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tWe introdu
e a new �ltering algorithm, 
alled IDL(d)-�ltering, for a global 
onstraint dedi
ated tothe graph isomorphism problem �the goal of whi
h is to de
ide if two given graphs have an identi
alstru
ture. The basi
 idea of IDL(d)-�ltering is to label every vertex with respe
t to its relationshipswith other verti
es around it in the graph, and to use these labels to �lter domains by removing valuesthat have di�erent labels. IDL(d)-�ltering is parameterized by a positive integer value d whi
h givesa limit on the distan
e between a vertex to be labelled and the set of verti
es 
onsidered to buildits label. We experimentally 
ompare di�erent instantiations of IDL(d)-�ltering with state-of-the-artdedi
ated algorithms and show that IDL(d)-�ltering is more e�
ient on regular sparse graphs and
ompetitive on other kinds of graphs.1 Introdu
tionGraphs are widely used in real-life appli
ations to model stru
tured obje
ts, e.g., mole
ules, images, ornetworks. In many of these appli
ations, one has to 
ompare graphs to de
ide if their stru
tures areidenti
al. This problem is known as the Graph Isomorphism Problem (GIP). This problem 
an also beused to dete
t symmetries into 
onstraint satisfa
tion problems [Pug05, ZDD06℄.More formally, a graph is de�ned by a 
ouple (V, E) su
h that V is a �nite set of verti
es and E ⊆ V ×Vis a set of edges. Two graphs G = (V, E) and G′ = (V ′, E′) are isomorphi
 if there exists a bije
tivefun
tion f : V → V ′ su
h that for every pair of verti
es (u, v) ∈ V × V , we have (u, v) ∈ E if and only if
(f(u), f(v)) ∈ E′. We shall say that f is an isomorphism fun
tion. The GIP 
onsists in de
iding if twogiven graphs are isomorphi
.There exist many dedi
ated algorithms for solving GIPs su
h as, e.g., [Ull76, M
K81, CFSV04, DLSM04℄.These algorithms are often very e�
ient (even though their worst 
ase time 
omplexities are exponential).However, su
h dedi
ated algorithms 
annot be used to solve more spe
i�
 problems, su
h as isomorphismproblems with additional 
onstraints, or larger problems that in
lude graph isomorphism subproblems.An attra
tive alternative to these dedi
ated algorithms is to use Constraint Programming (CP), whi
hprovides a generi
 framework for solving any kind of Constraint Satisfa
tion Problems (CSPs). Indeed,GIPs 
an be transformed into CSPs in a very straightforward way [M
G79℄, so that one 
an use generi

onstraint solvers to solve them. However, when transforming a GIP into a CSP, the global semanti
 ofthe problem is lost and de
omposed into a set of binary 
onstraints. As a 
onsequen
e, using CP to solveGIPs may be less e�
ient than using dedi
ated algorithms whi
h have a global view of the problem.1



Motivations. In order to allow 
onstraint solvers to solve GIPs more e�
iently without loosing CP's�exibility, we have introdu
ed in [SS04℄ a global 
onstraint dedi
ated to GIPs and a �rst �ltering algo-rithm, 
alled Label-�ltering. In [SS07℄, we have proposed another �ltering algorithm, 
alled ILL-�ltering.Both ILL-�ltering and Label-�ltering are based on the 
omputation of a so 
alled �isomorphi
-
onsistent�labelling, i.e., a labelling of the graph verti
es su
h that two verti
es whi
h have di�erent labels 
annotbe mat
hed by an isomorphism fun
tion. However, to 
ompute the label of a vertex u, ILL-�ltering only
onsiders the dire
t neighborhood of u whereas Label-�ltering 
onsiders all verti
es of the graph. Also,ILL-�ltering iteratively strengthens labels until a �x-point is rea
hed whereas Label-�ltering only iterateson
e the strengthening pro
edure.We introdu
e in this arti
le a new parametri
 �ltering algorithm, 
alled IDL(d)-�ltering, whi
h is alsobased on the 
omputation of an isomorphi
-
onsistent labelling. The label of a vertex u is 
omputed by
onsidering all verti
es that are at most at distan
e d from u, where d is a parameter. IDL(d)-�lteringis a generalization of ILL-�ltering �whi
h 
orresponds to IDL(1)-�ltering� and Label-�ltering �whi
h
orresponds to the �rst two iterations of IDL(∞)-�ltering.Outline of the paper. Se
tion 2 gives an overview of existing approa
hes for solving the graph iso-morphism problem, in
luding CP approa
hes. Se
tion 3 introdu
es a labelling pro
edure based on aninvariant distan
e property. Se
tion 4 shows how to use this distan
e-based labelling to de�ne IDL(d)-�ltering. Se
tion 5 illustrates IDL(d)-�ltering on a graph isomorphism problem instan
e for d = 1 and
d =∞. Se
tion 6 experimentally 
ompares di�erent instantiations of IDL(d)-�ltering with state-of-the-artapproa
hes.2 Existing approa
hes for solving graph isomorphism problems2.1 Complexity of the graph isomorphism problemThe theoreti
al 
omplexity of the GIP is not exa
tly stated: the problem is in NP but it has not beenshown to be in P nor to be NP -
omplete [For96℄ and its own 
omplexity 
lass, isomorphism-
omplete,has been de�ned. However, when adding some topologi
al restri
tions on graphs (e.g., planar graphs[HW74℄, trees [AHU74℄ or bounded valen
e graphs [Luk82℄) this problem be
omes solvable in polynomialtime.2.2 Dedi
ated algorithmsTo solve a GIP, one has to �nd a one to one mapping between the verti
es of the two graphs. The sear
hspa
e 
omposed of all possible mappings may be explored in a �Bran
h and Cut� way: at ea
h node ofthe sear
h tree, some graph properties (su
h as edge distribution or vertex neighborhood) 
an be usedto prune the sear
h spa
e [CFSV04, Ull76℄. This kind of approa
h is rather e�
ient and 
an be used tosolve GIPs up to a thousand or so verti
es very qui
kly (in less than one se
ond). In [SD76℄, S
hmidt etal. propose su
h an algorithm that prunes the sear
h tree by using a distan
e matrix.M
Kay [M
K81℄ proposes another approa
h, whi
h has been originally designed to dete
t graph auto-morphisms, i.e., non trivial isomorphisms between a graph and itself. The main idea is to 
ompute a
anoni
al representation of a graph su
h that two graphs have the same representation if and only if theyare isomorphi
. This 
anoni
al representation is an ordered partition of the verti
es su
h that all verti
eswithin a same part are equivalent (with respe
t to an isomorphism fun
tion). This partition is 
omputed,starting from an initial partition that groups all verti
es into a same part, by iteratively applying anordered set of vertex invariants to split parts. This approa
h is implemented in Nauty whi
h is, to ourknowledge, the most e�
ient solver for the graph isomorphism problem in the general 
ase: Nauty is2




omparable to �Bran
h and Cut� methods but Nauty is often the qui
kest for large graphs [FSV01℄. In[DLSM04℄, Darga et al. propose a similar algorithm 
alled Sau
y whi
h is spe
ialized for sparse graphs(with very low edge densities) and whi
h is faster than Nauty on this kind of graphs. Puget [Pug05℄proposes another algorithm for the graph automorphism problem whi
h is even faster on sparse graphs.Finally, M
Kay has re
ently proposed an adaptation of Nauty 
alled Sparetest dedi
ated to sparse graphs(the 
ode has been sent to us in a personal 
ommuni
ation).All these dedi
ated algorithms 
an e�
iently solve GIPs in pra
ti
e, even though their worst 
ase 
om-plexities are exponential. However, they are not suited for solving more spe
i�
 problems, su
h as GIPswith additional 
onstraints. In parti
ular, verti
es and edges may be asso
iated with labels that 
har-a
terize them, and one may be interested in looking for isomorphism fun
tions that satisfy additional
onstraints on these labels. This is the 
ase, e.g., in [Rég95℄ where graphs are used to represent mole
ules,or in 
omputer aided design (CAD) appli
ations where graphs are used to represent design obje
ts [CS03℄.2.3 Constraint ProgrammingConstraint Programming (CP) is an attra
tive alternative to dedi
ated approa
hes: it provides high levellanguages to de
laratively model Constraint Satisfa
tion Problems (CSPs); these CSPs are solved in ageneri
 way by embedded 
onstraint solvers [Tsa93, LO00, ILO00, HSD92℄. A CSP is de�ned by a triple
(X, D, C) su
h that
• X is a �nite set of variables,
• D is a fun
tion whi
h maps every variable xi ∈ X to its domain D(xi), i.e., the �nite set of valuesthat may be assigned to xi,
• C is a set of 
onstraints, i.e., relations between some variables whi
h restri
t the set of values that
an be assigned simultaneously to these variables. Constraints involving two variables are 
alledbinary 
onstraints; we shall denote C(xi, xj) the binary 
onstraint holding between the two variables

xi and xj , and we shall de�ne this 
onstraint by the set of 
ouples (vi, vj) ∈ D(xi) × D(xj) thatsatisfy the 
onstraint.Solving a CSP (X, D, C) involves �nding a 
omplete assignment, whi
h assigns a value vi ∈ D(xi) toevery variable xi ∈ X , su
h that all 
onstraints in C are satis�ed.Graph isomorphism problems may be formulated as CSPs in a very straightforward way [GJ79, Rég95℄.Given two graphs G = (V, E) and G′ = (V ′, E′), one may de�ne the CSP (X, D, C) su
h that
• a variable xu is asso
iated with ea
h vertex u ∈ V , i.e., X = {xu | u ∈ V },
• the domain of ea
h variable xu is the set of verti
es of G′ that have the same number of adja
entverti
es as u, i.e.,

D(xu) = {u′ ∈ V ′ | #{(u, v) ∈ E} = #{(u′, v′) ∈ E′} }

• there is a binary 
onstraint between every pair of di�erent variables (xu, xv) ∈ X ×X , denoted by
Cedge(xu, xv). This 
onstraint expresses the fa
t that the two verti
es of G′ that are assigned to xuand xv must be 
onne
ted by an edge in G′ if and only if u and v are 
onne
ted by an edge in G,i.e., if (u, v) ∈ E, Cedge(xu, xv) = E′otherwise Cedge(xu, xv) = {(u′, v′) ∈ V ′ × V ′ | u′ 6= v′ and (u′, v′) 6∈ E′}On
e a GIP has been formulated as a CSP, one 
an use CP to solve it in a generi
 way. Within thisframework, additional 
onstraints, su
h as 
onstraints on vertex and edge labels, may be expressed veryeasily. 3



2.4 Global 
onstraint for the graph isomorphism problemThe CSP formulation des
ribed in 2.3 de
omposes the global semanti
 of the GIP into a set of binaryedge 
onstraints. Ea
h of these edge 
onstraints expresses the ne
essity either to preserve or to forbidan edge in a lo
al way. As a 
onsequen
e, using CP to solve GIPs is often less e�
ient than using adedi
ated algorithm.To improve the solution pro
ess of CSPs asso
iated with GIPs, one may add an allDi� global 
onstraint,in order to 
onstrain all variables to be assigned to di�erent verti
es [Rég95℄. This 
onstraint is redundantas ea
h binary edge 
onstraint only 
ontains 
ouples of di�erent verti
es, so it is not possible to assignthe same value to two di�erent variables. This global 
onstraint allows a 
onstraint solver to prune thesear
h spa
e more e�
iently, and therefore to solve GIPs qui
ker.However, even with an allDi� global 
onstraint, CP is still not 
ompetitive with dedi
ated algorithmsbe
ause most of the global semanti
 of the problem is still lost. Hen
e, we have introdu
ed in [SS04℄ aglobal 
onstraint for the graph isomorphism problem.Synta
ti
ally, this 
onstraint is de�ned by the relation gip(V, E, V ′, E′, L) where
• V and V ′ are two sets of values su
h that #V = #V ′,
• E ⊆ V × V is a set of pairs of values from V ,
• E′ ⊆ V ′ × V ′ is a set of pairs of values from V ′,
• L is a set of 
ouples whi
h asso
iates a di�erent variable of the CSP to ea
h di�erent value of V ,i.e., L is a set of #V 
ouples of the form (xu, u) where xu is a variable of the CSP and u is a valueof V , and su
h that for any pair of di�erent 
ouples (xu, u) and (xv, v) of L, xu 6= xv and u 6= v.Semanti
ally, the global 
onstraint gip(V, E, V ′, E′, L) is 
onsistent if and only if there exists an isomor-phism fun
tion f : V → V ′ su
h that for ea
h 
ouple (xu, u) ∈ L there exists a value u′ ∈ D(xu) so that

u′ = f(u).This global 
onstraint is not semanti
ally global [BH03℄ as it 
an be represented by a semanti
allyequivalent set of binary 
onstraints as des
ribed previously. However, the gip 
onstraint allows us toexploit the global semanti
 of GIPs to solve them more e�
iently.3 Theoreti
al frameworkWe show in this se
tion how to build a distan
e-based labelling whi
h will be used in the next se
tionto de�ne a �ltering algorithm for the gip global 
onstraint. The main idea is to label every vertex withrespe
t to distan
e relationships with other verti
es of the graph. This labelling is isomorphi
-
onsistent,i.e., two verti
es that have di�erent labels 
annot be mat
hed by an isomorphism fun
tion. Hen
e, thislabelling 
an be used to �lter domains by removing verti
es whi
h have di�erent labels. Labels are builtiteratively: starting from an empty label, ea
h label is extended by 
onsidering labels of verti
es withina given distan
e d. This labelling extension, 
alled relabelling, is iterated until a �x-point is rea
hed.The distan
e d is a parameter of the relabelling pro
edure. When it is set to 1, labels are iterativelyextended by 
onsidering labels of neighbors in a very similar way to the partition re�nement pro
edureof Nauty. When the distan
e d is set to a value larger than 1, one obtains a stronger labelling than thepartition re�nement of Nauty.In this se
tion, we �rst show that distan
es are preserved by isomorphism fun
tions. Then, we introdu
elabellings and relabellings. Finally, we de�ne a distan
e-based relabelling. We assume gip(V, E, V ′, E′, L)to be the underlying graph isomorphism 
onstraint to propagate, and we de�ne Verti
es = V ∪ V ′ and4



Edges = E ∪E′. We assume without loss of generality that V ∩V ′ = ∅ and that ea
h graph is 
onne
ted.We restri
t our attention to non dire
ted graphs. The extension of our work to dire
ted graphs is dis
ussedin 7.3.1 Distan
e-based invariant propertyDe�nition. A path between two verti
es u and v is a sequen
e <v0, v1, v2, ..., vk> of verti
es su
h that
v0 =u, vk =v and for all i ∈ [1, k], (vi−1, vi) ∈ Edges. The length of a path is the number of its edges.De�nition. The distan
e between two verti
es u and v, denoted by δ(u, v), is the length of the shortestpath between u and v.De�nition. The diameter of a graph G is the largest distan
e between two verti
es of G.Our �ltering pro
edure for the graph isomorphism problem is based on the following theorem whi
h showsthat distan
es are preserved by isomorphism fun
tions.Theorem 1. Given a bije
tive fun
tion f : V → V ′, the two following properties are equivalent:1. f is an isomorphism fun
tion, i.e., f is su
h that ∀(u, v) ∈ V × V, (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′ ;2. ∀(u, v) ∈ V × V, δ(u, v) = δ(f(u), f(v)).Proof. (1) ⇒ (2): if f is an isomorphism fun
tion, then (u, v) is an edge of G i� (f(u), f(v)) is anedge of G′ so that < v1, v2, ..., vn > is a path in G i� < f(v1), f(v2), ..., f(vn) > is a path in G′, andtherefore < v1, v2, ..., vn > is a shortest path in G i� < f(v1), f(v2), ..., f(vn) > is a shortest path in G′,and property (2) holds.
(2)⇒ (1): For any pair of verti
es (u, v) ∈ V × V , if (u, v) is an edge of G, then < u, v > is the shortestpath between u and v so that δ(u, v) = 1, and therefore δ(f(u), f(v)) = 1, so that (f(u), f(v)) is an edgeof G′ (and vi
e versa).3.2 Isomorphi
-
onsistent labelling and relabellingBefore de�ning a labelling pro
edure based on Theorem 1, we introdu
e in this se
tion some de�nitionsabout labellings and relabellings.De�nition. A labelling is a fun
tion denoted by α that asso
iates a label α(v) to every vertex v ∈Verti
es. This label does not depend on vertex names but only on relations de�ned by edges between v andother verti
es. We note image(α) the set of labels returned by α, i.e., image(α) = {α(v) | v ∈ Verti
es}.De�nition. A labelling α is isomorphi
-
onsistent if for every isomorphism fun
tion f between (V, E)and (V ′, E′), verti
es mat
hed by f have identi
al labels, i.e., ∀v ∈ V, α(v) = α(f(v)).

5



Figure 1: De�nition of a gip(V, E, V ′, E′, L) 
onstraint instan
e su
h that
V = {A, B, C, D, E, F, G, H, I, J} and V ′ = {A′, B′, C′, D′, E′, F ′, G′, H ′, I ′, J ′},
L = {(xA, A), (xB , B), (xC , C), (xD, D), (xE , E), (xF , F ), (xG, G), (xH , H), (xI , I), (xJ , J)},
E and E′ are de�ned as graphi
ally displayed above.Example 1. Let us 
onsider the gip 
onstraint instan
e of Figure 1 and let us de�ne the labelling αdegwhi
h labels ea
h vertex by its degree, i.e.,

∀v ∈ Verti
es, αdeg(v) = #{u ∈ V | (u, v) ∈ Edges}We have αdeg(A) = αdeg(D) = αdeg(F ) = αdeg(H) = 4 and αdeg(B) = αdeg(C) = αdeg(E) = αdeg(G) =
αdeg(I) = αdeg(J) = 3. This labelling is isomorphi
-
onsistent as isomorphism fun
tions only mat
hverti
es that have a same number of adja
ent verti
es.An isomorphi
-
onsistent labelling may be used to �lter domains: the domain of every variable xuasso
iated with a vertex u may be redu
ed to the set of verti
es that have the same label as u. Our goalis to build an isomorphi
-
onsistent labelling that �lters domains as mu
h as possible, i.e., that asso
iatesas mu
h as possible di�erent labels to verti
es that 
annot be mat
hed.De�nition. A labelling α1 is at least as strong as a labelling α2 if

∀(u, v) ∈ V × V ′, α2(u) 6= α2(v)⇒ α1(u) 6= α1(v)To strengthen a labelling, we propose to iteratively apply a relabelling fun
tion.De�nition. A relabelling is a fun
tion denoted by β that, given a labelling α, returns a new labellingnoted β[α].De�nition. A relabelling β is isomorphi
-
onsistent if for any isomorphi
-
onsistent labelling α, β[α]is also an isomorphi
-
onsistent labelling.Relabellings may be de�ned with respe
t to labels of adja
ent verti
es; as several verti
es may have thesame label, we introdu
e the following notation for multisets.De�nition. A multiset is a bag whi
h may 
ontain several o

urren
es of a same value. Given anunderlying set S, we note ak the fa
t that a value a ∈ S o

urs k times in a multiset m.Example 2. Given the set S = {a, b, c, d}, m = {{a, a, b, d, d, d}} = {{a2, b1, d3}} is the multiset that
ontains two o

urren
es of a, one o

urren
e of b and three o

urren
es of d.6



Example 3. Let us de�ne the relabelling βadj that relabels every vertex by the multiset 
omposed ofthe labels of its neighbors, i.e.,
∀v ∈ Verti
es, βadj[α](v) = {{lk | l ∈ image(α), k = #{u ∈ Verti
es, (v, u) ∈ Edges, l = α(u)}, k > 0}}This relabelling βadj is isomorphi
-
onsistent be
ause two verti
es 
an be asso
iated by an isomorphismfun
tion only if their neighbors 
an. If we 
onsider the labelling αdeg of Example 1 and the gip 
onstraintinstan
e of Figure 1, we have

βadj [αdeg](A) = βadj[αdeg](D) = βadj[αdeg](F ) = βH [αdeg] = {{32, 42}}

βadj[αdeg](B) = βadj[αdeg](C) = {{31, 42}}

βadj[αdeg](E) = βadj [αdeg](G) = βadj[αdeg](I) = βJ [αdeg] = {{32, 41}}De�nition. A relabelling β is strengthening if for any labelling α, β[α] is at least as strong as α.A very simple way to ensure that a relabelling β is strengthening is to de�ne β in su
h a way that, forea
h vertex v ∈ Verti
es, β[α](v) is pre�xed by α(v).An isomorphi
-
onsistent relabelling fun
tion β 
an be used to iteratively de�ne new isomorphi
-
onsistentlabelling fun
tions: starting from an elementary isomorphi
-
onsistent labelling fun
tion α, β 
an beiteratively applied, thus de�ning a sequen
e of labellings. We note βi[α] the labelling obtained by iteratingthe relabelling β i times, starting from α. More pre
isely, we de�ne:
β0[α] = α

βi[α] = β[βi−1[α]], ∀i ≥ 13.3 Relabelling fun
tion based on distan
esTheorem 1 shows that graph isomorphism fun
tions preserve distan
es. This property 
an be used tode�ne a relabelling fun
tion βd. Basi
ally, the idea is to extend the label of a vertex u by the labels ofother verti
es within a distan
e d from u. As several verti
es may have a same label, this extension is amultiset.De�nition. Given a vertex v, a distan
e d ≥ 0 and a labelling fun
tion α, we note ∆(v, d, α) themultiset 
omposed of labels of verti
es at distan
e d from v. More formally,
∆(v, d, α) = {{lk | l ∈ image(α), k = #{u ∈ Verti
es | δ(u, v) = d, α(u) = l}, k ≥ 1}}Example 4. Let us 
onsider the gip global 
onstraint instan
e of Figure 1 and the labelling fun
tion

αdeg of Example 1. We have
∆(A, 0, αdeg) = {{41}} (at distan
e 0 from A: there is 1 vertex (A) labelled by 4)
∆(A, 1, αdeg) = {{32, 42}} (at distan
e 1 from A: there are 2 verti
es (B and C) labelled by 3and 2 verti
es (D and F ) labelled by 4)
∆(A, 2, αdeg) = {{33, 41}} (at distan
e 2 from A: there are 3 verti
es (E, G and J) labelled by 3and 1 vertex (H) labelled by 4)
∆(A, 3, αdeg) = {{31}} (at distan
e 3 from A: there is 1 vertex (I) labelled by 3)
∆(A, 4, αdeg) = ∅ (at distan
e 4 from A: there is no vertex)
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De�nition. Given a labelling fun
tion α and a positive integer d, the relabelling fun
tion βd returns anew labelling fun
tion βd[α] whi
h labels ea
h vertex v by a set of d+1 multisets, su
h that ea
h multiset
ontains the labels of verti
es at distan
e k from v (with k ∈ [0, d]), i.e.,
∀v ∈ V, βd[α](v) = {k : ∆(v, k, α) | k ∈ [0, d]}Example 5. Let us 
onsider the gip global 
onstraint instan
e of Figure 1 and the labelling fun
tion

αdeg of Example 1. We have
β1[αdeg](A) = {0 : {{41}}, 1 : {{32, 42}} }
β2[αdeg](A) = {0 : {{41}}, 1 : {{32, 42}}, 2 : {{33, 41}} }
β3[αdeg](A) = {0 : {{41}}, 1 : {{32, 42}}, 2 : {{33, 41}}, 3 : {{31}} }
βk[αdeg](A) = β3[αdeg](A), ∀k > 3In other words, β1[αdeg] extends αdeg by adding labels of neighbors; β2[αdeg] extends β1[αdeg] by addinglabels of verti
es at distan
e 2; and β3[αdeg] extends β2[αdeg] by adding labels of verti
es at distan
e 3.As the diameter of the graph is 3, βk[αdeg] = β3[αdeg] for every distan
e k greater than 3.The next two theorems show that βd is both strengthening and isomorphi
-
onsistent, and that the larger

d, the stronger βdTheorem 2. For every distan
e d ∈ N , the fun
tion βd is an isomorphi
-
onsistent relabelling.Proof. If α is an isomorphi
-
onsistent labelling, then, for ea
h isomorphism fun
tion f between G and
G′, ∀u ∈ V, α(u) = α(f(u)). Furthermore, as f is an isomorphism fun
tion and given theorem 1, ∀(u, v) ∈Verti
es2, δ(u, v) = δ(f(u), f(v)). As a 
onsequen
e, ∀u ∈ V, ∀l ∈ image(α), ∀j ∈ [0, #V ], #{v|v ∈
V ∧ δ(u, v) = j ∧ α(v) = l} = #{v′|v′ ∈ V ′ ∧ δ(f(u), v′) = j ∧ α(v′) = l} (be
ause f is a bije
tiveappli
ation). As a 
onsequen
e, ∀u ∈ V, βd[α](u) = βd[α](f(u)) and βd[α] is an isomorphi
-
onsistentlabelling fun
tion.Theorem 3. Given a labelling α and two integers k and l su
h that 1 ≤ k < l, βl[α] is at least as strongas βk[α] whi
h is at least as strong as α.Proof. βl[α] is at least as strong as βk[α] be
ause, by de�nition, for every vertex v ∈ Verti
es, βl[α](v) =
βk[α](v) ∪ {i : ∆(v, i, α) | i ∈ [0, d]}. Therefore, βk[α](u) 6= βk[α](v)⇒ βl[α](u) 6= βl[α](v).
βk[α] is at least as strong as α be
ause for every vertex v ∈ Verti
es, 0 : {α(v)1} belongs to βk[α](v).Therefore, α(u) 6= α(v)⇒ βk[α](u) 6= βk[α](v).Finally, the relabelling βd 
an be iteratively applied, starting from an initial labelling α, thus de�ning asequen
e of labellings β0

d [α], β1
d[α], β2

d[α], . . . . As ea
h labelling βi
d[α] is at least as strong as βi−1

d [α], thissequen
e ne
essarily rea
hes a �x-point at some step k su
h that every labelling βk+i
d [α] is equivalent to

βk
d [α]. The next theorem shows that this �x-point is rea
hed when at some step k the number of di�erentlabels is not in
reased.Theorem 4. Given a distan
e d, an initial labelling α and a positive integer k, if

∀(u, v) ∈ Verti
es×Verti
es, βk
d [α](u) = βk

d [α](v)⇒ βk+1

d [α](u) = βk+1

d [α](v)then
∀j ≥ k, ∀(u, v) ∈ Verti
es×Verti
es, βk

d [α] = βk
d [α]⇒ β

j
d[α](u) = β

j
d[α](v)8



Proof. Given its de�nition, we 
an see that βd does not use the labels given by α themselves but onlyan equivalen
e relation between these labels. As a 
onsequen
e, when a relabelling of the verti
es doesnot 
hange the equivalen
e relation between the vertex labels, any further relabelling 
annot 
hange thisequivalen
e relation any more.Roughly speaking, theorem 4 shows that, when a step of the sequen
e βk
d does not in
rease the numberof di�erent vertex labels, a �x-point is rea
hed and the relabelling pro
ess 
an be stopped. Finally, asthe number of di�erent labels is bounded by #V , this �x-point is rea
hed in at most #V steps.4 Pra
ti
al framework4.1 IDL(d)-
onsisten
y and IDL(d)-�lteringWe now propose to use the distan
e-based relabelling βd to de�ne a new partial 
onsisten
y �
alledIterative Distan
e Label (IDL) 
onsisten
y� and an asso
iated �ltering algorithm for the gip 
onstraint.The relabelling βd is iterated starting from an initial labelling α. We �rst de�ne this initial labellingto be the labelling α∅ whi
h asso
iates the same label ∅ to every vertex, i.e., for every vertex v ∈Verti
es, α∅(v) = ∅. We shall introdu
e other initial labellings in se
tion 4.2.De�nition. Given a distan
e d ≥ 1, a gip(V, E, V ′, E′, L) global 
onstraint is IDL(d)-
onsistent if forevery value v in the domain of a variable asso
iated by L to a vertex u, the verti
es u and v are asso
iatedwith a same label by any labelling βk

d [α∅], i.e.,
∀(xu, u) ∈ L, ∀v ∈ D(xu), ∀k ≥ 0, βk

d [α∅](u) = βk
d [α∅](v)Algorithm 1 des
ribes a �ltering pro
edure that ensures IDL(d)-
onsisten
y. Starting from an initiallabelling β0 that asso
iates the same label ∅ to every vertex (lines 1�2), this pro
edure iteratively 
omputes

βi from βi−1 (lines 5�12), renames the labels of βi (line 13) and �lters domains with respe
t to βi (lines14�15) until either a domain be
omes empty �thus proving in
onsisten
y� or the number of labels hasnot in
reased �thus rea
hing a �x-point.The time and spa
e 
omplexities of relabelling, renaming and �ltering are studied below. We de�ne
n = #Verti
es and p = #Edges.Computation of βi from βi−1 (lines 5�12). This step basi
ally implies n breadth �rst sear
hesbounded by d: starting from every vertex v, we iteratively 
ompute the sets δk of verti
es at distan
e kfrom v, for ea
h distan
e k ∈ [1, d].The time 
omplexity of this step depends on the d parameter.
• In the worst 
ase, i.e., if d is greater than or equal to the diameter of the graph, it 
orresponds to

n full breadth �rst sear
hes so that it is in O(np).This 
omplexity 
ould be redu
ed to O(n2) by memorizing, for every vertex v ∈ Verti
es and everydistan
e k ∈ [1, d] a list δk(v) of verti
es at distan
e k from v. However, experiments have shownus that this implementation a
tually spends more CPU time. The reason is that adja
en
y listsare often already stored in the CPU 
a
he memory, so that a

essing to the neighbors of a vertexis often very qui
kly done, whereas δk(v) lists are too big to stay in the 
a
he memory, so that thepro
essor often has to restore these lists from the RAM to its 
a
he, whi
h is more time 
onsuming.9



Algorithm 1: IDL(d) Filtering pro
edureInput: a 
onstraint gip(V, E, V ′, E′, L),the domain D(xu) of every variable xu o

urring in L,a distan
e d ≥ 1Output: �ltered domains D su
h that gip(V, E, V ′, E′, L) is IDL(d)-
onsistentforea
h v ∈ Verti
es do1
β0(v)← ∅2

i← 13 repeat4 /* Computation of labelling βi from labelling βi−1 */forea
h v ∈ Verti
es do5
δ0 ← {v}6 marked← {v}7 for k in 1..d and while δk−1 6= ∅ do8 /* Invariant: δk−1 = set of verti
es at distan
e k − 1 from v *//* and marked = set of verti
es at distan
e j ≤ k − 1 from v */

δk ← {u | ∃u′ ∈ δk−1, (u
′, u) ∈ Edges, u 6∈ marked}9 
ompute the multiset mk whi
h 
ontains an o

urren
e of βi−1(u) for ea
h vertex u ∈ δk10 marked← marked ∪ δk11

βi(v)← {0 : {βi−1(v)} ∪ {k : mk | k ∈ 1..d}12 rename labels of βi13 /* Filtering with respe
t to the new labelling βi */forea
h (xu, u) ∈ L do14
D(xu)← D(xu) ∩ {v ∈ Verti
es, βi(u) = βi(v)}15

i← i + 116 until ∃(xu, u) ∈ L, D(xu) = ∅ or #{βi−1(u), u ∈ Verti
es} = #{βi(u), u ∈ Verti
es} ;17
• In the best 
ase, i.e., if d = 1, one only has to 
ompute for ea
h vertex v the multiset m1 
ontainingthe labels of the dire
t neighbors of v. In this 
ase, the time 
omplexity for 
omputing βi from βi−1is O(p).The spa
e 
omplexity of this step does not depend on d, as we do not memorize lists of verti
es at a givendistan
e. It is in O(n2) as there are n labels, and the size of ea
h label is bounded by n (remember thatlabels are renamed at ea
h iteration).Renaming step (line 13). This step is introdu
ed in order to allow us to manage vertex labels in
onstant time and memory. Indeed, at ea
h relabelling iteration, labels be
ome larger. However, one 
aneasily show that these labels 
an be renamed after ea
h relabelling step, provided that the equivalen
erelation de�ned by labels is preserved by the renaming.To rename labels, they must be sorted. The size of ea
h label is bounded by n, and there are n labels.Therefore, sorting all labels is done in O(n2 · log n). We use a Hash table to 
ompare and rename vertexlabels. With su
h a table, the time 
omplexity for renaming a sorted label is linear with respe
t to thesize of the label, i.e., in O(n), provided that the table is large enough to limit the number of 
ollisions.The spa
e 
omplexity of this step is in O(n2) as the Hash table has O(n) entries and the size of ea
hentry is in O(n).Filtering step (lines 12�13). This step is done in O(n2).10



Complexity of IDL(d)-�ltering. In the worst 
ase, the �x-point is rea
hed after O(n) iterations ofthe repeat until loop. Therefore, the time 
omplexity of IDL(d)-�ltering is O(n2(p + n log n)) if d isgreater or equal to the diameter of the graph; it is O(n3 log n) if d = 1. The spa
e 
omplexity is O(n2).4.2 Initial labellingAlgorithm 1 starts the relabelling pro
ess from an initial labelling α∅ whi
h labels all verti
es with ∅so that every vertex of V may be mat
hed with every vertex of V ′. However, it may happen that thedomain of some variables asso
iated with verti
es of V have been redu
ed, either by the propagation ofother 
onstraints of the CSP, or when by a domain splitting during a bran
h and propagate sear
h.In this 
ase, the relabelling pro
ess may be started from an initial labelling whi
h integrates as mu
h aspossible these domain redu
tions, i.e., su
h that if a vertex u does not belong to the domain of a variable
xv, then u and v are asso
iated with di�erent labels, thus indi
ating that it is not possible to mat
h thesetwo verti
es. However, the initial labelling must not remove solutions, i.e., if a vertex u belongs to thedomain of a variable xv asso
iated with a vertex v, then u and v must be asso
iated with a same label.More formally, let us de�ne the bipartite graph Gcc = (Verti
es, Ecc) su
h that Ecc = {(u, u′) ∈ V ×
V ′ | u′ ∈ D(xu)}. If two verti
es are 
onne
ted by a path in Gcc, then they must have the same label,otherwise they 
an have di�erent labels. Hen
e, the initial labelling may be built by 
omputing the setof 
onne
ted 
omponents of Gcc, and assigning the same label to all verti
es within a same 
onne
ted
omponent. The set of 
onne
ted 
omponents of Gcc may be 
omputed by a simple sear
h in O(#Ecc).Also, ea
h time the domain of a variable xu is redu
ed to a singleton {v}, we 
an remove v from thedomains of all other variables and then relabel both u and v with a new label, di�erent from all otherlabels. In this 
ase, it is no longer ne
essary to iterate the relabelling pro
ess on these two verti
es.5 Illustration of IDL(d)-�ltering for d =∞ and d = 1We now illustrate IDL(d)-�ltering on the gip global 
onstraint instan
e of Figure 1 for d =∞ and d = 1.As the two graphs are isomorphi
, we only display labels 
omputed for verti
es of V . Also, for reasonsof spa
e, when several verti
es have a same label l, we group all these verti
es within a same set S anddenote by α(S) = l the fa
t that every vertex of the set S is labelled by l.5.1 Illustration of IDL(∞)-�lteringAt step 0, ea
h vertex is labelled by ∅:

α0({A, B, C, D, E, F, G, H, I, J}) = ∅After the �rst relabelling step, we have
β1

+∞[α∅]({A, D, F}) = { 0 : {{∅1}}, 1 : {{∅4}}, 2 : {{∅4}}, 3 : {{∅1}} } renamed to a

β1
+∞[α∅]({B, C, E, G, I}) = { 0 : {{∅1}}, 1 : {{∅3}}, 2 : {{∅4}}, 3 : {{∅2}} } renamed to b

β1
+∞[α∅]({H}) = { 0 : {{∅1}}, 1 : {{∅4}}, 2 : {{∅5}} } renamed to c

β1
+∞[α∅]({J}) = { 0 : {{∅1}}, 1 : {{∅3}}, 2 : {{∅3}}, 3 : {{∅3}} } renamed to dThe domain of xH is redu
ed to {H ′} and the domain of xJ is redu
ed to {J ′} so that H , H ′, J , and J ′are no longer relabelled. Then after the se
ond relabelling step, we have11



β2
+∞[α∅]({A}) = { 0 : {{a1}}, 1 : {{a2, b2}}, 2 : {{b2, c1, d1}}, 3 : {{b1}} }

β2
+∞[α∅]({B}) = { 0 : {{b1}}, 1 : {{a2, d1}}, 2 : {{a1, b2, c1}}, 3 : {{b2}} }

β2
+∞[α∅]({C}) = { 0 : {{b1}}, 1 : {{a2, b1}}, 2 : {{a1, b2, c1}}, 3 : {b1, d1}} }

β2
+∞[α∅]({D}) = { 0 : {{a1}}, 1 : {{a1, b2, c1}}, 2 : {{b4}}, 3 : {{d1}} }

β2
+∞[α∅]({E}) = { 0 : {{b1}}, 1 : {{b2, c1}}, 2 : {{a3, b1}}, 3 : {{b1, d1}} }

β2
+∞[α∅]({F}) = { 0 : {{a1}}, 1 : {{a1, b1, c1, d1}}, 2 : {{a1, b3}}, 3 : {{b1}} }

β2
+∞[α∅]({G}) = { 0 : {{b1}}, 1 : {{a1, b2}}, 2 : {{a1, b1, c1, d1}}, 3 : {{a1, b1}} }

β2
+∞[α∅]({I}) = { 0 : {{b1}}, 1 : {{b1, c1, d1}}, 2 : {{a2, b2}}, 3 : {{a1, b1}} }Every vertex has a di�erent label so that the domain of every variable has been redu
ed to a singletonand relabelling 
an be stopped.5.2 Illustration of IDL(1)-�lteringAt step 0, ea
h vertex is labelled by ∅:

α∅({A, B, C, D, E, F, G, H, I, J}) = ∅After the �rst relabelling step, we have
β1

1 [α∅]({A, D, F, H}) = { 0 : {{∅1}}, 1 : {{∅4}} } renamed to a

β1
1 [α∅]({B, C, E, G, I, J}) = { 0 : {{∅1}}, 1 : {{∅3}} } renamed to bAfter the se
ond relabelling step, we have
β2

1 [α∅]({A, D, F, H}) = { 0 : {{a1}}, 1 : {{a2, b2}} } renamed to c

β2
1 [α∅]({B, C}) = { 0 : {{b1}}, 1 : {{b1, a2}} } renamed to d

β2
1 [α∅]({E, G, I, J}) = { 0 : {{b1}}, 1 : {{a1, b2}} } renamed to eAfter the third relabelling step, we have
β3

1 [α∅]({A}) = { 0 : {{c1}}, 1 : {{c2, d2}} } renamed to f

β3
1 [α∅]({B, C}) = { 0 : {{d1}}, 1 : {{c2, e1}} } renamed to g

β3
1 [α∅]({D, F}) = { 0 : {{c1}}, 1 : {{c2, d1, e1}} } renamed to h

β3
1 [α∅]({E, J}) = { 0 : {{e1}}, 1 : {{c1, d1, e1}} } renamed to i

β3
1 [α∅]({G, I}) = { 0 : {{e1}}, 1 : {{c1, e2}} } renamed to j

β3
1 [α∅]({H}) = { 0 : {{c1}}, 1 : {{c2, e2}} } renamed to kThe domain of xA is redu
ed to {A′} and the domain of xH is redu
ed to {H ′} so that A, A′, H , and

H ′ are no longer relabelled. Then, after the fourth relabelling step, we have
β4

1 [α∅]({B, C}) = { 0 : {{g1}}, 1 : {{f1, h1, i1}} } renamed to l

β4
1 [α∅]({D}) = { 0 : {{h1}}, 1 : {{f1, g1, j1, k1}} } renamed to m

β4
1 [α∅]({E}) = { 0 : {{i1}}, 1 : {{g1, j1, k1}} } renamed to n

β4
1 [α∅]({F}) = { 0 : {{h1}}, 1 : {{f1, g1, i1, k1}} } renamed to o

β4
1 [α∅]({G}) = { 0 : {{j1}}, 1 : {{h1, i1, j1}} } renamed to p

β4
1 [α∅]({I}) = { 0 : {{j1}}, 1 : {{i1, j1, k1}} } renamed to q

β4
1 [α∅]({J}) = { 0 : {{i1}}, 1 : {{g1, h1, j1}} } renamed to rThe domains of all variables, ex
ept xB and xC are redu
ed to singletons so that only B, B′, C and C′are relabelled. After the �fth relabelling step, we have12



β5
1 [α∅]({B}) = { 0 : {{l1}}, 1 : {{f1, o1, r1}} }

β5
1 [α∅]({C}) = { 0 : {{l1}}, 1 : {{f1, m1, o1}} }The domain of every variable is redu
ed to a singleton and relabelling 
an be stopped.5.3 Dis
ussionOn this example, both IDL(1) and IDL(∞) redu
e all domains to singletons, but they perform a di�erentnumber of iterations: two for IDL(∞) and �ve for IDL(1). However, as pointed out in se
tion 4, the
omplexity of one relabelling step of IDL(∞) is an order higher than the 
omplexity of one relabellingstep of IDL(1) (O(n · p) instead of O(p)).The label-�ltering introdu
ed in [SS04℄ 
orresponds to the �rst two iterations of IDL(∞)-�ltering whereasthe ILL-�ltering introdu
ed in [SS07℄ exa
tly 
orresponds to IDL(1)-�ltering. We have experimentally
ompared these two �ltering algorithms in [SS07℄ and we have shown that both ILL-�ltering and Label-�ltering are nearly always able to redu
e all domains to singleton (for non automorphi
 graphs), but thatLabel-�ltering is an order slower than ILL-�ltering.6 Experimental resultsIn this se
tion, we 
ompare di�erent instantiations of IDL(d)-�ltering with state-of-the-art algorithms,i.e., Nauty, Sau
y and Sparetest (an improved version of Nauty for sparse graphs whi
h has been sent tous by B. M
Kay in a personal 
ommuni
ation). We do not in
lude tree sear
h based algorithms neitherCP approa
hes based on the CSP model introdu
ed in 2.3 as they are not 
ompetitive.Nauty, Sau
y and Sparetest have been designed for �nding automorphisms in a graph and 
ompa
tlygenerate the whole group of automorphisms. They 
an be used to solve the GIP as the 
ompa
t repre-sentation generated by these algorithms de�nes a signature su
h that two graphs have the same signatureif and only if they are isomorphi
. However, one should keep in mind that these algorithms a
tually solvea more di�
ult problem than the GIP.IDL(d)-�ltering only ensures a partial 
onsisten
y. Hen
e, IDL(d)-�ltering has been integrated within abran
h and propagate tree sear
h. In this se
tion, IDL(d) refers to a bran
h and propagate tree sear
hwhi
h performs IDL(d)-�ltering at ea
h node of the sear
h.We only 
onsider feasible GIP instan
es, su
h that the two graphs are isomorphi
, as non feasible instan
esare usually more easily solved. For ea
h 
onsidered approa
h, we measure the CPU time spent to solvethe problem. We have 
onsidered three kinds of graphs: randomly generated graphs, sparse graphs withbounded degrees, and regular sparse graphs. We have also made experiments on graphs that are randomlygenerated using a power law distribution of degrees P (d = k) = k−λ: this distribution 
orresponds tos
ale-free networks whi
h model a wide range of real networks, su
h as so
ial, Internet, or neural networks[Bar03℄. We obtained very similar results on these graphs so that we do not report these results in thispaper.All results have been obtained on a 1.6Ghz Pentium M with 512Mb of RAM.6.1 Results on randomly generated graphsWe have randomly generated graphs with a Nauty tool 
alled genrang. We have 
onsidered graphs withdi�erent sizes (from 1000 to 6500 verti
es), and graphs with di�erent edge densities (from 1% to 50%).13
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NautyFigure 2: Run time w.r.t. the number of verti
es for two di�erent edge densities: 1% (top) and 10%(bottom). Average results on 100 graphs for ea
h size of graphs and edge density.We �rst 
ompare the best two approa
hes for these graphs, i.e., Nauty and IDL(1), and then dis
ussperforman
es of other approa
hes, i.e., IDL(k), Sau
y, and Sparetest.Comparison of Nauty and IDL(1). Figure 2 
ompares Nauty and IDL(1) when varying the numberof verti
es from 1000 to 6500 to study s
ale-up properties, for two di�erent edge densities: 1% and 10%.It shows that, IDL(1) is better than Nauty when the edge density is 1%, whereas Nauty is better thanIDL(1) when the edge density is 10%.Figure 3 
ompares Nauty and IDL(1) on graphs having 1000 verti
es, when varying the edge density from1% to 50% (we do not report experimental results on graphs with higher densities as, in this 
ase, onehas better 
onsider 
omplementary graphs). It shows that IDL(1) is slightly better than Nauty on lowdensity graphs, but that Nauty 
learly be
omes better than IDL(1) when in
reasing the density. Finally,when the density is 50%, Nauty is twi
e as fast as IDL(1).Note that run time di�eren
es between Nauty and IDL(1) mainly 
ome from data stru
tures and imple-mentation issues as both approa
hes are based on a very similar iterative relabelling based on labels ofdire
t neighbors.Comparison of di�erent instantiations of IDL(d). On all these instan
es, IDL(1)-�ltering is strongenough to always redu
e all domains to singletons so it is never ne
essary to develop a sear
h tree.The average number of relabelling steps performed by IDL(1) before rea
hing the �x-point depends onthe number of verti
es of the graphs: the larger the size of the graphs, the lower the number of relabellingsteps. For example, the average number of relabelling steps is 3.4 (resp. 2.9 and 2.1) on graphs with 20014



Figure 3: Run time w.r.t. edge density for graphs having 1000 verti
es. Average results on 100 graphsfor ea
h edge density. Note the log s
ale on the y-axis.(resp. 400 and 600) verti
es; for graphs with more than 800 verti
es, the number of relabelling steps isalways equal to 2.Hen
e, on these graphs, in
reasing the value of the d parameter in
reases CPU-times so that IDL(d) with
d > 1 is not 
ompetitive with IDL(1).Comparison with Sau
y and Sparetest. Sau
y and Sparetest have been designed to handle sparsegraphs with very low edge densities. Hen
e, on this �rst set of randomly generated graphs they are not
ompetitive with Nauty and IDL(1).6.2 Sparse graphs with bounded degrees

Figure 4: Run time w.r.t. the number of verti
es on sparse graphs with degrees bounded between 3 and8.We now 
onsider sparse graphs su
h that vertex degrees are bounded between 3 and 8. The densityof these graphs is equal to 1% for graphs with 1000 verti
es and 0.1% for graphs with 10000 verti
es.On these sparse graphs, Nauty is not 
ompetitive with Sau
y and Sparetest (even when using the bestinvariant for this kind of graphs, i.e., twopaths). For example, on graphs with 2000 verti
es, Nauty ismore than 4 times as slow as other approa
hes; on graphs with 3000 verti
es, it is more than 10 times asslow. 15



Figure 5: Results for regular graphs for two di�erent vertex degrees: 3 (top) and 4 (bottom).Comparison of Sau
y, Sparetest, and IDL(1). Figure 4 shows that on these graphs Sparetest andIDL(1) have very similar performan
es, whereas Sau
y is better. The di�eren
e between Sau
y and bothSparetest and IDL(1) in
reases when 
onsidering larger (and sparser) graphs so that for graphs with10000 verti
es (the edge density of whi
h is 0.1%), Sau
y is more than twi
e as fast.Comparison of di�erent instantiations of IDL(d). Like for randomly generated graphs, IDL(1)-�ltering is strong enough to redu
e all domains to singletons so that it is never ne
essary to develop asear
h tree. Hen
e, on these graphs, in
reasing the value of the d parameter in
reases CPU-times so thatIDL(d) with d > 1 is not 
ompetitive with IDL(1).6.3 Results on regular sparse graphsWe now 
ompare approa
hes on regular sparse graphs, i.e., graphs su
h that all verti
es have the samedegree. We have 
onsidered two degree values, i.e., 3 and 4, and we have generated regular graphs whi
hhave from 1000 to 15000 verti
es.Performan
es of Nauty, Sau
y, and IDL(1). Both Nauty and Sau
y are not 
ompetitive to solvethese regular graphs be
ause all verti
es have the same number of neighbors. For example, Nauty (resp.Sau
y) spends more than one se
ond (resp. more than three se
onds) to solve instan
es with 1000 verti
esand a degree of 3.On these instan
es, IDL(1) behaves like Nauty and Sau
y: ea
h vertex has exa
tly the same number ofneighbors so that IDL(1)-�ltering is not able to redu
e any domain without developing a sear
h tree.16



Comparison of Sparetest with IDL(d). The basi
 version of Sparetest is not 
ompetitive for solvingregular graphs. However, an option of Sparetest 
an be used to add a vertex invariant whi
h improvesits performan
es on regular graphs. The idea is to start the iterative vertex partition re�nement from aninitial partition whi
h groups together all verti
es that have the same number of verti
es at a distan
esmaller or equal to a given parameter k (this roughly 
orresponds to applying on
e the relabelling βk,but then iteratively applying the relabelling β1). When solving regular sparse graphs with Sparetest, thebest results are obtained with k = 2 and k = 3 (options "-k2" and "-k3").Figure 5 
ompares the two variants of Sparetest, with k = 2 and k = 3, with IDL(2) and IDL(3) onregular graphs. It shows us that when the degree of the verti
es is set to 3, the best results are obtainedby IDL(3) (results obtained by IDL(2) are not displayed be
ause they are not 
ompetitive); when it is setto 4, the best results are obtained by IDL(2). We have also performed experiments with regular graphswith higher degrees than 4, and note very similar results to those obtained when degree=4, i.e., IDL(2)is the best performing approa
h on these graphs.7 Con
lusionWe have introdu
ed IDL(d)-�ltering, a new parametri
 �ltering algorithm dedi
ated to the graph isomor-phism problem. The d parameter determines the strength of the �ltering: the larger d, the stronger the�ltering.When d = 1, this algorithm basi
ally follows the same partition re�nement pro
edure as the one intro-du
ed in Nauty and used in Sau
y and Sparetest, whi
h are improved versions of Nauty's dedi
ated tosparse graphs. Experimental results have shown us that IDL(1) exhibits ni
e properties with respe
t toedge density variations:
• on dense graphs, the best performing approa
h is Nauty; on these graphs, IDL(1) is 
ompetitivewith Nauty, even though it is slower on the densest graphs, whereas neither Sau
y nor Sparetestare 
ompetitive;
• on sparse graphs, the best performing approa
hes are Sau
y and Sparetest; on these graphs, IDL(1)is 
ompetitive with Sau
y and Sparetest, even though it is slower on the sparsest graphs, whereasNauty is not 
ompetitive.On randomly generated graphs, where the verti
es have di�erent degrees, IDL(1)-�ltering is strong enoughto redu
e all domains to singletons. Therefore, on these graphs, using stronger �lterings, su
h as IDL(2)or IDL(3), only in
reases CPU time.However, on regular graphs, approa
hes using �lterings based on the dire
t neighborhood of verti
es�su
h as IDL(1), Nauty, or Sau
y� are not e�
ient as all verti
es have the same degree. On theseinstan
es, using stronger �lterings, su
h as IDL(2) or IDL(3), a
tually improves the solution pro
ess.IDL(d)-�ltering has been de�ned for non dire
ted graphs. However, it 
ould be easily extended todire
ted graphs. A �rst possibility is to exploit the fa
t that two dire
ted graphs are isomorphi
 only iftheir non-dire
ted 
ounterparts also are isomorphi
. However, this may lead to poor quality �lterings asedge orientations are not taken into a

ount. Another possibility to extend our work to dire
ted graphs
onsists in adapting the βd relabelling fun
tion to take into a

ount edge orientations. For example, the

β1 relabelling fun
tion 
an be adapted by 
omputing separately the multiset of su

essor labels and themultiset of prede
essor labels.IDL(d)-�ltering is based on isomorphi
-
onsistent labellings and relabellings, that exploit distan
e-basedinvariant properties. This idea has been extended to the subgraph isomorphism problem in [ZDS+07℄: likein IDL(1)-�ltering, nodes are labelled by some invariant property, and labels are iteratively extended by17
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