50 0.3 0.75 440 458 3.93 1 458 0.00 165
21 100 0.3 0.75 696 710 1.97 1 709 0.14 56
22 1 0.2 0.75 61 73 16.4 1 72 1.39 603
23 50 0.2 0.75 411 422 2.61 1 420 0.48 109
24 100 0.2 0.75 658 666 1.20 1 665 0.15 51

25 1 0.3 0.95 109 110 0.91 1 110 0.00 48
26 50 0.3 0.95 441 443 0.45 1 438 1.14 8
27 100 0.3 0.95 634 634 0.00 1 630 0.63 4
28 1 0.2 0.95 76 77 1.30 1 77 0.00 34
29 50 0.2 0.95 393 393 0.00 1 392 0.26 6
30 100 0.2 0.95 574 574 0.00 1 570 0.70 4
31 1 0.3 0.75 49 58 15.5 1 56 3.57 30
32 50 0.3 0.75 355 362 1.93 1 357 1.40 6
33 100 0.3 0.75 529 535 1.12 1 531 0.75 4
34 1 0.2 0.75 35 41 14.6 1 40 2.50 27
35 50 0.2 0.75 333 338 1.48 1 334 1.20 6
36 100 0.2 0.75 503 507 0.79 1 503 0.80 4

37 1 0.3 0.95 175 195 10.2 1 188 3.72 554
38 50 0.3 0.95 492 494 0.40 1 489 1.02 33
39 100 0.3 0.95 692 692 0.00 1 689 0.44 14
40 1 0.2 0.95 110 122 9.84 1 119 2.52 381
41 50 0.2 0.95 418 418 0.00 1 417 0.24 25
42 100 0.2 0.95 618 619 0.16 1 617 0.32 10
43 1 0.3 0.75 64 90 28.8 1 85 5.88 277
44 50 0.3 0.75 360 370 2.70 1 369 0.27 18
45 100 0.3 0.75 560 570 1.75 1 569 0.18 9
46 1 0.2 0.75 45 59 23.7 1 56 5.36 225
47 50 0.2 0.75 332 339 2.06 1 339 0.00 19
48 100 0.2 0.75 532 539 1.30 1 536 0.56 8

Table 4 Experimental results for Seasonal (13, . . . , 24), Life Cycle (25, . . . , 36)
and Erratic (37, . . . , 48) demand patterns.

considered a ∈ {1, 50, 100}, τ ∈ {0.2, 0.3} and α ∈ {0.95, 0.75}. In Table 4
experimental results for these three further demand patterns are presented.
Similar considerations to those just introduced indicate why also for these
demand patterns in some cases the results provided by our exact approach
may differ substantially from those obtained with the approximate one.
Typically such a difference is due to the combined effect of excess stocks
and/or negative inventory levels as already discussed.

From our experiments it is clear that the approximate expected total cost
computed by Tarim & Kingsman’s model (T&K E{TC}) may substantially
underestimate the exact expected total cost (T&K Ê{TC}) associated with
a given solution, which can be easily computed by simulation or by using
our exact model. This is particularly evident in the erratic demand case,
where for instances 43 and 46 the approximate expected total cost predicted
by Tarim & Kingsman’s model (T&K E{TC}) is respectively 28.8% and
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23.7% less costly than the exact expected total cost associated with the
policy parameter configuration in the respective solution (T&K Ê{TC}).
Although Tarim & Kingsman’s model underestimates cost — T&K E{TC}
is on average 5.26% lower than T&K Ê{TC} — over the whole test bed the
average difference between T&K Ê{TC} and Exact E{TC} is only 1.25%.
This means that the approximate approach in [31] actually computes near-
optimal parameters for (Rn,Sn) policy, reorder points and the respective
order-up-to-levels, regardless of the underestimated cost. Nevertheless for
some instances, i.e. (29), (30), (31) etc., T&K E{TC} is equal to T&K
Ê{TC}, which means that for these instances the assumptions adopted by
Tarim and Kingsman are valid. In summary these results suggest that Tarim
& Kingsman’s model can actually compute near-optimal policy parameters,
although the approximate expected total cost predicted can often differ sig-
nificantly from the actual expected total cost associated with these reorder
points and respective order-up-to-levels.

As we may notice from the run-times reported in columns “sec”, the
approach proposed in [30] always outperforms our exact method and runs
efficiently for every instance considered. Further results presented in [30]
suggest that such an approach can efficiently handle large scale instances.
Since our results suggest that the exact solution in the average case differs
only slightly from the one provided by Tarim and Kingsman’s approximate
approach, when efficiency is an issue, their approach remains a valid alter-
native to our exact model.

6 Conclusions

We identified two sources of approximation in Tarim & Kingsman’s model
for computing (Rn,Sn) policy parameters under service level constraint.
We proposed an exact stochastic constraint programming approach based
on a novel concept — global chance-constraints — which extends the orig-
inal stochastic constraint programming framework proposed by Walsh. We
described a dedicated global chance-constraint that computes optimal in-
ventory levels to meet the required service level and the expect total cost
associated with them. We analyzed the accuracy of the approximate solu-
tions provided by the model developed by Tarim & Kingsman over four
different demand patterns and over several different input parameter con-
figurations. We also provided insights into for which kind of instances the
assumptions adopted by Tarim & Kingsman may affect the quality of the
solution provided by their model. Our results suggest that their modeling
strategy is a good trade-off between quality of the solution and efficiency of
the search process.
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