
Noname manuscript No.
(will be inserted by the editor)

LS(Graph): A Constraint-Based Local Search
for Constraint Optimization on Trees and Paths

Pham Quang Dung · Yves Deville · Pascal Van
Hentenryck

Received: date / Accepted: date

Abstract Constrained optimum tree (COT) and constrained optimum path (COP)
problems arise in many real-life applications and are ubiquitous in communication
networks. They have been traditionally approached by dedicated algorithms, which
are often hard to extend with side constraints and to apply widely. This paper pro-
poses a constraint-based local search framework for COT/COP applications, bring-
ing the compositionality, reuse, and extensibility at the core of constraint-based local
search and constraint programming systems. The modeling contribution is the abil-
ity to express compositional models for various COT/COP applications at a high
level of abstraction, while cleanly separating the model and the search procedure.
The main technical contribution is a connected neighborhood based on rooted span-
ning trees to find high-quality solutions to COP problems. This framework is applied
to some COT/COP problems, e.g., the quorumcast routing problem, the edge-disjoint
paths problem, and the routing and wavelength assignment with delay side constraints
problem. Computational results show the potential importance of the approach.

Pham Quang Dung
Hanoi University of Science and Technology
School of Information and Communication Technology, Hanoi, Vietnam
Tel.: (+84)43 8692463
Fax: (+84)43 8692906
E-mail: dungpq@soict.hut.edu.vn

Yves Deville
Université catholique de Louvain B-1348 Louvain-la-Neuve, Belgium
Tel.: (++32)10 47 20 67
Fax: (++32)10 45 03 45
E-mail: yves.deville@uclouvain.be

Pascal Van Hentenryck
Optimization Research Group, NICTA, Victoria Research Laboratory, Electrical and Electronic Engineer-
ing,
The University of Melbourne, VIC 3010, Australia
E-mail: pvh@nicta.com.au

2 Pham Quang Dung et al.

1 Introduction

Constrained optimum tree (COT) and constrained optimum path (COP) problems ap-
pear in various real-life applications such as telecommunication and transportation
networks. These problems consist of finding one or more trees (or paths) on a given
graph satisfying some given constraints while minimizing or maximizing an objec-
tive function. Some COT problems have been considered and solved in the literature,
e.g., Degree Constrained Minimum Spanning Tree (DCMST) [45,7], Bounded Diam-
eter Minimum Spanning Tree (BDMST) [35], Capacitated Minimum Spanning Tree
problem (CMST) [56,3], Minimum Diameter Spanning Tree (MDST) [50], Edge-
Weighted k-Cardinality Tree (KCT), [20,25], Steiner Minimal Tree (SMT) [66,28],
Optimum Communication Spanning Tree problems (OCST) [32], etc. We also see
many COP problems which have been studied and solved in the literature. For in-
stance, in telecommunication networks, routing problems supporting multiple ser-
vices involve the computation of paths minimizing transmission costs while satis-
fying bandwidth and delay constraints [15,27,30]. Similarly, the problem of estab-
lishing routes for connection requests between network nodes is one of the basic
operations in communication networks and it is typically required that no two routes
interfere with each other due to quality-of-service and survivability requirements.
This problem can be modeled as an edge-disjoint paths problem [18]. Most of these
COT/COP problems are NP-hard. They are often approached by dedicated algorithms
including exact methods, such as the Lagrangian-based heuristic [7], the ILP-based
algorithm using directed cuts [25], the Lagrangian-based branch and bound in [15],
and the vertex labeling algorithm from [30]; there are also meta-heuristic algorithms
such as a hybrid evolutionary algorithm [19], ant colony optimization [21], and local
search [20]. These techniques exploit the structure of the constraints and the objective
functions but are often difficult to extend or reuse.

This paper1 proposes a constraint-based local search (CBLS) [62] framework for
COT/COP applications to support the compositionality, reuse, and extensibility at
the core of CBLS and CP systems. It follows the trend of defining domain-specific
CBLS frameworks, capturing modeling abstractions and neighborhoods for classes of
applications exhibiting significant structures. As is traditional for CBLS, the resulting
LS(Graph) framework allows the model to be compositional and easy to extend,
and provides a clean separation of concerns between the model and the search pro-
cedure. Moreover, the framework captures structural moves that are fundamental in
obtaining high-quality solutions for COT/COP applications. The key technical contri-
bution underlying this COP framework is a novel connected neighborhood for COP
problems based on rooted spanning trees. More precisely, this COP framework in-
crementally maintains, for each desired elementary path, a rooted spanning tree that
specifies the current path and provides an efficient data structure to obtain its neigh-
boring paths and their evaluations.

The availability of high-level abstractions (the “what”) and the underlying con-
nected neighborhood for elementary paths (the “how”) make the LS(Graph) frame-
work particularly appealing for modeling and solving complex COP applications.

1 This paper is an extended version of [54] and is based on the PhD thesis [53].

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 3

The LS(Graph) framework, implemented in COMET, was evaluated experimen-
tally on two classes of applications: COT with the quorumcast routing (QR) problem
and COP with the edge-disjoint path (EDP) problems and the routing and wavelength
assignment problem with side constraints (RWA-D). In [37], we present another ap-
plication in the domain of traffic engineering in switched ethernet networks. The
experimental results show the potential of the approach.

1.1 Case studies

We first describe three problems that will be modeled and solved by the LS(Graph)
framework.

1.1.1 The quorumcast routing (QR) problem

The quorumcast routing (QR) problem arises in distributed applications [24,29,63,
48]. Given a weighted undirected graph G = (V,E), to each edge e ∈ E there is
associated a cost w(e). Given a source node r ∈ V , an integral value q, and a set
S ⊆ V of multicast nodes, the quorumcast routing problem consists in finding a
minimum cost tree T = (V ′, E′) of G spanning r and q nodes of S. T = (V ′, E′) is
a graph satisfying the following properties:

1. V ′ ⊆ V ∧ E′ ⊆ E.
2. T is connected.
3. ∃Q ⊆ S such that]Q = q ∧Q ∪ {r} ⊆ V ′.
4. The cost of

T =
∑
e∈E′

w(e)

is minimal over all subgraphs of G with properties 1, 2, and 3.

An exact algorithm [48] has also been proposed for solving the QR problem
but experiments were performed on small graphs (e.g., graph with 30 nodes). Three
heuristics have been proposed in [24] including Minimal Cost Path Heuristic (MPH),
Improved Minimum Path Heuristic (IMP), and Modified Average Distance Heuris-
tic (MAD). Experimental results in that paper show that, among these heuristics, the
IMP heuristic produces the best solutions. In [29], a multispace search heuristic has
been proposed for solving this problem which gives better results than the IMP and
the MAD heuristics on 12-node networks and 100-node networks.

In [63], the authors considered the QR problem with additional constraints im-
posed on the total cumulative delay along the path from s to any destination node of
Q, and proposed a distributed heuristic algorithm for solving it. Experiments were
conducted on graphs of up to 200 nodes.

In Section 6.1, we propose a simple model in LS(Graph) for this problem using
a tabu search. This example illustrates the expressive power of LS(Graph) where a
simple but efficient model can be designed in a few lines. Experimental results show
that our LS(Graph) model gives better results than the standard IMP heuristic.

4 Pham Quang Dung et al.

1.1.2 The edge-disjoint paths (EDP) problem

We are given an undirected graph G = (V,E) and a set T = {〈si, ti〉 | i =
1, 2, ...,]T ; si 6= ti ∈ V } representing a list of commodities. A subset T ′ ⊆ T ,
T ′ = {〈si1 , ti1〉, ..., 〈sik , tik〉} is called edp-feasible if there exist mutually edge-
disjoint paths from sij to tij on G,∀j = 1, 2, .., k. The EDP problem consists in
finding a edp-feasible subset of T with maximal cardinality. In other words,

max]T ′ (1)
s.t. T ′ ⊆ T (2)

T ′ is edp-feasible (3)
This problem appears in many applications such as real-time communication,

VLSI-design, routing, and admission control in modern networks [8,23]. The existing
techniques for solving this problem include approximation algorithms [43,13,42,22],
greedy approaches [42,44], and an ant colony optimization (ACO) metaheuristic [18].
It has been shown in [18] that ACO is the start-of-the-art algorithm for this problem.
In that paper, the ACO algorithm were compared with a simple greedy algorithm in
[42](the multi-start version).

In Section 6.2, we propose two heuristic algorithms applying LS(Graph). We
experimentally show competitive results compared with the ACO algorithm in [18].
This example illustrates how LS(Graph) can be used to implement more complex
heuristics.

1.1.3 The routing and wavelength assignment problem with a delay side constraint
(RWA-D)

Wavelength division multiplexing (WDM) optical networks [49] provide high band-
width communications. The routing and wavelength assignment (RWA) problem is
an essential problem on WDM optical networks. The RWA problem can be described
as follows. Given a set of requests for all-optical connections, the RWA problem con-
sists of finding routes from the source nodes to their respective destination nodes
and assigning wavelengths to these routes. A condition that must be satisfied is that
two routes sharing common edges must be assigned different wavelengths. Normally,
the number of available wavelengths is limited and the number of requests is high.
Two variants of this problem have been studied extensively in the literature: the min-
RWA problem aims at minimizing the number of wavelength used for satisfying all
requests, and the maxRWA aims at maximizing the number of requests with a given
number of wavelengths. Both variants are NP-Hard [26].

In the literature, there have been different techniques proposed for solving these
problems, e.g.: exact methods based on the ILP formulation [23,46,61,52,55,47,39,
65]; heuristic algorithms [31,67,11,12]; and metaheuristics, including tabu search
[40,51] and Genetic [4,10,38]. These techniques have been tried on realistic net-
works of small size (networks up to 27 nodes and 70 edges) but involving a large
number of connection requests. RWA with additional constraints has also been con-
sidered, e.g., in [64,5].

In order to show the interest of the modeling framework, we consider the minRWA
problem with a side constraint (e.g., a delay constraint) specifying that the cost of

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 5

each route must be less than or equal to a given value. The point here is not to study a
model competitive in comparison with state-of-the-art techniques for classical RWA
problems. Rather, we show the flexibility of this modeling framework, one which
enables a combination of VarGraph of LS(Graph) with var{int} of COMET.

The formal definition of the problem (called RWA-D) is the following. Given
an undirected weighted graph G = (V,E), each edge e of G has cost c(e) (e.g.,
the delay in traversing e). We suppose given a set of connection requests R =
{〈s1, t1〉, 〈s2, t2〉, ..., 〈sk, tk〉} and a value D. The RWA-D problem consists of find-
ing routes pi from si to ti and their wavelengths for all i = 1, 2, ..., k such that:

1. the wavelengths of pi and pj are different if they have common edges, ∀i 6= j ∈
{1, 2, ..., k} (wavelength constraint),

2.
∑
e∈pi c(e) ≤ D,∀i = 1, 2, ..., k (delay constraint)

3. the number of different wavelengths is minimized (objective function).

In Section 6.3, a local search algorithm and its implementation in LS(Graph) will
be proposed for solving the RWA-D problem.

1.2 Contribution

The contributions of this paper are the following:

1. We design and implement a constraint-based local search (CBLS) [62] frame-
work, called LS(Graph), for COT/COP applications. It supports the compo-
sitionality, reuse, and extensibility at the core of CBLS and CP systems. The
proposed framework can be used as either a black box or a glass box. The black
box is exploited in the sense that users only need to state the model in a declar-
ative way, with variables, constraints, and an objective function to be optimized.
Built-in search components (e.g., tabu search) are then performed automatically.
The glass box allows users to extend the framework by designing and implement-
ing their own components (e.g., invariants, constraints, objective functions, and
search heuristics) and integrating them with the system.

2. The LS(Graph) combines graph variables (i.e., VarTree, VarPath for mod-
eling trees and paths in a high-level way) with standard var{int} of COMET,
which enables the modeling of various COT/COP applications on graphs for
which both the topology and scalar values must be determined.

3. A key technical contribution of the paper is a novel connected neighborhood for
COP problems based on rooted spanning trees. More precisely, the COP frame-
work incrementally maintains, for each desired elementary path, a rooted span-
ning tree that specifies the current path and provides an efficient data structure to
obtain its neighboring paths and their evaluations.

4. We propose incremental algorithms for implementing some fundamental abstrac-
tions of the framework. We show that the incrementality does not improve the
theoretical complexity but is efficient in practice.

5. We apply the constructed framework to a COT problems: the quorumcast routing
problem and two COP problems: the edge-disjoint paths problem and the routing

6 Pham Quang Dung et al.

and wavelength assignment problem with delay side constraints on optical net-
works. Experimental results show the potential significance of our approach from
both the programming and the computation stand points. For the first two prob-
lems, we show competitive results in comparison with existing techniques and for
the third problem, we show how to solve complex problems flexibly and easily.

The LS(Graph) framework is open source. The COMET code of LS(Graph)
and applications as well as instances experimented in this paper are available at

http://becool.info.ucl.ac.be/lsgraph

1.3 Outline

The rest of this paper is organized as follows. Section 2 gives the basic definitions and
notations. Section 3 specifies neighborhoods for COT applications and proposes our
novel neighborhoods for COP applications. Section 4 gives an overview of data struc-
tures and algorithms for implementing two fundamental and non-trivial abstractions
of the framework. The implementation of the framework in COMET programming
language will be introduced in Section 5. Sections 6 presents the application of the
framework to the resolution of the QR, EDP and RWA-D problems. Finally, Section
7 concludes the paper and gives some future work.

2 Definitions and Notations

Graphs Given an undirected graph g, we denote the set of nodes and the set of edges
of g by V (g), E(g) respectively. The degree of a node v (denoted degg(v)) is the
number of incident edges to this edge: degg(v) =]{u | (v, u) ∈ V (g)}.

A graph sg is called subgraph of a graph g if V (sg) ⊆ V (g) and E(sg) ⊆ E(g)
and we denote sg ⊆ g.

A path on g is a sequence of nodes 〈v1, v2, ..., vk〉 (k > 1) in which vi ∈ V (g)
and (vi, vi+1) ∈ E(g),∀i = 1, . . . , k − 1. The nodes v1 and vk are the origin and
the destination of the path. A path is called simple if there is no repeated edge and
elementary if there is no repeated node. A cycle is a path in which the origin and the
destination are the same. This paper only considers elementary paths and hence we
use “path” and “elementary path” interchangeably if there is no ambiguity. A graph
is connected if and only if there exists a path from u to v for all u, v ∈ V (g).

Given two paths px = 〈x1, x2, ..., xk〉 and py = 〈y1, y2, ..., yq〉, we denote px+
py the concatenation of these two paths: px + py = 〈x1, x2, ..., xk, y1, y2, ...yq〉 if
xk 6= y1 and px+ py = 〈x1, x2, ..., xk = y1, y2, ..., yq〉 if xk = y1.

Given paths p, p1, p2, and q,

– V (p) is the set of nodes of p
– p1 ∪ p2 (p1 ∩ p2) is the set V (p1) ∪ V (p2) (V (p1) ∩ V (p2)).
– x ∈ P is the predicate x ∈ V (p).
– s(p), t(p) are, respectively, the starting and terminating nodes of p.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 7

– p(u, v) is the subpath of p starting from u and terminating at v (u, v ∈ p and u is
not located after v on p).

– spp(x), tpp(x) is the subpath of p from s(p) to x and from x to t(p).
– repl(p, q) = spp(s(q))+ q+ tpp(t(q)) with s(q), t(q) ∈ p. Intuitively, repl(p, q)

is the path generated by replacing the subpath of p from s(q) to t(q) by q.

Trees A tree is an undirected connected graph containing no cycles. A spanning tree
tr of an undirected connected graph g is a tree spanning all the nodes of g: V (tr) =
V (g) and E(tr) ⊆ E(g). A tree tr is called a rooted tree at r if the node r has been
designated the root. Each edge of tr is implicitly oriented towards the root. If the
edge (u, v) is oriented from u to v, we call v the father of u in tr, which is denoted
by fatr(u). Given a rooted tree tr and a node s ∈ V (tr),

– root(tr) denotes the root of tr,
– pathtr(v) denotes the path from v to root(tr) on tr. For each node u of pathtr(v),

we say that u dominates v in tr (alternatively, u is a dominator of v, v is a de-
scendant of u) which we denote by u Domtr v. If u does not dominates v on tr,
we write u Domtr v.

– pathtr(u, v) denotes the path from u to v in tr (u, v ∈ V (tr)).
– ncatr(u, v) denotes the nearest common ancestor of two nodes u and v. In other

words, ncatr(u, v) is the common dominator of u and v such that there is no other
common dominator of u and v that is a descendant of ncatr(u, v).

– Given a node v ∈ V (tr), we denote by Ttr(v) the subtree of tr rooted at v.
If v 6= root(tr), we denote by Ttr(v) the subtree of tr generated by removing
Ttr(v) and the edge (v, fatr(v)) from tr: V (Ttr(v)) = V (tr) \ V (Ttr(v)) and
E(Ttr(v)) = E(tr) \ (E(Ttr(v)) ∪ {(v, fatr(v))}).

Property 1 Suppose given a rooted tree tr.

1. Suppose given a node x ∈ V (tr). We have x Domtr y,∀y ∈ V (Ttr(x)). In other
words, a vertex x of a rooted tree tr dominates all vertices of the subtree of tr
rooted at x.

2. Suppose given two nodes x, y ∈ V (tr) such that x = fatr(y) and two nodes z, v
such that z ∈ V (Ttr(y)), v ∈ V (Ttr(y)). We have ncatr(v, z) = ncatr(v, x).
This property is illustrated in Figure 1: ncatr(v, z) = ncatr(v, x) = 12.

3 Neighborhoods

This section defines neighborhoods for COT and COP problems. The neighborhood
for COT applications is based on traditional modification actions on dynamic trees
(i.e., trees which can be modified): add, remove, and replace over edges. Our main
technical contribution for COP applications is to propose a neighborhood structure
based on spanning trees. We first present neighborhoods for COT applications.

8 Pham Quang Dung et al.

13

z 2

3

45

y

x

8

v11

12

14

Fig. 1 Illustrating property 1

3.1 COT neighborhood

A neighborhood of a tree is a set of trees generated by performing modification ac-
tions on the given tree. Given an undirected graph g and a dynamic tree tr of g (tr
can be modified such that tr ⊆ g), we specify a set of basic modifications conserving
the tree property. We consider in this framework the following basic modifications.

1. add edge action An edge e = (u, v) ∈ E(g) \ E(tr) can be added to tr if
tr is empty, or if there is exactly one node u or v in the tree tr: u ∈ V (tr)
XOR v ∈ V (tr). This edge is called an insertable edge. The insertion of this
edge implicitly adds its endpoints to tr if they do not exist in tr. The set of
insertable edges of tr is denoted by Inst(tr) and this insertion action is denoted
by addEdge(tr, e). We also use addEdge(tr, e) to denote the resulting tree. The
first basic neighborhood is the following:

NT1(tr) = {addEdge(tr, e) | e ∈ Inst(tr)}

2. remove edge action An edge e = (u, v) ∈ E(tr) can be removed from tr if one
node u or v is a leaf of tr: degtr(u) = 1∨ degtr(v) = 1. This edge is called a re-
movable edge. The removal of this edge thus also removes its endpoints if they are
the leaves of tr. The set of removable edges of tr is denoted by Remv(tr) and this
removal action is denoted by removeEdge(tr, e). We also use removeEdge(tr, e)
to denote the resulting tree. The second basic neighborhood is defined as follows:

NT2(tr) = {removeEdge(tr, e) | e ∈ Remv(tr)}

3. replace cycle edge action [2] An edge e′ of tr can be replaced by another edge
e = (u, v) ∈ E(g) \ E(tr) with u, v ∈ V (tr) conserving the tree property in
the following case: the insertion of e creates a fundamental cycle containing e′

and the removal of e′ removes the cycle and restores the tree property. The edge
e is called a replacing edge, and e′ is called a replaceable edge of e. The set of

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 9

nodes of tr is unchanged by this replacement. We denote by Repl(tr) the set of
replacing edges of tr and Repl(tr, e) the set of replaceable edges of the replacing
edge e. We use replaceEdge(tr, e′, e) to denote both the replacement action and
the resulting tree. The third basic neighborhood is defined as follows:

NT3(tr) = {replaceEdge(tr, e′, e) | e ∈ Repl(tr) ∧ e′ ∈ Repl(tr, e)}

In practice, we can combine the above basic moves to perform more complex
moves. For instance, we take addEdge(tr, e1) and removeEdge(tr, e2) at hand where
e1 ∈ Remov(tr) and e2 ∈ Inst(tr) and e1 and e2 do not have common endpoint that
is the leaf tr2. The set of such pairs of 〈e1, e2〉 is denoted by RemvInst(tr). This kind
of neighborhood has been considered in the tabu search algorithm of [20]. The formal
definition of this neighborhood is

NT1+2(tr) = {addEdge(removeEdge(tr, e2), e1) | 〈e1, e2〉 ∈ RemvInst(tr)}

In the following section, we introduce a novel neighborhood for COP applica-
tions.

3.2 COP neighborhood

We consider in this paper only elementary paths, i.e., paths having no repeated ver-
tices. These are those which appear in most COP applications. Our constructed frame-
work also supports the modeling of paths where vertices or edges can be repeated,
but this will not be presented here (see more details in [53]).

For COP problems, a neighborhood of a path defines a set of paths that can
be reached from the current path. The most general neighborhood of a path p on
a given graph g is defined as the set of paths generated by replacing a subpath of
the current path by another path on the given graph conserving the path property:
N (p) = {repl(p, q) | q ∈ R(p)} in which R(p) is the set of paths q satisfying fol-
lowings conditions:

- q ∈ g (1)
- s(q), t(q) ∈ p (2)
- spp(s(q)) ∩ q = {s(q)} (3)
- tpp(t(q)) ∩ q = {t(q)} (4)

Conditions (3) and (4) ensure the path property of all elements of N (p) (no re-
peated vertices are allowed in a path except starting and terminating vertices)3.

Unfortunately, such a neighborhood is too large and does not allow being explored
in a generic way. To overcome this difficulty, in this section, we propose a restricted
neighborhood based on rooted spanning trees. This notion can be widely applied and
allows users to perform efficient neighborhood explorations.

2 This condition ensures the preservation of the tree property under the modification action.
3 By some authors, walks with no repeated vertices are referred to as elementary paths.

10 Pham Quang Dung et al.

Related work As far as we know, there exist only a few local search approaches for
COP applications on general graphs. Moreover, these local search algorithms do not
explicitly describe neighborhood structures. Rather, the authors talk about the moves,
which are very specific and sophisticated. Such moves do not enable the composition-
ality, modularity, and reuse of the local search programs.

On complete graphs, some local search algorithms have been applied for solving
the traveling salesman problem [41] or the vehicle routing problem [34], [9]. In these
approaches, a path is explicitly represented by a sequence of vertices and the neigh-
borhood consists of paths generated by changing some vertices of this sequence (e.g.,
by removing, inserting, exchanging, or changing the position of some vertices). These
neighborhood structures cannot be applied to general graphs because a sequence of
vertices can not be guaranteed to always form a path on the given graph.

To obtain a reasonable efficiency, a local search algorithm must maintain incre-
mental data structures that allow a fast exploration of this neighborhood and a fast
evaluation of the impact of the moves (differentiation). The key novel contribution of
our COP framework is to use a rooted spanning tree to represent the current solution
and its neighborhood. It is based on the observation that, given a spanning tree tr
whose root is t, the path from a given node s to t in tr is unique. Moreover, the span-
ning tree implicitly specifies a set of paths that can be reached from the induced path
and provides a data structure for evaluating their desirability. The rest of this section
describes the neighborhood in detail. Our COP framework considers both directed
and undirected graphs, but, to simplify the presentation, only undirected graphs are
treated.

3.2.1 Rooted spanning trees

Given an undirected graph g and a target node t ∈ V (g), our COP neighborhood
maintains a spanning tree of g rooted at t. Moreover, since we are interested in ele-
mentary paths between a source s and a target t, the data structure also maintains the
source node s and is called a rooted spanning tree (RST) over (g, s, t). An RST tr
over (g, s, t) specifies a unique path from s to t in g: pathtr(s) = 〈v1, v2, ..., vk〉 in
which s = v1, t = vk and vi+1 = fatr(vi), ∀i = 1, . . . , k − 1. By maintaining RSTs
for COP problems, our framework avoids an explicit representation of the paths and
enables the definition of a connected neighborhood that can be explored efficiently.
Indeed, the tree structure directly captures the path structure from a node s to the
root; simple updates to the RST (e.g., an edge replacement) will induce a new path
from s to the root. In this framework, we also consider COP applications in which
the sources and the destinations of the paths are not fixed. Hence, the source s and
the destination (or root) of the RST (g, s, t) can also be changed (but this will not be
presented in this paper, interested readers can refer to the PhD thesis [53]).

Given an RST tr over (g, s, t), we denote by path(tr) the path pathtr(s) which
is the path induced by tr from s to the root t of tr. Given an undirected graph g and a
path p on g, we denote by RSTInduce(g,p) the set of RSTs of g, rooted at t(p), which
induce p.

We define in the following section the neighborhood structure based on edge re-
placements. In COP applications, generally, a candidate solution is a set of paths.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 11

Each path has its own neighborhood. A neighborhood of a candidate solution is the
set of candidate solutions generated by changing some paths of the current candidate
solution with their neighbors. Hence, we present only neighborhoods of one path.

3.2.2 The edge-replacement based neighborhood

We first show in this section how to update an RST tr over (g, s, t) based on edge
replacements to generate a new rooted spanning tree tr′ over (g, s, t) which induces
a new path from s to t in g: pathtr′(s) 6= pathtr(s).

Let tr be an RST over (g, s, t), we consider the third basic neighborhood of tr
(see Section 3.1):

NT3(tr) = {replaceEdge(tr, e′, e) | e ∈ Repl(tr) ∧ e′ ∈ Repl(tr, e)}

which is the set of RST of (g, s, t). It is easy to observe that two RSTs tr1 and tr2
over (g, s, t) may induce the same path from s to t. For this reason, we now show how
to compute a subset ERNP1(tr) ⊆ NT3(tr) such that pathtr′(s) 6= pathtr(s),∀tr′ ∈
ERNP1(tr).

We first fix some notations to be used in the following presentation. Given an
RST tr over (g, s, t) and a replacing edge e = (u, v), the nearest common ances-
tors of s and the two endpoints u, v of e are both located on the path from s to t.
We denote by lowncatr(e, s) and upncatr(e, s) the nearest common ancestors of
s on the one hand and one of the two endpoints of e on the other hand, with the
condition that upncatr(e, s) dominates lowncatr(e, s). We denote by lowtr(e, s),
uptr(e, s) the endpoints of e such that ncatr(s, lowtr(e, s)) = lowncatr(e, s) and
ncatr(s, uptr(e, s)) = upncatr(e, s). Figure 2 illustrates these concepts. The left
part of the figure depicts the graph g and the right side depicts an RST tr over
(g, s, r). Edge (8,10) is a replacing edge of tr; ncatr(s, 10) = 12 since 12 is the
common ancestor of s and 10. ncatr(s, 8) = 7 since 7 is the common ancestor of s
and 8. lowncatr((8, 10), s) = 7 and upncatr((8, 10), s) = 12 because 12 Domtr 7;
lowtr((8, 10), s) = 8; uptr((8, 10), s) = 10.

We now specify the replacements that induce a new path from s to t.

Proposition 1 Let tr be an RST over (g, s, t), e = (u, v) be a replacing edge of tr,
let e′ be a replaceable edge of e, and let tr′ = rep(tr, e′, e). Let su = upncatr(e, s)
and sv = lowncatr(e, s). We have that pathtr′(s) 6= pathtr(s) if and only if

(1) su 6= sv and
(2) e′ ∈ pathtr(sv, su)

A replacing edge e of tr satisfying the condition (1) is called a preferred replacing
edge and a replaceable edge e′ of e in tr satisfying condition (2) is called a preferred
replaceable edge of e. We denote by prefRepl(tr) the set of preferred replacing edges
of tr and by prefRepl(tr, e) the set of preferred replaceable edges of the preferred
replacing edge e on tr. We also denote by rep(tr, e′, e) the action and the resulting
RST of replacing a preferred replaceable edge e′ by a preferred replacing edge e on

12 Pham Quang Dung et al.

s

1 2

3

45

6

7

8

1011

12

t

a. The undirected graph g

s

1 2

3

45

6

7

8 lowtr((8, 10), s)

10 uptr((8, 10), s)11

12upncatr((8, 10), s)

lowncatr((8, 10), s)

t

b. A spanning tree tr rooted at t of g

Fig. 2 An Example of Rooted Spanning Tree

s

1 2

3

45

6

7

8

1011

12

t

a. current tree tr

s

1 2

3

45

6

7

8

1011

12

t

b. tr′ = rep(tr, (7, 11), (8, 10))

Fig. 3 Illustrating a Basic Move

the RST tr. The edge-replacement based neighborhood (called ER-neighborhood) of
an RST tr is defined by

ERNP1(tr) = {tr′ = rep(tr, e′, e) | e ∈ prefRepl(tr), e′ ∈ prefRepl(tr, e)}.

The action rep(tr, e′, e) is called an ER-move and is illustrated in Figure 3. In the cur-
rent tree tr (see Figure 3a), the edge (8,10) is a preferred replacing edge, ncatr(s, 8) =
7, ncatr(s, 10) = 12, lowncatr((8, 10), s) = 7, upncatr((8, 10), s) = 12, lowtr((8,-
10), s) = 8 and uptr((8, 10), s) = 10. The edges (7,11) and (11,12) are preferred
replaceable edges of (8,10) because these edges belong to pathtr(7, 12). The path
induced by tr is 〈s, 3, 4, 6, 7, 11, 12, t〉. The path induced by tr′ is 〈s, 3, 4, 6, 7, 8,
10, 12, t〉 (see Figure 3b).

ER-moves ensure that the neighborhood is connected, which is explained in detail
in Proposition 2.

Proposition 2 Let tr0 be an RST over (g, s, t) and P be a path from s to t. An RST
inducing P can be reached from tr0 in k ≤ l basic moves, where l is the length of P .

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 13

s

1 2

3

45

6

7

8

1011

12

t

e′2

e′1

e2

e1

a. The Current Tree tr (dashed edges are not included)

s

1 2

3

45

6

7

8

1011

12

t

b. tr′ = rep(tr, (7, 11), (8, 10), (3, 4), (1, 5))

Fig. 4 Illustrating a Complex Move

3.2.3 Neighborhood of independent ER-moves

It is possible to consider more complex moves by applying a set of independent ER-
moves. Two ER-moves are independent if the execution of the first one does not affect
the second one and vice versa. The sequence of ER-moves 〈rep(tr, e′1, e1), . . . , rep(-
tr, e′k, ek)〉, denoted by rep(tr, e′1, e1, e

′
2, e2, ..., e

′
k, ek), is defined as the application

of the sequence of actions 〈rep(tr1, e′1, e1), rep(tr2, e′2, e2), . . . , rep(trk, e′k, ek)〉,
where tr1 = tr and trj+1 = rep(trj , e

′
j , ej), ∀j = 1, . . . , k − 1. It is feasible if the

ER-moves are feasible, i.e., ej ∈ prefRpl(trj) and e′j ∈ prefRpl(trj , ej).

Proposition 3 Consider k ER-moves rep(tr, e′1, e1), . . . , rep(tr, e
′
k, ek). If all possi-

ble execution sequences of these basic moves are feasible and the edges e′1, e1, e
′
2, e2,-

. . . , e′k, ek are all different, then these k ER-moves are independent.

We denote by ERNPk(tr) the set of neighbors of tr obtained by applying k indepen-
dent ER-moves. The action of taking a neighbor in ERNPk(tr) is called an ER-k-
move.

It remains to find some criterion for whether two ER-moves are independent.
Given an RST tr over (g, s, t) and two preferred replacing edges e1, e2, we say that e1
dominates e2 in tr, written e1Domtr e2, if lowncatr(e1, s) dominates upncatr(e2, s).
Then, two preferred replacing edges e1 and e2 are independent w.r.t. tr if e1 domi-
nates e2 in tr or e2 dominates e1 in tr.

Proposition 4 Let tr be an RST over (g, s, t), e1 and e2 be two preferred replacing
edges such that e2 Domtr e1, e′1 ∈ prefRpl(tr, e1), and e′2 ∈ prefRpl(tr, e2).
Then rep(tr, e′1, e1) and rep(tr, e′2, e2) are independent and the path induced by
rep(tr,e′1,e1,e′2,e2) is pathtr(s, v1) + pathtr(u1, v2) + pathtr(u2, t), where the ad-
dition sign denotes path concatenation and v1 = lowtr(e1, s), u1 = uptr(e1, s),
v2 = lowtr(e2, s), and u2 = uptr(e2, s).

Figure 4 illustrates a complex move. In tr, the two preferred replacing edges e1 =
(1, 5) and e2 = (8, 10) are independent because lowncatr((8, 10), s) = 7, which
dominates upncatr((1, 5), s) = 6 in tr. The new path induced by tr′ is 〈s, 3 ,1, 5, 6,
7, 8, 10, 12, t〉, which is actually the path pathtr(s, 1) + pathtr(5, 8) + pathtr(10, t).

14 Pham Quang Dung et al.

4 Data Structure and Algorithms

In this section, we briefly describe the implementation of some fundamental and non-
trivial abstractions and then analyze their complexities.

4.1 VarTree and nearest common ancestors

VarTree(g) is an abstraction representing a dynamic tree over an undirected graph
g that can be modified by removing, inserting an edge, or replacing an edge by an-
other edge. It also allows querying information about the tree. For facilitating ma-
nipulations on dynamic trees, the trees are implicitly stored as rooted trees. Several
well-known data structures have been proposed for representing dynamic trees, for
instance, ST-trees [57,58], topology trees [33], ET-trees [36], top trees [6,59], and
RC-trees [1] (and the references therein). These data structures maintain a forest of
dynamic rooted trees, supporting update actions (e.g., link and cut) and some queries
(e.g., minimum (maximum) cost edge, node on a path, nearest common ancestors of
two nodes, medians, centers of a tree) in O(log n) time per operation where n is the
number of vertices of the given graph. These data structures have been experimentally
studied in [60]. These data structures are dedicated to implementing specific network
algorithms, for instance the maximum flow problem.

In the LS(Graph) framework, it is required to maintain a dynamic rooted tree
supporting update actions (i.e., add, remove, replace edges) and different basic queries
such as nearest common ancestors of two nodes, the father of a node, the set of nodes,
edges, the set of adjacent edges of a given node. At each step of the local search pro-
cess, the system explores a neighborhood, queries the quality of all neighbors, and
chooses one neighbor to move. Usually, the neighborhood is large and the neighbor-
hood exploration should be as quick as possible. This exploration requires frequent
performances of the above queries over dynamic rooted trees. Queries over dynamic
trees should thus be as fast as possible. For this purpose, we use a direct data struc-
ture for the tree by maintaining the father of each node, the sets for storing nodes,
and the edges and the adjacent edges of each node of the tree. So the time complexity
for each update action is O(n) and the above queries (except for that for the nearest
common ancestors) take O(1) instead of O(log n).

Concerning the nearest common ancestors problem, Bender et al. [16] presented
a simple optimal algorithm for trees which is a sequentialized version of the more
complicated PRAM algorithm of Berkman and Vishkin [17]. An intermediate data
structure is precomputed in O(n); each query nca(u, v) is then computed in O(1)
time. The data structure is based on Euler Tour and the data structure for the range
minimum query (RMQ) problem. We apply the data structure of [16] with an incre-
mental implementation. This means we partially update the data structure whenever
the tree is modified (i.e., by adding, removing, or replacing edges) instead of recom-
puting it from scratch. This incremental implementation does not improve the time
complexity in the worst case (O(n) for each update action) but it is more efficient in
practice. We have tested this implementation on dynamic trees of size 98, 198, 498,
998, of complete graphs of size 100, 200, 500, 1000. For each graph, we generate

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 15

randomly 20 sequences of 10,000 update actions (adding, removing, replacing edges)
conserving the size of the tree. The experimental results show that this incremental
implementation is about 1.6 times faster than recomputing from scratch.

4.2 Maintaining weighted distances between vertices on dynamic trees

NodeDistances(vt) is a graph invariant which maintains the weighted distances be-
tween all pairs of vertices of a VarTree vt. This invariant allows querying the cost
of the path between any pair of nodes in O(1), and thus allows querying the differ-
entiations in O(1) in some cases, for instance, querying the change in the cost of a
path under edge replacement actions. To implement this graph invariant, we use a
direct 2-dimensional data structure dis: dis(u, v) represents the cost of the path from
u to v on the current RST tr. The size of this data structure is O(n2) but at any time
of computation, it is maintained and used partially: only those dis(u, v) such that v
dominates u on the current tree tr are considered.

The cost of any two nodes x and y on tr can be queried by Algorithm 1 in O(1)
where line 1 can be queried in O(1).

Algorithm 1: distance(x, y)
Input:
Output:

1 r ← ncatr(x, y);
2 return dis(x, r) + dis(r, y);

We now show how to update the dis(x, y) data structure under a local move on tr,
viz., rep(tr, (u1, v1), (u2, v2)). Without loss of generality, suppose that v1 Domtr v2
and u1 Domtr v1 (see an example in Figure 5). We put S = {x ∈ V (tr) | v1 Domtr

x}. The following elements of the data structure should be updated: dis(x, y),∀x ∈
S, y ∈ pathtr(v2, ncatr(x, v2)) ∪ pathtr(u2). The update schema is given in Algo-
rithm 2, in which c(u2, v2) is the weighted distance between u2 and v2 in the given
graph (see line 6).

Algorithm 2: updateDistances
Input:
Output:

1 foreach x ∈ S do
2 rx← ncatr(v2, x);
3 foreach y ∈ pathtr(v2, rx) do
4 dis(x, y)← dis(x, rx) + dis(y, rx);

5 foreach y ∈ pathtr(u2) do
6 dis(x, y)← dis(x, rx) + dis(v2, rx) + c(u2, v2) + dis(u2, y);

16 Pham Quang Dung et al.

1

2 3

4

5

6

r2

9 10

11

12

z

14 15

16

x

18

r1

20 21

22

23

24

25

26

s

t

r

u1

v1

u2

v2

17

S

current tree tr

Fig. 5 Ilustrating the update of dis(u, v) under the replaceEdge(tr, (u1, v1), (u2, v2)) action

The worst case time complexity isO(n2) but it performs more efficiently in prac-
tice. We now experimentally analyze the efficiency of incrementality in comparison
with recomputation from scratch. To do so, we analyze the ratio ri =

si−1

Si
of data

structures to be updated (i.e., dis(u, v)) where Si is the number of elements of dis to
be maintained at each step i of the computation:

Si =
∑

v∈V (tri)

ctri(v)

where tri is the tree at step i and ctri(v) is the number of nodes on the path from
v to the root of tri; si is the number of elements of dis to be changed at step i
by the incremental version. We look at dynamic trees of size 98, 198, 498, 998 on
complete graphs of size 100, 200, 500, 1000. For each graph, we randomly generate
20 sequences of 10,000 moves. The experimental results show that the average value
of ri is about 1

10 . Figures 6, 7 show the number of elements to be updated and the
number of total elements to be maintained in the last 20 iterations: each iteration is
a replace edge action or a sequence of 2 actions (add and remove edge). It is clear
that in the remove edge action, we do not need to update the data structures, so the
number of elements to be updated in this action is zero.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 17

Fig. 6 20 last iterations for a complete graph of size 100

Fig. 7 20 last iterations for a complete graph of size 1000

5 Implementation in COMET

The LS(Graph) framework is implemented in COMET [62]. That is an extension
(about 25,000 lines of COMET code) of the COMET system. The core of the frame-
work is the graph variables (e.g., VarTree, VarPath objects representing dynamic
trees, paths which can be changed) over which are defined the graph invariants, graph
constraints, and graph functions. The graph invariants maintain the properties of dy-
namic trees and paths such as the set of insertable, removable, or replacing edges of
a VarTree, the sum of weights of all the edges of a path, and the diameter of a tree.
The graph constraints and graph functions are differentiable objects which not only
maintain the properties of dynamic trees, paths (for instance, the number of violations
of a constraint or the value of an objective function), but also allow determining the
impact of local moves on these properties, a feature known as differentiation.

18 Pham Quang Dung et al.

1 interface Invariant<LSGraph> extends Invariant<LS>{
2 Solver<LSGraph> getLSGraphSolver ();
3 VarGraph[] getVarGraphs();

5 bool propagateAddEdge(VarTree vt, Edge ei);
6 bool propagateRemoveEdge(VarTree vt, Edge eo);
7 bool propagateReplaceEdge(VarTree vt, Edge eo, Edge ei);
8 bool propagateReplaceEdge(VarPath vp, Edge eo, Edge ei);
9 }

Fig. 8 interface of graph invariants (partial description)

1 interface Differentiation<LSGraph>{
2 float getAddEdgeDelta(VarTree t, Edge e);
3 float getRemoveEdgeDelta(VarTree t, Edge e);
4 float getReplaceEdgeDelta(VarTree t, Edge eo, Edge ei);

6 float getDeltaWhenUseReplacingEdge(VarPath vg, Edge e);
7 float getDeltaWhenUseReplacingPath(VarPath vp, Vertex v, Vertex

x, Vertex y);
8 }

Fig. 9 differentiation interface (partial description)

5.1 Interfaces

Figure 8 depicts part of the interface concerning the graph invariants. Line 2 re-
turns a Solver<LSGraph> object which manages all graph variables and graph
invariants, and maintains a precedence graph relating these graph variables and graph
invariants of the model. A local move (modification action) over a graph variable
(VarTree, VarPath) induces a propagation which updates all graph invariants,
constraints, and functions that are defined over these variables thanks to the prece-
dence graph. This means that one does not have to call procedures to update graph
invariants, constraints, or functions. Rather, the update is automatically performed
whenever users apply local moves. Line 3 returns the list of graph variables4 over
which the graph invariant is defined. Lines 5–8 are some propagation methods corre-
sponding to different local moves.

The differentiation interface is depicted in Figure 9. The differentiation meth-
ods evaluate the impact of various local moves, for instance, getAddEdgeDelta-
(VarTree vt, Edge e) in line 2 computes the change in the value of the func-
tion when the edge e is added to the tree vt; the method in line 6 returns the change
in the value of the function when the replacing edge e is applied5. The method in
line 7 is generic and computes the impact of moves where the subpath of vp between
two endpoints of x and y is replaced by the path 〈x,v,y〉 (see the definition of the

4 VarGraph is an abstract class from which VarTree, VarPath are derived.
5 When a local move replaceEdge(tr, e′, e) is applied with the neighborhood ERNP1 (see Section

3.2), the resulting path depends only on the replacing edge e used, not on the replaceable edge e′.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 19

1 interface Constraint<LSGraph> extends Invariant<LSGraph>,
Differentiation<LSGraph>{

2 var{float} violations();
3 float violations(VarGraph vg);
4 }

Fig. 10 interface of graph constraints (partial description)

most general COP neighborhood N at the beginning of Section 3.2). It enables the
exploration of neighborhoods other than the ERNP1.

Figure 10 depicts the interface of graph constraints in which the method in line 2
returns the violations of the constraint. Line 3 returns the violations of the constraint
attributed to VarGraph vg. If the graph variable does not appear directly in the
definition of the constraint, it does not contribute any violations. This information
may be useful when applying multistage heuristics.

All graph invariants, functions, and constraints in the system must implement
these interfaces. This enables the compositionality of model. Moreover, one can de-
sign and implement one’s own functions and constraints, respecting these interfaces,
and integrate them into the system.

5.2 Abstractions

The Solver<LS> of COMET does not support specific operations on user-defined
objects (i.e., edge replacement on dynamic trees). So in this framework, we designed
and implemented a Solver<LSGraph>which maintains a precedence graph repre-
senting the dependence of graph invariants, graph functions, and graph constraints on
the graph variables and performs the propagations for updating the graph invariants,
graph functions, and graph constraints under different modification actions over the
graph variables. The implementation of Solver<LSGraph> extends Solver<LS>,
enabling combinations between the two solvers (e.g., we can combine standard invari-
ants of COMET with graph invariants of LS(Graph) by arithmetic operators). Table
1 partially presents some abstractions6 available in the framework including some
graph variables, invariants, functions, and constraints which are used to model var-
ious COT/COP problems: create a solver Solver<LSGraph>, declare variables
VarTree, VarPath, and state functions and constraints. Different search proce-
dures can then be performed over the model. Fundamental functions representing
relations between the trees, paths, nodes, and edges have been designed and imple-
mented, e.g., NBVisitedVerticesTree(VarTree[] vts, set{Vertex}
S) represents the number of vertices of S which are visited by the list of trees vts,
and NBVisitsVertexTree(VarTree[] vts, Vertex v) represents the
number of times the list of trees vts visit it. Weight(VarTree vt, int k)
represents the weight of a tree vt, and PathCostOnEdges(VarPath vp, int
k) represents the cost of a path vp7. These functions can be combined by traditional

6 For a full description of the abstractions, see the PhD thesis [53].
7 k is the index of the considered weight on edges.

20 Pham Quang Dung et al.

arithmetic or relation operators to state more complex functions or constraints. Vari-
ous fundamental constraints on graphs can be stated by using these functions and tra-
ditional relation operators. For achieving a more efficient performance, some global
constraints have been designed and implemented, for instance, PathsEdgeDisj-
oint(VarPath[] vps) specifies that the list of paths vpsmust be edge-disjoint,
and PathsContainVertices(VarPath[] vps, set{Vertex} S) spec-
ifies that the list of paths vps must visit the set of vertices S.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 21

FunctionCombinator<LSGraph> is a graph function that combines sev-
eral functions, constraints of the model by the “+” operator with a weight. This ob-
ject strengthens the modeling of the framework when there are a number of functions
proportional to the size of the problem to be stated.

ConstraintSystem<LSGraph> is a graph constraint which combines all
constraints appearing in the considered problem by the post method. By using this
object, one can add or remove some constraints from the model without having to
change the search procedure.

The LS(Graph) framework is open in that it allows users to design and imple-
ment their own invariants, constraints, and functions respecting predefined interfaces
and integrate them into the system.

5.3 Search procedures

In order to illustrate the modeling and the search component, we give an example
in Figure 11 in which we solve the problem of finding a spanning tree of a given
undirected graph g such that the degree of each node does not exceed maxDe and the
diameter of the spanning tree does not exceed maxDia.

The model is given in lines 1–15, in which line 2 creates a Solver<LSGraph>
ls and lines 3–4 randomly initialize a spanning tree variable vt of a given undi-
rected graph g associated with ls. Line 5 initializes a graph invariant rpl (line
4) representing the set of replacing edges of vt. Lines 7–13 state and post con-
straints on the degree and diameter of the spanning tree vt to a graph constraint
system gcs which is declared in line 10. Whenever the model is closed (line 15),
the initPropagation methods of all graph invariants are called to initialize the
values and internal data structures of these objects.

The search is given in lines 17–26, which is a simple greedy search. At each iter-
ation, we explore the NT3 neighborhood and choose the best neighbor w.r.t. the graph
constraint system gcs: we choose a replacing edge ei and a replaceable edge eo of
ei such that the number of violations of gcs is most reduced when eo is replaced
by ei (see method getReplaceEdgeDelta(vt,eo,ei)). Line 23 is the lo-
cal move which induces automatically a propagation to update all graph invariants
and constraints defined over it (e.g., rpl, degreeC, diameterC) thanks to the
precedence graph maintained in ls.

We can see in this example that the model and the search are independent. On
the one hand, we can state and post other constraints to the graph constraint system
gcs without having to change the search. On the other hand, we can apply different
heuristic local searches in the search component without changing the model.

We now describe one of generic neighborhood explorations. Figure 12 explore the
basic COP neighborhood ERNP1. The quality of a solution is evaluated in terms of the
number of violations of the Constraint<LSGraph> c. Variables it and fgb
represent the current iteration of the local search and the smallest value of the number
of violations of the constraint c found so far. All VarPath vps[j] are scanned
(lines 7–8). Line 9 retrieves the Invariant<LSGraph> repl representing the

22 Pham Quang Dung et al.

1 // The Modeling
2 Solver<LSGraph> ls();
3 int k = g.numberOfVertices()-1;
4 VarTree vt(ls,g,k); // tree variable
5 ReplacingEdgesVarTree rpl(ls,vt); // invariant representing the

set of replacing edges of vt

7 DegreeAtMost degreeC(vt,maxDe); // constraint on degrees of
vertices of vt

8 DiameterAtMost diameterC(vt,0,maxDia);// constraint on the
diameter of vt

10 ConstraintSystem<LSGraph> gcs(ls); // constraint system
11 gcs.post(diameterC); // posting the constraint on degrees
12 gcs.post(degreeC); // posting the constraint on diameter
13 gcs.close();

15 ls.close();

17 // The Search
18 int it = 1;
19 while(it < 1000 && gcs.violations() > 0){
20 selectMin(ei in rpl.getSet(),
21 eo in getReplacableEdges(vt,ei))
22 (gcs.getReplaceEdgeDelta(vt,eo,ei)){
23 vt.replaceEdge(eo,ei); // perform the move
24 }
25 it++;
26 }

Fig. 11 Model for bounded diameter and degree constrained spanning tree

set of preferred replacing edges of vps[j]. All preferred replacing edges e are
scanned in line 10 and line 11 evaluates the quality of the move when applying the
replacing edge e in term of the variation of the number of violations of c. Line
13 checks whether e is tabu or the aspiration criterion is reached (i.e., the move is
tabu but it improves the best solution found so far). Lines 31–33 choose a preferred
replaceable sel_eo. Lines 36–41 submit a move (lines 36–41) and its evaluation
eval to a Neighborhood N and it will be called later.

Components for a generic tabu search, TabuSearch<LSGraph>, and a greedy
local search, GreedyLocalSearch<LSGraph>, have been implemented for COT/-
COP applications. This tabu search component features aspiration criteria with adap-
tive tabu length (the tabu length can be changed within tbMin and tbMax, depend-
ing on the behavior of the search). A full description of the abstractions and generic
search components can be found in [53].

6 Applications

In this section, we present the application of the LS(Graph) framework to the reso-
lution of three COT/COP problems: the quorumcast routing (QR) problem, the edge-

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 23

1 void exploreTabuMinReplace1Move1VarPath(Neighborhood N, VarPath[]
vps, dict{VarPath->ReplacingEdgesMaintainPath}
mapReVarPath, Constraint<LSGraph> c, GTabuEdge[] tbIn,
GTabuEdge[] tbOut, int it, float fgb, bool firstImprovement){

3 Edge sel_ei = null; // the selected replacing edge for the move
4 int ind = -1; // the index of the selected VarTree for the move
5 float eval = System.getMAXINT(); // the minimum evaluation

7 forall(j in vps.rng()){
8 VarPath vp = vps[j]; // considered VarPath
9 ReplacingEdgesMaintainPath repl = mapReVarPath{vp}; //

invariant representing the set of preferred replacing
edges of vp

10 forall(e in repl.getSet()){ // scan all preferred replacing
edges

11 float d = c.getDeltaWhenUseReplacingEdge(vp,e); //
evaluation of using the preferred replacing edge e

13 if(!tbIn[j].isTabu(e,it) || d + c.violations() < fgb){ //
check the tabu condition or the aspiration criterion

14 if(d < eval){ // update the information of the chosen
move

15 eval = d;
16 ind = j;
17 sel_ei = e;
18 }
19 if(firstImprovement && eval < 0)
20 break; // stop the neighborhood exploration if a

first improving neighbor is found
21 }
22 }
23 if(firstImprovement && eval < 0)
24 break; // stop the neighborhood exploration if a first

improving neighbor is found
25 }

27 if(ind > -1){
28 VarPath vp = vps[ind];
29 Edge sel_eo = null;

31 select(eo in getPreferredReplacableEdges(vp,sel_ei)){
32 sel_eo = eo;
33 }

35 if(sel_eo != null)
36 neighbor(eval,N){// submit the chosen move
37 tbIn[ind].makeTabu(sel_eo,it); // make the selected

preferred replacable edge tabu
38 tbOut[ind].makeTabu(sel_ei,it); // make the selected

preferred replacing edge tabu

40 vp.replaceEdge(sel_eo,sel_ei); // perform the move
41 }
42 }
43 }

Fig. 12 Exploring the ERNP1 neighborhood

24 Pham Quang Dung et al.

disjoint paths (EDP) problem, and the routing and wavelength assignment with side
constraint (RWA-D) problem.

For the first and the third applications (QR and RWA-D), we apply tabu search.
Two parameters of tabu search are the length tbl of the tabu lists and maxStable: if
the best-restart solution8 does not improve in maxStable successive local moves, then
the search is restarted.

Experiments were performed on XEN virtual machines with 1 core of a CPU Intel
Core2 Quad Q6600 @2.40GHz and 1GB of RAM.

6.1 The quorumcast routing (QR) problem

6.1.1 Problem statement

Given a weighted undirected graph G = (V,E), each edge e ∈ E is associated with
a cost w(e). Given a source node r ∈ V , an integral value q, and a set S ⊆ V
of multicast nodes, the quorumcast routing problem is to find a minimum cost tree
T = (V ′, E′) of G spanning r and q nodes of S. T = (V ′, E′) is a graph satisfying

1. V ′ ⊆ V ∧ E′ ⊆ E,
2. T is connected,
3. ∃Q ⊆ S such that]Q = q ∧Q ∪ {r} ⊆ V ′,
4. The cost of

T =
∑
e∈E′

w(e)

is minimum over all subgraphs of G with properties 1, 2, and 3.

In this section, we present a local search model for solving the QR problem with
LS(Graph).

6.1.2 The model

We propose a tabu search model in LS(Graph) exploring different neighborhoods
for solving this problem. The model is given in Figure 13, in which line 1 creates a
Solver<LSGraph> and line 2 declares a VarTree tr associated with ls. Lines
4–7 state the constraints of the problem where NBVisitedVertices(tr,S) is
a Function<LSGraph> representing the number of vertices of S which are in the
tree tr. The constraint posted in line 5 says that the tree tr must contain at least q
vertices of S and the constraint posted in line 6 says that trmust contain the vertex s.
Line 9 creates a Model<LSGraph> mod with only one variable tr, the constraint
gcs, the objective function to be minimized is the total weight of tr. Line 11 ini-
tializes a search component which extends TabuSearch<LSGraph> (see Figure
14). Lines 12–14 set parameters for the search and line 16 calls the search proce-
dure. We now describe the search component in Figure 14. The variables _card and
_root represent the number of edges of the initial tree and its root computed in the

8 The best-restart solution is the best solution found for each restart.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 25

1 Solver<LSGraph> ls(); // create a solver
2 VarTree tr(ls,g); // initialize a tree variable, g is the given

graph

4 ConstraintSystem<LSGraph> gcs(ls); // constraint system
5 gcs.post(q <= NBVisitedVerticesTree(tr,S)); // posting the

constraint specifying that tr must contain at least q vertices
of S

6 gcs.post(NBVisitedVerticesTree(tr,s) == 1); // the tree tr must
contain the vertex s

7 gcs.close();

9 Model<LSGraph>
mod(tr,gcs,Weight<Tree>(tr,1),NonSpanningTree,MINIMIZATION);
// encapsulate variables, constraints, and objective function
into a model object

11 QRSearch se(mod); // create a search object which extends the
built-in generic search

12 se.setMaxIter(1000);
13 se.setCard(q);
14 se.setRoot(s);

16 se.search(); // perform the search

Fig. 13 Tabu search model for the QR problem

initSolution method. The overriding initSolution method (lines 17–31)
constructs the tree in a greedy random way. It clears the tree tr (line 22) and selects
randomly a first edge containing _root (lines 23–25). It then iteratively selects an
edge with minimal weight for adding to the constructed tree tr (lines 27–30). The
exploreNeighborhood method of TabuSearch<LSGraph> is also overri-
den (lines 34–39) with different neighborhoods: NT1 (line 35), NT2 (line 36), NT1+2

(line 37), and NT3 (line 38).

6.1.3 Experiments

We compare our tabu model in LS(Graph)with the IMP heuristic, which is the best
heuristic among the three heuristic algorithms in [24]. The original instances and the
implementation of the IMP algorithm are not available. We thus re-implemented the
IMP algorithm in COMET and generated new benchmarks.

Problem instances We take six graphs from the benchmark of the KCT problem [20]
which are 4-regular graphs of sizes from 50 to 1000 nodes and six graphs from the
Steiner tree instances. For each graph of size n, we generate randomly n∗ tau1 nodes
for the set S, the value for q is set to n ∗ tau1 ∗ tau2 with tau1, tau2 ∈ {0.2, 0.5},
and the root is set to be node 1.

Results The IMP algorithm and our model in LS(Graph) are executed 20 times for
each problem instance. The time limit for our model is 30 minutes. From our pre-

26 Pham Quang Dung et al.

1 include "LS(Graph)";

3 class QRSearch extends TabuSearch<LSGraph>{
4 Vertex root;
5 int _card;
6 QRSearch(Model<LSGraph> mod): TabuSearch<LSGraph>(mod){
7 }
8 void setCard(int ca){
9 _card = ca;

10 }
11 void setRoot(Vertex r){
12 root = r;
13 }
14 void restartSolution(){ // restart the search by using the

initial solution generation procedure
15 initSolution();
16 }
17 void initSolution(){// generate the initial solution
18 Solver<LSGraph> ls = getLSGraphSolver(); // get the solver
19 VarTree tr = getFirstVarTree(); // retrieve the tree variable

tr
20 InsertableEdgesVarTree inst = getInsertableEdges(tr); //

retrieve the invariant representing the set of insertable
edge of tr

22 tr.clear(); // clear the tree
23 select(e in inst.getSet():e.contains(root)){ // choose randomly

a first edge to be added to tr
24 tr.addEdge(e);
25 }

27 forall(i in 1.._card-1) // repeat adding an edge until the tree
tr has _card edges

28 selectMin(e in inst.getSet())(e.weight()){ // select an
insertable edge having smallest weight

29 tr.addEdge(e); // add the selected edge to the tree
30 }
31 }

34 void exploreNeighborhood(Neighborhood N){ // explore all four
neighborhoods of VarTree

35 exploreTabuMinAdd1VarTree(N,true); // explore the
neighborhood NT_1

36 exploreTabuMinRemove1VarTree(N,true); // explore the
neighborhood NT_2

37 exploreTabuMinAddRemove1VarTree(N,true); // explore the
neighborhood NT_{1+2}

38 exploreTabuMinReplace1VarTree(N,true); // explore the
neighborhood NT_3

39 }
40 }

Fig. 14 The search component for the QR problem

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 27

Index Instances IMP LS(Graph)
avg min max std_dev avg_t avg min max std_dev avg_t

1 g50_20_20 111 111 111 0 0.78 111 111 111 0 0.06
2 g50_20_50 251 251 251 0 0.78 248 248 248 0 0.08
3 g50_50_20 169 169 169 0 0.8 169 169 169 0 0.09
4 g50_50_50 386 386 386 0 0.76 369 369 369 0 0.22
5 g75_20_20 93 93 93 0 1.06 93 93 93 0 0.02
6 g75_20_50 358 358 358 0 1.06 328 328 328 0 1.12
7 g75_50_20 207 207 207 0 1.05 175 175 175 0 0.08
8 g75_50_50 630 630 630 0 1.05 564.6 560 568 3.56 181.81
9 g100_20_20 178 178 178 0 1.44 178 178 178 0 0.23
10 g100_20_50 526 526 526 0 1.45 524 524 524 0 2.31
11 g100_50_20 294 294 294 0 1.51 273 273 273 0 0.28
12 g100_50_50 948 948 948 0 1.53 854 854 854 0 36.84
13 g200_20_20 428 428 428 0 7.13 402 402 402 0 32.6
14 g200_20_50 926 926 926 0 7.07 849.6 849 851 0.92 342.49
15 g200_50_20 483 483 483 0 7.26 468 468 468 0 8.09
16 g200_50_50 1499 1499 1499 0 7.35 1411.45 1403 1424 5.82 816.43
17 g400_20_20 599 599 599 0 52.18 556.6 551 560 1.88 240.46
18 g400_20_50 1724.05 1702 1739 13.92 51.43 1610.95 1600 1626 7.05 689.33
19 g400_50_20 1154.55 1140 1166 7.75 51.6 1010.65 1005 1018 4.3 584.08
20 g400_50_50 3040 3040 3040 0 52.19 2829.15 2799 2856 17.25 845.52
21 g1000_20_20 1832.1 1810 1836 9.28 812.61 1568.65 1505 1621 27.67 584.75
22 g1000_20_50 4762.2 4755 4771 7.96 795.64 4493.55 4406 4599 49.9 869.09
23 g1000_50_20 2743 2733 2746 4.29 801.06 2487.2 2429 2533 27.04 697.85
24 g1000_50_50 7293.85 7229 7361 36.28 817.82 7098.95 6891 7372 117.06 1330.21

Table 1 Experimental results on KCT instances

liminary results, we set tbl to 5 and maxStable to 200. The experimental results are
shown in Tables 1 and 2. Columns 3–6 present the average, the minimal, the max-
imal, and the standard deviation of the best objective value found in 20 executions.
The same information for our model is presented in columns 8–11. Column 7 is the
average execution time (in seconds) of the IMP algorithm over 20 executions, while
column 12 presents the average time (in seconds) for finding the best solutions over
20 executions of our tabu search model. Table 1 shows that for KCT instances, our
LS(Graph) model finds better solutions than the IMP on average. Moreover, the
worst solutions found by our model are, in most cases, even better than the best so-
lution found by the IMP (among 20 executions). Table 2 shows that the results found
by our model are better than those found by the IMP algorithm on average except
for the last four instances (45–48). A comparison of the two algorithms in terms of
box-and-whiskers plots (see their template presentation in Figure 15) can be found
in Figures 16, 17, 18, and 19. Two consecutive bars present the results computed by
the IMP and the tabu search algorithms on a given instance. The figures show that for
each algorithm, the variance of the results among the 20 executions is small. It also
shows that, in most instances, the solutions found by our tabu search are better than
those found by the IMP algorithm.

28 Pham Quang Dung et al.

Index Instances IMP LS(Graph)
avg min max std_dev avg_t avg min max std_dev avg_t

25 steinb4_20_20 11 11 11 0 0.72 11 11 11 0 0
26 steinb4_20_50 32 32 32 0 0.75 32 32 32 0 0.12
27 steinb4_50_20 20.35 20 21 0.48 0.74 20 20 20 0 0.08
28 steinb4_50_50 52.25 51 53 0.77 0.74 41 41 41 0 0.27
29 steinb10_20_20 19 19 19 0 1 19 19 19 0 0.12
30 steinb10_20_50 29 29 29 0 0.98 29 29 29 0 0.32
31 steinb10_50_20 27.8 26 29 1.25 1.03 22 22 22 0 0.16
32 steinb10_50_50 65 65 65 0 0.99 65 65 65 0 2.76
33 steinb16_20_20 10 10 10 0 1.46 10 10 10 0 0.01
34 steinb16_20_50 73.35 69 76 2.33 1.55 61 61 61 0 9.46
35 steinb16_50_20 32.85 32 37 1.19 1.47 31 31 31 0 0.93
36 steinb16_50_50 87.25 85 92 2.09 1.48 82 82 82 0 12.6
37 steinc6_20_20 92.35 81 98 4.75 100.58 69.7 69 72 0.9 514.06
38 steinc6_20_50 234.15 229 240 3.61 101.77 221.9 218 225 1.73 614.34
39 steinc6_50_20 130.95 122 147 6.16 99.82 115.9 113 118 1.09 372.27
40 steinc6_50_50 399.55 395 407 3.17 103.59 381.55 374 387 3.28 866.87
41 steinc11_20_20 43.95 40 47 1.99 102.08 38.7 38 39 0.46 481.52
42 steinc11_20_50 116 113 119 1.55 102.6 107.4 107 109 0.58 803.34
43 steinc11_50_20 75.05 70 79 2.48 101.89 67.75 67 69 0.62 455
44 steinc11_50_50 207.25 201 213 2.9 102.04 202.45 199 208 2.31 1000.79
45 steinc16_20_20 22.25 21 25 1.13 100.2 23.6 22 24 0.66 200.7
46 steinc16_20_50 54.45 52 59 1.66 100.22 54.95 53 56 0.74 267.01
47 steinc16_50_20 50 50 50 0 99.34 50.3 50 52 0.56 451
48 steinc16_50_50 125 125 125 0 104.98 140.25 133 148 4.09 1567.46

Table 2 Experimental results on steiner instances

Fig. 15 Box-and-Whiskers plot: The X-axis represents the algorithm and the instance (A denotes the
algorithm and ins denotes the instance) and the Y-axis represents the value of the objective function

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 29

Fig. 16 Comparison between IMP and LS(Graph) on KCT instances

Fig. 17 Comparison between IMP and LS(Graph) on KCT instances

30 Pham Quang Dung et al.

Fig. 18 Comparison between IMP and LS(Graph) on steiner instances

Fig. 19 Comparison between IMP and LS(Graph) on steiner instances

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 31

6.2 The edge-disjoint paths problem

6.2.1 Problem statement

We are given an undirected graph G = (V,E) and a set T = {〈si, ti〉 | i =
1, 2, ...,]T ; si 6= ti ∈ V } representing a list of commodities. A subset T ′ ⊆ T ,
T ′ = {〈si1 , ti1〉, ..., 〈sik , tik〉} is called edp-feasible if there exist mutually edge-
disjoint paths from sij to tij on G,∀j = 1, 2, .., k. The EDP problem consists in
finding a maximal cardinality edp-feasible subset of T . In other words,

max]T ′ (1)
s.t. T ′ ⊆ T (2)

T ′ is edp-feasible (3)
In this section, we propose two algorithms based on neighborhood search for solv-

ing the EDP problem by LS(Graph). They are complex heuristics which make use
of local search in LS(Graph) as sub-routines. We first describe the simple greedy
algorithm SGA [42] because one of our algorithms (detailed later) will apply this as
sub-procedure (see Algorithm 3).

6.2.2 The simple greedy algorithm

This algorithm starts with an empty solution S (line 1). At each iteration j (line 3), it
selects a pair Tj = 〈sj , tj〉 and tries to find the shortest path Pj from sj to tj in the
graph G1 = (V,E1), initializing the set of edges E1 to be E (line 2). If such a path
exists, it is inserted into S and the set E1 is updated for the next step by removing all
edges of the path Pj .

Obviously, the SGA algorithm depends strongly on the order of commodities Tj
considered. The multi-start version of SGA (called MSGA) performs SGA iteratively
with different orders of Tj to be scanned in T .

Algorithm 3: SGA(G,T)
Input: Problem instance 〈G = (V,E), T 〉 consist of a graph G and a commodity list T
Output: Set of edge-disjoint paths on G connecting endpoints in T

1 S ← �;
2 E1 ← E;
3 foreach Tj = 〈sj , tj〉 ∈ T do
4 if sj and tj can be connected by a path in G1 = (V,E1) then
5 Pj ← shortest path from sj to tj in G1 = (V,E1);
6 S ← S ∪ {Pj};
7 E1 ← E1 \ {e | e ∈ Pj};

8 return S;

In the ACO algorithm of [18], the following criterion is introduced, which quan-
tifies the degree of non-disjointness of a solution. S = {P1, P2, ...Pk} (Pj is a path

32 Pham Quang Dung et al.

from sj to tj):
C(S) =

∑
e∈E

(max{0,
∑
Pj∈S

ρj(S, e)− 1}),

where ρj(S, e) = 1 if e ∈ Pj , and ρj(S, e) = 0 otherwise. From a solution con-
structed by ANTs, a solution to the EDP problem is extracted by iteratively removing
the path which has the most edges in common with other paths, until all remaining
paths are mutually edge-disjoint (see Algorithm 4).

Algorithm 4: Extract(S)
Input: set S of paths
Output: subset of edges-disjoint paths of S

1 S0 ← S;
2 while C(S0) > 0 do
3 foreach p ∈ S0 do
4 c(p)← number of edges of the path p in common with other paths of S0;

5 p∗ ← argMaxp∈S0c(p);
6 S0 ← S0 \ {p∗};
7 return S0;

In this section, we propose two algorithms based on local search for solving this
problem: the LS-SGA and the LS-R algorithms. These algorithms perform a local
search procedure applying the LS(Graph) framework combined with the extraction
method (Algorithm 4) and the simple greedy algorithm. These algorithms make use
of the PathsEdgeDisjoint(P1, P2, ..., Pk) constraint of the LS(Graph) frame-
work saying that the set of paths {P1, P2, ..., Pk} must be edge-disjoint. The number
of violations of the PathsEdgeDisjoint(P1, P2, ..., Pk) constraint is defined to be
C({P1, P2, ..., Pk}) and the local search algorithms used in our heuristics try to min-
imize this number.

6.2.3 The LS-SGA algorithm

The LS-SGA algorithm has been proposed in our paper [54]. The main idea of the LS-
SGA algorithm (given in detail in Algorithm 5) is to perform a local search algorithm
aiming at minimizing the number of violations of the PathsEdgeDisjoint(P1, P2,-
..., Pk) constraint. The variable S (line 2) stores a set of paths {P1, P2, ..., Pk} con-
necting all commodities. It is initialized randomly (lines 3–5). At each step, we per-
form a local move. The LocalMove method (line 7) returns true if it finds a move
that decreases the number of violations of the PathsEdgeDisjoint(P1, P2, ..., Pk)
constraint. If no such move exists, we make some random moves (line 22). From a
candidate solution S found by the local search, a solution S1 to the EDP problem
will be extracted by applying the Extract algorithm (line 9) combined with the SGA
algorithm (line 15) on the remaining graph G′′ (the graph G′′ is obtained by remov-
ing all edges E′ (line 12) of the paths extracted by the Extract algorithm) and the
remaining commodities T ′′ (lines 10–11). The best solution is updated in line 17 and
lines 18–20 update some paths of S by the new found paths of S2.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 33

Algorithm 5: LS-SGA(G,T)
Input: Problem instance 〈G = (V,E), T 〉 consist of a graph G and a commodity list T
Output: Set of edge-disjoint paths on G connecting endpoints in T

1 Sbest ← �;
2 S ← �;
3 foreach 〈si, ti〉 ∈ T do
4 pi ← random path from si to ti on G;
5 S ← S ∪ {pi};
6 while termination criterion is not reached do
7 hasMove← LocalMove(S);
8 if hasMove then
9 S1 ← Extract(S);

10 T ′ ← set of commodities that are connected by paths in S1;
11 T ′′ ← T \ T ′;
12 E′ ← set of edges of paths of S1;
13 E′′ ← E \ E′;
14 G′′ ← (V,E′′);
15 S2 ← SGA(G′′, T ′′);
16 if]S1 +]S2 >]Sbest then
17 Sbest ← S1 ∪ S2;
18 foreach pi ∈ S2 do
19 p is a path of S \ S1 such that starting point of p ≡ starting point of pi and

terminating point of p ≡ terminating point of pi;
20 p← pi;

21 else
22 RandomMoves(S);

23 return Sbest;

6.2.4 The LS-R algorithm

The idea is to connect recursively as much as possible the commodities of T (see
Algorithm 6). The core is the recursive method LS-Recursive in Algorithm 7, which
receives a graph G and a list of commodities T as input and computes a set of max-
imally edge-disjoint paths connecting the commodities of T . This paths set is then
accumulated in the solution Sol (Sol is a global variable) and all edges visited by
these paths are removed from G for the next recursive call. Line 1 computes a set
of edge-disjoint paths by a greedy local search method, GreedyLocalSearch. Lines
2–3 update the solution by adding the new found edge-disjoint paths of Si. Lines
3–4 compute the set of connected components CC of the graph generated from the
current graph by removing all edges E′ of paths of Si. For each graph Gi of these
connected components and each set of commodities Ti that belong toGi, we perform
recursively the LS-Recursive method (see lines 6–8).

The implementation of these algorithms in LS(Graph) is given in the PhD the-
sis [53]. It is more complicated than that of the QR problem: it requires some pro-
cessing (e.g., removing edges and vertices from a graph, and computing the connected
components of a graph) other than just stating the model and performing the search.

34 Pham Quang Dung et al.

Algorithm 6: LS-R(G,T)
Input: Problem instance 〈G = (V,E), T 〉 consist of a graph G and a commodity list T
Output: Set of edge-disjoint paths on G connecting endpoints in T

1 Sbest ← �;
2 while termination criterion is not reached do
3 Sol← �;
4 LS-Recursive(G,T);
5 if]Sol >]Sbest then
6 Sbest ← Sol;

Algorithm 7: LS-Recursive(G,T)
Input: Problem instance 〈G = (V,E), T 〉 consist of a graph G and a commodity list T ; Sol is a

global variable that stores a set of edges-disjoint paths under construction
Output: Update Sol

1 Si ← GreedyLocalSearch(G,T);
2 foreach p ∈ Si do
3 Sol← Sol ∪ {p};
4 E′ ← set of edges of paths of Si;
5 CC ← set of connected components of the graph (V,E \ E′);
6 foreach Gi ∈ CC do
7 Ti ← set of commodities that are not connected by any path of Si such that their endpoints

belong to Gi;
8 LS-Recursive(Gi, Ti);

6.2.5 Experiments

Problem instances We tried the two proposed algorithms on three types of bench-
mark. The first benchmark contains instances on four graphs provided by Blesa [18].
The second benchmark contains instances on some graphs of the Steiner benchmark
from the Or-Library [14]. The third benchmark consists of instances on random pla-
nar graphs. Table 3 gives a description of these graphs.

An instance of the EDP problem consists of a graph and a set of commodities. The
instances in the original paper [18] are not available. As a result, we base our trial on
the instance generator described in [18] and generate new instances as follows. For
each graph of the first set, we generate randomly different sets of commodities with
different sizes, depending on the size of the graph: for each graph of size n, we
generate randomly two instances9 with 0.10*n, 0.25*n, and 0.40*n commodities.
We do the same for each Steiner and planar graph but we generate only one instance
for each rate of commodity instead of two. Table 4 describes the instances generated,
including their numbers of vertices, edges, and the sizes of the commodity sets T .

For comparison, we have reimplemented the ACO algorithm described in [18] in
the COMET programming language. For each problem instance, the three algorithms
ACO, LS-SGA, and LS-R are executed 20 times each. Due to the high complexity of

9 This is different from what we did in [54], where we randomly generated 20 instances for each rate
of commodity. For each instance, the algorithm was executed only once.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 35

Name |V | |E| Degree avg.
bl-wr2-wht2.10-50.rand 500 1020 4.08
bl-wr2-wht2.10-50.sdeg 500 1020 4.08
mesh15x15 225 420 3.73
mesh25x25 625 1200 3.84
steinb4.txt 50 100 4.00
steinb10.txt 75 150 4.00
steinb16.txt 100 200 4.00
steinc6.txt 500 1000 4.00
steinc11.txt 500 2500 10.00
steinc16.txt 500 12500 50.00
planar-n50 50 135 5.4
planar-n100 100 285 5.7
planar-n200 200 583 5.83
planar-n500 500 1477 5.91

Table 3 Description of graphs of the benchmarks

the problem, we set the time limit to 30 minutes for each execution. In total, we have
54 problem instances and 1080 executions.

Results The experimental results are shown in Tables 5, 6, and 7. These tables have
the same structure, which is described in what follows. The first column presents
the instance name. Columns 2–5 present the results of the ACO algorithm [18], in-
cluding the average, the minimal and the maximal of the best objective values found
in 20 executions, and the average time for finding these best objective values. The
same information for LS-SGA and LS-R are presented in columns 6–9 and columns
11–14. Column 10 compares the ACO and LS-SGA algorithms in the format a/b
where a is the number of times the ACO algorithm found better solutions than the
LS-SGA algorithm and b is the number of time the LS-SGA found better solutions
than the ACO algorithm in 20 executions. Column 15 presents the same information
as column 10 but for the comparison between the ACO and the LS-R algorithms. A
comparison of the two algorithms in terms of box-and-whiskers plots (see their tem-
plate presentation in Figure 15) can be found in Figures 20, 21, 22, 23, 24, and 25.
Three consecutive bars present the results computed by the ACO, LS-SGA, and the
LS-R algorithms on a given instance. The figures show that for each algorithm, the
variance of the results among the 20 executions is small. It also shows that, in most
instances, the solutions found by LS-SGA and LS-R are better than those found by
the ACO algorithm.

The experiments results show that on average, the LS-R algorithm is better than
two other algorithms. The LS-SGA algorithm is better than the ACO algorithm. The
LS-SGA finds better solutions than the ACO algorithm in 534 out of 1080 executions
while the ACO algorithm finds better solutions in 96 out of 1080 executions. LS-
R finds better solutions than ACO in 614 out of 1080 executions while the ACO
algorithm finds better solutions than LS-R in 7 out of 1080 executions.

36 Pham Quang Dung et al.

index name]V]E]T
1 bl-wr2-wht2.10-50.rand.bb_com10_ins1 500 1020 50
2 bl-wr2-wht2.10-50.rand.bb_com25_ins1 500 1020 125
3 bl-wr2-wht2.10-50.rand.bb_com40_ins1 500 1020 200
4 bl-wr2-wht2.10-50.rand.bb_com10_ins2 500 1020 50
5 bl-wr2-wht2.10-50.rand.bb_com25_ins2 500 1020 125
6 bl-wr2-wht2.10-50.rand.bb_com40_ins2 500 1020 200
7 bl-wr2-wht2.10-50.sdeg.bb_com10_ins1 500 1020 50
8 bl-wr2-wht2.10-50.sdeg.bb_com25_ins1 500 1020 125
9 bl-wr2-wht2.10-50.sdeg.bb_com40_ins1 500 1020 200
10 bl-wr2-wht2.10-50.sdeg.bb_com10_ins2 500 1020 50
11 bl-wr2-wht2.10-50.sdeg.bb_com25_ins2 500 1020 125
12 bl-wr2-wht2.10-50.sdeg.bb_com40_ins2 500 1020 200
13 mesh15x15.bb_com10_ins1 225 420 22
14 mesh15x15.bb_com25_ins1 225 420 56
15 mesh15x15.bb_com40_ins1 225 420 90
16 mesh15x15.bb_com10_ins2 225 420 22
17 mesh15x15.bb_com25_ins2 225 420 56
18 mesh15x15.bb_com40_ins2 225 420 90
19 mesh25x25.bb_com10_ins1 625 1200 62
20 mesh25x25.bb_com25_ins1 625 1200 156
21 mesh25x25.bb_com40_ins1 625 1200 250
22 mesh25x25.bb_com10_ins2 625 1200 62
23 mesh25x25.bb_com25_ins2 625 1200 156
24 mesh25x25.bb_com40_ins2 625 1200 250
25 steinb4.txt_com10_ins1 50 100 5
26 steinb4.txt_com25_ins1 50 100 12
27 steinb4.txt_com40_ins1 50 100 20
28 steinb10.txt_com10_ins1 75 150 7
29 steinb10.txt_com25_ins1 75 150 18
30 steinb10.txt_com40_ins1 75 150 30
31 steinb16.txt_com10_ins1 100 200 10
32 steinb16.txt_com25_ins1 100 200 25
33 steinb16.txt_com40_ins1 100 200 40
34 steinc6.txt_com10_ins1 500 1000 50
35 steinc6.txt_com25_ins1 500 1000 125
36 steinc6.txt_com40_ins1 500 1000 200
37 steinc11.txt_com10_ins1 500 2500 50
38 steinc11.txt_com25_ins1 500 2500 125
39 steinc11.txt_com40_ins1 500 2500 200
40 steinc16.txt_com10_ins1 500 12500 50
41 steinc16.txt_com25_ins1 500 12500 125
42 steinc16.txt_com40_ins1 500 12500 200
43 planar-n50.ins1.txt_com10_ins1 50 135 5
44 planar-n50.ins1.txt_com25_ins1 50 135 12
45 planar-n50.ins1.txt_com40_ins1 50 135 20
46 planar-n100.ins1.txt_com10_ins1 100 285 10
47 planar-n100.ins1.txt_com25_ins1 100 285 25
48 planar-n100.ins1.txt_com40_ins1 100 285 40
49 planar-n200.ins1.txt_com10_ins1 200 583 20
50 planar-n200.ins1.txt_com25_ins1 200 583 50
51 planar-n200.ins1.txt_com40_ins1 200 583 80
52 planar-n500.ins1.txt_com10_ins1 500 1477 50
53 planar-n500.ins1.txt_com25_ins1 500 1477 125
54 planar-n500.ins1.txt_com40_ins1 500 1477 200

Table 4 Description of instances

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 37

Fig. 20 Comparison between the ACO, LS-SGA and LS-R algorithms (part I)

Fig. 21 Comparison between the ACO, LS-SGA and LS-R algorithms (part II)

38 Pham Quang Dung et al.

Fig. 22 Comparison between the ACO, LS-SGA and LS-R algorithms (part III)

Fig. 23 Comparison between the ACO, LS-SGA and LS-R algorithms (part IV)

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 39

Ins. ACO LS-SGA LS-R
f m M t f m M t τ1 f m M t τ2

1 14.8 14 16 131.6 15.6 14 16 410.76 2/13 16 16 16 194.71 0/19
2 31.85 31 32 165.22 31.4 30 32 564.99 10/3 32 32 32 263.71 0/3
3 37.85 37 38 219.56 37.6 36 38 322.96 6/2 37.9 37 38 230.29 1/2
4 25.25 25 26 95.41 25.9 25 26 434.43 0/13 26 26 26 151.09 0/15
5 34.75 34 35 97.33 34.4 32 35 544.02 8/4 34.95 34 35 303.26 0/4
6 36.95 36 37 185.14 36.05 34 37 422.18 13/0 36.95 36 37 293.27 1/1
7 15.95 15 16 89.24 16.25 16 17 529.03 0/6 17 17 17 430.99 0/20
8 35.8 35 36 67.08 35.45 34 36 536.4 8/3 36 36 36 423.68 0/4
9 33.65 33 34 169.9 33.1 31 34 472.56 11/4 34 34 34 557.57 0/7
10 19.2 19 20 401.19 19.65 19 20 522.22 2/11 20 20 20 448.59 0/16
11 32.95 32 34 365.09 32.9 31 34 880.04 9/7 33.9 33 34 516.21 1/14
12 36.5 35 37 133 35.7 35 37 936.57 11/2 37 37 37 583.99 0/9
13 19.65 19 21 457.46 21.75 21 22 644.11 0/20 21.55 21 22 360.53 0/19
14 27.7 26 29 470.98 29.8 29 31 335.51 0/19 32 31 33 887.93 0/20
15 35.3 32 38 871.22 35.8 33 39 763.25 6/10 38.8 37 40 960.97 0/20
16 17.5 17 19 479.89 19.4 19 20 515.65 0/19 19.45 19 20 568.74 0/18
17 29.2 28 31 1010.52 31.7 30 33 480.98 0/20 33.05 32 34 592.96 0/20
18 34 33 36 750.55 34.6 33 37 649.26 4/13 37.6 36 39 910.63 0/20
19 32.85 29 36 996.96 39.15 36 41 864.6 0/20 41 39 43 946.47 0/20
20 45 42 49 1104.82 51.95 49 56 1053.57 0/20 55.55 54 59 1111.8 0/20
21 57.7 53 61 797.14 65.3 60 69 950.87 0/20 69.3 67 72 1520.61 0/20
22 30.1 28 33 944.36 35.7 34 37 875.12 0/20 37.9 36 40 945.08 0/20
23 45.6 44 48 1015.84 51.35 47 54 673.59 0/20 54.7 52 59 1042.11 0/20
24 57.75 54 61 939.82 65.05 62 68 1409.13 0/20 68.85 66 71 1040.24 0/20

Table 5 Experimental results of the first graphs set

Ins. ACO LS-SGA LS-R
f m M t f m M t τ1 f m M t τ2

25 5 5 5 0.01 5 5 5 1.12 0/0 5 5 5 1.09 0/0
26 12 12 12 0.44 12 12 12 1.22 0/0 12 12 12 1.4 0/0
27 20 20 20 51.11 20 20 20 5.45 0/0 19.9 19 20 2.8 2/0
28 7 7 7 0.02 7 7 7 1.35 0/0 7 7 7 1.16 0/0
29 17.85 17 18 96.48 18 18 18 13.42 0/3 18 18 18 5.2 0/3
30 24.35 23 26 242.04 26.25 26 27 682.84 0/20 27.3 27 28 505.22 0/20
31 10 10 10 0.25 10 10 10 1.46 0/0 10 10 10 1.52 0/0
32 24.35 24 25 364.99 25 25 25 93.53 0/13 25 25 25 8.86 0/13
33 32.45 32 34 658.25 34.1 33 36 747.34 0/19 35.95 35 37 646.19 0/20
34 49.1 47 50 572.75 50 50 50 184.44 0/12 50 50 50 240.75 0/12
35 89.9 85 94 728.76 92.2 87 100 734.88 4/12 104.95 102 108 1370.88 0/20
36 109.8 106 117 924.1 112.05 106 118 971.4 2/14 121.4 119 125 1372.37 0/20
37 50 50 50 23.59 50 50 50 42.19 0/0 50 50 50 37.64 0/0
38 123.3 122 125 521.8 125 125 125 128.49 0/17 125 125 125 262.38 0/17
39 194.25 190 198 494.64 200 200 200 395.54 0/20 200 200 200 473.81 0/20
40 50 50 50 6.89 50 50 50 55.12 0/0 50 50 50 46.01 0/0
41 125 125 125 17.13 125 125 125 194.36 0/0 125 125 125 113.83 0/0
42 200 200 200 45.32 200 200 200 366.69 0/0 200 200 200 183.32 0/0

Table 6 Experimental results of the steiner graphs set

6.3 The routing and wavelength assignment problem with delay side constraint
(RWA-D)

The last application demonstrates that VarPath variables of LS(Graph) and var{int}
of COMET can easily be combined.

40 Pham Quang Dung et al.

Ins. ACO LS-SGA LS-R
f m M t f m M t τ1 f m M t τ2

43 5 5 5 0.03 5 5 5 0.86 0/0 5 5 5 0.8 0/0
44 12 12 12 0.16 12 12 12 0.96 0/0 12 12 12 0.97 0/0
45 20 20 20 36.38 20 20 20 25.12 0/0 19.9 19 20 31.18 2/0
46 10 10 10 0.12 10 10 10 1.14 0/0 10 10 10 1.07 0/0
47 25 25 25 20.22 25 25 25 7.05 0/0 25 25 25 5.33 0/0
48 34 33 36 680.72 35.3 34 37 813.56 0/16 36 35 37 698.88 0/18
49 20 20 20 13.46 20 20 20 4.06 0/0 20 20 20 5.23 0/0
50 41.8 39 43 889.07 44.85 43 47 988.81 0/20 45.95 45 48 853.18 0/20
51 49.35 47 51 790.65 53.35 51 56 1033.97 0/19 55.7 54 58 901.74 0/20
52 44.95 42 47 1100.41 49.95 49 50 484.84 0/20 50 50 50 309.24 0/20
53 60.95 57 65 954.35 73.85 70 77 1345.74 0/20 78.2 77 80 1044.03 0/20
54 82.85 78 86 1235.13 93.95 91 99 1366.27 0/20 100.15 97 102 1455.43 0/20

Table 7 Experimental results of the planar graphs set

Fig. 24 Comparison between the ACO, LS-SGA and LS-R algorithms (part V)

6.3.1 Problem statement

Given an undirected weighted graph G = (V,E), each edge e of G has cost c(e)
(e.g., the delay in traversing e). Suppose given a set of connection requests R =
{〈s1, t1〉, 〈s2, t2〉, ..., 〈sk, tk〉} and a value D. The RWA-D problem consists of find-
ing routes pi from si to ti and their wavelengths for all i = 1, 2, ..., k such that:

1. the wavelengths of pi and pj are different if they have common edges, ∀i 6= j ∈
{1, 2, ..., k} (wavelength constraint),

2.
∑
e∈pi c(e) ≤ D,∀i = 1, 2, ..., k (delay constraint),

3. the number of different wavelengths is minimized (objective function).

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 41

Fig. 25 Comparison between the ACO, LS-SGA and LS-R algorithms (part VI)

6.3.2 The model

The idea of the proposed algorithm is simple. We iteratively perform a local search
algorithm for finding a feasible solution to the RWA-D problem with W wavelengths
(W = 1, 2, 3, ...) until the first feasible solution is discovered.

The model is given in Figure 26. Lines 4–10 initialize all VarPath vps[i]
from s[i] to t[i] with the shortest version. Line 11 initializes an array vw where
vw[i] stores the wavelength value for the path vps[i]. The search starts with one
wavelength (see line 14). At each step, we try to find a feasible solution to the RWA-
D problem by a localsearch procedure (line 16). The search terminates (line 17)
if a feasible solution to the RWA-D problem is discovered, otherwise, we increase W
by one (line 19).

The localsearch procedure described in Figure 27 receives an array of VarP-
ath vps, a value W of the number of wavelengths, and local search parameters
maxIt and maxT as input. Line 2 creates a Solver<LSGraph> ls and lines 4–
6 post all VarPath to it. Line 8 initializes an array var{int} xw, where xw[i]
represents the wavelength assigned to the path vps[i] and is initialized with the
value vw[i]. The domain of xw[i] is 1..W. Line 10 initializes a ConstraintS-
ystem<LSGraph> CS. The first constraint of the RWA-D problem is stated and
posted in line 12. Lines 14–15 state and post all side constraints (the delay constraint)
to CS and line 17 closes the constraint system CS. Line 19 groups all variables vps,
xw, and the constraint CS, into a model mod. Line 20 creates a search component
which will be given in detail in Figure 28. Lines 22–23 set parameters for the search
and line 25 performs the search. The value of xw is stored in vw for the next iteration
(see lines 27–28): all paths vps[i] and their wavelengths xw[i] are conserved for

42 Pham Quang Dung et al.

1 void minRWA(int maxIt, float maxT){
2 range Size = 1..ca;

4 vps = new VarPath[Size];
5 // init VarPaths with the shortest version
6 LSGraphPath p(g);
7 forall(i in Size){
8 p.dijkstra(g,s[i],t[i]);
9 vps[i] = new VarPath(g,p);

10 }
11 vw = new int[Size] = 1; // the wavelengths of all paths are

all initialized by 1

13 bool finished = false;
14 int W = 1;
15 while(!finished){// iteratively search with 1, 2, ...

wavelengths until a feasible solution is found
16 if(localsearch(vps,W,maxIt,maxT)){
17 finished = true;
18 }else{
19 W++;
20 }
21 }
22 }

Fig. 26 Model for the RWA-D problem

the next localsearch. The localsearch returns true if a feasible solution to
the RWA-D problem is discovered (lines 30–32).

The search component is given in Figure 28. It extends the TabuSearch<LSG-
raph> and receives Lmax (line 3) as parameters for the solution initialization when
restarting the tabu search. The restartSolution is overriden (lines 13–24) in
which we initialize the value for the VarPath vps[i] with the shortest version
if its cost is greater than Lmax. This aims at quickly satisfying the delay constraint.
The initSolution is also overriden, which does nothing in order not to change
the value of the variables computed in the previous step of the search. The search ex-
plores two neighborhoods (lines 7–10) (see [53] for details about these neighborhood
explorations).

6.3.3 Naive greedy algorithm

As far as we know, the RWA-D problem has not been considered before. In order
to assess the efficiency of our local search, we implement a simple greedy heuristic
algorithm for the RWA-D problem (see Algorithm 8). The main idea of this greedy
heuristic is to find the shortest path10 for each connection request and assigns a wave-
length to this connection request in a greedy way without violating the wavelength
constraint. Variable Sol in line 1 represents the set of paths under construction. Vari-
ableW (line 2) contains the set of wavelengths used for the paths which have already

10 The shortest path best ensures satisfaction of the delay constraint.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 43

1 bool localsearch(VarPath[] vps, int W, int maxIt, float maxT){ //
try to find a feasible solution with W wavelengths

2 Solver<LSGraph> ls(); // create a new solver

4 forall(i in vps.rng()){
5 ls.post(vps[i]);
6 }

8 xw = new var{int}[i in vps.rng()](ls,1..W) := vw[i]; // initial
wavelengths of paths (decision variables) using the
values computed at the previous iteration. At this point,
the domains of wavelengths are extended from 1..W-1 (at
the previous iteration) to 1..W

10 ConstraintSystem<LSGraph> CS(ls); // constraint system

12 CS.post(AllDistinctLightPaths(vps,xw)); // posting the
constraint specifying that two paths vps[i] and vps[j]
sharing a link must have different wavelengths xw[i] and
xw[j].

14 forall(i in vps.rng())
15 CS.post(PathCostOnEdges(vps[i]) <= Lmax); // posting the

delay constraint

17 CS.close();

19 Model<LSGraph> mod(vps,xw,CS); // encapsulate variables,
constraints into a model object

20 RWASearch se(mod,Lmax); // create the search object which
extends the generic built-in tabu search component

22 se.setMaxIter(maxIt);
23 se.setMaxTime(maxT);

25 se.search(); // perform the local search

27 forall(i in xw.rng())
28 vw[i] = xw[i]; // store the wavelengths of paths computed

for the next search iteration with higher number of
wavelengths

30 if(CS.violations() == 0){
31 return true;
32 }
33 return false;
34 }

Fig. 27 The local search procedure for the RWA-D problem

44 Pham Quang Dung et al.

1 class RWASearch extends TabuSearch<LSGraph>{
2 float _Lmax;
3 RWASearch(Model<LSGraph> mod, float Lmax):

TabuSearch<LSGraph>(mod){
4 _Lmax = Lmax;
5 }

7 void exploreNeighborhood(Neighborhood N){
8 exploreTabuMinMultiStageAssign(N,true); // explore the

neighborhood based on changing the wavelengths
9 exploreTabuMinMultiStageReplace1Move1VarPath(N,true); //

explore the neighborhood based on changing the paths
10 }

13 void restartSolution(){
14 // init paths with shortest versions for paths whose current

cost greater than Lmax
15 forall(k in _vps.rng()){
16 VarPath vp = _vps[k];
17 float d = sum(e in vp.getEdges())(e.weight());
18 if(d > _Lmax){ // update the path vp if its delay is greater

than Lmax
19 LSGraphPath pa(vp.getLUB()); // initialize a path object
20 pa.dijkstra(vp.getSource(),vp.getDestination()); //

compute the shortest path from the source of vp to
the destination of vp

21 vp.assign(pa); // assign the shortest path to vp
22 }
23 }
24 }
25 void initSolution(){// do nothing, use the values a computed at

the previous iteration
26 }
27 }

Fig. 28 The search component

been constructed. Variable nbWavelengths (line 3) is the number of wavelengths
used. For each connection request 〈si, ti〉 (line 4), we assign the shortest path Pi to it
(line 6). Variable Wi in line 5 represents the candidate wavelengths for Pi. Lines 7–9
remove all impossible wavelengths for Pi from Wi. If no wavelength already used
is possible for Pi (line 10), then we have to find a new wavelength wi for Pi (lines
11–12). If the candidate setWi is not null, we select randomly a wavelength fromWi

and assign it to Pi (line 15). Lines 16–17 update the solution.

6.3.4 Experiments

We compare our local search model with the naive greedy algorithm described in Al-
gorithm 8 (multistart version with 1000 different orders of 〈si, ti〉 to be considered).

The two algorithms have been tried on different instances (graphs from 16 nodes
and 33 edges to 100 nodes and 261 edges and with 10, 20, and 50 connection requests

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 45

Instances greedy f_min f_max f t
arpanet_ca10.ins1 5 2 2 2 2.15
arpanet_ca20.ins1 9 6 7 6.05 11.36
arpanet_ca50.ins1 16 8 9 8.3 68.35
grid_ext_4x4_ca10.ins1 3 2 2 2 1.62
grid_ext_4x4_ca20.ins1 9 4 5 4.3 7.16
grid_ext_4x4_ca50.ins1 24 8 10 8.55 55.04
grid_ext_5x5_ca10.ins1 4 2 2 2 2.43
grid_ext_5x5_ca20.ins1 7 2 3 2.95 6.21
grid_ext_5x5_ca50.ins1 21 5 8 6.45 54.15
grid_ext_6x6_ca10.ins1 3 2 2 2 2.58
grid_ext_6x6_ca20.ins1 4 2 3 2.1 6.66
grid_ext_6x6_ca50.ins1 20 5 6 5.35 58.99
grid_ext_8x8_ca10.ins1 4 2 2 2 3.81
grid_ext_8x8_ca20.ins1 9 3 4 3.3 14.61
grid_ext_8x8_ca50.ins1 11 4 6 5.15 73.97
grid_ext_10x10_ca10.ins1 4 2 4 2.7 9.71
grid_ext_10x10_ca20.ins1 8 3 5 4 24.22
grid_ext_10x10_ca50.ins1 13 4 6 4.75 105.2

Table 8 Experimental results for the RWA-D problem

Algorithm 8: RWADGreedy
Input: G = (V,E), T = {〈si, ti〉} representing connection requests
Output: Number of wavelengths used for satisfying all requests

1 Sol← �;
2 W ← �;
3 nbWavelengths← 0;
4 foreach 〈si, ti〉 ∈ T do
5 Wi ←W ;
6 Pi ← shortest path from si to ti in G;
7 foreach Pj ∈ Sol do
8 if Pi and Pj have common edges then
9 Remove from Wi the wavelength assigned for Pj ;

10 if Wi = � then
11 nbWavelengths← nbWavelengths+ 1;
12 wi ← nbWavelengths;
13 W ←W ∪ {wi};
14 else
15 wi ← select random an element of Wi;

16 Assign the wavelength wi to the path Pi;
17 Sol← Sol ∪ {Pi};
18 return nbWavelengths;

for each graph). Due to the complexity of the problem, we set the number of iterations
for the tabu search (the value of maxIt in line 16 of Figure 26) to 200. For each
problem instance, the model is executed 20 times. From our preliminary results, we
set the length of the tabu lists tbl to 5 and the value of maxStable to 20.

Table 8 shows the experimental results. Column 2 presents the objective values
found by the naive greedy algorithm. Columns 3–6 show the minimal, the maximal,
and the average of the best objective value found, and the average execution time (in
seconds) over 20 runs. The experimental results show that the local search gives better
solutions than the naive greedy algorithm. Especially when the number of connection

46 Pham Quang Dung et al.

requests increases (i.e., with 50 connection requests), the results found by the local
search are two or three times better than those found by the naive greedy algorithm.
We can see that the number of wavelengths used increases when the number of con-
nection requests increases. Given a number of connection requests, if the size of the
graph increases, then the number of wavelengths used decreases due to the fact that
on larger graphs, each link is shared by fewer paths of the solution found by the local
search and if two paths are completely edge-disjoint, they can be assigned the same
wavelength. For instance, with 50 connection requests, on the graph of 100 vertices,
we needed to use only four wavelengths (line 18), while on the graph of 16 vertices,
we had to use eight wavelengths (line 6).

Once again, in the above model, we notice that it is easy to state and post various
built-in COMET constraints over var{int} to the graph constraint system CS, which
shows the flexibility and compositionality of the framework.

7 Conclusion

This paper considered constrained optimum trees and paths (COT/COP) problems
which arise in many real-life applications. It proposed a domain-specific constraint-
based local search (CBLS) framework (called LS(Graph)) for solving COT/COP
applications, enabling models to be high level, compositional, and extensible, and
allowing for a clear separation between model and search. The key technical con-
tribution to support the COP framework is a novel neighborhood based on a rooted
spanning tree that implicitly defines a path between the source and the target and
its neighbors, and provides an efficient data structure for differentiation. The paper
proved that the neighborhood obtained by swapping edges in this tree is connected
and presented a larger neighborhood involving multiple independent moves. The
LS(Graph) framework, implemented in COMET, was applied to the quorumcast
routing problem, the edge-disjoint paths problem, and the routing and wavelength
assignment problem with side constraints on optical networks. Computational results
showed the potential significance of the approach, both from a modeling and a com-
putational standpoint.

Our future work will focus on the construction of a generic constraint program-
ming (CP) framework and a hybrid system combining CP and CBLS for modeling
and solving COT/COP problems.

Acknowledgements We would like to thank the reviewers for their helpful comments and suggestions.
This research is partially supported by the Interuniversity Attraction Poles Programme (Belgian State, Bel-
gian Science Policy) and the FRFC project 2.4504.10 of the Belgian FNRS (National Fund for Scientific
Research).

References

1. U. Acar, G. Blelloch, R. Harper, J. Vittes, and S. Woo. An experimental analysis of change propaga-
tion in dynamic trees. In proc. 15th SODA, pages 524–533, 2004.

2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, New Jersey, United States, 1993.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 47

3. R. K. Ahuja, J. B. Orlinb, and D. Sharma. A composite very large-scale neighborhood structure for
the capacitated minimum spanning tree problem. Operations Research Letters 31, pages 185–194,
2003.

4. M. Ali, B. Ramamurthy, and J. Deogun. Genetic algorithm for routing in wdm optical networks with
power considerations. part i: The unicast case. In Proceedings of the 8th IEEE ICCCNÕ99, Boston-
Natick, MA, USA, pages 335–340, 1999.

5. M. Ali, B. Ramamurthy, and J. Deogun. Routing and wavelength assignment with power considera-
tions in optical networks. Computer Networks, 32:539–555, 2000.

6. S. Alstrup, J. Holm, K. D. Lichtenberg, and M. Thorup. Maintaining information in fully dynamic
trees with top trees. ACM Trans. Algorithms, 1(2):243–264, 2005.

7. R. Andrade, A. Lucena, and N. Maculan. Using lagrangian dual information to generate degree
constrained spanning trees. Discrete Applied Mathematics, pages 703–717, 2006.

8. B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. On-line admission control and circuit routing
for high performance computing and communication. In 35th IEEE Symposium on Foundations of
Computer Science (FOCS1994), pages 412–423, 1994.

9. P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, and E. Taillard. A parallel tabu search heuristic
for the vehicle routing problem with time windows. Transportation Research - C 5, pages 109–122,
1997.

10. D. Banerjee, V. Mehta, and S. Pandey. A genetic algorithm approach for solving the routing and wave-
length assignment problem in wdm networks. 3rd IEEE/IEE International Conference on Networking,
ICNÕ2004, Paris, pages 70–78, 2004.

11. D. Banerjee and B. Mukherjee. Wavelength-routed optical networks: Linear formulation, resource
budgeting tradeoffs, and a reconfiguration study. IEEE/ACM Transactions on Networking, 8:598–
607, 2000.

12. S. Banerjee, J. Yoo, and C. Chen. Design of wavelength routed optical networks for packet switched
traffic. IEEE Journal of Lightware Technology, 15(9):1636–1646, 1997.

13. A. Baveja and A. Srinivasan. Approximation algorithms for disjoint paths and related routing and
packing problems. Math. Oper. Res., 25(2):255–280, 2000.

14. J. E. Beasley. Or-library, url=http://people.brunel.ac.uk/ mastjjb/jeb/info.html.
15. J. E. Beasley and N. Christofides. An algorithm for the resource constrained shortest path problem.

Network, vol. 19, pages 379–394, 1989.
16. M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common ances-

tors in trees and directed acyclic graphs. Journal of Algorithms 57, pages 75–94, 2005.
17. O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM J. Comput., 22(2):221–

242, 1993.
18. M. Blesa and C. Blum. Finding edge-disjoint paths in networks: An ant colony optimization algo-

rithm. Journal of Mathematical Modelling and Algorithms, 6(3), pages 361–391, 2007.
19. C. Blum. A new hybrid evolutionary algorithm for the huge k-cardinality tree problem. Proceedings

of the 8th annual conference on Genetic and evolutionary computation, pages 515–522, 2006.
20. C. Blum and M. Blesa. New metaheuristic approaches for the edge-weighted k-cardinality tree prob-

lem. Computers and Operations Research, pages 32(6):1355–1377, 2005.
21. T. Bui and G. Sundarraj. Ant system for the k-cardinality tree problem. In K. Deb et al., editor,

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004), 3102:36–47,
2004.

22. C. Chekuri and S. Khanna. Edge disjoint paths revisited. In Proceedings of the 14th ACM-SIAM
Symposium on Discrete Algorithms (SODA2003), pages 628–637, 2003.

23. C. Chen and S. Banerjee. A new model for optimal routing and wavelength assignment in wavelength
division multiplexed optical networks. INFOCOM 1996, pages 164–171, 1996.

24. S. Y. Cheung and A. Kumar. Efficient quorumcast routing algorithms. In: Proceedings of INFO-
COM’94, pages 840–847, 1994.

25. M. Chimani, M. Kandyba, and P. M. I. Ljubic. Obtaining optimal k-cardinality trees fast. ACM
Journal of Experimental Algorithmics, 14(2):5.1–5.23, 2009.

26. I. Chlamtac, A. Ganz, and G. Karmi. Lightpath communications: An approach to high bandwidth
optical WANS. IEEE Transactions on Communications, 40(7):1171–1182, 1992.

27. J. C. N. Clímaco, J. M. F. Craveirinha, and M. M. B. Pascoal. A bicriterion approach for routing
problems in multimedia networks. Networks, 41:206–220, 2003.

28. M. de Aragão, E. Uchoa, and R. Werneck. Dual heuristics on the exact solution of large Steiner
problems. In Proceedings of the Brazilian Symposium on Graphs, Algorithms and Combinatorics
GRACO’01, Fortaleza, 2001.

48 Pham Quang Dung et al.

29. B. Du, J. Gu, D. Tsang, and W. Wang. Quorumcast routing by multispace search. Proceedings of
IEEE Globecom1996, pages 1069–1073, 1996.

30. I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms for the weight-
constrained shortest path problem. Networks, 42:135–153, 2003.

31. R. Dutta and G. N. Rouskas. A survey of virtual topology design algorithms for wavelength routed
optical networks. Optical Networks, 1(1):73–89, 2000.

32. T. Fischer. Improved local search for large optimum communication spanning tree problems. In
MIC’2007 - 7th Metaheuristics International Conference, 2007.

33. G. N. Frederickson. A data structure for dynamically maintaining rooted trees. Journal of Algorithms,
24(1):37–65, 1997.

34. B. Funke, T. Grünert, and S. Irnich. Local search for vehicle routing and scheduling problems: Review
and conceptual integration. Journal of Heuristics, 11(4):267–306, 2005.

35. M. Gruber, J. van Hemert, and G. Raidl. Neighborhood searches for the bounded diameter minimum
spanning tree problem embedded in a vns, ea, and aco. Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1187–1194, 2006.

36. M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylogarithmic
time per operation. J ACM, 46(4):502–516, 1999.

37. V. Ho, P. Francois, Y. Deville, D. Pham, and O. Bonaventure. Using local search for traffic engineering
in switched ethernet networks. In Proceedings of 22nd International Teletraffic Congress (ITC-22)
September 2010, Amsterdam, Netherlands, 2010.

38. E. Hyytia. Resource allocation and performance analysis problems in optical networks, ph.d. thesis.
In Dpt. of Electrical and Communications Engineering, Helsinki University of Technology, Helsinki,
Sweden, 2004.

39. B. Jaumard, C. Meyer, and B. Thiongane. Comparison of ilp formulations for the rwa problem.
Optical Switching and Networking, 4:157–172, 2007.

40. B. Jaumard, C. Meyer, and X. Yu. How much wavelength conversion allows a reduction in the block-
ing rate? Journal of Optical Networking, 5(12):881–900, 2006.

41. P.-C. Kanellakis and C. H. Papadimitriou. Local search for the asymmetric traveling salesman prob-
lem. OPERATIONS RESEARCH, 28(5):1086–1099, 1980.

42. J. Kleinberg. Approximation algorithms for disjoint-paths problems. PhD thesis. The MIT Press,
Cambridge, USA, 1996.

43. S. G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using packing integer pro-
grams. Mathematical Programming, 99(1):63–87, 2004.

44. P. Kolman and C. Scheideler. Simple on-line algorithms for the maximum disjoint paths problem.
13th ACM Symposium on Parallel Algorithms and Architectures (SPAAÕ01), pages 38–47, 2001.

45. M. Krishnamoorthy, A. T. Ernst, and Y. M. Sharaiha. Comparison of algorithms for the degree con-
strained minimum spanning tree. Journal of Heuristics, pages 587–611, 2001.

46. R. M. Krishnaswamy and K. N. Sivarajan. Algorithms for routing and wavelength assignment based
on solutions of LP-relaxations. IEEE Commun. Lett., 5(10):435–437, 2001.

47. K. Lee, K. Kang, T. Lee, and S. Park. An optimization approach to routing and wavelength assignment
in wdm all-optical mesh networks without wavelength conversion. ETRI Journal, 24(2):131–141,
2002.

48. C. P. Low. A fast search algorithm for the quorumcast routing problem. Information Processing
Letters, 66:87–92, 1998.

49. B. Mukherjee. Optical WDM Networks. Springer, 2006.
50. E. Nardelli and G. Proietti. Finding all the best swaps of a minimum diameter spanning tree under

transient edge failures. Journal of Graph Algorithms and Applications vol. 5, no. 5, pages 39–57,
2001.

51. T. Noronha and C. Ribeiro. Routing and wavelength assignment by partition coloring. European
Journal of Operational Research, 171(3):797–810, 2006.

52. A. Ozdaglar and D. Bersekas. Routing and wavelength assignment in optical networks. IEEE/ACM
Transactions on Networking, 11(2):259–272, 2003.

53. Q. D. PHAM. LS(Graph): A constrained-based local search framework for constrained optimum tree
and path problems on graphs, PhD thesis. Université catholique de Louvain, 2011.

54. Q. D. Pham, Y. Deville, and P. V. Hentenryck. Constraint-based local search for constrained optimum
paths problems. In Proceedings of the seventh International Conference on Integration of Artificial
Intelligence and Operations Research techniques in Constraint Programming, CPAIOR’2010, pages
267–281, 2010.

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 49

55. R. Ramaswami and K. Sivarajan. Routing and wavelength assignment in all-optical networks.
IEEE/ACM Trans. Network, 3(5):489–500, 1995.

56. M. Reimann and M. Laumanns. A hybrid aco algorithm for the capacitated minimum spanning tree
problem. Proceedings of First International Workshop on Hybrid Metaheuristics, pages 1–10, 2004.

57. D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. JCSS, 26(3):362–391, 1983.
58. D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the Association for

Computing Machinery, 32(3):652–686, 1985.
59. R. E. Tarjan and R. F. Werneck. Self-adjusting top trees. Proceedings of the 16th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 813–822, 2005.
60. R. E. Tarjan and R. F. Werneck. Dynamic trees in practice. Journal of Experimental Algorithmics

(JEA), 14(Article No.: 5), 2009.
61. M. Tornatore, G. Maier, and A. Pattavina. Wdm network optimization by ilp based on source formu-

lation. In IN PROCEEDINGS OF IEEE INFOCOM, pages 1813–1821, 2002.
62. P. Van Hentenryck and L. Michel. Constraint-based local search. The MIT Press, London, England,

2005.
63. B. Wang and J. C. Hou. An efficient qos routing algorithm for quorumcast communication. Computer

Networks Journal, 44(1):43–61, 2004.
64. Y. Ye, T. Chai, T. Cheng, and C. Lu. Algorithms for the design of wdm translucent optical networks.

Optics Express, 11(22).
65. E. Yetginer, Z. Liu, and G. N. Rouskas. RWA in WDM Rings: An efficient formulation based on

maximal independent set decomposition. In The 17th IEEE Workshop on Local and Metropolitan
Area Networks (IEEE LANMAN 2010), 2010.

66. M. Zachariasen. Local Search for the Steiner Tree Problem in the Euclidean Plane. European Journal
of Operational Research, 119:282–300, 1999.

67. H. Zang, J. P. Jue, and B. Mukherjee. A review of routing and wavelength assignment approaches for
wavelength- routed optical wdm networks. Optical Networks Magazine, 1(1):47–60, 2000.

A Appendix

This Appendix presents the proofs of above propositions.

A.1 Proof of Proposition 1

Proof The proof is divided into two phases:

1. We show that if the conditions (1) and (2) are satisfied, then pathtr′ (s) 6= pathtr(s).
The condition (1) ensures that the selected edge e′ satisfying the condition (2) always exist. It is easy
to see that e′ belongs to pathtr(s) and this edge is removed from that path after taking rep(tr, e′, e).
That means e′ does not belong to pathtr′ (s). Hence, pathtr′ (s) 6= pathtr(s).

2. We now show that if pathtr′ (s) 6= pathtr(s), then the conditions (1) and (2) are satisfied.
We prove this by refutation. Suppose that su = sv. We denote r = su = sv and r1 = ncatr(u, v).
Because r Domtr u and r Domtr v, we have r Domtr ncatr(u, v) = r1 (3).
We now show that pathtr(u, v) does not contain any edges that belong to pathtr(s).

– If pathtr(u, r1) contains an edge (x, y) (where y = fatr(x)) of pathtr(s), then we have
x Domtr u and x Domtr s. Hence, x Domtr ncatr(s, u) = r (4). Otherwise, (x, y) ∈
pathtr(u, r1), so r1 Domtr y, and we have r Domtr y (because r Domtr r1) that means
r Domtr fatr(x) (5). We see that (4) conflicts with (5). From that, we have the fact that
pathtr(u, r1) does not contain any edges of pathtr(s).

– In the same way we can show that pathtr(v, r1) does not contain any edges of pathtr(s).
From that, we have pathtr(u, v) which is actually the concatenation of pathtr(u, r1) and pathtr(v, r1)
does not contain any edges of pathtr(s).
e′ is a replacable edge that belongs to pathtr(u, v). So after the replacement is taken, no edge of
pathtr(s) is removed. Hence, the path from s to the root of the tree does not change, that means
pathtr′ (s) = pathtr(s) (this conflicts with the hypothesis that pathtr′ (s) 6= pathtr(s)). So we
have su 6= sv.

50 Pham Quang Dung et al.

We now suppose that e′ (the edge to be removed) does not belong to pathtr(su, sv). We can see
easily that the path from u to v on tr (pathtr(u, v)) is composed by the path from u to su, the
path from su to sv and the path from sv to v on tr. So after the replacement is taken, no edge of
pathtr(s) is removed. Hence, pathtr′ (s) = pathtr(s) (this conflicts with the hypothesis). So we
have e′ ∈ pathtr(su, sv).

A.2 Proof of Proposition 2

Proof The proposition is proved by showing how to generate that instance trk . This can be done by
Algorithm 9. The idea is to travel the sequence of nodes of P on the current tree tr. Whenever we get
stuck (we cannot go from the current node x to the next node y of P by an edge (x, y) on tr because
(x, y) is not in tr), we change tr by replacing (x, y) by a replacable edge of (x, y) that is not traversed.
The edge (x, y) in line 7 is a replacing edge of tr because this edge is not in tr but it is an edge of g. Line
8 chooses a replacable edge eo of ei that is not in S. This choice is always successfully done because the
set of replacable edges of ei that are not in S is not null (at least an edge (y, fatr(y)) belongs to this set).
Line 9 performs the move that replaces the edge eo by the edge ei on tr. So Algorithm 9 always terminates
and returns a rooted spanning tree tr inducing P . Variable S (line 1) stores the set of traversed edges.

Algorithm 9: Moves
Input: An instance tr0 of RST on (g, s, t) and a path P on g, s = firstNode(P), t = lastNode(P)
Output: A tree inducing P computed by taking k ≤ l basic moves (l is the length of P)

1 S ← �;
2 tr ← tr0;
3 x← firstNode(P);
4 while x 6= lastNode(P) do
5 y ← nextNode(x,P);
6 if (x, y) /∈ E(tr) then
7 ei← (x, y);
8 eo← replacable edge of ei that is not in S;
9 tr ← replaceEdge(tr, eo, ei);

10 S ← S ∪ {(x, y)};
11 x← y ;

12 return tr;

A.3 Proof of Proposition 3

Proof All sequences of these basic moves are executable and the final results have the same set of edges
E(tr) \ {eo1, eo2, ..., eok} ∪ {ei1, ei2, ..., eik}. Thus the result trees of all execution sequences are the
same.

A.4 Proof of Proposition 4

Proof Let x = ncatr(u1, v2), sv1 = ncatr(s, v1), su1 = ncatr(s, u1), sv2 = ncatr(s, v2),
su2 = ncatr(s, u2). Because su1 Domtr sv1, sv2 Domtr su1, su2 Domtr sv2, e′1 belongs to

LS(Graph): A Constraint-Based Local Search for Constraint Optimization on Trees and Paths 51

pathtr(sv1, su1) and e′2 belongs to pathtr(sv2, su2), we have e′1 6= e′2. Otherwise, e2 Dom(tr) e1
and these two edges are not in tr, whereas e′1 and e′2 are in tr. So e1, e′1, e2, e

′
2 are all different.We will

show that the sequence: rep(tr, e′1, e1), rep(tr, e
′
2, e2) is feasible as follows:

Suppose that v′1, u
′
1 are endpoints of e′1 such that u′1 = fatr(v

′
1) and let tr1 = rep(tr, e′1, e1). We

have that:
su1 Domtr u′1 (1)
su2 Domtr u′1 (2)
sv2 Domtr u′1 (3)

It is straightfoward to find that Ttr(v′1) does not change after taking rep(tr, e′1, e1). We can also find
that u1, v2, u2 must belong to Ttr(v′1) (if not, u1, v2, u2 must belong to Ttr(v′1), thus ncatr(s, u1),
ncatr(s, v2), ncatr(s, u2) are dominated by v′1, hence this conflicts with (1), (2), (3)). Thus ncatr1 (s, u2)
= ncatr(s, u2) = su2 and ncatr1 (u1, v2) = ncatr(u1, v2) = x. Moreover, from the property 1, we
have ncatr1 (s, v2) = ncatr1 (u1, v2) = x (4).

Due to the fact that sv2 Domtr1 su1 and su1 Domtr1 u1, we have sv2 Domtr1 u1 (5). From
the fact that sv2 Domtr1 v2 and sv2 Domtr1 u1, we have sv2 Domtr1 ncatr1 (u1, v2) = x (6). We
have e′2 belongs to pathtr(sv2, su2) (7). From (6) and (7) we have that e′2 belongs to pathtr1 (x, su2)
(8). From (4) and (8), we have e′2 ∈ pathtr1 (ncatr1 (s, v2), ncatr1 (s, u2). That means e′2 is still a
preffered replacable edge of e2 on tr1. So the sequence rep(tr, e′1, e1), rep(tr, e

′
2, e2) is feasible.

In similar way, we can prove that the sequence rep(tr, e′2, e2), rep(tr, e
′
1, e1) is also feasible. Hence,

two basic moves rep(tr, e′1, e1), rep(tr, e
′
2, e2) are independent.

