Skip to main content
Log in

Balancing and scheduling of flexible mixed model assembly lines

  • APPLICATION
  • Published:
Constraints Aims and scope Submit manuscript

Abstract

Mixed model assembly line literature involves two problems: balancing and model sequencing. The general tendency in current studies is to deal with these problems in different time frames. However, in today’s competitive market, the mixed model assembly line balancing problem has been turned into an operational problem. In this paper, we propose mixed integer programming (MIP) and constraint programming (CP) models which consider both balancing and model sequencing within the same formulation along with the optimal schedule of tasks at a station. Furthermore, we also compare the proposed exact models with decomposition schemes developed for solving different instances of varying sizes. This is the first paper in the literature which takes into account the network type precedence diagrams and limited buffer capacities between stations. Besides, it is the first study that CP method is applied to balancing and scheduling of mixed model assembly lines. Our empirical study shows that the CP approach outperforms the MIP approach as well as the decomposition schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to solve complex scheduling and placement problems (Mathl. Comput. Modelling) (vol. 17, no. 7, pp. 57–73). Pergamon Press Ltd.

  2. Agnetis, A., & Arbib, C. (1997). Concurrent operations assignment and sequencing for particular assembly problems in flow lines. Annals of Operation Research, 69, 1–31.

    Article  MATH  Google Scholar 

  3. Akgündüz, O.S., & Tunalı, S. (2009). An adaptive genetic algorithm approach for the mixed-model assembly line sequencing problem. International Journal of Production Research, 48(17), 5157–5179.

    Article  Google Scholar 

  4. Appa, G., Mourtos, I., Magos, D. (2002). Integrating constraint and integers programming for the orthogonal latin squares problem, principles and practice of constraint programming - CP 2002 (pp. 79–90). Springer.

  5. Andres, C., Miralles, C., Pastor, R. (2008). Balancing and scheduling tasks in assembly lines with sequenc-dependent setup times. European Journal of Operational Research, 187, 1212–1223.

    Article  MATH  Google Scholar 

  6. Baptiste, P., & Le Pape, C. (1996). Edge-finding constraint propagation algorithms for disjunctive and cumulative scheduling. In Proceedings of the fifteenth workshop of the UK planning special interest group. Liverpool.

  7. Baptiste, P., Le Pape, C., Nuijten, W. (2001). Constraint-Based Scheduling. Kluwer Academic Publishers, Boston.

    Book  MATH  Google Scholar 

  8. Bartak, R. (2003). Constraint-based scheduling: An introduction for newcomers. Intelligent manufacturing systems 2003 (pp. 69–75).

  9. Bockmayr, A., & Pisaruk, N. (2001). Solving an assembly line balancing problem by combining IP and CP. In Proceedings of the 6th annual workshop of ERCIM working droup on constraints. Prague, Czech Republic.

  10. Boysen, N., Fliedner, M., Scholl, A. (2008). Assembly line balancing: Which model to use when. International Journal of Production Economics, 111, 509–528.

    Article  Google Scholar 

  11. Boysen, N., Fliedner, M., Scholl, A. (2009). Sequencing mixed-model assembly lines: Survey, classification and model crituqe. European Journal of Operational Research, 192, 349–773.

    Article  MathSciNet  MATH  Google Scholar 

  12. Boysen, N., Fliedner, M., Scholl, A. (2009). Production planning of mixed-model assembly lines: overview and extensions. Production Planning & Control, 20(5), 455–471.

    Article  Google Scholar 

  13. Brailsfard, S.C., Potts, C.N., Smith, B.M. (1999). Constraint satisfaction problems: algorithms and applications. European Journal of Operational Research, 119, 557–581.

    Article  Google Scholar 

  14. Davenport, A., Gefflot, C., Beck, J. (2001). Slack-based techniques for robust schedules. In Proceedings of 6th European conference on planning (ECP-01).

  15. Dincbas, M., Simonis, H., van Hentenryck, P. (1988). Solving the car-sequencing problem in constraint logic programming. In Proceedings of the European conference on artificial intelligence (ECAI-88) (pp. 290–295). München.

  16. Drexl A., & Kimms, A. (2001). Sequencing JIT mixed-model assembly lines under station-load and part-usage constraints. Management Science, 47(3), 480–491.

    Article  MATH  Google Scholar 

  17. Focacci, F., Lodi, A., Milano, M. (2002). Mathematical programming techniques in constraint programming: A short overview. Journal of Heuristics, 8, 7–17.

    Article  MATH  Google Scholar 

  18. Focacci, F., Laborie, P., Nuijten, W. (2000). Solving scheduling problems with setup times and alternative resources. AIPS 2000 Proceedings (pp. 92–101).

  19. Fourer, R., & Gay, D.M. (2002). Extending an algebraic modeling language to support constraint programming. INFORMS Journal on Computing, 14(4), 322–344.

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, H. (1995). Building robust schedules using temporal protection protection-an empirical study of constraint based scheduling under machine failure uncertainty. Master’s thesis, Department of Industrial Engineering, University of Toronto.

  21. Haralick, R.M., & Elliott, G.L. (1980). Increasing tree search efficiency for constraint satisfaction problems, Artificial Intelligence, 14, 263–314.

    Article  Google Scholar 

  22. Hentenryck, P. (2002). Constraint and integer programming in OPL. INFORMS Journal on Computing, 14(4), 345–372.

    Article  MathSciNet  MATH  Google Scholar 

  23. Hentenryck, P., Perron, L., Puget, J.F. (2000). Search and strategies in OPL. ACM Transactions on Computational Logic, 1(2), 285–320.

    Article  MathSciNet  Google Scholar 

  24. Hentenryck, P. (1989). Constraint satisfaction in logic programming. MIT Press, Cambridge.

    Google Scholar 

  25. Hentenryck, P., Carillon, J.P. (1988). Generality versus specificity: An experience with AI and OR techniques (AAAI-88, 1988) (pp. 660–664). Minnesota.

  26. Hoeve, W., Katriel, I. (2006). Global Constraints. In Rossi, F., van Beek, P., Walsh, T. (Ed.), Handbook of constraint programming (pp. 169–208). Elsevier Science, Amsterdam.

    Chapter  Google Scholar 

  27. ILOG (2003). OPL Studio 3.7. Language Manual.

  28. Jain, V., & Grossmann, I.E. (2001). Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems. INFORMS Journal on Computing, 13(4), 258–276.

    Article  MathSciNet  MATH  Google Scholar 

  29. Kara, Y. (2008). Line balancing and model sequencing to reduce work overload in mixed-model U-line production environments. Engineering Optimization, 40(7), 669–684.

    Article  MathSciNet  Google Scholar 

  30. Karabatı, S., & Sayın, S. (2003). Assembly line balancing in a mixed-model sequencing environment with synchronous transfers. European Journal of Operational Research, 149, 417–429.

    Article  MathSciNet  MATH  Google Scholar 

  31. Khayat, G.E., Langevin, A., Riopel, D. (2006). Integrated production and material handling scheduling using mathematical programming and constraint programming. European Journal of Operations Research, 175, 1818–1832.

    Article  MATH  Google Scholar 

  32. Kim, Y.K., Kim, J.Y., Kim, Y. (2000a). A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines. Applied Intelligence, 13, 247–258.

    Article  Google Scholar 

  33. Kim, Y.K., Kim, S.J., Kim, J.Y. (2000b). Balancing and sequencing mixed-model U-lines with a co-evolutionary algorithm. Production Planning & Control, 11, 754–764.

    Article  Google Scholar 

  34. Kim, Y.K., Kim, J.Y., Kim, Y. (2006). An endosymbiotic evolutionary algorithm for the integration of balancing and sequencing in mixed-model U-lines. European Journal of Operational Research, 168, 838–852.

    Article  MathSciNet  MATH  Google Scholar 

  35. Krogt R., Geraghty J., Salman M.R., Little J. (2010). On supporting Lean methodologies using constraint-based scheduling. Journal of Scheduling, 13, 301–314.

    Article  Google Scholar 

  36. Laborie, P., & Godard, D. (2007). Self-adapting large neighbourhood search: Application to single-mode scheduling problems. In Proc. of the 3rd multidisciplinary international conference on scheduling: Theory and applications (MISTA) (pp. 276–284).

  37. Laborie, P., & Rogerie, J. (2008). Reasoning with conditional time-intervals. In Proc. 21th international FLAIRS conference (FLAIRS 2008) (pp. 555–560).

  38. Laborie, P., Rogerie, J., Shaw, P., Vilím, P. (2009). Reasoning with conditional time-intervals, Part II: An algebraical model for resources. In Proc. 22th international FLAIRS conference (FLAIRS 2009) (pp. 201–206).

  39. Martino, L. & Pastor, R. (2010). Heuristic procedures for solving the general assembly line balancing problem with setups. International Journal of Production Research, 48(6), 1787–1804.

    Article  Google Scholar 

  40. Merengo, C., Nava, F., Pozzetti, A. (1999). Balancing and sequencing manual mixed-model assembly lines. International Journal of Production Research, 37(12), 2835–2860.

    Article  MATH  Google Scholar 

  41. Milano, M., & Wallace, M. (2006). Integrating operations research in constraint programming. OR, 4, 175–219.

    MathSciNet  MATH  Google Scholar 

  42. Milano, M., Ottosson, G., Refalo, P., Thorsteinsson, E.S. (2002). The role of integer programming techniques in constraint programming’s global constraints. INFORMS Journal on Computing, 14(4), 387–402.

    Article  MathSciNet  MATH  Google Scholar 

  43. Miltenburg, J. (2002). Balancing and scheduling mixed-model U-shaped production lines. International Journal of Flexible Manufacturing Systems, 14, 119–151.

    Article  Google Scholar 

  44. Ottosson, G., Thorsteinsson, E.S., Hooker, J.N. (2002). Mixed global constraints and inference in hybrid CLP-IP solvers. Annals of Mathematics and Artificial Intelligence, 34(4), 271–290.

    Article  MathSciNet  MATH  Google Scholar 

  45. Özcan, U., & Toklu, B. (2009). Balancing two-sided assembly lines with sequence-dependent setup times. International Journal of Production Research, 48(18), 5363–5383.

    Article  Google Scholar 

  46. Özdemir, R.G., Ayaǧ, Z., Çakır, D. (2004). Hazırlık sürelerinin azaltılması için bir hat dengeleme modeli (YA/EM 2004). Kocaeli.

  47. Pastor, R., Ferrer, L., Garcia, A. (2007). Evaluating optimization models to solve SALBP. Lecture Notes in Computer Science, 2007(4705), 791–803.

    Article  Google Scholar 

  48. Pinedo, M.L. (2008). Scheduling theory, algorithms, and systems, 3rd edn. Springer, New York.

    MATH  Google Scholar 

  49. Policella, N., Cesta, A., Oddi, A., Smith, S. (2004). Generating robust schedules through temporal flexibility. In Proc. ICAPS 04.

  50. Puget, J.F., & Lustig, I. (2001). Constraint programming and maths programming. Knowledge Engineering Review, 16(1), 5–23.

    Article  MATH  Google Scholar 

  51. Regin, J.C. (1994). A filtering algorithm for constraints of difference in CSPs (AAAI-94) (pp. 362–367). Washington.

  52. Sawik, T. (2000). Simultaneous vs. sequential loading and scheduling of flexible assembly systems. International Journal of Production Research, 38, 3267–3282.

    Article  MATH  Google Scholar 

  53. Sawik, T. (2002). Monolithic vs. hierarchical balancing and scheduling of a flexible assembly line. European Journal of Operational Research, 143, 115–124.

    Article  MathSciNet  MATH  Google Scholar 

  54. Sawik, T. (2004). Loading and Scheculing of a flexible assembly system by mixed integer programming. European Journal of Operational Research, 154, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  55. Scholl, A. (1999). Balancing and sequencing assembly lines, 2nd edn. Physica, Heidelberg.

    Google Scholar 

  56. Scholl, A., Boysen N., Fliedner M. (2008). The sequence-dependent assembly line balancing problem. OR Spectrum, 30(3), 579–609.

    Article  MathSciNet  MATH  Google Scholar 

  57. Scholl, A., Boysen, N., Fliedner, M. (2011). The assembly line balancing and scheduling problem with sequence-dependent setup times: problem extension, model formulation and efficient heuristics. OR Spectrum. doi:10.1007/s00291-011-0265-0.

  58. Smith, B. (2006). Modelling. In Rossi, F., van Beek, P., Walsh, T. (Eds.), Handbook of constraint programming (pp. 377–406). Elsevier Science, Amsterdam.

    Chapter  Google Scholar 

  59. Valle, C.D., Marquez, A.A., Gasca, R.M., Toro, M. (2003). On selecting and scheduling assembly plans using constraint programming. Lecture notes in computer science, 2003(2774), 1329–1336.

    Article  Google Scholar 

  60. Wilhelm, W.E. (1999). A column-generation approach for the assembly system design problem with tool changes. International Journal of Flexible Manufacturing Systems, 11, 177–205.

    Article  MathSciNet  Google Scholar 

  61. Yavuz, M., & Akcali, E. (2007). Production smoothing in just-in-time manufacturing systems: a review of the models and solution approaches. International Journal of Production Research, 45(16), 3579–3597.

    Article  MATH  Google Scholar 

  62. Zeballos, L.J., Quiroga, O.D., Henning, G.P. (2010). A constraint programming model for the scheduling of flexible manufacturing systems with machine and tool limitations. Engineering Applications of Artificial Intelligence, 23, 229–248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Hnich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öztürk, C., Tunalı, S., Hnich, B. et al. Balancing and scheduling of flexible mixed model assembly lines. Constraints 18, 434–469 (2013). https://doi.org/10.1007/s10601-013-9142-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-013-9142-6

Keywords

Navigation