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Abstract

We introduce a new filtering algorithm, called IDL(d)-filtering, for a global constraint dedicated to
the graph isomorphism problem —the goal of which is to decide if two given graphs have an identical
structure. The basic idea of IDL(d)-filtering is to label every vertex with respect to its relationships
with other vertices around it in the graph, and to use these labels to filter domains by removing values
that have different labels. IDL(d)-filtering is parameterized by a positive integer value d which gives
a limit on the distance between a vertex to be labelled and the set of vertices considered to build
its label. We experimentally compare different instantiations of IDL(d)-filtering with state-of-the-art
dedicated algorithms and show that IDL(d)-filtering is more efficient on regular sparse graphs and
competitive on other kinds of graphs.

1 Introduction

Graphs are widely used in real-life applications to model structured objects, e.g., molecules, images, or
networks. In many of these applications, one has to compare graphs to decide if their structures are
identical. This problem is known as the Graph Isomorphism Problem (GIP). This problem can also be
used to detect symmetries into constraint satisfaction problems [Pug05, ZDDO06].

More formally, a graph is defined by a couple (V, E') such that V is a finite set of vertices and E C V x V
is a set of edges. Two graphs G = (V, E) and G’ = (V', E’) are isomorphic if there exists a bijective
function f:V — V’ such that for every pair of vertices (u,v) € V x V, we have (u,v) € E if and only if
(f(u), f(v)) € E'. We shall say that f is an isomorphism function. The GIP consists in deciding if two
given graphs are isomorphic.

There exist many dedicated algorithms for solving GIPs such as, e.g., [Ull76, McK81, CFSV04, DLSMO04].
These algorithms are often very efficient (even though their worst case time complexities are exponential).
However, such dedicated algorithms cannot be used to solve more specific problems, such as isomorphism
problems with additional constraints, or larger problems that include graph isomorphism subproblems.

An attractive alternative to these dedicated algorithms is to use Constraint Programming (CP), which
provides a generic framework for solving any kind of Constraint Satisfaction Problems (CSPs). Indeed,
GIPs can be transformed into CSPs in a very straightforward way [McG79], so that one can use generic
constraint solvers to solve them. However, when transforming a GIP into a CSP, the global semantic of
the problem is lost and decomposed into a set of binary constraints. As a consequence, using CP to solve
GIPs may be less efficient than using dedicated algorithms which have a global view of the problem.



Motivations. In order to allow constraint solvers to solve GIPs more efficiently without loosing CP’s
flexibility, we have introduced in [SS04] a global constraint dedicated to GIPs and a first filtering algo-
rithm, called Label-filtering. In [SS07], we have proposed another filtering algorithm, called ILL-filtering.
Both ILL-filtering and Label-filtering are based on the computation of a so called “isomorphic-consistent”
labelling, i.e., a labelling of the graph vertices such that two vertices which have different labels cannot
be matched by an isomorphism function. However, to compute the label of a vertex u, ILL-filtering only
considers the direct neighborhood of v whereas Label-filtering considers all vertices of the graph. Also,
ILL-filtering iteratively strengthens labels until a fix-point is reached whereas Label-filtering only iterates
once the strengthening procedure.

We introduce in this article a new parametric filtering algorithm, called IDL(d)-filtering, which is also
based on the computation of an isomorphic-consistent labelling. The label of a vertex u is computed by
considering all vertices that are at most at distance d from u, where d is a parameter. IDL(d)-filtering
is a generalization of ILL-filtering —which corresponds to IDL(1)-filtering— and Label-filtering —which
corresponds to the first two iterations of IDL(o0)-filtering.

Outline of the paper. Section 2 gives an overview of existing approaches for solving the graph iso-
morphism problem, including CP approaches. Section 3 introduces a labelling procedure based on an
invariant distance property. Section 4 shows how to use this distance-based labelling to define IDL(d)-
filtering. Section 5 illustrates IDL(d)-filtering on a graph isomorphism problem instance for d = 1 and
d = oo. Section 6 experimentally compares different instantiations of IDL(d)-filtering with state-of-the-art
approaches.

2 Existing approaches for solving graph isomorphism problems

2.1 Complexity of the graph isomorphism problem

The theoretical complexity of the GIP is not exactly stated: the problem is in NP but it has not been
shown to be in P nor to be N P-complete [For96] and its own complexity class, isomorphism-complete,
has been defined. However, when adding some topological restrictions on graphs (e.g., planar graphs
[HWT74], trees [AHUT74] or bounded valence graphs [Luk82]) this problem becomes solvable in polynomial
time.

2.2 Dedicated algorithms

To solve a GIP, one has to find a one to one mapping between the vertices of the two graphs. The search
space composed of all possible mappings may be explored in a “Branch and Cut” way: at each node of
the search tree, some graph properties (such as edge distribution or vertex neighborhood) can be used
to prune the search space [CFSV04, Ull76]. This kind of approach is rather efficient and can be used to
solve GIPs up to a thousand or so vertices very quickly (in less than one second). In [SD76], Schmidt et
al. propose such an algorithm that prunes the search tree by using a distance matrix.

McKay [McK81]| proposes another approach, which has been originally designed to detect graph auto-
morphisms, i.e., non trivial isomorphisms between a graph and itself. The main idea is to compute a
canonical representation of a graph such that two graphs have the same representation if and only if they
are isomorphic. This canonical representation is an ordered partition of the vertices such that all vertices
within a same part are equivalent (with respect to an isomorphism function). This partition is computed,
starting from an initial partition that groups all vertices into a same part, by iteratively applying an
ordered set of vertex invariants to split parts. This approach is implemented in Nauty which is, to our
knowledge, the most efficient solver for the graph isomorphism problem in the general case: Nauty is



comparable to “Branch and Cut” methods but Nauty is often the quickest for large graphs [FSVO01]. In
[DLSMO04], Darga et al. propose a similar algorithm called Saucy which is specialized for sparse graphs
(with very low edge densities) and which is faster than Nauty on this kind of graphs. Puget [Pug05]
proposes another algorithm for the graph automorphism problem which is even faster on sparse graphs.
Finally, McKay has recently proposed an adaptation of Nauty called Sparetest dedicated to sparse graphs
(the code has been sent to us in a personal communication).

All these dedicated algorithms can efficiently solve GIPs in practice, even though their worst case com-
plexities are exponential. However, they are not suited for solving more specific problems, such as GIPs
with additional constraints. In particular, vertices and edges may be associated with labels that char-
acterize them, and one may be interested in looking for isomorphism functions that satisfy additional
constraints on these labels. This is the case, e.g., in [Rég95] where graphs are used to represent molecules,
or in computer aided design (CAD) applications where graphs are used to represent design objects [CS03].

2.3 Constraint Programming

Constraint Programming (CP) is an attractive alternative to dedicated approaches: it provides high level
languages to declaratively model Constraint Satisfaction Problems (CSPs); these CSPs are solved in a
generic way by embedded constraint solvers [Tsa93, LO00, ILO00, HSD92]. A CSP is defined by a triple
(X, D, C) such that

e X is a finite set of variables,

e D is a function which maps every variable z; € X to its domain D(z;), i.e., the finite set of values
that may be assigned to xz;,

e (' is a set of constraints, i.e., relations between some variables which restrict the set of values that
can be assigned simultaneously to these variables. Constraints involving two variables are called
binary constraints; we shall denote C(x;, z;) the binary constraint holding between the two variables
x; and x;, and we shall define this constraint by the set of couples (v;,v;) € D(x;) x D(x;) that
satisfy the constraint.

Solving a CSP (X, D, C) involves finding a complete assignment, which assigns a value v; € D(xz;) to
every variable x; € X, such that all constraints in C' are satisfied.

Graph isomorphism problems may be formulated as CSPs in a very straightforward way [GJ79, Rég95].
Given two graphs G = (V, E) and G’ = (V', E’), one may define the CSP (X, D, C') such that

e a variable z,, is associated with each vertex u € V', i.e., X = {x, |u € V},

e the domain of each variable z, is the set of vertices of G’ that have the same number of adjacent
vertices as u, i.€.,

D(zy) ={u" e V'[ #{(u,v) € E} = #{(u,v") € E'} }

e there is a binary constraint between every pair of different variables (z,,z,) € X x X, denoted by
Cledge(Ty, zy). This constraint expresses the fact that the two vertices of G’ that are assigned to z,,
and x, must be connected by an edge in G’ if and only if v and v are connected by an edge in G,
i€,

if (u,v) € E, Cegge(ty,xy) = E'
otherwise Cedge(Tu,xy) ={(W,0") e V! x V' | # v and (v/,v") ¢ E'}

Once a GIP has been formulated as a CSP, one can use CP to solve it in a generic way. Within this
framework, additional constraints, such as constraints on vertex and edge labels, may be expressed very
easily.



2.4 Global constraint for the graph isomorphism problem

The CSP formulation described in 2.3 decomposes the global semantic of the GIP into a set of binary
edge constraints. Each of these edge constraints expresses the necessity either to preserve or to forbid
an edge in a local way. As a consequence, using CP to solve GIPs is often less efficient than using a
dedicated algorithm.

To improve the solution process of CSPs associated with GIPs, one may add an allDiff global constraint,
in order to constrain all variables to be assigned to different vertices [Rég95]. This constraint is redundant
as each binary edge constraint only contains couples of different vertices, so it is not possible to assign
the same value to two different variables. This global constraint allows a constraint solver to prune the
search space more efficiently, and therefore to solve GIPs quicker.

However, even with an allDiff global constraint, CP is still not competitive with dedicated algorithms
because most of the global semantic of the problem is still lost. Hence, we have introduced in [SS04] a
global constraint for the graph isomorphism problem.

Syntactically, this constraint is defined by the relation gip(V, E, V' E’, L) where

e V and V' are two sets of values such that #V = #V’,
e [/ CV xV is a set of pairs of values from V,
e ' C V' xV'is a set of pairs of values from V’,

e [ is a set of couples which associates a different variable of the CSP to each different value of V,
i-e., L is a set of #V couples of the form (z,,,u) where z, is a variable of the CSP and wu is a value
of V, and such that for any pair of different couples (z,,u) and (x,,v) of L, x, # x, and u # v.

Semantically, the global constraint gip(V, E, V', E’, L) is counsistent if and only if there exists an isomor-
phism function f: V — V'’ such that for each couple (z,,u) € L there exists a value v’ € D(z,) so that

u' = f(u).
This global constraint is not semantically global [BHO3] as it can be represented by a semantically

equivalent set of binary constraints as described previously. However, the gip constraint allows us to
exploit the global semantic of GIPs to solve them more efficiently.

3 Theoretical framework

We show in this section how to build a distance-based labelling which will be used in the next section
to define a filtering algorithm for the gip global constraint. The main idea is to label every vertex with
respect to distance relationships with other vertices of the graph. This labelling is isomorphic-consistent,
i.e., two vertices that have different labels cannot be matched by an isomorphism function. Hence, this
labelling can be used to filter domains by removing vertices which have different labels. Labels are built
iteratively: starting from an empty label, each label is extended by considering labels of vertices within
a given distance d. This labelling extension, called relabelling, is iterated until a fix-point is reached.

The distance d is a parameter of the relabelling procedure. When it is set to 1, labels are iteratively
extended by considering labels of neighbors in a very similar way to the partition refinement procedure
of Nauty. When the distance d is set to a value larger than 1, one obtains a stronger labelling than the
partition refinement of Nauty.

In this section, we first show that distances are preserved by isomorphism functions. Then, we introduce
labellings and relabellings. Finally, we define a distance-based relabelling. We assume gip(V, E, V', E’, L)
to be the underlying graph isomorphism constraint to propagate, and we define Vertices =V UV’ and



Edges = EUE'. We assume without loss of generality that VNV’ = () and that each graph is connected.
We restrict our attention to non directed graphs. The extension of our work to directed graphs is discussed
in 7.

3.1 Distance-based invariant property

Definition. A path between two vertices v and v is a sequence <vg, v1, Vs, ..., Vx> of vertices such that
vo=u, vy =v and for all i € [1, k|, (v;—1,v;) € Edges. The length of a path is the number of its edges.

Definition. The distance between two vertices v and v, denoted by d(u,v), is the length of the shortest
path between u and v.

Definition. The diameter of a graph G is the largest distance between two vertices of G.

Our filtering procedure for the graph isomorphism problem is based on the following theorem which shows
that distances are preserved by isomorphism functions.

Theorem 1. Given a bijective function f : V — V', the two following properties are equivalent:

1. f is an isomorphism function, é.e., f is such that V(u,v) € V x V| (u,v) € E & (f(u), f(v)) € E' ;

2. Y(u,v) € VxV,0(u,v) =0(f(u), f(v)).

Proof. (1) = (2): if f is an isomorphism function, then (u,v) is an edge of G iff (f(u), f(v)) is an
edge of G’ so that < wvy,ve,...,v, > is a path in G iff < f(v1), f(ve),..., f(v,) > is a path in G, and
therefore < v1,vs,...,v, > is a shortest path in G iff < f(v1), f(v2),..., f(v,) > is a shortest path in G’,
and property (2) holds.

(2) = (1): For any pair of vertices (u,v) € V x V, if (u,v) is an edge of G, then < u,v > is the shortest
path between u and v so that é(u,v) = 1, and therefore 6(f(u), f(v)) = 1, so that (f(u), f(v)) is an edge
of G’ (and vice versa).

3.2 Isomorphic-consistent labelling and relabelling

Before defining a labelling procedure based on Theorem 1, we introduce in this section some definitions
about labellings and relabellings.

Definition. A labelling is a function denoted by « that associates a label a(v) to every vertex v €
Vertices. This label does not depend on vertex names but only on relations defined by edges between v and
other vertices. We note image(c) the set of labels returned by «, i.e., image(a) = {a(v) | v € Vertices}.

Definition. A labelling « is isomorphic-consistent if for every isomorphism function f between (V| F)
and (V', E’), vertices matched by f have identical labels, i.e., Vv € V, a(v) = a(f(v)).



Figure 1: Definition of a ¢ip(V,E, V', E’, L) constraint instance such that

V ={A,B,C,D,E,F,G,H,I,J} and V' = {A'",B',C',D',E',F',G' H',I", J'},

L = {(.’L’A,A),(I'B,B),(.’L'C,C), (ID,D),(I’E,E),(.’L’F,F),(.’L'G,G), ((EH,H),(I'],I),(I’J,J)},
E and E’ are defined as graphically displayed above.

Example 1. Let us consider the gip constraint instance of Figure 1 and let us define the labelling a4
which labels each vertex by its degree, i.e.,

Yo € Vertices, aigeg(v) = #{u € V| (u,v) € Edges}

We have ageg(A) = Qaeg(D) = aeg(F) = geg(H) = 4 and ageg(B) = aeg(C) = geg(E) = ey (G) =
Qgeg(I) = ageg(J) = 3. This labelling is isomorphic-consistent as isomorphism functions only match
vertices that have a same number of adjacent vertices.

An isomorphic-consistent labelling may be used to filter domains: the domain of every variable x,
associated with a vertex v may be reduced to the set of vertices that have the same label as u. Our goal
is to build an isomorphic-consistent labelling that filters domains as much as possible, i.e., that associates
as much as possible different labels to vertices that cannot be matched.

Definition. A labelling oy is at least as strong as a labelling «ay if

V(u,v) € V x V' as(u) # as(v) = a1(u) # a1 (v)

To strengthen a labelling, we propose to iteratively apply a relabelling function.

Definition. A relabelling is a function denoted by [ that, given a labelling a, returns a new labelling
noted S[a].

Definition. A relabelling § is isomorphic-consistent if for any isomorphic-consistent labelling «, S[a]
is also an isomorphic-consistent labelling.

Relabellings may be defined with respect to labels of adjacent vertices; as several vertices may have the
same label, we introduce the following notation for multisets.

Definition. A multiset is a bag which may contain several occurrences of a same value. Given an
underlying set S, we note a”* the fact that a value a € S occurs k times in a multiset m.

Example 2. Given the set S = {a,b,c,d}, m = {{a,a,b,d,d,d}} = {{a?, b*,d®}} is the multiset that
contains two occurrences of a, one occurrence of b and three occurrences of d.



Example 3. Let us define the relabelling 3,4; that relabels every vertex by the multiset composed of
the labels of its neighbors, i.e.,

Yo € Vertices, Baai[o](v) = {I* | | € image(a), k = #{u € Vertices, (v,u) € Edges,l = a(u)}, k > 0}}

This relabelling (,4; is isomorphic-consistent because two vertices can be associated by an isomorphism
function only if their neighbors can. If we consider the labelling a4 of Example 1 and the gip constraint
instance of Figure 1, we have

Badj[@deg|(A) = Badjltdeg) (D) = Badjieg](F) = Brladeg] = {{327 42}}
Badj[tdeq)(B) = Badj[0taeq)(C) {3', 4%}
Badj[Qaeg|(E) = Badj[aeg)(G) = Badjtaeg](I) = Brlctey] {3%4')

Definition. A relabelling 3 is strengthening if for any labelling «, 3[a] is at least as strong as a.

A very simple way to ensure that a relabelling [ is strengthening is to define § in such a way that, for
each vertex v € Vertices, f[a](v) is prefixed by a(v).

An isomorphic-consistent relabelling function 3 can be used to iteratively define new isomorphic-consistent
labelling functions: starting from an elementary isomorphic-consistent labelling function «, 3 can be
iteratively applied, thus defining a sequence of labellings. We note 3![a] the labelling obtained by iterating
the relabelling § ¢ times, starting from «. More precisely, we define:

Fla] = o
Bila] = BB all,Vi>1

3.3 Relabelling function based on distances

Theorem 1 shows that graph isomorphism functions preserve distances. This property can be used to
define a relabelling function 4. Basically, the idea is to extend the label of a vertex w by the labels of
other vertices within a distance d from u. As several vertices may have a same label, this extension is a
multiset.

Definition. Given a vertex v, a distance d > 0 and a labelling function «, we note A(v,d, «) the
multiset composed of labels of vertices at distance d from v. More formally,
A(w,d,a) = {I*|1 € image(a),k = #{u € Vertices | §(u,v) = d,a(u) = 1},k > 1}}

Example 4. Let us consider the gip global constraint instance of Figure 1 and the labelling function
0geg of Example 1. We have

A(A,0,4e9) = {{4'H (at distance 0 from A: there is 1 vertex (A) labelled by 4)

A(A 1 agey) = {{3%,4%}  (at distance 1 from A: there are 2 vertices (B and C) labelled by 3
and 2 vertices (D and F) labelled by 4)

A(A,2,4ey) = {{3%,4Y}} (at distance 2 from A: there are 3 vertices (E, G and J) labelled by 3
and 1 vertex (H ) labelled by 4)

A(A,3,a4eg) = {{3'H (at distance 3 from A: there is 1 vertex (I) labelled by 3)

A(A 4, ageg) = 0 (at distance 4 from A: there is no vertex)



Definition. Given a labelling function o and a positive integer d, the relabelling function 34 returns a
new labelling function (4] which labels each vertex v by a set of d+ 1 multisets, such that each multiset
contains the labels of vertices at distance k from v (with k € [0,d)]), i.e.,

Yo eV, Balal(v) = {k:A(v,k,«a)]| ke |0,d]}

Example 5. Let us consider the gip global constraint instance of Figure 1 and the labelling function
ageg of Example 1. We have

Brloaeg)(A) ={0: {41}},1: {32,421} }

Paloaeg)(A)  ={0: {41}, 1: {32,423}, 2. {{3°, 413} }
Bsoaeg)(A) = {0 {41}, 1: {32, 47}, 2 {{3°, 413}, 3 {{31}} }
Brlaaegl(A) = PBslaacyl(A), Yk > 3

In other words, 01[aeq] extends aqeq by adding labels of neighbors; Ba[cgeq| extends 51[ageq] by adding
labels of vertices at distance 2; and f3]aeq] extends Ba[agey] by adding labels of vertices at distance 3.
As the diameter of the graph is 3, Ok[aueqg] = O3[aueq] for every distance k greater than 3.

The next two theorems show that 3, is both strengthening and isomorphic-consistent, and that the larger
d, the stronger (4

Theorem 2. For every distance d € N, the function (3, is an isomorphic-consistent relabelling.

Proof. If ais an isomorphic-consistent labelling, then, for each isomorphism function f between G and
G',Yu € V,a(u) = a(f(u)). Furthermore, as f is an isomorphism function and given theorem 1, V(u,v) €
Vertices®, 6(u,v) = 6(f(u), f(v)). As a consequence, Yu € V,VI € image(a),Vj € [0,#V],#{v|v €
VAS(u,v) = jAa) =1} = #{' |0 € VA(f(u),v) = jAal) =1} (because [ is a bijective
application). As a consequence, Yu € V, B4la](u) = Ba[a](f(w)) and B4[a] is an isomorphic-consistent
labelling function.

Theorem 3. Given alabelling o and two integers k and [ such that 1 < k <, 3[«] is at least as strong
as Ok [a] which is at least as strong as .

Proof. (]a]is at least as strong as O[] because, by definition, for every vertex v € Vertices, 3[a](v) =
Brla](v) U{i: A(v,i,a) | i € [0,d]}. Therefore, Oi[a](u) # Brla](v) = Bila](u) # Gila](v).

Brla] is at least as strong as a because for every vertex v € Vertices, 0 : {a(v)'} belongs to B[] (v).
Therefore, a(u) # a(v) = Brlal(u) # Brla](v).

Finally, the relabelling G4 can be iteratively applied, starting from an initial labelling «, thus defining a
sequence of labellings 89[a], Bi[a], B3[al, .... As each labelling 3}[a] is at least as strong as 35 '[a], this
sequence necessarily reaches a fix-point at some step k such that every labelling 65”[04] is equivalent to
B%[a]. The next theorem shows that this fix-point is reached when at some step k the number of different
labels is not increased.

Theorem 4. Given a distance d, an initial labelling o and a positive integer k, if
Y(u,v) € Vertices x Vertices, 5a](u) = 85[a](v) = B5a](u) = 85T a](v)

then
Vj > k,Y(u,v) € Vertices x Vertices, 5[a] = 55[a] = B[a](u) = ([a](v)



Proof. Given its definition, we can see that 34 does not use the labels given by « themselves but only
an equivalence relation between these labels. As a consequence, when a relabelling of the vertices does
not change the equivalence relation between the vertex labels, any further relabelling cannot change this
equivalence relation any more.

Roughly speaking, theorem 4 shows that, when a step of the sequence 6§ does not increase the number
of different vertex labels, a fix-point is reached and the relabelling process can be stopped. Finally, as
the number of different labels is bounded by #V, this fix-point is reached in at most #V steps.

4 Practical framework

4.1 IDL(d)-consistency and IDL(d)-filtering

We now propose to use the distance-based relabelling 84 to define a new partial consistency —called
Iterative Distance Label (IDL) consistency— and an associated filtering algorithm for the gip constraint.

The relabelling (3, is iterated starting from an initial labelling . We first define this initial labelling
to be the labelling ay which associates the same label () to every vertex, i.e., for every vertex v €
Vertices, ag(v) = (). We shall introduce other initial labellings in section 4.2.

Definition. Given a distance d > 1, a gip(V, E, V', E’, L) global constraint is IDL(d)-consistent if for
every value v in the domain of a variable associated by L to a vertex u, the vertices u and v are associated
with a same label by any labelling 3%[ag], i.e.,

V(@u,u) € L, Yo € D(zy), Yk 2 0, Filap)(u) = Bglag](v)

Algorithm 1 describes a filtering procedure that ensures IDL(d)-consistency. Starting from an initial
labelling 3° that associates the same label () to every vertex (lines 1-2), this procedure iteratively computes
B from 3! (lines 5-12), renames the labels of 3 (line 13) and filters domains with respect to 3° (lines
14-15) until either a domain becomes empty —thus proving inconsistency— or the number of labels has
not increased —thus reaching a fix-point.

The time and space complexities of relabelling, renaming and filtering are studied below. We define
n = # Vertices and p = # Edges.

Computation of ' from 3~! (lines 5—12). This step basically implies n breadth first searches
bounded by d: starting from every vertex v, we iteratively compute the sets dy of vertices at distance k
from v, for each distance k € [1,d].

The time complexity of this step depends on the d parameter.

e In the worst case, i.e., if d is greater than or equal to the diameter of the graph, it corresponds to
n full breadth first searches so that it is in O(np).

This complexity could be reduced to O(n?) by memorizing, for every vertex v € Vertices and every
distance k € [1,d] a list dx(v) of vertices at distance k from v. However, experiments have shown
us that this implementation actually spends more CPU time. The reason is that adjacency lists
are often already stored in the CPU cache memory, so that accessing to the neighbors of a vertex
is often very quickly done, whereas dx(v) lists are too big to stay in the cache memory, so that the
processor often has to restore these lists from the RAM to its cache, which is more time consuming.



Algorithm 1: IDL(d) Filtering procedure
Input: a constraint gip(V, E, V', E' L),
the domain D(z,) of every variable z,, occurring in L,
a distance d > 1
Output: filtered domains D such that gip(V, E, V', E’, L) is IDL(d)-consistent
foreach v € Vertices do

=

2 | B%%0) <0
31«1
4 repeat
/* Computation of labelling (3 from labelling 3°~! */
5 foreach v € Vertices do
6 5o — {v}
7 marked — {v}
8 for k in 1..d and while §,_; # 0 do
/* Invariant: O0p_1; = set of vertices at distance k— 1 from v */
/* and marked = set of vertices at distance j <k —1 from v */
9 Ok — {u| I € 61, (v, u) € Edges,u ¢ marked}
10 compute the multiset mj, which contains an occurrence of 3! (u) for each vertex u € &,
11 marked «— marked U §y,
12 Bi(v) —{0: {7 ()} U{k :my | k € 1..d}
13 rename labels of 3
/* Filtering with respect to the new labelling [ */
14 foreach (z,,u) € L do
15 | D(xu) < D(zy) N{v € Vertices, ' (u) = 5*(v)}
16 1+—1+1

17 until I(z,,u) € L, D(x,) = 0 or #{3° " (u),u € Vertices} = #{3*(u), u € Vertices} ;

e In the best case, i.e., if d = 1, one only has to compute for each vertex v the multiset m; containing
the labels of the direct neighbors of v. In this case, the time complexity for computing 3* from 3~!
is O(p).

The space complexity of this step does not depend on d, as we do not memorize lists of vertices at a given
distance. It is in O(n?) as there are n labels, and the size of each label is bounded by n (remember that
labels are renamed at each iteration).

Renaming step (line 13). This step is introduced in order to allow us to manage vertex labels in
constant time and memory. Indeed, at each relabelling iteration, labels become larger. However, one can
easily show that these labels can be renamed after each relabelling step, provided that the equivalence
relation defined by labels is preserved by the renaming.

To rename labels, they must be sorted. The size of each label is bounded by n, and there are n labels.
Therefore, sorting all labels is done in O(n? -logn). We use a Hash table to compare and rename vertex
labels. With such a table, the time complexity for renaming a sorted label is linear with respect to the
size of the label, i.e., in O(n), provided that the table is large enough to limit the number of collisions.

The space complexity of this step is in O(n?) as the Hash table has O(n) entries and the size of each
entry is in O(n).

Filtering step (lines 12—-13). This step is done in O(n?).
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Complexity of IDL(d)-filtering. In the worst case, the fix-point is reached after O(n) iterations of
the repeat until loop. Therefore, the time complexity of IDL(d)-filtering is O(n?(p + nlogn)) if d is
greater or equal to the diameter of the graph; it is O(n3logn) if d = 1. The space complexity is O(n?).

4.2 Initial labelling

Algorithm 1 starts the relabelling process from an initial labelling cy which labels all vertices with )
so that every vertex of V may be matched with every vertex of V/. However, it may happen that the
domain of some variables associated with vertices of V' have been reduced, either by the propagation of
other constraints of the CSP, or when by a domain splitting during a branch and propagate search.

In this case, the relabelling process may be started from an initial labelling which integrates as much as
possible these domain reductions, i.e., such that if a vertex u does not belong to the domain of a variable
Ty, then v and v are associated with different labels, thus indicating that it is not possible to match these
two vertices. However, the initial labelling must not remove solutions, i.e., if a vertex u belongs to the
domain of a variable x, associated with a vertex v, then u and v must be associated with a same label.

More formally, let us define the bipartite graph G.. = (Vertices, E..) such that E.. = {(u,u) € V x
V' | w € D(x,)}. If two vertices are connected by a path in G, then they must have the same label,
otherwise they can have different labels. Hence, the initial labelling may be built by computing the set
of connected components of G.., and assigning the same label to all vertices within a same connected
component. The set of connected components of G.. may be computed by a simple search in O(#E,.).

Also, each time the domain of a variable x, is reduced to a singleton {v}, we can remove v from the
domains of all other variables and then relabel both u and v with a new label, different from all other
labels. In this case, it is no longer necessary to iterate the relabelling process on these two vertices.

5 Illustration of IDL(d)-filtering for d = co and d =1

We now illustrate IDL(d)-filtering on the gip global constraint instance of Figure 1 for d = oo and d = 1.
As the two graphs are isomorphic, we only display labels computed for vertices of V. Also, for reasons
of space, when several vertices have a same label [, we group all these vertices within a same set S and
denote by a(S) = [ the fact that every vertex of the set S is labelled by .

5.1 Illustration of IDL(c0)-filtering

At step 0, each vertex is labelled by (0
ao({A,B,C,D,E,F,G,H,I,J})= 1

After the first relabelling step, we have

({{013,3: {0'}} }  renamed to

Loolan]({A, D, F'}) = { 0:{{0o'},1: {0*}},2 a
Lol ({B,CLE,G,IY) = { 0: {0V, 1: {03}, 2: {01}},3: {{0?}} } renamedto b
ooloo] ({HY) = { 0:{0",1: {0}, 2: {0°) } renamed to ¢
toolo]({T1) = { 0: {01 {0%),2: {{0°)),3: {{0°}} } renamed to d

The domain of zp is reduced to { H'} and the domain of x; is reduced to {J'} so that H, H', J, and J’
are no longer relabelled. Then after the second relabelling step, we have

11



A A A A A A A
OO OO oo oo

Every vertex has a different label so that the domain of every variable has been reduced to a singleton

and relabelling can be stopped.

{{a'}}
{0,
{0
{{al},
{0},
{{a'}},
{0t
{0

5.2 Illustration of IDL(1)-filtering

At step 0, each vertex is labelled by (0

After the first relabelling step, we have

ﬁll[aw]({AvaFv H}>
6%[o‘®]({Bacha Galv‘]})

After the second relabelling step, we have

Btlao]({A, D, F,
B[] ({ B, C})
Btle] { B, G, 1,

J})

After the third relabelling step, we have

The domain of x4 is reduced to {A’} and the domain of xy is reduced to {H'} so that A, A’, H, and

1: {{a?,b%}}, 2: {2, ct,d Y}, 3
1: {{a? d*}}, 2: {{a,0?, Y}, 3
1: {{a?, b}}, 2: {{at, b2, ct}}, 3
1: {{a', % 'Y}, 2 : {{b*}}, 3:
1:{{b% '}, 2: {{a3,b'}}, 3
1: {{ab, bl ct d Yy, 2: {{al, 0%}, 3
1: {{a*,b?}}, 2: {{a', bt et d'}}, 3
1:{{bt, et dtYy, 2: {{a?, *}}, 3

ay({A,B,C,D,E,F,G,H,1,]}) = 0
= { 0:{{0%}, 1:{0*} } renamed to
= { 0:{{0%, 1:{0%} } renamed to
H}) = { 0:{a'}}, 1:{a%b?}} } renamed to
= { 0:{{b'}}, 1:{{b'a%}} } renamed to
= { 0:{{b'}}, 1:{{a',b?*}} } renamed to
= { 0:{c'}, 1:{2 Y } renamed to
= { 0:{d'}}, 1:{c2 e} } renamed to
= { 0:{c'}, 1:{c2 d,e'}} ) renamed to
= { 0:{e'}}, 1:{{c' d',e'}} } renamed to
= { 0:{{e'}}, 1:{{c' e*} } renamed to
= { 0:{c'}, 1:{c2e*} } renamed to

H' are no longer relabelled. Then, after the fourth relabelling step, we have

The domains of all variables, except xp and z¢ are reduced to singletons so that only B, B’, C' and C’

A A A Ay A o

OO OO O oo

o'
S
St
H{h1
Rt
R
St

1
1
1
1:
1
1
1

are relabelled. After the fifth relabelling step, we have
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} renamed to
} renamed to
} renamed to
} renamed to
} renamed to
} renamed to
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{0
{0 )
St d

{a'}}

{{o,d'}}
o'y

{{al 0]
{{al, 01}

ST

@

T s T

ﬁQ’EQSSN

" e e e e e



=

S

)

=

=
S

=z
|

{o:{{y, 1 {fholrty )
{o:{{'y, 1 {fhmlol} )

=@

=
o)

=

-

Q

=
|

The domain of every variable is reduced to a singleton and relabelling can be stopped.

5.3 Discussion

Oun this example, both IDL(1) and IDL(o0) reduce all domains to singletons, but they perform a different
number of iterations: two for IDL(co) and five for IDL(1). However, as pointed out in section 4, the
complexity of one relabelling step of IDL(c0) is an order higher than the complexity of one relabelling
step of IDL(1) (O(n - p) instead of O(p)).

The label-filtering introduced in [SS04| corresponds to the first two iterations of IDL(oo)-filtering whereas
the ILL-filtering introduced in [SSO7] exactly corresponds to IDL(1)-filtering. We have experimentally
compared these two filtering algorithms in [SS07] and we have shown that both ILL-filtering and Label-
filtering are nearly always able to reduce all domains to singleton (for non automorphic graphs), but that
Label-filtering is an order slower than ILL-filtering.

6 Experimental results

In this section, we compare different instantiations of IDL(d)-filtering with state-of-the-art algorithms,
i.e., Nauty, Saucy and Sparetest (an improved version of Nauty for sparse graphs which has been sent to
us by B. McKay in a personal communication). We do not include tree search based algorithms neither
CP approaches based on the CSP model introduced in 2.3 as they are not competitive.

Nauty, Saucy and Sparetest have been designed for finding automorphisms in a graph and compactly
generate the whole group of automorphisms. They can be used to solve the GIP as the compact repre-
sentation generated by these algorithms defines a signature such that two graphs have the same signature
if and only if they are isomorphic. However, one should keep in mind that these algorithms actually solve
a more difficult problem than the GIP.

IDL(d)-filtering only ensures a partial consistency. Hence, IDL(d)-filtering has been integrated within a
branch and propagate tree search. In this section, IDL(d) refers to a branch and propagate tree search
which performs IDL(d)-filtering at each node of the search.

We only consider feasible GIP instances, such that the two graphs are isomorphic, as non feasible instances
are usually more easily solved. For each considered approach, we measure the CPU time spent to solve
the problem. We have considered three kinds of graphs: randomly generated graphs, sparse graphs with
bounded degrees, and regular sparse graphs. We have also made experiments on graphs that are randomly
generated using a power law distribution of degrees P(d = k) = k~: this distribution corresponds to
scale-free networks which model a wide range of real networks, such as social, Internet, or neural networks
[Bar03]. We obtained very similar results on these graphs so that we do not report these results in this
paper.

All results have been obtained on a 1.6Ghz Pentium M with 512Mb of RAM.
6.1 Results on randomly generated graphs

We have randomly generated graphs with a Nauty tool called genrang. We have considered graphs with
different sizes (from 1000 to 6500 vertices), and graphs with different edge densities (from 1% to 50%).
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Figure 2: Run time w.r.t. the number of vertices for two different edge densities: 1% (top) and 10%
(bottom). Average results on 100 graphs for each size of graphs and edge density.

We first compare the best two approaches for these graphs, i.e., Nauty and IDL(1), and then discuss
performances of other approaches, i.e., IDL(k), Saucy, and Sparetest.

Comparison of Nauty and IDL(1). Figure 2 compares Nauty and IDL(1) when varying the number
of vertices from 1000 to 6500 to study scale-up properties, for two different edge densities: 1% and 10%.
It shows that, IDL(1) is better than Nauty when the edge density is 1%, whereas Nauty is better than
IDL(1) when the edge density is 10%.

Figure 3 compares Nauty and IDL(1) on graphs having 1000 vertices, when varying the edge density from
1% to 50% (we do not report experimental results on graphs with higher densities as, in this case, one
has better consider complementary graphs). It shows that IDL(1) is slightly better than Nauty on low
density graphs, but that Nauty clearly becomes better than IDL(1) when increasing the density. Finally,
when the density is 50%, Nauty is twice as fast as IDL(1).

Note that run time differences between Nauty and IDL(1) mainly come from data structures and imple-
mentation issues as both approaches are based on a very similar iterative relabelling based on labels of
direct neighbors.

Comparison of different instantiations of IDL(d). On all these instances, IDL(1)-filtering is strong
enough to always reduce all domains to singletons so it is never necessary to develop a search tree.

The average number of relabelling steps performed by IDL(1) before reaching the fix-point depends on
the number of vertices of the graphs: the larger the size of the graphs, the lower the number of relabelling
steps. For example, the average number of relabelling steps is 3.4 (resp. 2.9 and 2.1) on graphs with 200
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Figure 3: Run time w.r.t. edge density for graphs having 1000 vertices. Average results on 100 graphs
for each edge density. Note the log scale on the y-axis.

(resp. 400 and 600) vertices; for graphs with more than 800 vertices, the number of relabelling steps is
always equal to 2.

Hence, on these graphs, increasing the value of the d parameter increases CPU-times so that IDL(d) with
d > 1 is not competitive with IDL(1).

Comparison with Saucy and Sparetest. Saucy and Sparetest have been designed to handle sparse
graphs with very low edge densities. Hence, on this first set of randomly generated graphs they are not
competitive with Nauty and IDL(1).

6.2 Sparse graphs with bounded degrees

Vertex degree=[3,8]

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02 p

sp'aretest '

Time (s)

0 Bl o | || 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of vertices of the graphs

Figure 4: Run time w.r.t. the number of vertices on sparse graphs with degrees bounded between 3 and
8.

We now consider sparse graphs such that vertex degrees are bounded between 3 and 8. The density
of these graphs is equal to 1% for graphs with 1000 vertices and 0.1% for graphs with 10000 vertices.
On these sparse graphs, Nauty is not competitive with Saucy and Sparetest (even when using the best
invariant for this kind of graphs, i.e., twopaths). For example, on graphs with 2000 vertices, Nauty is
more than 4 times as slow as other approaches; on graphs with 3000 vertices, it is more than 10 times as
slow.
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Figure 5: Results for regular graphs for two different vertex degrees: 3 (top) and 4 (bottom).

Comparison of Saucy, Sparetest, and IDL(1). Figure 4 shows that on these graphs Sparetest and
IDL(1) have very similar performances, whereas Saucy is better. The difference between Saucy and both
Sparetest and IDL(1) increases when considering larger (and sparser) graphs so that for graphs with
10000 vertices (the edge density of which is 0.1%), Saucy is more than twice as fast.

Comparison of different instantiations of IDL(d). Like for randomly generated graphs, IDL(1)-
filtering is strong enough to reduce all domains to singletons so that it is never necessary to develop a
search tree. Hence, on these graphs, increasing the value of the d parameter increases CPU-times so that
IDL(d) with d > 1 is not competitive with IDL(1).

6.3 Results on regular sparse graphs

We now compare approaches on regular sparse graphs, i.e., graphs such that all vertices have the same
degree. We have considered two degree values, i.e., 3 and 4, and we have generated regular graphs which
have from 1000 to 15000 vertices.

Performances of Nauty, Saucy, and IDL(1). Both Nauty and Saucy are not competitive to solve
these regular graphs because all vertices have the same number of neighbors. For example, Nauty (resp.
Saucy) spends more than one second (resp. more than three seconds) to solve instances with 1000 vertices
and a degree of 3.

On these instances, IDL(1) behaves like Nauty and Saucy: each vertex has exactly the same number of
neighbors so that IDL(1)-filtering is not able to reduce any domain without developing a search tree.
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Comparison of Sparetest with IDL(d). The basic version of Sparetest is not competitive for solving
regular graphs. However, an option of Sparetest can be used to add a vertex invariant which improves
its performances on regular graphs. The idea is to start the iterative vertex partition refinement from an
initial partition which groups together all vertices that have the same number of vertices at a distance
smaller or equal to a given parameter k (this roughly corresponds to applying once the relabelling [,
but then iteratively applying the relabelling 8;). When solving regular sparse graphs with Sparetest, the
best results are obtained with k¥ = 2 and k = 3 (options "-k2" and "-k3").

Figure 5 compares the two variants of Sparetest, with & = 2 and k& = 3, with IDL(2) and IDL(3) on
regular graphs. It shows us that when the degree of the vertices is set to 3, the best results are obtained
by IDL(3) (results obtained by IDL(2) are not displayed because they are not competitive); when it is set
to 4, the best results are obtained by IDL(2). We have also performed experiments with regular graphs
with higher degrees than 4, and note very similar results to those obtained when degree=4, i.e., IDL(2)
is the best performing approach on these graphs.

7 Conclusion

We have introduced IDL(d)-filtering, a new parametric filtering algorithm dedicated to the graph isomor-
phism problem. The d parameter determines the strength of the filtering: the larger d, the stronger the
filtering.

When d = 1, this algorithm basically follows the same partition refinement procedure as the one intro-
duced in Nauty and used in Saucy and Sparetest, which are improved versions of Nauty’s dedicated to
sparse graphs. Experimental results have shown us that IDL(1) exhibits nice properties with respect to
edge density variations:

e on dense graphs, the best performing approach is Nauty; on these graphs, IDL(1) is competitive
with Nauty, even though it is slower on the densest graphs, whereas neither Saucy nor Sparetest
are competitive;

e on sparse graphs, the best performing approaches are Saucy and Sparetest; on these graphs, IDL(1)
is competitive with Saucy and Sparetest, even though it is slower on the sparsest graphs, whereas
Nauty is not competitive.

On randomly generated graphs, where the vertices have different degrees, IDL(1)-filtering is strong enough
to reduce all domains to singletons. Therefore, on these graphs, using stronger filterings, such as IDL(2)
or IDL(3), only increases CPU time.

However, on regular graphs, approaches using filterings based on the direct neighborhood of vertices
—such as IDL(1), Nauty, or Saucy— are not efficient as all vertices have the same degree. On these
instances, using stronger filterings, such as IDL(2) or IDL(3), actually improves the solution process.

IDL(d)-filtering has been defined for non directed graphs. However, it could be easily extended to
directed graphs. A first possibility is to exploit the fact that two directed graphs are isomorphic only if
their non-directed counterparts also are isomorphic. However, this may lead to poor quality filterings as
edge orientations are not taken into account. Another possibility to extend our work to directed graphs
consists in adapting the 8y relabelling function to take into account edge orientations. For example, the
(1 relabelling function can be adapted by computing separately the multiset of successor labels and the
multiset of predecessor labels.

IDL(d)-filtering is based on isomorphic-consistent labellings and relabellings, that exploit distance-based
invariant properties. This idea has been extended to the subgraph isomorphism problem in [ZDS*07]: like
in IDL(1)-filtering, nodes are labelled by some invariant property, and labels are iteratively extended by
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considering labels of adjacent nodes; however, in the case of subgraph isomorphism, label compatibilities
are expressed with respect to a partial order instead of an equivalence relation.
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