
Constraints manuscript No.
(will be inserted by the editor)

SymChaff : Exploiting Symmetry in a Structure-Aware
Satisfiability Solver

Ashish Sabharwal

the date of receipt and acceptance should be inserted later

Abstract This article presents a new low-overhead framework for representing and uti-
lizing problem symmetry in propositional satisfiability algorithms. While many previous
approaches have focused on symmetry extraction as a key component, the novelty in the
proposed strategy lies in using high level problem description to pass on symmetry informa-
tion to the SAT solver in a simple and concise form, in addition to the usual CNF formula.
This information, comprising of the so-called symmetry sets and variable classes, captures
variable semantics relevant to “complete multi-class symmetry” and is utilized dynamically
to prune the search space. This allows us to address many limitations of alternative ap-
proaches like symmetry breaking predicates, implicit pseudo-Boolean representations, gen-
eral group-theoretic methods, and ZBDDs. We demonstrate the efficacy of our technique
through a solver calledSymChaff , which achieves exponential speedup over DPLL-based
SAT solvers on problems from both theory and practice, often by simply using natural tags
or annotation in the problem specification.

Keywords Boolean satisfiability· SAT · SymChaff· complete multi-class symmetry·
global symmetry· high-level representation· planning

1 Introduction

Propositional satisfiability or SAT is the classic NP-complete problem of determining
whether or not a given Boolean formula has any satisfying assignments. This problem has
proved to be of immense importance in both theory and practice. In recent years, many gen-
eral purpose propositional satisfiability algorithms (SAT solvers) have been designed and
shown to be very successful in handling and even outperforming specific tools on problems
from many real-world domains including hardware verification [7, 56], automatic test pat-
tern generation [33, 54], planning [30], and scheduling [26]. With a large community of

This work was primarily done while the author was at the University of Washington, Seattle. A preliminary
version of it appeared at the 20th National Conference on Artificial Intelligence (AAAI), Pittsburgh, PA, 2005
[51] and also in the author’s Ph.D. thesis [50].

A. Sabharwal
Department of Computer Science, Cornell University, Ithaca, NY 14853-7501, U.S.A.
E-mail: sabhar@cs.cornell.edu

2 A. Sabharwal

researchers working towards a better understanding of SAT, it is not surprising that many
competing SAT solvers have come into light, such asGrasp [38], Relsat [5], SATO[58],
zChaff [40], Berkmin [25], March-eq [28], andMiniSat [16].

All of the above solvers fall into the category of systematic DPLL-based algorithms for
formulas in conjunctive normal form (CNF). They build upon a basic branch-and-backtrack
technique based on falsified clauses, due originally to Davis, Putnam, Logemann, and Love-
land [12, 13], and provide logically sound proofs of unsatisfiability when the given formula
has no solutions. They can be viewed as efficient practical implementations of theclause
learning proof system, and hence of theresolutionproof system [6]. By adding to the basic
DPLL method features such as smart branch selection heuristics, conflict clause learning,
random restarts, conflict-directed backjumping, and fast unit propagation using watched lit-
erals, these solvers have proved to be very effective in solving many challenging problems
from a variety of domains of interest.

Despite the success, one aspect of many theoretical as well as real-world problems that
we argue has not been fully exploited is the presence ofsymmetryor equivalenceamongst
the underlying objects. Symmetry can be defined informally as a mapping of a constraint
satisfaction problem (CSP) onto itself that preserves its structure as well as its solutions.
While we leave a formal definition to Section2.2, the concept of symmetry in the context
of SAT solvers and in terms of higher level problem objects is best explained through some
examples of the many application areas where it naturally occurs. For instance, in FPGA
(field programmable gate array) routing used in electronics design, all available wires or
channels used for connecting two switch boxes are equivalent; in our design, it does not
matter whether we use wire #1 between connector X and connector Y, or wire #2, or wire
#3, or any other available wire. Similarly, in circuit modeling, all gates of the same “type”
are interchangeable, and so are the inputs to a multiple faninAND or OR gate; in planning,
all identical boxes that need to be moved from city A to city B are equivalent; in multi-
processor scheduling, all available processors are equivalent; in cache coherency protocols
in distributed computing, all available identical caches are equivalent. A key property of
such objects is that when selectingk of them, we can choose,without loss of generality,
anyk. This without-loss-of-generality reasoning is what we would like to incorporate in an
automatic fashion.

The question of symmetry exploitation that we are interested in addressing arises when
instances from domains such as the ones mentioned above are translated into CNF formulas
to be fed to a SAT solver. A CNF formula consists of constraints over different kinds of
variables that typically represent tuples of these high level objects (e.g., wires or boxes) and
their interaction with each other. For example, during the problem modeling phase, we could
have a Boolean variablezw,c that isTRUE if and only if the first end of wirew is attached
to connectorc. When this formula is converted into DIMACS format for a SAT solver, the
semantic meaningof the variables, that, say, variable 1324 is associated with wire #23 and
connector #5, is discarded. Consequently, in this translation, the global notion of the obvious
interchangeability of the set of wire objects is lost, and instead manifests itself indirectly
as a symmetry between the (numbered) variables of the formula and therefore also as a
symmetry within the set of satisfying (or un-satisfying) variable assignments. These sets of
symmetric satisfying and un-satisfying assignments artificially explode both the satisfiable
and the unsatisfiable parts of the search space, the latter of which can be a challenging
obstacle for a SAT solver searching for a satisfying assignment.

Example 1For concreteness, we give one simple but detailed example of symmetry in SAT
solvers. At the risk of appearing narrow in scope, we choose thepigeonhole principle,

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 3

PHPn
m: givenn pigeons andm holes, there is no one-to-one mapping of the pigeons to the

holes whenn > m. Translated into a CNF formula over variablesxi, j denoting that pigeoni
is mapped to holej, this has two kinds of clauses. We use the notation[p] to denote the set
{1,2, . . . , p}.

– Pigeon clauses: fori ∈ [n], clause(xi,1∨xi,2∨ . . .∨xi,m) says that pigeoni is mapped to
some hole, and

– Hole clauses: fori 6= k∈ [n], j ∈ [m], hole clauses(¬xi, j ∨¬xk, j) say that no two pigeons
are mapped to one hole.

This formula, despite being extremely simple to state, is a cornerstone of proof complex-
ity research. Haken [27] usedPHPn

n−1 to show the first ever exponential lower bound for the
resolution proof system. Since then several researchers have improved upon and general-
ized his result tom� n, to other counting-based formulas, and to stronger proof systems.
Needless to say, the results from the 2005 SAT competition [36] testify that the pigeonhole
formulas still provide a class of hard instances for complete SAT solvers. Returning to the
context of symmetry,PHPn

m contains two natural sets of equivalent or symmetric objects,
then pigeons and them holes. Accordingly,all variablesxi, j in this formula are symmetric
to each other to begin with. As we will see, it helps to distinguish between the “pigeon-
symmetry” betweenxi, j andxk, j , and the “hole-symmetry” betweenxi, j andxi,`. Note that
in the DIMACS format for SAT solvers, thesemnvariables lose their semantic meaning and
are represented simply as the set{1,2, . . . ,mn} of numbered variables.

Remark 1While we usePHPn
m as a motivation, we would like to remind the reader that

the techniques we develop are generic and capable of handling symmetry in more complex
forms that we will describe in due course. There are known techniques for dealing with
the pigeonhole problem in SAT solvers, such as the use of cardinality constraints [8, 15]
or compressed breadth-first search [41, 42]. However, such approaches either do not easily
generalize or do not perform as well in the presence of complex forms of symmetry beyond
this simple problem.

Current complete SAT solvers are unable to fully capitalize on such symmetry, as sug-
gested by our experimental results.1 The goal of this work is to develop a new general
purpose technique towards this end and to empirically evaluate its effectiveness. While our
approach involves adding structure to the problem description, we still stay within the realm
of SAT solvers (as opposed to using, say, a constraint programming (CP) approach), thereby
exploiting the many benefits of the CNF form and the advances in state-of-the-art SAT
solvers.

When viewing complete SAT solvers as implementations of proof systems, the chal-
lenge here is to push the underlying proof system up in the weak-to-strong proof complexity
hierarchy without incurring the significant cost that typically comes from large search spaces
associated with complex proof systems. While most of the current SAT solvers implement
subsets of the resolution proof system, our proposed solver,SymChaff , brings it up closer
to symmetric resolution, a proof system known to be exponentially stronger than resolution
[34, 55]. More critically, it achieves this in a time- and space-efficient manner.

A distinguishing aspect of our approach is that, in a sense, the semantic meaning of
variables with respect to object symmetry is derived from a high level description and pro-
vided toSymChaff as part of the input. (We will see concrete examples of this later.) This

1 There has been more success in exploiting symmetry indomain-specificalgorithms and techniques. We
are, however, interested in general purpose reasoning systems.

4 A. Sabharwal

leads to several advantages. The high level description is typically very concise and reveals
the structure of the problem much better than a large set of CNF clauses encoding the same
problem. It is simple, in many cases almost trivial, for the problem designer to specify global
symmetries at this level using straightforward “tagging” or annotation.

We note that while symmetries are annotated manually in the empirical evaluation pre-
sented in this work, this is not a necessity by any means. If one prefers to compute these
symmetry annotations in an automated manner, off-the-shelf graph isomorphism tools can
be used directly on the high level problem description. For instance, for planning problems,
the high level description is typically in the form of the standard STRIPS language [18],
whose basic building blocks are already the “objects” under consideration, such as trucks
or locations or wires. In this case, a graph isomorphism tool can be used to identify sets of
objects that are syntactically identical in the STRIPS specification, by analyzing the bipar-
tite graph formed from these objects on one side and all predicates that the objects appear
in (in either the initial state or the goal state) on the other side. Since a STRIPS descrip-
tion with a few dozen objects often gets translated into a CNF formula with thousands of
variables and tens of thousands of clauses (cf. Section4, Tables1 and2), it is reasonable
to expect graph isomorphism tools to be substantially more scalable when run on the con-
cise STRIPS description rather than on the corresponding CNF encoding. We leave such
automated annotation for future work.

The class of symmetries that our framework captures are referred to here as complete
multi-class global symmetries. Informally, we associate each variable semantically with the
“objects” it refers to (e.g,load-Pi-onto-Tj -at-Lk-time-t in a logistics planning problem may
refer to packagePi , truck Tj , locationLk, and time pointt). When several packages are
annotated as symmetric (because, for instance, they have the same source and destination),
the variables that refer to these packages are also inferred to have a symmetry (depending
also on the other objects these variables refer to). While such complete multi-class global
symmetries may seem somewhat restrictive at first glance, our empirical evaluation shows
that working only with such kinds of symmetry can often be more beneficial than trying to
exhaustively identify and exploit all types of symmetry.

Our experimental results demonstrate thatSymChaff , built on top of the popular SAT
solver zChaff [40], is able to achieve empirical (and sometimes provable) exponential
speed-up on many unsatisfiable and satisfiable formulas from a variety of problem domains
from theory and practice. The highlight of the empirical evaluation are the planning for-
mulas, on which tremendous performance gains are obtained by simply annotating their
standard PDDL description with semantic tags signifying object symmetry.

The rest of the article is organized as follows. We first give a brief overview of the main
idea and discuss related work on symmetries in SAT and CSPs. Section2 provides the nec-
essary background in DPLL-based solvers, pseudo-Boolean constraints, symmetry in our
context, and many-sorted first order logic. Section3 defines a new framework of complete
multi-class symmetry, and describes in detail our representation and the key features of
SymChaff . Section4 discusses the experimental setup with a set of symmetric problems
from both theory and applications. It reports experimental results and also gives an exam-
ple of how symmetry information needed bySymChaff can be automatically derived from
straightforward symmetry annotation in planning problem specifications. Finally, Section5
summarizes the work and suggests future directions.

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 5

1.1 Main Idea

Our strategy involves a new technique for representing and dynamically maintaining sym-
metry information for DPLL-based satisfiability solvers. Our framework as presented ap-
plies to both CNF and pseudo-Boolean formulations (i.e., inequalities over Boolean vari-
ables) of problems. However, the current implementation ofSymChaff supports only CNF.

We focus on symmetries that are present in the initial formula (as opposed to symme-
tries that arise dynamically after certain variable values have been fixed). Many symmet-
ric problems of interest have a concise description in what is called many-sorted first order
logic constraints. Although it sounds complex, this description can be easily specified by the
problem designer and almost as easily inferred automatically. We use one specific syntax in
our .sym file representation, which is an additional input toSymChaff besides the usual
CNF formula.SymChaff uses symmetry sets that are created from the “sorts” of universally
quantified variables in the first order logic constraints. (Sorts in logic are like “types” in
programming languages.) These symmetry sets are used to partition variables into classes
and to maintain and utilize symmetry information dynamically.

Two key features ofSymChaff are multiway branching and symmetric learning. While
it is natural to choose a variable and branch two ways by setting it toTRUE and FALSE,
this is not necessarily the best option whenk variables,x1,x2, . . . ,xk, are known to be arbi-
trarily interchangeable. Specifically, it only mattershow manyof thexi are set toFALSE at
any time, and not which exact ones. The same applies to more complex symmetries where
multiple classes of variablessimultaneouslydepend on an index setI = {1,2, . . . ,k} and
can be arbitrarily interchanged in parallel within their respective classes. We formalize this
as ak-complete multi-class symmetry with index setI , and handle it using a(k+ 1)-way
branch-pointbased onI . This multi-way branching maintains completeness of the search
and shrinks the search space by as much as roughly 2k. The index sets are implicitly deter-
mined from the many-sorted first order logic representation of the problem at hand. We ex-
tend the standard notions of conflicts and clause learning to the multiway branching frame-
work, introducingsymmetric learning. The idea is to efficiently compute a small set of
variables which, when fixed to values in a certain manner, falsifyall branches of a multiway
branch-point. In practice, we found that invoking symmetric learning was essential to fully
reap the benefits of multiway branching.

SymChaff integrates seamlessly with most of the other standard features of modern SAT
solvers, extending them in the context of symmetry wherever necessary. These include fast
unit propagation, good restart strategy, effective constraint database management, etc.

1.2 Related Work

One of the most successful techniques for handling symmetry in both SAT and general
CSPs originates from the work of Puget [46], who showed that symmetries can bebroken
by adding one lexicographic ordering constraint per symmetry. Crawford et al. [10] showed
how this can be done by adding a set of simple “lex-constraints” orsymmetry breaking pred-
icates(SBPs) to the input specification to weed out all but the lexically-first solutions. The
idea is to identify the group of permutations of variables that keep the CNF formula un-
changed. For each such permutationπ, clauses are added so that for every satisfying assign-
mentσ for the original problem whose permutationπ(σ) is also a satisfying assignment,
only the lexically-first ofσ andπ(σ) satisfies the added clauses. In the context of CSPs,
there has been a lot of work in the area of SBPs. Petrie and Smith [44] extended the idea to

6 A. Sabharwal

value symmetries, Puget [48] applied it to products of variable and value symmetries, and
Walsh [57] generalized the concept to symmetries acting simultaneously on variables and
values, on set variables, and other forms. Puget [47] has recently proposed a technique for
creating dynamic lex-constraints, with the goal of minimizing adverse interaction with the
variable ordering used in the search tree.

In the context of SAT, value symmetries naturally manifest themselves as variable sym-
metries,2 and work on SBPs has taken a different path. Tools such asShatter by Aloul
et al. [1, 4] improve upon the basic SBP technique by using lex-constraints whose size is
only linear in the number of variables rather than quadratic. Further, they use graph isomor-
phism detectors likeSaucy by Darga et al. [11] to generate symmetry breaking predicates
only for the generators of the algebraic groups of symmetry. While saving SBPs only for the
generators of the symmetry groups is often relatively fast, the problem of computing graph
isomorphism through a tool likeSaucy , however, is not known to have any polynomial time
algorithms, and is conjectured to be strictly between the complexity classes P and NP [cf.
32]. Hence, one must resort to heuristic or approximate solutions. Further, while there are
formulas for which few SBPs suffice, the number of SBPs one needs to add in order to
breakall symmetries can be exponential. This is typically handled in practice by discarding
“large” symmetries, i.e., those involving too many variables with respect to a fixed thresh-
old. This may, however, result in a much slower SAT-based solution method as indicated by
our experiments on clique coloring and logistics problems.

The work of Motter et al. [41, 42] employs a technique called compressed breadth-first
search, using so-called zero-suppressed binary decision diagrams (ZDDs). This method,
implemented as the solverCassatt , is able to solve the pigeonhole formulas in polynomial
time, specifically, inΘ(n4) time forPHPn

n−1. The solver also shows promising performance
in a few other domains.

A very different and indirect approach for addressing symmetry is embodied in SAT
solvers such asPBSby Aloul et al. [2], pbChaff by Dixon et al. [15], andGalena by Chai and
Kuehlmann [8], which utilize non-CNF formulations known as pseudo-Boolean inequalities.
Their logic reasoning is based on what is called the Cutting Planes proof system which, as
shown by Cook et al. [9], is strictly stronger than resolution on which DPLL type CNF
solvers are based. Since this more powerful proof system is difficult to implement in its full
generality, pseudo-Boolean solvers often implement only a subset of it, typically learning
only CNF clauses or restricted pseudo-Boolean constraints upon a conflict. Pseudo-Boolean
solvers may lead to purely syntactic representational efficiency in cases where a single con-
straint such asy1 + y2 + . . .+ yk ≤ 1 is equivalent to

(k
2

)
binary clauses. More importantly,

they are relevant to symmetry because they sometimes allow implicit encoding. For instance,
the single constraintx1 + x2 + . . .+ xn ≤ m overn variables captures the essence of the pi-
geonhole formulaPHPn

m over nm variables which is provably exponentially hard to solve
using resolution-based methods without symmetry considerations. This implicit represen-
tation, however, is not suitable in certain applications such as clique coloring and planning
that we discuss. In fact, for unsatisfiable clique coloring instances, even pseudo-Boolean
solvers provably require exponential time.

One could conceivably keep the CNF input unchanged but modify the solver to detect
and handle symmetries during the search phase as they occur. Although this approach is
quite natural, its only implementation so far in a general purpose SAT solver appears to

2 For example, a multi-valued CSP variablev with domain{1,2, . . . ,5} is typically encoded in SAT using
a set

{
xv,1,xv,2, . . . ,xv,5

}
of five Boolean variables; a value symmetry forv between values{2,3,5} then

translates to the variable symmetry betweenxv,2,xv,3, andxv,5.

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 7

be sEqSatz by Li et al. [37], whose technique seems somewhat specific to the problems
considered and shows limited improvement uponzChaff itself (without symmetry consid-
erations). Symmetry handling during search has been explored with mixed results in the
CSP domain using frameworks like SBDD and SBDS [e.g.17, 19, 23, 24]. Related work in
SAT has been done in the specific areas of automatic test pattern generation by Marques-
Silva and Sakallah [39] and SAT-based model checking by Shtrichman [53]. In both cases,
the solver utilizes global information obtained at a stage to make subsequent stages faster.

In other domain-specific work on symmetries in SAT, Fox and Long [20] presented a
framework for planning problems that is very similar to ours in essence. However, their work
has two limitations. The obvious one is that they provide a planner and not a general purpose
reasoning engine. The second is that unlike typical SAT-based planners, their approach does
not guarantee plans of optimal length when multiple (non-conflicting) actions are allowed
to be performed at each time step. This issue does not arise in our approach.

Finally, Dixon et al. [14] give a generic method of representing and dynamically main-
taining symmetry in SAT solvers using algebraic techniques that guarantee polynomial size
unsatisfiability proofs of many difficult formulas. The strength of their work lies in a strong
group theoretic foundation and comprehensiveness in handling all possible symmetries. The
computations involving group operations that underlie their current implementation are,
however, often quite expensive, scaling as a high degree polynomial.

2 Preliminaries

We begin with a brief review of the basic concepts we will need. A propositional formula
in conjunctive normal form (CNF) is a conjunction (AND) of clauses, where each clause is
a disjunction (OR) of literals and a literal is a propositional (Boolean) variable or its nega-
tion. A pseudo-Boolean formula is a conjunction of pseudo-Boolean constraints, where each
pseudo-Boolean constraint is a weighted inequality over propositional variables with (typ-
ically) integer coefficients. A clause is called “unit” if all but one of its literals are set to
FALSE; the remaining literal must be set toTRUE to satisfy the clause. Similarly, a pseudo-
Boolean constraint is called “unit” if variables have been set in such a way that all its unset
literals must be set toTRUE to satisfy the constraint. Finally, unit propagation is a tech-
nique common to SAT and pseudo-Boolean solvers that recursively simplifies the formula
by appropriately setting unset variables in unit constraints so as to immediately satisfy them.

2.1 DPLL-based SAT Solvers

The approach we present in this article is applicable to all DPLL-based systematic SAT
solvers designed for CNF as well as pseudo-Boolean constraints. At each step these solvers
use some heuristic to select a literal to branch on (a “decision”). This literal is set toTRUE

at the current decision level and the formula is simplified using unit propagation. If there is
a conflict at this point, i.e., a variable is implied to be bothTRUE andFALSE, the branch is
declared as a failure and, typically, a conflict clause is learned which prevents the solver from
unnecessarily exploring similar unsatisfiable branches in subsequent steps. At this point the
solver backtracks and flips the assignment of the decision literal toFALSE. If on the other
hand there is no conflict, the solver proceeds by branching on another literal. If all variables
are set without a conflict, one has obtained a satisfying assignment and the search terminates

8 A. Sabharwal

successfully. On the other hand, when all branches have been unsuccessfully explored, the
formula is declared unsatisfiable.

This process is sound and complete, i.e., it finds a satisfying assignment if there exists
one, and reports unsatisfiability otherwise. Various other features and optimizations, such as
random restarts, watched literals, and conflict-directed backjumping, are added to this basic
structure to increase efficiency.

2.2 Constraint Satisfaction Problems and Symmetry

A constraint satisfaction problem (CSP) is a collection of constraints over a setV =
{x1,x2, . . . ,xn} of n variables, where each variablexi takes values in its domainDi . A solu-
tion to a CSP is an assignment of values to variables such that all constraints are satisfied.
Although the following notions are generic, our focus in this work will be on CNF and
pseudo-Boolean constraints over propositional variables. In other words, our constraints
will be either clauses or pseudo-Boolean inequalities, and our variables will all have domain
{TRUE,FALSE}.

Symmetry may exist in various forms in a CSP. Our focus will be onvariable symmetry,
and we define it in terms of permutations of variables that preserve certain properties of the
CSP.3 For a positive integerq, we will use[q] to denote the set{1,2, . . . ,q}.

Let σ be a permutation of[n]. With abuse of notation, extendσ in a natural man-
ner to elements and subsets ofV (i.e., to variables and collections of variables) by
defining the following: forxi ∈ V, define σ(xi) = xσ(i); for V ′ ⊆ V, define σ(V ′) =
{σ(x) | x∈V ′}. For ap-ary constraintC(xi1,xi2, . . . ,xip) overV, let σ(C) denote the con-
straintC(xσ(i1),xσ(i2), . . . ,xσ(ip)). For a CSPΓ , defineσ(Γ) to be the new CSP consisting
of the constraints{σ(C) |C∈ Γ }.

Definition 1 A permutationσ of the variables of a CSPΓ is aglobal variable symmetryof
Γ if σ(Γ) = Γ .

Definition 2 Let Γ be a CSP on the variable setV. ThenV ′ ⊆ V, |V ′| = k, induces ak-
complete global variable symmetryof Γ if everypermutationσ of V satisfyingσ(V ′) = V ′

andσ(x) = x for x 6∈V ′ is a global variable symmetry ofΓ .

In other words, thek variables inV ′ can be arbitrarily interchanged without changing
the original problem.4 Such symmetries exist in simple problems such as the pigeonhole
principle in Example1, where all pigeons (and holes) are symmetric. As mentioned earlier,
these symmetries can be detected and exploited efficiently using various known techniques
such as cardinality constraints [2, 8, 15].

We will extend this basic notion of symmetry to a richer one in Section3.1. For brevity,
we will refer to a global variable symmetry as simply asymmetry.

3 We do not considerpure value symmetrybecause all our domains are Boolean; if both values of a Boolean
variable are symmetric, then it is a true “don’t care” and can be removed from the problem. Aliteral symme-
try or variable-value symmetrymapping literals to literals could in principle be more generic than variable
symmetries mapping variables to variables. Our framework, however, works with high level “objects” in the
problem rather than Boolean variables, and thus leads naturally to variable symmetry only.

4 In group theoretic terms, this forms a full group of symmetry overV ′.

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 9

2.3 Many-Sorted First Order Logic

It will be convenient (though not necessary) to view symmetry from the perspective of many-
sorted first order logic, which we briefly review here. In first order logic, one can express
universally and existentially quantified logical statements about variables and constants that
range over a certain domain with some inherent structure. For instance, the domain could be
the finite set[n] with the successor relationship of the firstn natural numbers as its structure,
and a (false) universally quantified logical statement over it could be that every element in
the domain has a successor.

In many-sortedlogic, the domain of variables and constants may be divided up into
various types or “sorts” of elements that are quantified over independently. In other words,
many-sorted first order logic extends first order logic with type information. The reader is
referred to standard texts such as by Gallier [22] for further details. We remark here that
many-sorted first order logic is known to be exactly as expressive as first order logic itself.
In this sense, sorts or types add convenience but not power to the logic.

As an example, consider again the pigeonhole principle where the domain consists of a
setP of pigeons and a setH of holes. The problem can be stated as the succinct 2-sorted
first order formula[∀(p ∈ P) ∃(h ∈ H) . X(p,h)]∧ [∀(h ∈ H, p1 ∈ P, p2 ∈ P) . (p1 6=
p2 → (¬X(p1,h)∨¬X(p2,h)))], whereX(p,h) is the predicate “pigeonp maps to holeh.”
We can alternatively write this 2-sorted first order logic formula even more concisely as
[∀Pi ∃H j . xi, j]∧ [∀H j ∀Pi,k . (i 6= k→ (¬xi, j ∨¬xk, j))]

Recall on the other hand from Example1 that the CNF formulation of same problem re-
quires|P|+ |H|

(|P|
2

)
clauses. As we will see shortly, the sort-based quantified representation

of problems lies at the heart of our approach by providing us the base “symmetry sets” to
start with.

3 Symmetry Framework andSymChaff

We now describe our new symmetry framework in a generic way, briefly referring to specific
implementation aspects ofSymChaff as appropriate.

The motivation and description of our techniques can be best understood with a few
concrete examples in mind. We use three relatively simple logistics planning problems de-
picted in Figure1. In all three of these problems, there arek trucksT1,T2, . . . ,Tk initially at a
locationLTB (truckbase). There are several locations as well as a number of packages. Each
package is initially at a certain location and needs to be transported to a certain destination
location. Actions that can be taken at any step include driving a truck from one location to
another, and loading or unloading multiple boxes (in parallel) onto or from a truck. The task
is to find a minimum length plan such that all boxes arrive at their destined locations and
all trucks return toLTB. Actions that do not conflict in their pre- or post-conditions can be
taken in parallel.

Let s(i) = (i modn)+1 denote the cyclic successor ofi in [n].

Example 2(PlanningA) Let k = d3n/4e. For 1≤ i ≤ n, there is a locationLi that has two
packagesPi,1 andPi,2. The goal is to deliver packagePi,1 to locationLs(i) and packagePi,2 to
locationLs(s(i)).

The shortest plan for this problem is of length 7 for anyn. The idea behind the plan is
to use 3 trucks to handle 4 locations. E.g., truckT1 transportsP1,1, P1,2, andP2,1, truck T2

transportsP3,1, P3,2, andP4,1, and truckT3 transportsP2,2 andP4,2. The 7 steps forT1 involve

10 A. Sabharwal

CityA

CityB
CityD

CityC

Fig. 1 The setup for logistic planning examples

(i) driving to L1, (ii) loading the two boxes there, (iii) driving toL2, (iv) unloadingP1,1 and
loadingP2,1, (v) driving toL3, (vi) unloading the two boxes it is carrying, and (vii) driving
back toLTB.

Example 3(PlanningB) Let k = dn/2e. For 1≤ i ≤ n, there are 5 packages at locationLi

that are all destined for locationLs(i). This problem has more symmetries thanPlanningA

because all packages initially at the same location are symmetric.
The shortest plan for this problem is of length 7 and assigns one truck to two consecutive

locations. E.g., the 7 steps for truckT1 include (i) driving toL1, (ii) loading all boxes there,
(iii) driving to L2, (iv) unloading the boxes it is carrying and loading all boxes originally
present atL2, (v) driving toL2, (vi) unloading all boxes it is carrying, and (vii) driving back
to LTB.

Example 4(PlanningC) Let k = n. For 1≤ i ≤ n, there are locationsLsrc
i ,Ldest

i and
packagesPi,1,Pi,2. Both these packages are initially at locationLsrc

i and must be delivered

to locationLdest
i . Here not only the two packages at each source location are symmetric but

all n tuples(Lsrc
i ,Ldest

i ,Pi,1,Pi,2) are symmetric as well.
It is easily seen that the shortest plan for this problem is of length 5 and assigns one

truck to each source-destination pair. E.g., the 5 steps forT1 involve (i) driving toLsrc
1 , (ii)

loading the two boxes there, (iii) driving toLdest
1 , (iv) unloading the two boxes it is carrying,

and (v) driving back toLTB.

For a given plan length, such a planning problem can be converted into a CNF formula
using tools such asBlackbox by Kautz and Selman [31] and then solved using standard SAT
solvers. The variables in this formula are of the formload-Pi,1-onto-Tj -at-Lk-time-t, etc. We
omit the details [cf.30].

3.1 k-completem-class Symmetries

Consider a CSPΓ over a setV = {x1,x2, . . . ,xn} of variables as before. We generalize the
idea of complete symmetry forΓ to complete multi-class symmetry. LetV1,V2, . . . ,Vm be

disjoint subsets ofV of cardinalityk each. LetV0 = V \
(⋃

i∈[m]Vi

)
. Order the variables in

eachVi , i ∈ [m], arbitrarily and lety j
i , j ∈ [k], denote thej th variable ofVi .

Let σ be a permutation of the set[k]. Defineσ̄ to be the permutation ofV induced byσ

andVi ,0≤ i ≤ m, as follows:σ̄(x) = x for x∈V0 andσ̄(x) = yσ(j)
i for x = y j

i ∈Vi , i ∈ [m].
In other words,σ̄ maps variables inV0 to themselves and appliesσ in parallel to the indices
of the variables in each classVi , i ∈ [m], simultaneously.

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 11

Definition 3 If σ̄ is a global symmetry ofΓ for everypermutationσ of [k] then the set
{V1,V2, . . . ,Vm} is a k-complete m-class (global) symmetryof Γ . The setsVi , i ∈ [m], are
referred to as thevariable classes. Variables inVi are said to beindexed bythesymindex set
[k].

Note that ak-complete 1-class symmetry is simply ak-complete symmetry. Complete
multi-class symmetries correspond to the case where variables from multiple classes can
be simultaneously and coherently changed in parallel without affecting the problem.5 This
happens naturally in many problem domains.

Example 5Consider the logistics planning problemPlanningA (Example2) for n= 4 con-
verted into a unsatisfiable CNF formula corresponding to plan length 6. The problem has
k = 3 trucks and is 3-completem-class symmetric for appropriatem. The variable classes
Vi of size 3 are indexed by the symindex set{1,2,3} and correspond to sets of 3 vari-
ables that differ only in which truck they use. For example, variablesunload-P2,1-from-T1-
at-L2-time-5, unload-P2,1-from-T2-at-L2-time-5, andunload-P2,1-from-T3-at-L2-time-5 com-
prise one variable class which is denoted byunload-P2,1-from-T j -at-L2-time-5. The many-
sorted representation of the problem has one universally quantified sort for the trucks. The
problemPlanningA remains unchanged, e.g., whenT1 andT2 are swapped in all variable
classes simultaneously.

In more complex scenarios, a variable class may be indexed by multiple symindex sets
and be part of more than one complete multi-class symmetry. This will happen, for instance,
in thePlanningB problem (Example3) where variablesload-P2,a-onto-T j -at-L4-time-4 are
indexed by two symindex sets,a∈ [5] and j ∈ [3], each acting independent of the other. This
problem has a universally quantified 2-sorted first order representation.

Alternatively, multiple object classes, even in the high level description, may be indexed
by the same symindex set. This happens, for example, in thePlanningC problem (Example
4), whereLsrc

i ,Ldest
i ,Pi,1, andPi,2 are all indexed byi. This results in symmetries involving

an even higher number of variable classes indexed by the same symindex set than in the case
of PlanningA type problems.

3.2 Symmetry Representation

SymChaff takes as input a CNF file in the standard DIMACS format [29] as well as a.sym
symmetry fileS that encodes the complete multi-class symmetries of the input formula.
Lines inS that begin withc are treated as comments.Scontains a header linep sym nsi
ncl nsv declaring that it is a symmetry file withnsi symindex sets,ncl variable classes,
andnsv symmetric variables.

Symmetry is represented in the input fileS and maintained insideSymChaff in three
phases. First,symindex setsare represented as consecutive, disjoint intervals of positive inte-
gers. In thePlanningB example forn= 4, the three trucks would be indexed by the set[1 .. 3]
and the 5 packages at locationLi ,1≤ i ≤ 4, by symindex sets[3+ 5(i −1)+ 1 .. 3+ 5i],
respectively. Here[p .. q] denotes the set{p, p+1, . . . ,q}. Second, onevariable classis
defined for each variable classVi and associated with each symindex set that indexes vari-
ables in it. Finally, asymindex mapis created that associates with each symmetric vari-
able the variable class it belongs to and the indices in the symindex sets it is indexed by.

5 In group theoretic terms, this corresponds to the product of several full symmetry groups.

12 A. Sabharwal

c Symmetry file for php-004-003.cnf
c 4 pigeons, 3 holes, 12 symmetric variables
c 2 symindex sets, 1 varclass
c
p sym 12 2 1
c
c symindex sets
1 4 0
2 7 0
0
c varclasses
1 4 7 0
0
c
c symindex mappings
1 1 1 5 0
2 1 1 6 0
3 1 1 7 0
4 1 2 5 0
5 1 2 6 0
6 1 2 7 0
7 1 3 5 0
8 1 3 6 0
9 1 3 7 0
10 1 4 5 0
11 1 4 6 0
12 1 4 7 0
0

Fig. 2 A sample symmetry file,php-004-003.sym

For instance, variableload-P2,4-onto-T3-at-L4-time-4 in problemPlanningB will be asso-
ciated with the variable classload-P2,a-onto-T j -at-L4-time-4 and with indicesj = 3 and
a = 3+ 5(2−1)+ 4 = 12. The symmetry input fileS is a straightforward encoding of sy-
mindex sets, variable classes, and symindex map.

Example 6As another example and as an illustration of the exact syntax ofS, we give the
actual symmetry input file for the pigeonhole problemPHP4

3 in Figure2. There are two
symindex sets, one for the 4 pigeons and the other for the 3 holes. These correspond to the
consecutive, disjoint intervals[1 .. 4] and[5 .. 7], respectively, and are associated with the
right end-points of the intervals, 4 and 7. All 12 variables of the problem are symmetric
to each other and thus belong to the only variable class for the problem (commented as
“varclass” in the Figure). This variable class is indexed by the two symindex sets associated
with the right end-points 4 and 7. Finally, the symindex map says, for example, that variable
5, which happens to correspond to the variablex2,2 in PHP4

3 , belongs to the first (and only)
variable class and is indexed by the index 2 from the first symindex set and the index 6 from
the second symindex set associated with its variable class.

3.3 Multiway Index-based Branching

A distinctive feature ofSymChaff is multiway symindex-based branching. Suppose at a
certain stage the variable selection heuristic suggests that we branch by setting variablex
to FALSE. SymChaff checks to see whetherx has any complete multi-class symmetry left in

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 13

the current stage. (Note that symmetry in our framework reduces as variables are assigned
truth values.)x, of course, may not be symmetric at all to start with. Ifx doesn’t have any
symmetry,SymChaff proceeds with the usual DPLL style 2-way branching by settingx
now to FALSE and later toTRUE. If it does have symmetry,SymChaff arbitrarily chooses a
symindex setI , |I | = k≥ 2, that indexesx and creates a(k+1)-way branch-point based on
I . Let x1,x2, . . . ,xk be the variables indexed byI in the variable classV ′ to whichx belongs
(x= xi′ for somei′). For 0≤ i ≤ k, theith branch of this branch-point setsx1, . . . ,xi to FALSE

andxi+1, . . . ,xk to TRUE. The idea behind this multiway branching is that it only matters
how manyof thexi are set toFALSE and not which exact ones. This reduces the search for a
satisfying assignment from up to 2k different partial assignments ofx1, . . . ,xk to only k+1
different ones. This clearly maintains completeness of the search and is the key to the good
performance ofSymChaff .

When one branches and sets variables, the symindex sets must be updated to reflect this
change. When proceeding along theith branch in the above setting, two kinds ofsymindex
splits happen. First, ifx also happens to be indexed by an indexj in another symindex
setJ = [a .. b] 6= I , we must splitJ into up to three symindex sets given by the intervals
[a .. j −1], [j .. j], and[j + 1 .. b] becausej ’s symmetry has been destroyed by this value
assignment tox. To reduce the number of splits,SymChaff replacesx with another variable
in its variable classV ′ for which j = a and thus the split dividesJ into two new symindex
sets only,[a .. a] and[a+1 .. b]. This first kind of split is done once for the multiway branch-
point for x based onI , and is independent of the value ofi. The second kind of split is, in
fact, much simpler: it dividesI = [c .. d] into up to two symindex sets given by[c .. i] and
[i + 1 .. d]. This captures the fact that both the firsti and the lastk− i indices ofI remain
symmetric in theith branch of the multiway branch-point.

Note that it is possible forx to be indexed multiple times by the same symindex setI ,
such as whenxi,i′ denotes an edge in a graph with nodes forming the symindex setI . In this
case,xi,i must be treated differently thanxi,i′ , i 6= i′. The easiest way to achieve this is to start
by splitting the symindex setI because of the first indexi of xi,i′ , and then further splitI
because of the second indexi′ of xi,i′ . An example domain where such splitting is needed is
the clique coloring domain, to be discussed in experimental section.

Symindex sets that are split while branching must be restored when a backtrack happens.
When a backtrack moves the search from theith branch of a multiway branching step to the
i +1st branch,SymChaff deletes the symindex set split of the second type created for theith

branch and creates a new one for thei + 1st branch. When allk+ 1 branches are finished,
SymChaff also deletes the split of the first type created for this multiway branch-point and
backtracks.

In terms of implementation, note that while the variable classes and the symindex map
remain static, the symindex sets change dynamically asSymChaff proceeds assigning val-
ues to variables. In fact, when sufficiently many variables have been assigned truth values,
all complete multi-class symmetries will be destroyed. For efficient access and manipula-
tion, SymChaff stores variable classes in a vector data structure from the Standard Template
Library (STL) of C++, the symindex map as a hash table, and symindex sets together as
a multiset containing only the right end-points of the consecutive, disjoint intervals corre-
sponding to the symindex sets. A symindex set split is achieved by adding the corresponding
new right end-point to the multiset, and symindex sets are combined when backtracking by
deleting the end-point.

14 A. Sabharwal

c Symmetry order file for (f)clqcolor-xx-xx-xx.cnf
c 3 varclasses, 3 order sets
c
p ord 3 3
c
c varclass index order
1 1 1 0
2 2 1 0
3 1 2 0
0
c varclass order
3 0
2 0
1 0
0

Fig. 3 A sample symmetry ordering file,clqcolor.ord

3.4 Symmetric Learning

We extend the notion of conflict-directed clause learning to our symmetry framework. When
all branches of a(k+1)-way symmetric branch-pointbhave been explored,SymChaff learns
a symconflict clause Csuch that when all literals ofC are set toFALSE, unit propagation
falsifies everybranch ofb. This process clearly maintains soundness of the search. The
symconflict clause is learned even for 2-way branch-points and is computed as follows.

Suppose ak-way branch-pointb starts at decision leveld. If the ith branch ofb leads
to a conflict without any further branching, two things happen. First,SymChaff learns a
standard conflict clause following the FirstUIP strategy ofzChaff [59]. Second, it stores in
a setSb associated withb the decision literals at levels higher thand that are involved in
the conflict. On the other hand, if theith branch ofb develops further into another branch-
point b′, SymChaff stores inSb those literals of the symconflict clause recursively learned
for b′ that have decision level higher thand. When all branches atb have been explored, the
symconflict clause learned forb is

∨
`∈Sb

¬`.

3.5 Static Ordering of Symmetry Classes and Indices

It is well known that the variable order chosen for branching in any DPLL-based SAT solver
has a tremendous impact on its efficiency. A good order for selecting variable classes and sy-
mindex sets for multiway branching can similarly often boost the performance ofSymChaff

as well. While we leave dynamic strategies for selecting variable classes and symindex sets
as future work,SymChaff does support static ordering through a very simple and optional
.ord order file given as additional input. This file specifies an ordering of variable classes
as an initial guide to the VSIDS (variable state independent decaying sum) variable selection
heuristic ofzChaff [40], treating asymmetric variables in a class of their own. Further, for
each variable class indexed by multiple symindex sets, it allows one to specify an order of
priority on symindex sets.

The exact.ord file structure is shown as an example in Figure3. Here, as in many
cases, a good ordering is an attribute of the problem domain rather than of specific problem
instances — in this case, the clique coloring domain, to be discussed shortly (Section4.1).
The file specifies that the variables from variable class 3 should be used for symmetric
branching before variables from class 2, which in turn should be used before variables from

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 15

class 1. Variable class 4 implicitly denotes the set of all asymmetric variables, and has the
least priority because it does not appear in the.ord file. Further, when branching on a vari-
able in, say, class 2, the specified ordering dictates that index 2 should be used for splitting
before index 1 is tried.

3.6 Integration of Standard SAT Solver Features

The efficiency of state-of-the-art SAT and pseudo-Boolean solvers relies heavily on various
features that have been developed, analyzed, and tested over the last decade.SymChaff inte-
grates well with most of these features, either using them without any change or extending
them in the context of multiway branching and symmetric learning. The only significant
and relatively new feature that neitherSymChaff nor the version ofzChaff on which it is
based currently support is assignment stack shrinking based on conflict clauses which was
introduced by Nadel [43] in the solverJerusat .

For completeness, we make a digression to give a flavor of how assignment stack shrink-
ing works. When a conflict occurs because a clauseC′ is violated and the resulting conflict
clauseC to be learned exceeds a certain threshold length, the solver backtracks to almost the
highest decision level of the literals inC. It then starts assigning toFALSE the unassigned
literals of the violated clauseC′ until a new conflict is encountered, which is expected to
result in a smaller and more pertinent conflict clause to be learned.

Returning toSymChaff , it supports fast unit propagation using watched literals, good
restart strategies, effective constraint database management, and smart branching heuristics
in a very natural way. In particular, it useszChaff ’s watched literals scheme for unit prop-
agation, deterministic and randomized restart strategies, and clause deletion mechanisms
without any modification, and thus gains by their use as any other SAT solver would. While
performing multiway branching for classes of variables that are known to be symmetric,
SymChaff starts every new multiway branch-point based on the variable that would have
been chosen by VSIDS variable and value selection heuristic ofzChaff , thereby retaining
many advantages that effective heuristics like VSIDS have to offer.

Conflict clause learning is extended to symmetric learning as described earlier. Conflict-
directed backjumping in the traditional context allows a solver to backtrack directly to a
decision leveld if variables at levelsd or higher are the only ones involved in the conflicts
in both branches at a branch-point other than the branch variable itself.SymChaff extends
this to multiway branching by computing this leveld for all branches at a multiway branch-
point by looking at the symconflict clause for that branch-point, discarding all intermediate
branch-points and their respective partial symconflict clauses, backtracking to leveld, and
updating the symindex sets.

While conflict-directed backjumping is always beneficial, fast backjumping may not
be so. This latter technique, relevant mostly to the FirstUIP learning scheme ofzChaff ,
allows a solver to jump directly to a higher decision leveld when even one branch leads to a
conflict involving variables at levelsd or higher only (in addition to the variable at the current
branch-point). This discards intermediate decisions which may actually be relevant and in
the worst case will be made again unchanged after fast backjumping.SymChaff provides
this feature as an option which turns out to be helpful in certain domains and detrimental in
others. To maintain consistency of symconflict clauses learned later, the leveld′ to backjump
to is computed as the maximum of the leveld as above and the maximum decision leveld̄ of
any variable in the partial symconflict clause associated with the current multiway branch-
point.

16 A. Sabharwal

4 Benchmarks and Empirical Evaluation

SymChaff is implemented on top ofzChaff version 2003.11.04. The input toSymChaff is a
.cnf formula file in the standard DIMACS format, a.sym symmetry file, and an optional
.ord static symmetry order file. It uses the default parameters ofzChaff . The program
was compiled using g++ 3.3.3 for RedHat Linux 3.3.3-7. Experiments were conducted on
a cluster of 36 machines running Linux 2.6.11 with four 2.8 GHz Intel Xeon processors on
each machine, each with 1 GB memory and 512 KB cache.

Tables1, 2, 3, and4 report statistics of and results for several parameterizations of two
problems from proof complexity theory, three planning problems, and a routing problem
from design automation. These problems are discussed below. Satisfiable instances of some
of these problems were easy for all solvers considered and are therefore omitted from the
tables. Except for the planning problems for which automatic “tags” were used (described
later), the.sym symmetry files were automatically generated by a straightforward modi-
fication to the scripts used to create the.cnf files from the problem descriptions. For all
instances, the time required to generate the.sym file was negligible compared to the time
required to generate the corresponding.cnf file, and is therefore not reported. The.sym
files were in addition extremely small compared to the corresponding.cnf files.

The SAT solvers used in the comparative study wereSymChaff , zChaff version
2003.11.04 [40], andMarch-eq-100 [28]. Symmetry breaking predicates (SBPs) were gen-
erated usingShatter version 0.3 [1], which uses the graph isomorphism toolSaucy [11].
SinceSymChaff is implemented on top ofzChaff version 2003.11.04, we used the same
version ofzChaff as well as the then state-of-the-art version ofMarch-eq for a fair com-
parison. Note thatzChaff won the best solver award for industrial benchmarks in the SAT
2004 competition [35] while March-eq-100 won the corresponding award for handmade
benchmarks.

Tables1 and2 provide details of all unsatisfiable and satisfiable formulas, respectively,
used for experimentation. Specifically, the data reported in these tables includes:

– the number of high level objects in the problem, typically ranging from around 10 to
200;

– the number of variables and clauses in the CNF formula, typically ranging from a few
thousand to over two million clauses;

– various symmetry related numbers, including the number of symmetric objects con-
sidered bySymChaff , the number of symindex sets (between 1 and 3), the number of
variable classes (from 1 up to around 1,500), and the number of variables mapped to
these classes (often a large fraction of the CNF variables); and

– the number of clauses added byShatter in order to break symmetries, which is typically
quite large, ranging from a few thousand to nearly 200,000.

Tables3 and4 compare the performance ofSymChaff with zChaff andMarch-eq with-
out SBPs, and withzChaff after SBPs were added. For the last of these, we report the
run-times separately for generating SBPs (denoted here as the time used byShatter , which
includes the time to run the graph isomorphism toolSaucy) and for solving the resulting
formula after SBPs are added, as well as the sum of these two. We summarize the results
here before individually describing the benchmarks used and the solver behavior observed.
A domain-specific comparison with other approaches like ZBDDs, algebraic group theoretic
techniques, and pseudo-Boolean solvers is also left for the detailed discussion below.

In summary,SymChaff outperformed bothzChaff andMarch-eq without SBPs in all
but excessively easy instances by several orders of magnitude.SymChaff solved each of

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 17

the formulas in a few seconds to a few minutes, whilezChaff andMarch-eq often timed
out after 6 hours. For the SBP approach, even generating SBPs from the input CNF for-
mula was typically quite slow compared to a complete solution bySymChaff . For example,
log-pair-11t5 required more than 1.5 hours to even generate SBPs but was solved by
SymChaff in 16 seconds. The effect of adding SBPs before feeding the problem tozChaff

was mixed, helping to various extents in some instances and hurting in others. For exam-
ple, zChaff was able to solve mostphp andchnl instances in a few minutes after adding
SBPs, but actually became slower on unsatisfiablelog-rotate andlog-pair formulas af-
ter adding SBPs, apparently because the overhead of extra variables and clauses encoding
SBPs over-shadowed the search space reduction provided by them. In either case, the re-
sult was never any better than usingSymChaff , and orders of magnitude worse when the
cumulative time ofShatter andzChaff was considered.

4.1 Problems from Proof Complexity

Pigeonhole Principle. php- n- m is the classic pigeonhole problem described in Example1
for n pigeons andm holes. The corresponding formulas are satisfiable if and only ifn≤ m.
They are known to be exponentially hard for resolution [27, 49] but easy when the symmetry
rule is added [34]. Symmetry breaking predicates can therefore be used for fast CNF SAT
solutions. The price to pay is symmetry detection in the CNF formula, i.e., generation of
symmetry breaking predicates using graph isomorphism tools. We found this process to be
significantly costly in terms of the overall runtime.

pbChaff andGalena , on the other hand, use an explicit pseudo-Boolean encoding and
rely on learning good pseudo-Boolean conflict constraints. They do overcome the drawbacks
of the symmetry breaking predicates technique but are nonetheless slower thanSymChaff .

SymChaff uses two symindex sets corresponding to the pigeons and the holes, and one
variable class containing all the variables. It solves this problem with exactlym−1 branch-
points and 2m− 3 actively explored branches. These branch-points are all based on the
symindex set for holes, and the two branches explored per hole (except for some savings
when nearly all variables have been assigned values) correspond to assigning pigeoni,1≤
i ≤ m, to either only holei or to no hole at all. When the assignment of pigeoni to only
holei fails, symmetric learning immediately lets the solver deduce that assigning pigeoni to
more than one hole will also fail, so that the remainingm−1 branches of this branch-point
result in an immediate backtrack. The time spent at each of the 2m−3 branches is linear
in the size of the formula in the worst case, although significantly better in practice due to
the efficient data structures implemented in SAT solvers which obviate the need to visit all
clauses at each branch.

This simple analysis contrasts well with one of the fastest current techniques for this
problem (other than the implicit pseudo-Boolean encoding) by Motter and Markov [41]
which is based on ZBDDs and requires a fairly involved analysis to prove that it runs in time
Θ(m4) [42].

Clique Coloring Principle. The formula clqcolor- n- m- k encodes the clique coloring
problem whose solution is a set of edges that form an undirected graphG over n nodes
such that two conditions hold:G contains a clique of sizem andG can be colored usingk
colors so that no two adjacent nodes get the same color. The formula is satisfiable if and
only if m≤ n andm≤ k.

18 A. Sabharwal

As mentioned earlier, this is an example of a domain where some variables are indexed
twice by the same symindex set. Specifically, the edge variables,ei, j , are indexed twice
by the symindex set corresponding to the nodes ofG. While the nodes ofG are indeed all
interchangeable, one must be careful with the encoding, so as to allow a clear partition of the
variables intonkinds. To achieve this, the encoding we use has variablesei, j only wheni 6= j;
we do not create variablesei,i , which are unnecessary and would not be interchangeable with
ei, j for i 6= j.

At first glance, this problem might appear to be a simple generalization of the pigeonhole
problem. However, it evades fast solutions using SAT as well as pseudo-Boolean techniques
even when the clique part is encoded implicitly using pseudo-Boolean methods. This is not
surprising, given that Pudlák [45] has shown this problem to be exponentially hard for the
cutting planes proof system on which pseudo-Boolean solvers are based.

Our experiments indicate that not only finding symmetries from the corresponding CNF
formulas is time consuming,zChaff is extremely slow even after taking symmetry breaking
predicates into account.SymChaff , on the other hand, uses three symindex sets correspond-
ing to nodes, membership in clique, and colors, and three variable classes corresponding
to edge variables, clique variables, and coloring variables. It solves the problem with ex-
actly 2k−2 branch-points and 4k−5 active branches, in a manner similar to the pigeonhole
principle instances.

We note that this problem can also be solved in polynomial time using the group theo-
retic technique of Dixon et al. [14]. However, the group operations that underlie their im-
plementation are polynomials of degree as high as 6 or 7, making the approach significantly
slower in practice.

4.2 Problems from Applications

All planning problems were encoded using the high level STRIPS formulation of Planning
Domain Description Language (PDDL) introduced by Fikes and Nilsson [18]. These were
then converted into CNF formulas using the toolBlackbox version 4.1 by Kautz and Selman
[31]. A PDDL description of a planning problem is a straightforward Lisp-style specification
that declares the objects involved, their initial state, and their goal state. In addition to this
instance-specific description, it also uses a domain-specific file that describes the available
actions in terms of their preconditions and effects.

We modifiedBlackbox to generate symmetry information as well by using a very simple
“tagged” or annotated PDDL description, where an original PDDL declaration such as

(:OBJECTS T1 T2 T3

Lsrc
1 Lsrc

2 Ldest
1 Ldest

2
P1,1 P2,1 P1,2 P2,2)

in thePlanningC example is replaced with

(:OBJECTS T1 T2 T3 - SYMTRUCKS

Lsrc
1 Lsrc

2 - SYMLOCS

Ldest
1 Ldest

2 - SYMLOCS

P1,1 P2,1 - SYMLOCS

P1,2 P2,2 - SYMLOCS)

Here SYMTRUCKSand SYMLOCS are the tags used to pass on the symmetry or
equivalence information that there are two symmetry sets (for trucks and lo-
cations), that {T1,T2,T3} are interchangeable because of the first set, and that

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 19

(define (problem PlanningA-03)
(:domain logistics-strips-sym)
(:objects

truck1
truck2
truck3 - SYMTRUCKS

package1
package2
package3
package4
package5
package6
truckbase
location1
location2
location3
city1

)
(:init

(TRUCK truck1)
(TRUCK truck2)
(TRUCK truck3)
(OBJ package1)
(OBJ package2)
(OBJ package3)
(OBJ package4)
(OBJ package5)
(OBJ package6)

continued . . .

. . .continued
(LOCATION truckbase)
(LOCATION location1)
(LOCATION location2)
(LOCATION location3)
(CITY city1)

(at package1 location1)
(at package2 location1)
(at package3 location2)
(at package4 location2)
(at package5 location3)
(at package6 location3)
(at truck1 truckbase)
(at truck2 truckbase)
(at truck3 truckbase)
(in-city truckbase city1)
(in-city location1 city1)
(in-city location2 city1)
(in-city location3 city1)

)
(:goal (and

(at package1 location2)
(at package2 location3)
(at package3 location3)
(at package4 location1)
(at package5 location1)
(at package6 location2)

))
)

Fig. 4 The annotated PDDL file forPlanningA with n = 3

{
(Lsrc

1 ,Ldest
1 ,P1,1,P1,2),(Lsrc

2 ,Ldest
2 ,P2,1,P2,2)

}
are interchangeable simultaneously as 4-

tuples because of the second set. Other than this symmetry annotation, the PDDL description
remains unchanged. An appropriate.sym file is automatically generated from this annotated
PDDL using our modified PDDL-to-CNF converter withinBlackbox .

Example 7For concreteness, we give the actual PDDL specification for ourPlanningA

example withn = 3 locations andk = d3n/4e = 3 trucks in Figure4. The underlined tag
“SYMTRUCKS” is the only change to the usual specification of the problem needed to process
symmetry information automatically.

We are now ready to present four application-oriented problems and discuss experimen-
tal results. Three of these are planning problems.

Gripper Planning. The problemgripper- n- t is our simplest planning example. It consists
of 2n balls in a room that need to be moved to another room int steps using a robot that has
two grippers that it can use to pick up balls. The corresponding formulas are satisfiable if
and only ift ≥ 4n−1.

SymChaff uses two symindex sets corresponding to the balls and the grippers. The num-
ber of variable classes is relatively large and corresponds to each action that can be per-
formed without taking into account the specific ball or gripper used. WhileSymChaff solves
this problem easily in both unsatisfiable and satisfiable cases, the other two solvers perform

20 A. Sabharwal

Table 1 Statistics of unsatisfiable formulas used in the experiments. Number of SBP clauses is unknown in
the cases whereShatter timed out after 6 hours.

Problem high level .cnf file .sym file SBP
& parameters objects vars clauses sym objs sets classes sym varsclauses

009-008 17 72 297 17 2 1 72 478
013-012 25 156 949 25 2 1 156 1,102
051-050 101 2,550 63,801 101 2 1 2,550 19,798
091-090 181 8,190 368,641 181 2 1 8,190 64,438

p
h

p

101-100 201 10,100 505,101 201 2 1 10,100 79,598
05-03-04 12 60 194 12 3 3 60 260
12-07-08 27 324 4,526 27 3 3 324 1,764
20-15-16 51 1,020 50,906 51 3 3 1,020 6,176
30-18-21 69 2,070 196,911 69 3 3 2,070 12,573

cl
q

co
lo

r

50-40-45 135 6,750 2,524,145 135 3 3 6,750 —
02t6 8 378 3,022 6 2 70 332 1,806
04t14 12 1,966 33,602 10 2 198 1,840 10,846
06t22 16 4,706 116,982 14 2 326 4,500 31,526

g
ri
p

p
e

r

10t38 24 13,642 543,518 22 2 582 13,276 94,750

06t6 25 3,435 167,822 5 1 285 2,910 24,526
08t6 32 6,097 517,319 6 1 896 5,376 55,770
09t6 36 8,364 910,423 7 1 1,077 7,539 102,688

lo
g

-r
o

ta
te

11t6 44 14,428 2,391,053 9 1 1,487 13,383 196,712
010-011 21 220 1,122 20 2 22 220 1,954
011-020 31 440 4,220 22 2 40 440 4,034
020-030 50 1,200 17,460 40 2 60 1,200 11,406ch

n
l

050-100 150 10,000 495,200 100 2 200 10,000 98,206

poorly. Further, detecting symmetries from CNF usingShatter is not too difficult but does
not speed up the solution process by any significant amount.

Table 2 Statistics of satisfiable formulas used in the experiments.

Problem high level .cnf file .sym file SBP
& parameters objects vars clauses sym objs sets classes sym varsclauses

02t7 8 468 4,062 6 2 86 412 2,254
04t15 12 2,128 36,710 10 2 214 1,992 11,750
06t23 16 4,940 123,214 14 2 342 4,724 33,102

g
ri
p

p
e

r

10t39 24 14,020 559,166 22 2 598 13,644 97,382

06t7 25 4,907 315,406 5 1 832 4,160 35,254
07t7 29 7,249 648,665 6 1 1,057 6,342 65,810
08t7 32 8,927 1,014,741 6 1 1,308 7,848 81,978

lo
g

-r
o

ta
te

09t7 36 12,358 1,818,395 7 1 1,585 11,095 152,256

05t5 27 3,147 166,562 10 2 158 3,120 30,728
07t5 37 7,055 717,184 14 2 158 7,028 79,380
09t5 47 13,347 2,220,462 18 2 158 13,320 162,164

lo
g

-p
a

ir

11t5 57 22,599 5,583,308 22 2 158 22,572 271,772

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 21

Table 3 Experimental results on unsatisfiable formulas with a 6 hour timeout.

Problem Symmetry Breaking Predicates
& parameters

SymChaff zChaff March-eq
Shatter zChaff SUM

009-008 0.01 0.22 1.55 0.07 0.10 0.17
013-012 0.01 1017 — 0.09 0.01 0.10
051-050 0.24 — — 13.71 0.50 14.21
091-090 0.84 — — 245.51 3.47 248.98

p
h

p

101-100 1.20 — — 466.54 6.48 473.02
05-03-04 0.02 0.01 0.21 0.09 0.01 0.10
12-07-08 0.03 — — 5.09 4929.95 4935.04
20-15-16 0.26 — — 748.14 — —
30-18-21 0.60 — — 20801.49 — —

cl
q

co
lo

r

50-40-45 8.76 — — — — —
02t6 0.02 0.03 0.07 0.20 0.04 0.24
04t14 0.84 2820.37 — 3.23 983.40 986.63
06t22 3.37 — — 23.12 — —

g
ri
p

p
e

r

10t38 47.00 — — 193.85 — —

06t6 0.74 1.47 21.55 8.21 0.93 9.14
08t6 2.03 4.29 295.23 31.4 4.21 35.61
09t6 8.64 15.67 3835.42 74.06 28.94 103.00

lo
g

-r
o

ta
te

11t6 51.00 12827.39 — 324.86 17968.33 18293.19
010-011 0.04 8.61 — 0.20 0.02 0.22
011-020 0.06 135.26 — 0.28 0.03 0.31
020-030 0.05 — — 4.60 0.10 4.70ch

n
l

050-100 1.75 — — 810.82 1.81 812.63

Table 4 Experimental results on satisfiable formulas with a 6 hour timeout.

Problem Symmetry Breaking Predicates
& parameters

SymChaff zChaff March-eq
Shatter zChaff SUM

02t7 0.02 0.03 0.34 0.17 0.03 0.20
04t15 2.03 1061.75 — 0.23 1411.32 1411.55
06t23 7.27 — — 19.03 — —

g
ri
p

p
e

r

10t39 92.07 — — 193.58 — —

06t7 2.87 2.09 10.99 16.92 3.03 19.95
07t7 7.64 6.85 27.05 55.66 46.96 102.62
08t7 9.13 182.59 14805.30 62.78 358.89 421.67

lo
g

-r
o

ta
te

09t7 139.65 1284.33 814.86 186.55 1356.44 1542.99

05t5 0.46 0.38 3.65 25.19 0.65 25.84
07t5 1.83 1.87 80.30 243.57 3.05 246.62
09t5 6.29 6.23 582.70 1373.50 14.57 1388.07

lo
g

-p
a

ir

11t5 15.65 18.05 1807.72 6070.47 34.36 6104.83

Logistics Planninglog-rotate . The problemlog-rotate- n- t is the logistics planning
examplePlanningA with n as the number of locations andt as the maximum plan length. As
described earlier, it involves moving boxes in a cyclic rotation fashion between the locations.
The formula is satisfiable if and only ift ≥ 7.

SymChaff uses one symindex set corresponding to the trucks, and several variable
classes. Here again symmetry breaking predicates, although not too hard to compute, pro-

22 A. Sabharwal

vide less than a factor of two improvement.March-eq andzChaff were much slower than
SymChaff on large instances, both unsatisfiable and satisfiable.

Logistics Planninglog-pairs . The problemlog-pairs- n- t is the logistics planning ex-
amplePlanningC with n as the number of location pairs andt as the maximum plan length.
As described earlier, it involves moving boxes betweenn disjoint location pairs. The corre-
sponding formula is satisfiable if and only ift ≥ 5.

SymChaff usesn+1 symindex sets corresponding to the trucks and the location pairs,
and several variable classes. This problem provides an interesting scenario wherezChaff

normally compares well withSymChaff but performs worse by a factor of two when sym-
metry breaking predicates are added. We also note that computing symmetry breaking pred-
icates for this problem is quite expensive by itself.

Channel Routing. The problemchnl- t- n is from design automation and has been consid-
ered in previous works on symmetry and pseudo-Boolean solvers [1, 3]. It consists of two
blocks of circuits witht tracks connecting them. Each track can hold one wire (or “net” as
it is sometimes called). The task is to routen wires from one block to the other using these
tracks. The underlying problem is a disguised pigeonhole principle. The formula is solvable
if and only if t ≥ n.

SymChaff uses two symindex sets corresponding to the end-points of the tracks in the
two blocks, and 2n variable classes corresponding to the two end-points for each net. While
March-eq was unable to solve any instance of this problem considered,zChaff performed
as well asSymChaff after symmetry breaking predicates were added. The generation of
symmetry breaking predicates was, however, orders of magnitude slower.

5 Discussion and Future Directions

SymChaff sheds new light into ways in which high level symmetry, typically obvious to
the problem designer, can be used to solve problems more efficiently. It handles frequently
occurring complete multi-class symmetries and is empirically exponentially faster than tra-
ditional SAT solvers on several problems from theory and practice, both unsatisfiable and
satisfiable. It incurs low time and memory overheads for maintaining data structures related
to symmetry, and on problems with very few or no symmetries, it works as well aszChaff .
In particular, the time needed to generate the.sym files used bySymChaff is typically neg-
ligible, in stark contrast with the often high cost of generating symmetry breaking predicates
using isomorphism detection.

As a structure-aware solver,SymChaff incorporates several new ideas, including sim-
ple but effective symmetry representation, multiway branching based on variable classes
and symmetry sets, and symmetric learning as an extension of clause learning to multi-
way branching. Our framework for symmetry is, of course, not tied toSymChaff . It can
be implemented on top of almost any state-of-the-art DPLL-based CNF or pseudo-Boolean
solver. Two key places where we differ from earlier approaches are in using high level
problem description to obtain symmetry information (instead of trying to recover it from the
CNF formula) and in maintaining this information dynamically but without using a complex
group theoretic machinery. This allows us to overcome many drawbacks of previously pro-
posed solutions. We show, in particular, that straightforward annotation in the specification
of planning problems is enough to automatically and quickly generate relevant symmetry

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 23

information, which in turn makes the search for an optimal plan several orders of magnitude
faster. Similar performance gains are seen in other domains as well.

We observe that while complete multi-class symmetries, as introduced in this work, are
prevalent in many SAT instances, our framework does not support, for example, symmetries
that are initially absent but ariseafter some literals are set. Our symmetry sets only get re-
fined from their initial value as decisions are made. Consider a planning problem where two
packagesP1 andP2 are initially at locationsL1 andL2, respectively, (and hence asymmetric)
but are both destined for locationLdest. If at some point they both reach a common loca-
tion, they should ideally be treated as equivalent with respect to the remaining portion of the
plan. Theairlock domain introduced by Fox and Long [21] is a creative example where
such dynamically created symmetries are the norm rather than the exception. While they do
describe a planner that is able to exploit these symmetries, it is unclear how to incorporate
such reasoning in a general purpose SAT solver besides resorting to on-the-fly computations
involving the algebraic group of symmetries, which, as observed in the work of Dixon et al.
[14], can sometimes be quite expensive in practice.

We conclude with some directions for further exploration of the ideas presented in this
article. The symmetry representation and maintenance techniques we discussed may be ex-
ploited in several other ways. The variable selection heuristic of the DPLL process is the
most notable example. This framework can be used in local search satisfiability solvers such
asWalksat by Selman et al. [52] to make better, structure-aware variable flip choices and
reduce the search space. It is also suitable, in an appropriately extended form, to general
constraint satisfaction problems (CSPs). Finally, it can be applied also to problems contain-
ing k-ring multi-class symmetries, where thek underlying indices can be rotated cyclically
without changing the problem (e.g., as in thePlanningB problem, Example3). However,
the best-case gain of a factor ofk may not result in a significant speed-up on real-world
instances.

AlthoughSymChaff itself performs very well in practice, it is the first cut at implement-
ing our generic framework and can be extended in several directions. Learning strategies
for symconflict clauses other than the “decision variable scheme” that it currently uses may
lead to better performance, and so may dynamic strategies for selecting the order in which
various branches of a multiway branch-point are traversed, as well as a dynamic equiva-
lent of the static.ord file thatSymChaff supports. Extending it to handle pseudo-Boolean
constraints is a relatively straightforward but promising direction. Creating a PDDL prepro-
cessor for planning problems that uses graph isomorphism tools to annotate symmetries in
the PDDL description would fully automate the planning-through-satisfiability process in
the context of symmetry.

On the theoretical side, how does the technique ofSymChaff compare in strength to
proof systems such as resolution with symmetry [34, 55]? It is unclear whether it is as
powerful as the latter or can even efficiently simulate all of resolution without symmetry.
Answering this in the presence of symmetry may also help resolve an open question [6]
of whether the clause learning proof system (without symmetry) underlying most of the
modern SAT solvers can efficiently simulate all of resolution. Finally, a formal theoretical
characterization of the proof system implemented bySymChaff will help us better under-
stand its inherent strengths and weaknesses, especially compared to solvers based on proof
systems beyond resolution, such as pseudo-Boolean and BDD-based solvers.

Acknowledgements The author would like to thank Paul Beame and Henry Kautz for insightful discussions
and support through their NSF Award ITR-0219468, the creators ofzChaff for making its source code
publicly available, Dan Suciu for pointing to the concept of sorts in logic, the anonymous referees whose

24 A. Sabharwal

comments and suggestions helped improve the article, and the editors of this special issue of Constraints for
their patience and gentle prodding.

References

1. F. A. Aloul, I. L. Markov, and K. A. Sakallah. Shatter: Efficient symmetry-breaking for Boolean satisfi-
ability. In Proceedings of DAC-03: 40th Design Automation Conference, pages 836–839, Anahein, CA,
June 2003.

2. F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. PBS: A backtrack-search pseudo-Boolean
solver and optimizer. InProceedings of SAT-02: 5th International Conference on Theory and Applica-
tions of Satisfiability Testing, pages 346–353, Cincinnati, OH, May 2002.

3. F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Solving difficult instances of Boolean satisfia-
bility in the presence of symmetry.IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(9):1117–1137, 2003.

4. F. A. Aloul, K. A. Sakallah, and I. L. Markov. Efficient symmetry breaking for Boolean satisfiability.
IEEE Transactions on Computers, 55(5):549–558, 2006.

5. R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques to solve real-world SAT instances.
In Proceedings of AAAI-97: 14th Conference on Artificial Intelligence, pages 203–208, Providence, RI,
July 1997.

6. P. Beame, H. Kautz, and A. Sabharwal. Understanding and harnessing the potential of clause learning.
Journal of Artificial Intelligence Research, 22:319–351, Dec. 2004.

7. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using SAT proce-
dures instead of BDDs. InProceedings of DAC-99: 36th Design Automation Conference, pages 317–320,
New Orleans, LA, June 1999.

8. D. Chai and A. Kuehlmann. A fast pseudo-Boolean constraint solver.IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 24(3):305–317, 2005.

9. W. Cook, C. R. Coullard, and G. Turan. On the complexity of cutting plane proofs.Discrete Applied
Mathematics, 18:25–38, 1987.

10. J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-breaking predicates for search
problems. InProceedings of KR-96: 5th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, pages 148–159, Cambridge, MA, Nov. 1996.

11. P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. Exploiting structure in symmetry detection
for CNF. In Proceedings of DAC-04: 41st Design Automation Conference, pages 518–522, San Diego,
CA, June 2004.

12. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Communications
of the ACM, 5:394–397, 1962.

13. M. Davis and H. Putnam. A computing procedure for quantification theory.Communications of the
ACM, 7:201–215, 1960.

14. H. E. Dixon, M. L. Ginsberg, E. M. Luks, and A. J. Parkes. Generalizing Boolean satisfiability II: Theory.
Journal of Artificial Intelligence Research, 22:481–534, 2004.

15. H. E. Dixon, M. L. Ginsberg, and A. J. Parkes. Generalizing Boolean satisfiability I: Background and
survey of existing work.Journal of Artificial Intelligence Research, 21:193–243, 2004.

16. N. Eén and N. S̈orensson. MiniSat: A SAT solver with conflict-clause minimization. InProceedings of
SAT-05: 8th International Conference on Theory and Applications of Satisfiability Testing, St. Andrews,
U.K., June 2005.

17. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. InCP-01: 7th International Conference
on Principles and Practice of Constraint Programming, volume 2239 ofLecture Notes in Computer
Science, pages 93–107, Paphos, Cyprus, Nov. 2001.

18. R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem
solving. Artificial Intelligence, 2(3/4):198–208, 1971.

19. F. Focacci and M. Milano. Global cut framework for removing symmetries. InCP-01: 7th International
Conference on Principles and Practice of Constraint Programming, volume 2239 ofLecture Notes in
Computer Science, pages 77–92, Paphos, Cyprus, Nov. 2001.

20. M. Fox and D. Long. The detection and exploitation of symmetry in planning problems. InProceedings
of IJCAI-99: 16th International Joint Conference on Artificial Intelligence, pages 956–961, July 1999.

21. M. Fox and D. Long. Extending the exploitation of symmetries in planning. InProceedings of AIPS-02:
6th International Conference on Artificial Intelligence Planning Systems, pages 83–91, Apr. 2002.

22. J. H. Gallier.Logic for Computer Science. Harper & Row, 1986.

SymChaff : Exploiting Symmetry in a Structure-Aware Satisfiability Solver 25

23. I. P. Gent, W. Harvey, T. Kelsey, and S. Linton. Generic SBDD using computational group theory. In
CP-03: 9th International Conference on Principles and Practice of Constraint Programming, volume
2833 ofLecture Notes in Computer Science, pages 333–347, Kinsale, Ireland, Sept. 2003.

24. I. P. Gent and B. M. Smith. Symmetry breaking in constraint programming. InProceedings of ECAI-00:
14th European Conference on Artificial Intelligence, pages 599–603, Berlin, Germany, Aug. 2000.

25. E. Goldberg and Y. Novikov. BerkMin: A fast and robust sat-solver. InDesign, Automation and Test in
Europe Conference and Exposition (DATE), pages 142–149, Paris, France, Mar. 2002.

26. C. P. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randomization in backtrack search: Exploiting
heavy-tailed profiles for solving hard scheduling problems. InProceedings of AIPS-98: 4th International
Conference on Artificial Intelligence Planning Systems, pages 208–213, Pittsburgh, PA, June 1998.

27. A. Haken. The intractability of resolution.Theoretical Computer Science, 39:297–305, 1985.
28. M. Heule, J. van Zwieten, M. Dufour, and H. van Maaren. Marcheq: Implementing additional reasoning

into an efficient lookahead SAT solver. InProceedings of SAT-04: 7th International Conference on
Theory and Applications of Satisfiability Testing, volume 3542 ofLecture Notes in Computer Science,
pages 345–359, Vancouver, BC, May 2004.

29. D. S. Johnson and M. A. Trick, editors.Cliques, Coloring and Satisfiability: the Second DIMACS Imple-
mentation Challenge, volume 26 ofDIMACS Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society, 1996.

30. H. A. Kautz and B. Selman. Planning as satisfiability. InProceedings of ECAI-92: 10th European
Conference on Artificial Intelligence, pages 359–363, Vienna, Austria, Aug. 1992.

31. H. A. Kautz and B. Selman. BLACKBOX: A new approach to the application of theorem proving
to problem solving. InWorking notes of the Workshop on Planning as Combinatorial Search, held in
conjunction with AIPS-98, Pittsburgh, PA, 1998.

32. J. Köbler, U. Scḧoning, and J. Toŕan. The Graph Isomorphism Problem: its Structural Complexity.
Birkhauser Verlag, 1993.

33. H. Konuk and T. Larrabee. Explorations of sequential ATPG using Boolean satisfiability. In11th VLSI
Test Symposium, pages 85–90, 1993.

34. B. Krishnamurthy. Short proofs for tricky formulas.Acta Informatica, 22:253–274, 1985.
35. D. Le Berre and L. Simon (Organizers). SAT 2004 competition, May 2004. URLhttp://www.

satcompetition.org/2004 .
36. D. Le Berre and L. Simon (Organizers). SAT 2005 competition, June 2005. URLhttp://www.

satcompetition.org/2005 .
37. C. M. Li, B. Jurkowiak, and P. W. Purdom. Integrating symmetry breaking into a DLL procedure. InIn-

ternational Conference on Theory and Applications of Satisfiability Testing, pages 149–155, Cincinnati,
OH, May 2002.

38. J. P. Marques-Silva and K. A. Sakallah. GRASP – a new search algorithm for satisfiability. InProceed-
ings of ICCAD-96: International Conference on Computer Aided Design, pages 220–227, San Jose, CA,
Nov. 1996.

39. J. P. Marques-Silva and K. A. Sakallah. Robust search algorithms for test pattern generation. InPro-
ceedings of the 27th International Symposium on Fault-Tolerant Computing, pages 152–161, Seattle,
WA, June 1997.

40. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient SAT
solver. InProceedings of DAC-01: 38th Design Automation Conference, pages 530–535, Las Vegas, NV,
June 2001.

41. D. B. Motter and I. Markov. A compressed breadth-first search for satisfiability. InALENEX, volume
2409 ofLecture Notes in Computer Science, pages 29–42, San Francisco, CA, Jan. 2002. Springer.

42. D. B. Motter, J. A. Roy, and I. Markov. Resolution cannot polynomially simulate compressed-BFS.
Annals of Mathematics and Artificial Intelligence, 44(1-2):121–156, 2005.

43. A. Nadel. The Jerusat SAT solver. Master’s thesis, Hebrew University of Jerusalem, 2002.
44. K. E. Petrie and B. M. Smith. Symmetry breaking in graceful graphs. InCP-03: 9th International

Conference on Principles and Practice of Constraint Programming, volume 2833 ofLecture Notes in
Computer Science, pages 930–934, Kinsale, Ireland, Sept. 2003.

45. P. Pudĺak. Lower bounds for resolution and cutting plane proofs and monotone computations.Journal
of Symbolic Logic, 62(3):981–998, Sept. 1997.

46. J.-F. Puget. On the satisfiability of symmetrical constrained satisfaction problems. InInternational
Symposium on Methodologies for Intelligent Systems, volume 689 ofLecture Notes in Computer Science,
pages 350–361, Trondheim, Norway, June 1993.

47. J.-F. Puget. Dynamic lex constraints. InCP-06: 12th International Conference on Principles and Prac-
tice of Constraint Programming, volume 4204 ofLecture Notes in Computer Science, pages 453–467,
Nantes, France, Sept. 2006.

http://www.satcompetition.org/2004
http://www.satcompetition.org/2004
http://www.satcompetition.org/2005
http://www.satcompetition.org/2005

26 A. Sabharwal

48. J.-F. Puget. An efficient way of breaking value symmetries. InProceedings of AAAI-06: 21st Conference
on Artificial Intelligence, Boston, MA, July 2006.

49. R. Raz. Resolution lower bounds for the weak pigeonhole principle.Journal of the ACM, 51(2):115–138,
2004.

50. A. Sabharwal.Algorithmic Applications of Propositional Proof Complexity. PhD thesis, University of
Washington, Seattle, 2005.

51. A. Sabharwal. SymChaff: A structure-aware satisfiability solver. InProceedings of AAAI-05: 20th
National Conference on Artificial Intelligence, pages 467–474, Pittsburgh, PA, July 2005.

52. B. Selman, H. Kautz, and B. Cohen. Local search strategies for satisfiability testing. In Johnson and
Trick [29], pages 521–532.

53. O. Shtrichman. Accelerating bounded model checking of safety properties.Formal Methods in System
Design, 1:5–24, 2004.

54. P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combinatorial test generation using
satisfiability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15(9):
1167–1176, 1996.

55. A. Urquhart. The symmetry rule in propositional logic.Discrete Applied Mathematics, 96-97:177–193,
1999.

56. M. N. Velev and R. E. Bryant. Effective use of Boolean satisfiability procedures in the formal verification
of superscalar and vliw microprocessors.Journal of Symbolic Computation, 35(2):73–106, 2003.

57. T. Walsh. General symmetry breaking constraints. InCP-06: 12th International Conference on Prin-
ciples and Practice of Constraint Programming, volume 4204 ofLecture Notes in Computer Science,
pages 650–664, Sept. 2006.

58. H. Zhang. SATO: An efficient propositional prover. InProceedings of CADE-97: 14th International
Conference on Automated Deduction, volume 1249 ofLecture Notes in Computer Science, pages 272–
275, Townsville, Australia, July 1997.

59. L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning in a Boolean
satisfiability solver. InProceedings of ICCAD-01: International Conference on Computer Aided Design,
pages 279–285, San Jose, CA, Nov. 2001.

	Introduction
	Preliminaries
	Symmetry Framework and SymChaff
	Benchmarks and Empirical Evaluation
	Discussion and Future Directions

