Skip to main content

Advertisement

Log in

Efficient handling of universally quantified inequalities

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

This paper introduces a new framework for solving quantified constraint satisfaction problems (QCSP) defined by universally quantified inequalities on continuous domains. This class of QCSPs has numerous applications in engineering and technology. We introduce a generic branch and prune algorithm to tackle these continuous CSPs with parametric constraints, where the pruning and the solution identification processes are dedicated to universally quantified inequalities. Special rules are proposed to handle the parameter domains of the constraints. The originality of our framework lies in the fact that it solves the QCSP as a non-quantified CSP where the quantifiers are handled locally, at the level of each constraint. Experiments show that our algorithm outperforms the state of the art methods based on constraint techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benhamou, F., & Goualard, F. (2000). Universally quantified interval constraints. In Proceedings of international conference on principles and practice of constraint programming, LNCS, (Vol. 1894, pp. 67–82).

  2. Benhamou, F., Goualard, F., Languenou, E., & Christie, M. (2004). Interval constraint solving for camera control and motion planning. ACM Transactions on Computational Logic, 5(4), 732–767.

    Article  MathSciNet  Google Scholar 

  3. Benhamou, F., McAllester, D. A., & Van Hentenryck, P. (1994). CLP (intervals) revisited. In SLP (pp. 124–138).

  4. Benhamou, F., & Older, W. (1997). Applying interval arithmetic to real, integer and Boolean constraints. Journal of Logic Programming, 6, 1–24.

    Article  MathSciNet  Google Scholar 

  5. Boerner, F., Bulatov, A., Chen, H., Jeavons, P., & Krokhin, A. (2003). The complexity of constraint satisfaction games and qcsp. In Proc. of computer science logic, LNCS, (Vol. 2803/2003, pp. 58–70).

  6. Bordeaux, L., Cadoli, M., & Mancini, T. (2005). Csp properties for quantified constraints: Definitions and complexity. In Proc. of amer. conf. on artificial intelligence (AAAI) (pp. 360–365).

  7. Cleary, J. G. (1987). Logical arithmetic. Future Computing Systems (pp. 125–149).

  8. Collavizza, H., Delobel, F., & Rueher, M. (1999). Extending consistent domains of numeric CSP. In Proceedings of IJCAI 1999.

  9. Collavizza, H., Delobel, F., & Rueher, M. (1999). Comparing partial consistencies. Reliable Computing, 1, 1–16.

    Google Scholar 

  10. Dorato, P. (2000). Quantified multivariate polynomial inequalities. IEEE Control Systems Magazine, 20(5), 48–58.

    Article  Google Scholar 

  11. Dorato, P., Yang, W., & Abdallah, C. (1997). Robust multi-objective feedback design by quantifier elimination. Journal of Symbolic Computations, 24, 153–159.

    Article  MATH  MathSciNet  Google Scholar 

  12. Fiorio, G., Malan, S., Milanese, M., & Taragna, M. (1993). Robust performance design of fixed structure controllers for systems with uncertain parameters. In Proceedings of the 32st IEEE conference on decision and control (Vol. 4, pp. 3029–3031).

  13. Goldsztejn, A. (2006) A branch and prune algorithm for the approximation of non-linear AE-solution sets. In SAC ’06: Proceedings of the 2006 ACM symposium on applied computing (pp. 1650–1654).

  14. Goldsztejn, A., & Jaulin, L. (2006). Inner and outer approximations of existentially quantified equality constraints. In Proceedings of CP 2006, LNCS, (Vol. 4204/2006, pp. 198–212).

  15. Goldsztejn, A., Michel, C., & Rueher, M. (2008). An efficient algorithm for a sharp approximation of universally quantified inequalities. In Proceedings of ACM SAC 2008. Fortaleza, Brazil.

  16. Goualard, F., & Granvilliers, L. (2005). Controlled propagation in continuous numerical constraint networks. In Proceedings of the 2005 ACM symposium on applied computing (pp. 377–382).

  17. Hayes, B. (2003). A lucid interval. American Scientist, 91(6), 484–488.

    Google Scholar 

  18. Jaulin, L., Braems, I., & Walter, E. (2002). Interval methods for nonlinear identification and robust control. In In Proceedings of the 41st IEEE conference on decision and control (Vol. 4, pp. 4676–4681).

  19. Jaulin, L., Kieffer, M., Didrit, O., & Walter, E. (2001). Applied interval analysis with examples in parameter and state estimation, robust control and robotics. Springer-Verlag.

  20. Jaulin, L., & Walter, E. (1996). Guaranteed tuning, with application to robust control and motion planning. Automomatica, 32(8), 1217–1221.

    Article  MATH  MathSciNet  Google Scholar 

  21. Jirstrand, M. (1997). Nonlinear control system design by quantifier elimination. Journal of Symbolic Computation, 24(2), 137–152.

    Article  MATH  MathSciNet  Google Scholar 

  22. Kearfott, R. B. (1996). Interval computations: Introduction, uses, & resources. Euromath Bulletin, 2(1), 95–112.

    MathSciNet  Google Scholar 

  23. Lhomme, O. (1993). Consistency techniques for numeric CSPs. In Proceedings of IJCAI 1993 (pp. 232–238).

  24. Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 8, 99–118.

    Article  MATH  Google Scholar 

  25. Malan, S., Milanese, M., & Taragna, M. (1997). Robust analysis and design of control systems using interval arithmetic. Automatica, 33(7), 1363–1372.

    Article  MATH  MathSciNet  Google Scholar 

  26. Neumaier, A. (1990). Interval methods for systems of equations. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  27. Ratschan, S. (2002). Approximate quantified constraint solving by cylindrical box decomposition. Reliable Computing, 8(1), 21–42.

    Article  MATH  MathSciNet  Google Scholar 

  28. Ratschan, S. (2006). Efficient solving of quantified inequality constraints over the real numbers. ACM Transactions on Computational Logic, 7(4), 723–748.

    MathSciNet  Google Scholar 

  29. Ratschan, S. (2008). Applications of quantified constraint solving over the reals bibliography. http://www.cs.cas.cz/~ratschan/appqcs.html.

  30. Vu, X. H., Sam-Haroud, D., & Silaghi, M.-C. (2002). Approximation techniques for non-linear problems with continuum of solutions. In Proceedings of the 5th international symposium on abstraction, reformulation and approximation, LNAI (Vol. 2371, pp. 224–241). Springer-Verlag.

  31. Vu, X.-H., Silaghi, M., Sam-Haroud, D., & Faltings, B. (2006). Branch-and-prune search strategies for numerical constraint solving. Technical Report LIA-REPORT-2006-007, Swiss Federal Institute of Technology (EPFL).

  32. Zettler, M., & Garloff, J. (1998). Robustness analysis of polynomials with polynomial parameterdependency using bernstein expansion. IEEE Transactions on Automatic Control, 43(3), 425–431.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Goldsztejn.

Additional information

This paper is an extended version of a paper published at the SAC 2008 conference [15].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldsztejn, A., Michel, C. & Rueher, M. Efficient handling of universally quantified inequalities. Constraints 14, 117–135 (2009). https://doi.org/10.1007/s10601-008-9053-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-008-9053-0

Keywords

Navigation