
Constraints manuscript No.
(will be inserted by the editor)

Domain Consistency with Forbidden Values

Jean-Baptiste Mairy · Pascal Van Hentenryck ·
Yves Deville

Abstract Filtering algorithms for table constraints can be classified in two categories: con-
straint-based and value-based. In the constraint-based approaches, the propagation queue
only contains information on the constraints that must be reconsidered. For the value-based
approaches, the propagation queue also contains information on the removed values. This
paper proposes five efficient value-based algorithms for table constraints. Two of them
(AC5TCOpt-Tr and AC5TCOpt-Sparse) are proved to have an optimal time complexity of
O(r ·t+r ·d) per table constraint. Substantial experimental results are presented. An empir-
ical analysis is conducted on the effect of the arity of the tables. The experiments show that
our propagators are the best when the arity of the table is 3 or 4. Indeed, on instances con-
taining only binary constraints, our algorithms are outperformed by classical AC algorithm
AC3rm. AC3rm is dedicated to binary constraints. However, all our algorithms outperform
existing state-of-the-art constraint based STR2+ and MDDc and the optimal value-based
STR3 algorithms on those instances. On instances with small arity tables (up to arity 4), all
our algorithms are generally faster than STR2+, MDDc and than STR3. AC5TCOpt-Sparse
is globally the best propagator on those benchmarks. On benchmarks containing large arity
tables (arity 5 or more), each of the three existing state-of-the-art algorithms is the winning
strategy on one different benchmark.

1 Introduction

Domain-consistency algorithms are usually classified as constraint-based (i.e., the propa-
gation queue only contains information on the constraints that must be reconsidered) or
value-based (i.e., removed values are also stored in the propagation queue). Table constraints

Yves Deville, Jean-Baptiste Mairy
ICTEAM, Université catholique de Louvain, Department of Computing Science and Engineering
Place Sainte-Barbe 2, 1348 Louvain-la-Neuve, Belgium
E-mail: {Yves.Deville,Jean-Baptiste.Mairy}@uclouvain.be

Pascal Van Hentenryck
NICTA and The University of Melbourne Lvl 2 / Bldg 193, The University of Melbourne Melbourne, VIC,
Australia, 3010 E-mail: pvh@nicta.com.au



2 Jean-Baptiste Mairy et al.

have been the focus of much research in recent years. Until recently, all existing algorithms
(except in [21], [23] and [10]) were constraint-based. Recently, an optimal value based algo-
rithm has been proposed in [19], together with an implementation. In this paper, we propose
five original value-based algorithms for table constraints, which are all instances of the AC5
generic algorithm. The proposed propagators maintain, for every value of the variables, the
index of its first current support in the table. They also use, for each variable of a tuple, the
index of the next tuple sharing the same value for this variable. The algorithms differ in their
use of information on the validity of the tuples and on the order of the tuples in the formed
next chains. Those algorithms are similar to (G)AC4 [3, 23] propagators in the sense that
they reason on the sets of supports of the literals. However, they differ from (G)AC4 by not
explicitly representing nor maintaining the sets (except for AC5TCOpt-Sparse which uses
efficiently backtrackable structures for it). Three of the proposed algorithms (AC5TC-Bool,
AC5TC-Sparse and AC5TC-Recomp) have a time complexity of O(r2 · t+ r · d) per table
constraint and two of them (AC5TCOpt-Tr and AC5TCOpt-Sparse) have the optimal time
complexity of O(r ·t+r ·d), where r is the arity of the table, d the size of the largest domain
and t the number of tuples in the table. One of the proposed algorithms, AC5TC-Recomp,
is the (previously unpublished) propagator of the Comet system.

Experimental results show that the arity of the tables in the benchmarks has a substantial
influence on the results of the propagators. We separate the benchmarks into three classes
depending on the arity of the table constraints in the instances: binary constraints, small
arity constraints (arity 3 and 4) and large arity constraints. On the problems containing only
binary table constraints, our propagators are outperformed by the classical AC3rm algorithm
[18]. AC3rm is designed only for binary constraints. However, on those instances, all our
algorithms generally improve upon the existing state-of-the-art STR2+ [16], STR3 [19] and
MDDc [7]. On problems containing only small arity tables (up to arity 4), all our algorithms
generally improve the existing state-of-the-art STR2+, STR3 and MDDc: the speedup is
up to 5.36 over STR2+, up to 7.82 over MDDc and 3.25 over STR3. For the problems with
larger arity tables (arity 5 or more), the conclusion is different. STR3, STR2+ and MDDc are
the winning strategy on one large arity benchmark each. Since the existing state-of-the-art
propagators are suited for large arity tables, and that propagators for binary tables cannot be
used for non-binary constraints, we expect our algorithms to be an interesting contribution
to the field. The rest of this paper is organized as follows. Section 2 presents background
information and related work. Section 3 describes the first two table constraint propagators.
Section 4 proposes an efficient variant of our first algorithms. Section 5 presents our two
optimal propagators and Section 6 describes the experimental results.

2 Background

A CSP (X,D(X),C) is composed of a set of n variables X = {x1, . . . ,xn}, a set of do-
mains D(X) = {D(x1), . . . ,D(xn)} where D(x) is the set of possible values for variable
x, and a set of constraints C = {c1, . . . , ce}, with Vars(ci) ⊆ X (1 ≤ i ≤ e). We use
Vars(c) to refer to the scope of the constraint c. We will use # to refer to the cardinality of
a set. We will say that a tuple v is in D(X) iff ∀1 ≤ i ≤ n, vi ∈ D(xi). D(X) can thus
be seen as the set of tuples D(x1)× . . . ×D(xn). We let d = max1≤i≤n(#D(xi)), and
D(X)xi=a be the set of tuples v in D(X) with vi = a. Given Y = {x1, . . . ,xk} ⊆ X ,
the set of tuples in D(x1)× . . .×D(xk) is denoted by D(X)[Y ] or simply D(Y ). We will



Domain Consistency with Forbidden Values 3

use the term literal to refer to a variable value pair. For a constraint c, we denote c(v) the
test evaluating to true iff v is allowed by c. By abuse of notation, when there is no ambi-
guity, v[x] will denote the value of variable x in tuple v. A support in a constraint c for a
literal (x, a) is a tuple v ∈ D(Vars(c)) such that c(v) and v[x] = a. The following sets
are useful for specifying domain consistency and propagation methods. Let c be a constraint
with arity r, of a CSP (X,D(X),C) with y ∈ Vars(c), and B(X) be some domain.

Inc(c,B(X))= {(x, a)| x ∈ Vars(c) ∧ a ∈ D(x) ∧ ∀v ∈ B(Vars(c))x=a : ¬c(v)}
Cons(c, y, b)= {(x, a)|x ∈ Vars(c) ∧ a ∈ D(x) ∧ ∃v ∈ Zr : v[x] = a ∧

v[y] = b ∧ c(v)}
Inc(c)= Inc(c,D(X))

Inc(c,B(X)) represents the set of domain inconsistent literals of constraint c with respect
to domain B(X). Cons(c, y, b) is the set of literals in the tuples allowed by c having value b
for variable y. A constraint c in a CSP (X,D(X),C) is domain-consistent iff Inc(c) = ∅.
A CSP (X,D(X),C) is domain-consistent iff all its constraints are domain-consistent.

Table Constraints. Given a set of tuples T of arity r, a table constraint c over T holds if
(x1, . . . ,xr) ∈ T , where Vars(c) = (x1, . . . ,xr). The size t of a table constraint c is its
number of tuples, which is also denoted by c.length. We assume an implicit ordering of
the tuples: σc,i denotes the ith element of the table in c and σc,i[x] is the value of σc,i for
variable x. We introduce a top index ⊤ (resp. bottom index ⊥) greater (resp. smaller) than
any other index. We also introduce a universal tuple σc,⊤, with σc,⊤[x] = ∗ forall x ∈ X
and abuse notations in postulating that ∀a ∈ D(x), ∗ = a. This universal tuple can thus be
found in any table. More precisely, for any table T , σc,⊤ ∈ T . Given a table constraint, we
say that a tuple σ is allowed if it belongs to the table. A tuple σ is valid if all its values belong
to the domain of the corresponding variables. To achieve domain consistency, one must at
least check the validity of each tuple and, in the worst case, remove all the values from the
domains. Hence a domain-consistency algorithm has a complexity Ω(r · t+ r · d) per table
constraint in the worst case. An AC5-like algorithm with a complexity O(r · t + r · d) per
table constraint is thus optimal. For most incremental propagators, if the time complexity for
obtaining domain consistency is O(f), then the time complexity of the aggregate executions
of this algorithm along any path in the search tree is also O(f).

Related Work. This paper is an extended version of [22]. A lot of research effort has been
spent on table constraints. The existing propagators can be categorized in 4 classes: index-
based, compression-based, based on a dynamic table and value-based. Those classes are
not mutually exclusive. For the presented approaches, we will analyze the complexity of all
the calls to the propagator along a branch of the search tree. The index-based approaches
use an indexing of the table to speed up its traversal. Examples of such propagators are
GAC3-allowed and other constraint-based variants (GAC3rm-allowed, GAC2001-allowed)
[15, 4, 17, 11]. For each variable value pair (x, a), the index data structure has an array
of the indexes of the tuples with value a for x. The space complexity of the data structure
is O(r · t). The time complexity of GAC3-allowed along a branch in the search tree is
O(r3 · d · t) per table constraint. Indeed, for one call to GAC3-allowed, a variable requires
at worst to test the validity of each tuple of the constraint (thanks to the indexing structure),
which costs O(r · t). Thus, one call of GAC3-allowed costs O(r2 · t). The propagator



4 Jean-Baptiste Mairy et al.

being called at most r · d times along a branch in the search tree, the complexity of GAC3-
allowed is O(r3 · d · t). GAC2001-allowed has a time complexity of O(r2 · t+ r3 · d2) per
table constraint along a branch in the search tree. The last support structure of GAC2001-
allowed ensures that a tuple from the table is never considered twice, except while checking
if the last support is still valid. Along a branch in the search tree, the cost of testing each
tuple once per variable is O(r2 · t). The cost of the validity tests of the last supports is
O(r3 · d2), leading to a total complexity of O(r2 · t + r3 · d2). Indexing can also be
used in value-based propagators. In [21], the authors propose a value-based propagator for
table constraints implementing GAC6. It uses a structure which indexes, for each variable
value pair (x, a) and each tuple, the next tuple in the table with value a for x. The space
complexity of the data structure is O(r · d · t). This space usage can be reduced by using a
data structure called hologram [20]. Another index type, proposed in [12], indexes, for each
tuple and variable, the next tuple having a different value for the variable. Compression-
based propagators compress the table in a form that allows a fast traversal. One of such
compressed forms uses a trie for each variable [12]. Another example of compression-based
techniques [7, 6] uses a Multi Valued Decision Diagram (MDD) to represent the table more
efficiently. During propagation, the tries or MDD are traversed using the current domains
to perform the pruning. These algorithms are constraint-based and have a time complexity
of O(r2 · d · t) per table constraint along a branch in the search tree. This is a worst time
complexity, corresponding to the case where there is few or no compression obtained with
their respective encodings of the table. Compression and faster traversal can also be achieved
by using compressed tuples, which represent a set of tuples [13, 27]. Propagators based
on dynamic tables maintain the table by suppressing invalid tuples from it. The or-tools
propagator [24] maintains such a dynamic table. It uses a bitset on the tuples of the table
to maintain their validity. One bitset per literal (x, a) is also used for easy access of the
tuples with value a for variable x. This propagator has a O(r · d · t) time complexity per
table constraint along a branch in the search tree. The STR algorithm [30] and its refined
versions, STR2 and STR2+ [16], are also maintaining a dynamic table. They are constraint-
based and scan only the previously valid tuples to extract the domain consistent values. The
time complexity of STR2 and STR2+ is O(r2 · d · t) per table constraint along a branch
in the search tree. This complexity is obtained by multiplying by r · d the complexity of
one call to the propagator given in [16] while taking into account that the values of the
domains can only be removed once along a branch in the search tree. The maximum number
of calls to the propagator along one branch in the search tree is indeed r · d. None of the
previously presented propagators has the optimal O(r · t+ r · d) time complexity per table
constraint. STR3 [19] has recently been introduced with an optimal time complexity per
table constraint. Although the name might suggest it, STR3 is not an improvement of STR2.
STR3 is a brand new GAC algorithm for table constraints. It is value-based (while STR2
and STR2+ are constraint-based), thus belonging to the last table constraint propagators
category. STR3 starts by precomputing the set of initial supporting tuples for each literal
(working with the indexes of those tuples). Those sets are not trailed during the search.
Each valid literal has two special supports in its set: the last known valid tuple (called curr )
and one valid support in this set (we call it watched ). The tuple curr is maintained during
the search upon backtracking. Its property is that all the tuples after curr are known to be
invalid. The second special support is not backtracked during the search. This means that the
two can be different. Upon the removal of a literal (x, a), a new valid tuple is searched for
all the other literals having (x, a) in their watched tuple. This search starts at curr towards
the head of the set. Once a new valid support is found, both curr and watched are updated
for the literal being inspected. If none is found, then the literal is removed. STR3 can be seen



Domain Consistency with Forbidden Values 5

as a highly optimized version of GAC4, applying an idea similar to watched literals to the
supports. A recent version of the MDDc propagator, presented in [10] is both in the value
based and compression based category. This propagator uses an MDD, as does MDDc, but it
never revisits parts of the MDD that do not need to be revisited. To achieve that, it switches
from constraint based to value based. It also adds explanations to the MDD propagation, in
an incremental fashion.

The AC5 Algorithm. AC5 [32, 8] is a generic value-based domain-consistency algorithm.
In a constraint based approach, the propagation queue contains information about the con-
straints that need to re-enforce consistency. In a value-based approach, information on the
removed values is also stored in the queue for the propagation. AC5 thus uses a queue
Q of triplets (c,x, a) stating that the domain consistency of constraint c should be recon-
sidered because value a has been removed from D(x). Specification 1 describes the main
methods of AC5. In the postcondition of enqueue, Qo represents the value of Q at call
time. The propagators using AC5 should define their own post and valRemove meth-
ods. The generic AC5 algorithm, using those methods, is depicted in Algorithm 1. In all
the pseudocodes presented in this paper, the assumed context is the resolution of a CSP
(X,D(X),C) and a propagation queue Q. The working principle of AC5 consists of two
parts: initialization (initAC5) and queue propagation (propagateQueueAC5). In the
initialization, the post(c,△) method is called once for each constraint c. Its role is to com-
pute the inconsistent values of the constraint and initialize specific data structures required
for the propagation. Each time a value is removed from a domain, enqueue puts the nec-
essary information on the propagation queue. In the second phase of AC5, while there are
triplets (c, y, b) on the queue, valRemove(c, y, b) is called so that the constraint c can
reflect the removal of b from D(y), possibly removing more literals. This dequeuing/en-
queuing process is repeated until the queue becomes empty. At this point, the constraints
using AC5 are domain consistent. As long as (c,x, a) is in the queue, it is algorithmically
desirable to consider that value a is still in D(x) from the perspective of constraint c. This
is captured by the following definition.

Definition 1 The local view of a domain D(x) wrt a queue Q for a constraint c is defined
as D(x,Q, c) = D(x) ∪ {a|(c,x, a) ∈ Q}.

For a constraint c, a queue Q and a set of variables X = {x1 . . . xn}, D(X,Q, c) is defined
as {D(x1,Q, c), . . . ,D(xn,Q, c)}. For a table constraint c, a tuple σ is Q-valid if all its
values belong to D(Vars(c),Q, c). The central method of AC5 is the valRemovemethod,
where the set △ is the set of values becoming inconsistent because b is removed from D(y).
In this specification, b is a value that is no longer in D(y) and valRemove computes
the values (x, a) no longer supported in the constraint c because of the removal of b from
D(y). Note that values in the queue are still considered in the potential supports as their
removal has not yet been reflected in this constraint. The minimal pruning △1 only deals
with variables and values previously supported by (y, b). However, we give valRemove
the possibility of achieving more pruning (△2), which is useful for table constraints.



6 Jean-Baptiste Mairy et al.

1 enqueue(in x: Variable; in a: Value; in C1: Set of Constraints;
2 inout Q: Queue)
3 // Pre: x ∈ X , a /∈ D(x), C1 ⊆ C
4 // Post: Q = Q0 ∪ {(c, x , a)|c ∈ C1, x ∈ Vars(c)}
5 post(in c: Constraint; out △: Set of Values)
6 // Pre: c ∈ C
7 // Post: △ = Inc(c) + initialization of specific data structures
8 valRemove(in c: Constraint; in y: Variable; in b: Value;
9 out △: Set of Values)

10 // Pre: c ∈ C, b /∈ D(y , Q, c)
11 // Post: △1 ⊆ △ ⊆ △2 with △1 = Inc(c, D(X , Q, c)) ∩ Cons(c, y , b)
12 // and △2 = Inc(c)

Specification 1: The enqueue, post, and valRemove Methods for AC5

1 AC5(in X, C, inout D(X )){
2 // Pre: (X , D(X ), C) is a CSP
3 // Post: D(X ) ⊆ D(X )0, (X , D(X ), C) equivalent to (X , D(X )0, C)
4 // (X , D(X ), C) is domain consistent
5 initAC5(Q);
6 propagateQueueAC5(Q);
7 }

8 initAC5(out Q){
9 Q = ∅;

10 C1 = ∅;
11 forall(c in C){
12 post(c,△);
13 forall((x , a) in △){
14 D(x) -= a;
15 enqueue(x , a, C1, Q);
16 }
17 C1 += c;
18 }
19 }

20 propagateQueueAC5(in Q){
21 while Q != ∅ {
22 select (c, y , b) in Q;
23 Q = Q - (c, y , b);
24 valRemove(c, y , b,△);
25 forall((x , a) in △){
26 D(x) -= a;
27 enqueue(x , a, C\{c}, Q);
28 }
29 }
30 }

Algorithm 1: The AC5 Algorithm.

T

x y z

1 a b a

2 b c b

3 a a a

4 a b b

5 b b a

next

x y z

1 3 4 3

2 5 ⊤ 4

3 4 ⊤ 5

4 ⊤ 5 ⊤
5 ⊤ ⊤ ⊤

Fig. 1: Example of a next data structure of a table T (arrow pointers for variable z only).



Domain Consistency with Forbidden Values 7

3 Efficient Value-Based Algorithms for Table Constraints

Our algorithms use a data structure FS memorizing first supports. Intuitively FS[x, a] is the
index of the first Q-valid support of the variable value pair (x, a). It is thus equivalent to the
last structure used in GAC2001 algorithms. To speed up the table traversal, our algorithms
use a second data structure called next that links all the elements of the table sharing the
same value for a given variable. More formally, for a given table constraint c, FS and next
satisfy the following invariant (called FS-invariant) before dequeuing an element from Q.

∀x ∈ Vars(c) ∀a ∈ D(x,Q, c) : FS[x, a] = i ⇔
σc,i[x] = a ∧ i ̸= ⊤ ∧ σc,i ∈ D(Vars(c),Q, c)

∧ ∀j < i : σc,j [x] = a ⇒ σc,j ̸∈ D(Vars(c),Q, c)

∀x ∈ Vars(c) ∀1 ≤ i ≤ c.length : next[x, i] = Min{j|i < j ∧ σc,j [x] = σc,i[x]}

The next data structure, illustrated in Figure 1, is static as it does not depend on the domain
of the variables. However, FS must be trailed during the search.

Methods postTC and valRemoveTC are given in Algorithms 2 and 3. TC is included in
the methods and algorithms names to underline the fact that those are propagators for Table
Constraints. Note that the △ computed by valRemoveTC corresponds to △1 in Specifi-
cation 1. Method valRemoveTC uses the seekNextSupportTC method (Algorithm 4)
which searches the next Q-valid tuple of a literal. Abstract method isQValidTC(c,i)
tests whether σc,i is Q-valid (i.e., σc,i ∈ D(Vars(c),Q, c)) and can be implemented in
many ways. One simple way is to record the Q-validity of tuples in some data structure,
initialized in method initSpecStructTC and updated in method setQInvalidTC.
Method postTC initializes the FS and next data structures and returns the set of incon-
sistent values. Method valRemoveTC has only to consider the tuples in the next chain
starting at FS[y, b]. The tuples before are invalid and cannot be the first support of any
other Q-valid literal. When one of the traversed tuples σc,i is the first support of an element
a = σc,i[x], a new support FS[x, a] must be found. Indeed, σc,i is no more Q-valid. If such
a new support does not exist, then (x, a) belongs to the set △. Method valRemoveTC thus
computes the set △ and maintains the FS-invariant. The AC5 algorithm with the postTC
and valRemoveTC implementation for table constraint is called AC5TC (AC5 for Table
Constraints).

Proposition 1 Assuming that initSpecStructTC and setQInvalidTC have a time
complexity of O(r · t + r · d) and O(1) respectively and allow a correct implementation
of isQValidTC to have a complexity of O(r), then AC5TC is correct and has a time
complexity of O(r2 · t+ r · d) per table constraint along a branch in the search tree.

Proof Assuming a correct implementation of isQValidTC, AC5TC is correct. Indeed,
postTC and valRemoveTC respect their specification (Specification 1). Not considering
initSpecStructTC, method postTC has a time complexity of O(r · t + r · d). After
the postTC method, the domain size of x is O(t) since each value in D(x) has at least one
support in the table. We now establish the complexity of all executions of valRemoveTC
for a given table constraint, assuming this table constraint is one of the constraints of the CSP
on which domain consistency is achieved. Consider first all executions of valRemoveTC
without line 12. For a given variable y, these executions follow the different next chains
of the variable y. The chains for all values of y have a total number of t elements. The



8 Jean-Baptiste Mairy et al.

1 postTC(in c: Constraint;out △: Set of Values){
2 // Pre: c ∈ C, c is a table constraint
3 // Post: △ = Inc(c) + initialization of the next, FS and specific data structures
4 △ = ∅;
5 initSpecStructTC(c);
6 forall(x in Vars(c), a in D(x)) c.FS[x , a]=⊤;
7 forall(x in Vars(c), i in 1..c.length) c.next[x , i] = ⊤;
8 forall(i in c.length..1)
9 if (σc,i in D(Vars(c))){

10 forall(x in Vars(c)){
11 c.next[x , i] = FS[x ,σc,i [x ]];
12 c.FS[x ,σc,i [x ]] = i;
13 }
14 }
15 else setQInvalidTC(c, i);
16 forall(x in Vars(c),a in D(x))
17 if(c.FS[x , a]==⊤) △ += (x,a);
18 }

Algorithm 2: Method postTC for Table Constraints

1 valRemoveTC(in c: Constraint;in y: Variable; in b: Value;
2 out △: Set of Values) {
3 // Pre: c ∈ C, c is a table constraint and b /∈ D(y , Q, c)
4 // Post: △ = Inc(c, D(X , Q, c)) ∩ Cons(c, y , b)
5 △ = ∅;
6 i = c.FS[y , b];
7 while(i!=⊤){
8 setQInvalidTC(c, i);
9 forall(x in Vars(c): x!=y){

10 a = σc,i [x ];
11 if (c.FS[x , a]==i){
12 c.FS[x , a] = seekNextSupportTC(c, x , i);
13 if(c.FS[x , a]==⊤ && a in D(x)) △ += (x , a);
14 }
15 }
16 i = c.next[y , i];
17 }
18 }

Algorithm 3: Method valRemoveTC for Table Constraints.

1 function seekNextSupportTC(in c: Constraint; in x: Variable;
2 in i: Index) : Index {
3 // Pre: c ∈ C, c is a table constraint, x ∈ Vars(c), 1 ≤ i ≤ c.length
4 // Post: return the first index j greater than i of a Q−valid tuple with σc,j [x ] == σc,i [x ]
5 i = c.next[x , i];
6 while(i!=⊤){
7 if(isQValidTC(c, i)) return i;
8 i = c.next[x , i];
9 }

10 return ⊤;
11 }

Algorithm 4: Function seekNextSupportTC for Table Constraints.



Domain Consistency with Forbidden Values 9

complexity of lines 9–16 (without line 12) is O(r). Since the table has r variables, the
complexity of all valRemoveTC executions during the fixed point (without line 12) is thus
O(r2 · t), assuming a O(1) complexity of setQInvalidTC. Consider now all executions
of line 12 in valRemoveTC for a variable x. Since line 12 always increases the value
of FS [x, a] in the next chain of (x, a), we have a global complexity of O(V · t) for the
variable x, where V is the time complexity of isQValidTC. All executions of line 12
in valRemoveTC thus take time O(V · r · t). The time complexity of all executions of
valRemoveTC is then O(r2 · t+ V · r · t). With a O(r) isQvalidTC, this complexity
is O(r2 · t), giving AC5TC a complexity of O(r2 · t + r · d) per table constraint along a
branch in the search tree.

Even with a O(1) the time complexity of isQValidTC, the algorithm has a complexity of
O(r2 · t+ r · d) per table constraint along a branch in the search tree. It is thus not optimal
but its implementations turn out, in the experiments, to be more efficient than state-of-the-art
algorithms on some classes of problems.

1 initSpecStructTC-Bool(in c: Constraint) {
2 forall(i in 1..c.length) c.isQValid[i] = true;
3 }
4 function isQValidTC-Bool(in c: Constraint;in i: Index) {
5 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
6 // Post: returns σc,i ∈ D(X , Q, c)
7 return c.isQValid[i];
8 }
9 setQInvalidTC-Bool(in c: Constraint;in i: Index) {

10 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
11 c.isQValid[i] = false;
12 }

Algorithm 5: Implementation of the specific methods of AC5TC-Bool

1 initSpecStructTC-Sparse(in c: Constraint){
2 forall(i in 1..c.length){
3 c.Map[i] = i;
4 c.Dyn[i] = i;
5 }
6 c.size = c.length;
7 }
8 function isQValidTC-Sparse(in c: Constraint; in i: Index;out b: Bool){
9 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length

10 // Post: return (σc,i ∈ D(X , Q, c))
11 return (c.Map[i] <= c.size);
12 }
13 setQInvalidTC-Sparse(in c: Constraint; in i: Index){
14 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
15 c.Dyn[c.Map[i]] = c.Dyn[c.size];
16 c.Dyn[c.size] = i;
17 c.Map[c.Dyn[c.Map[i]]] = c.Map[i];
18 c.Map[i] = c.size;
19 c.size--;
20 }

Algorithm 6: Implementation of the specific methods of AC5TC-Sparse



10 Jean-Baptiste Mairy et al.

We now present two implementations of AC5TC. They differ in the implementations of
methods isQValidTC, setQInvalidTC and initSpecStructTC. AC5TC-Bool,
the first implementation of AC5TC, is shown in Algorithm 5. It uses a data structure isQValid[i]
to record the Q-validity of the element σc,i. It satisfies invariant isQValid[i] ⇔ σc,i ∈
D(Vars(c),Q, c) before dequeuing an element from Q (1 ≤ i ≤ c.length). The data
structure must be trailed as it depends on the domains. The methods for Q-validity are
given in Algorithm 5. As the methods isQValidTC-Bool is correct, AC5TC-Bool is
correct. The time complexity of isQValidTC-Bool and setQInvalidTC-Bool is
O(1) and initSpecStructTC-Bool is O(t). The time complexity of AC5TC-Bool is
then O(r2 · t+ r · d) per table constraint.

AC5TC-Bool must trail the isQValid boolean array. We now propose an implementation that
only trails one integer, building upon an idea in STR, STR2 and STR2+ [30, 16] originally
described in [5]. This structure, called Sparse Set, keeps elements that have been removed at
the end of the table, with a single variable size representing the boundary between present
(before position size) and removed elements (after position size). When an element is re-
moved, it is swapped with the element at position size and size is decremented by one. This
representation uses two arrays Map and Dyn to represent the sparse set. Map contains, for
each entry of the set, its position in the array Dyn . Dyn contains the elements of the set,
before the index size and the ones which have been removed, after size . Figure 2 depicts
the structures representing the set {1, 2, 3, 4, 6, 7, 9, 10} from which 5 and 8 have previ-
ously been removed. Here, as it will be the case in our propagator, we have that the values
are successive integer values between 1 and n. This is not a necessary condition. Figure 3
illustrates the remove operation. The size variable must be trailed but the arrays Map and
Dyn do not need to. When restoring size , the elements of the set are automatically restored,
albeit at a different position in the table. This is sometimes called semantic backtracking
[31]. For this implementation, the Sparse Sets are used to keep track of the set of Q-valid
tuple indexes in the table of the constraint. Figure 4 illustrates the use of the sparse sets for
this implementation. Instead of trailing t booleans as AC5TC-Bool is doing, AC5TC-Sparse
only has to trail size (one integer). More formally, for a given table constraint c, the data
structures satisfy the following invariants before dequeuing an element from Q:

∀ 1 ≤ i ≤ c.length : (Map[i] ≤ size ⇔ σi ∈ D(Vars(c),Q, c) ) ∧ Dyn[Map[i]] = i

Testing the Q-validity of a tuple index i in such set is easy: it suffices to test whether Map[i]
is less or equal than size . This is a O(1) operation.

The implementations are given in Algorithm 6 and the algorithm is called AC5TC-Sparse.
The time complexity of isQValidTC-Sparse and setQInvalidTC-Sparse is O(1)
and initSpecStructTC-Sparse takes time O(t). The time complexity of AC5TC-
Sparse is thus O(r2 · t+ r · d).

The space complexities of both AC5TC-Bool and AC5TC-Sparse are Θ(r ·t+r ·d). Indeed,
the next structure is Θ(r · t) since each tuple appears in r chains, FS is Θ(r · d) and both
isQValid and Map/Dyn are Θ(t). AC5TC-Bool has Θ(r ·d) integers and Θ(t) boolean to
trail during the search: it must trail FS and isQValid . AC5TC-Sparse only has to trail FS
and one integer, so Θ(r·d) integers. The cost the algorithms have to pay during backtracking
is proportional to the number of changes in the structures. The nature, integer or boolean, of
the elements of the structure doesn’t matter: a cost of O(1) has to be paid to restore them.
Each change is recorded in the trailing record of the algorithms. We thus compare here the
number of modifications to their structures, which is the size of their trailing record. For



Domain Consistency with Forbidden Values 11

Map

1

2

3

4

5

6

7

8

910

Dyn

1

2

3

4

5

6

7

8

9 10

size8

6

9

1

3

10

2

5

4

7 5

8

10

1

9

3

2

6

4

7

Fig. 2: The two arrays representing the Sparse Set {1, 2, 3, 4, 6, 7, 9, 10}

Map

1

2

3

4

5

6

7

8

9 10

Dyn

1

2

3

4

5

6

7

8

9 10

size 8

6

9

1

3

10

2

5

4

7 5

8

10

1

9

3

2

6

4

7

(a
)O

pe
ra

tio
ns

to
re

m
ov

e
9

fr
om

th
e

se
t

M
ap

1

2

3

4

5

6

7

8

9

10

D
yn

1

2

3

4

5

6

7

8

9

10

si
ze

6

8

9

1

3

10

2

5

4

7

5

8

9

1

10

3

2

6

4

7

(b
)

R
es

ul
tin

g
D
y
n

an
d
M
a
p

Fi
g.

3:
R

em
ov

in
g
9

fr
om

th
e

se
t{

1
,2
,3
,4
,6
,7
,9
,1
0

}
(5

an
d
8

pr
ev

io
us

ly
re

m
ov

ed
)

Ta
bl

e

x
y

z

1
a

b
a

2
b

c
b

3
a

a
a

4
a

b
b

5
b

b
a

M
ap

1

2

3

4
5

D
yn

1

2

3

4
5

si
ze

4

2

3

5

1
2

5

3

4

1

Fi
g.

4:
A

C
5T

C
-S

pa
rs

e
us

in
g

Sp
ar

se
se

ts
to

ke
ep

tr
ac

k
of

Q
-v

al
id

tu
pl

es
.I

n
th

is
ex

am
pl

e,
tu

pl
es

2
an

d
5

ar
e

Q
-i

nv
al

id
.

on
e

ta
bl

e
co

ns
tr

ai
nt

,a
lo

ng
a

br
an

ch
in

th
e

se
ar

ch
tr

ee
co

nt
ai

ni
ng

m
no

de
s,

if
k

tu
pl

es
of

th
e

ta
bl

e
ar

e
fo

un
d

Q
-i

nv
al

id
,t

he
si

ze
of

th
e

tr
ai

lin
g

re
co

rd
du

e
to

F
S

is
O
(r

·k
).

In
ad

di
tio

n,
A

C
5T

C
-B

oo
lh

as
k

el
em

en
ts

in
its

tr
ai

lin
g

re
co

rd
du

e
to

is
Q
V
a
li
d

an
d

A
C

5T
C

-S
pa

rs
e

ha
s

at
m

os
tm

el
em

en
ts

in
its

re
co

rd
,b

ec
au

se
on

ly
si
ze

is
tr

ai
le

d.
If

at
m

os
to

ne
tu

pl
e

is
fo

un
d

Q
-i

nv
al

id
in

ea
ch

no
de

,t
he

re
co

rd
sh

av
e

th
e

sa
m

e
si

ze
bu

tu
su

al
ly

,w
e

ha
ve

m
<

k
.A

ls
o,

th
e

co
nt

ri
bu

tio
n

to
th

e
re

co
rd

si
ze

du
e

to
th

e
Q

-v
al

id
ity

st
ru

ct
ur

e
se

em
s

sm
al

lc
om

pa
re

d
to

th
e

co
nt

ri
bu

tio
n

of
F
S

.H
ow

ev
er

th
e

bo
un

d
on

th
e

nu
m

be
ro

fm
od

ifi
ca

tio
ns

to
F
S

co
rr

es
po

nd
s



12 Jean-Baptiste Mairy et al.

to a rare case. Indeed, it will only be attained if each removed tuple updates the first support
of r − 1 variables. In practice, the choice of the Q-validity structure has a large impact on
the performances of the propagators.

4 A Variation Based on Recomputation

Using the Q-validity of the tuples while traversing the next structure has a drawback. A
literal that is no longer domain consistent may have its first support updated multiple times
before being removed. In a worst case scenario, a literal with a lot of Q-valid (but not valid)
supports may have its first support updated to each of the Q-valid supports before being
removed. Example 1 illustrates this problem.

Example 1 In a binary table constraint c where Vars(c) = {x, y}, let’s suppose a literal
(y, b) has only 3 supports (ordered as they are in the table): σ1, σ2 and σ3. Let’s suppose
that σ1[x] = a, σ2[x] = b and σ3[x] = c. If the propagation queue contains (x, a), (x, b)
and (x, c) and they are popped in that order, the first support for (y, b) (initially σ1) will be
updated to σ2, then to σ3 and finally to ⊤.

The solution to this problem is to work directly with the validity of the tuples. In the previous
scenario, the literal would have been removed the first time a new valid support would
have been searched. We thus propose a variation of the AC5TC algorithm, called AC5TC-
Recomp, that works with the validity of the tuples. AC5TC-Recomp does not require any
data structure to store Q-validity information. Rather, the validity information is recomputed
as needed and not stored. Even with this switch from Q-validity to validity, AC5TC-Recomp
still uses the same next structure as used by AC5TC. However, the FS structure has to be
slightly changed together with its invariant. The new structure is called FUS and stores, for
each literal, the index of the first useful support in the table. Its new invariant can be found
below and is satisfied before dequeuing an element of Q.

∀x ∈ Vars(c), ∀a ∈ D(x) :
FUS[x, a] = i ⇔ [σc,i[x] = a ∧ i ̸= ⊤ ∧ σc,i ∈ D(Vars(c),Q, c)

∧ (∀j < i : σc,j [x] = a ⇒ σc,j ̸∈ D(Vars(c)))]

∀x, y ∈ Vars(c), ∀a ∈ D(x), b ∈ D(y,Q, c)\D(y) :

(FUS[x, a] = i ∧ σc,i[y] = b) ⇒ FUS[y, b] ≤ FUS[x, a]

The first part of the invariant states that, for a literal in the domain, the first useful support
is Q-valid and different from ⊤. It also states that all the candidate supports before the first
useful support are invalid. This is the first difference with the invariant for FS in AC5TC.
Recall that, in the FS invariant, the preceding candidate supports were Q-invalid. This dif-
ference arises because AC5TC-Recomp is not using Q-validity information. When updating
the first useful support of a tuple, it may skip Q-valid candidate supports that are invalid.
The second part of the invariant is dedicated to ensure that the update process will not miss
FUS update for some literal. This will be explained in more details later, together with the
update process.

The post method of AC5TC-Recomp is very similar to the postTC method of Algorithm
2. It also initializes the next data structure and FUS is initialized the same way FS is in



Domain Consistency with Forbidden Values 13

postTC. No Q-validity is used in either of the post methods and FS and FUS are ex-
actly the same after the initialization. The only difference between postTC and the post
method of AC5TC-Recomp is that AC5TC-Recomp does not perform calls to initSpec-
StructTC nor to setQInvalidTC.

The valRemoveTC-Recomp method is given in Algorithm 7. This method is similar to
valRemoveTC (Algorithm 3). Indeed, when called for a constraint c, a variable y and a
value b, valRemoveTC-Recomp cycles through the tuples σc,i where σc,i[y] = b. It
starts at FUS [y, b] because the tuples before FUS [y, b] are invalid and cannot be the first
useful support for any valid literal. This is granted by the FUS invariant. For each of those
tuples σc,i, a new support is searched for each literal (x, a) for which FUS [x, a] = i.
If no new support is found, valRemoveTC-Recomp includes (x, a) in △, as it is done
in valRemoveTC. However, valRemoveTC-Recomp and valRemoveTC have signif-
icant differences. The first one is the use of seekNextSupportTC-Recomp method to
update FUS. This method searches for the next valid support, traversing the next chain. Re-
call that seekNextSupportTC (Algorithm 4) updates FS searching for the next Q-valid
support. Another difference is the test σc,i[x] ∈ D(x) of line 8. This test is the equivalent
of the one on line 13 in Algorithm 3. This test is needed here on line 8 to maintain the
second part of the FUS invariant. This part of the invariant guarantees that, for each literal
in the queue, its first useful support is before the first useful support of the valid literals in
this tuple. This allows valRemoveTC-Recomp(c, y, b) to look for updates to make from
FUS [y, b] towards the end of the table. In order to see the need for the second part of the
invariant, let’s suppose it is not present and the test σc,i[x] ∈ D(x) is pushed inside line 12
(as it is in Algorithm 3). Let’s suppose we are executing valRemoveTC-Recomp for the
literal (y, b). Let’s also suppose that the first useful support of a literal (x, a) in the propa-
gation queue contains (y, b). Without the test σc,i[x] ∈ D(x) of line 8, a new valid support
would be searched for (x, a) to update FUS [x, a]. This would automatically set FUS [x, a]
to ⊤ because all supports of (x, a) contain (x, a) and are thus invalid. Setting FUS [x, a]
to ⊤ would prevent the call to valRemoveTC-Recomp for (x, a) to update FUS for the
literals that have a tuple with (x, a) as first useful support. This may lead the algorithm to
leave non-GAC literals out of △. This characteristic is already implicitly present in the FS
invariant (section 3), thanks to the Q-validity of the first support granted for the valid liter-
als and the literals in the queue and the Q-invalidity of the candidate supports before. This
guarantees that the first support of each literal in the queue is before the first support of the
literals in this tuple.

From a complexity point of view, it may seem inefficient to test the validity of the tuples
when searching for a new support. The test σc,i ∈ D(Vars(c)) is in O(r). Using the
validity has however an advantage. It allows valRemoveTC to output a △ set larger than
the previous algorithms. The validity information is stronger than the Q-validity information
since each valid tuple is also Q-valid but not the contrary. With this larger △, the domains
at the fixed point will be the same for all algorithms (since all compute domain consistency)
but AC5TC-Recomp might need fewer calls to valRemoveTC-Recomp to achieve this
fixed point.

Proposition 2 AC5TC-Recomp is correct. It has a time complexity of O(r2 · t+ r · d) and
a space complexity of O(r · t+ r · d) per table constraint along a branch in the search tree.

Proof Both methods postTC-Recomp and valRemoveTC-Recomp satisfy their speci-
fications (Specification 1). AC5TC-Recomp is hence correct. The post method of AC5TC-



14 Jean-Baptiste Mairy et al.

1 valRemoveTC-Recomp(in c: Constraint;in y: Variable; in b: Value;
2 out △: Set of Values) {
3 // Pre: c ∈ C, c is a table constraint and b /∈ D(y , Q, c)
4 // Post: Inc(c, D(X , Q, c)) ∩ Cons(c, y , b) ⊆ △ ⊆ Inc(c) ∩ Cons(c, y , b)
5 △ = ∅;
6 i = c.FUS[y , b];
7 while(i!=⊤){
8 forall(x in Vars(c): x!=y && σc,i [x ] ∈ D(x)){
9 a = σc,i [x ];

10 if (c.FUS[x , a]==i){
11 c.FUS[x , a] = seekNextSupportTC-Recomp(c, x , i);
12 if(c.FUS[x , a]==⊤) △ += (x , a);
13 }
14 }
15 i = c.next[y , i];
16 }
17 }

Algorithm 7: Method valRemoveTC-Recomp for Table Constraints.

1 function seekNextSupportTC-Recomp(in c: Constraint; in x: Variable;
2 in i: Index) : Index {
3 // Pre: c ∈ C, c is a table constraint, x ∈ Vars(c), 1 ≤ i ≤ c.length
4 // Post: return the first index j greater than i of a valid tuple with σc,j [x ] == σc,i [x ]
5 i = c.next[x , i];
6 while(i!=⊤){
7 if(σc,i ∈ D(Vars(c))) return i;
8 i = c.next[x , i];
9 }

10 return ⊤;
11 }

Algorithm 8: The seekNextSupportTC-Recomp Function of AC5TC-Recomp.

Recomp has the same complexity as the one of AC5TC: O(r · t+ r · d). The complexity of
all the executions of valRemoveTC-Recomp is O(r2 · t) per table constraint. The justifi-
cation of the complexity is similar to the one for valRemoveTC (Proposition 1). For a vari-
able y, all the executions of valRemoveTC-Recomp follow the chains in the next struc-
ture for each different value of the variable. The total number of elements in those chains is
t since the tuples have one value per variable. With r variables, the lines 8 to 15 are executed
O(r · t) times. Without line 11, those lines have a complexity of O(r). Without line 11, the
complexity of all the executions of valRemoveTC-Recomp is O(r2 · t). For a particular
variable, the loop of line 6 in seekNextSupportTC-Recomp can only be executed O(t)
times for all its values during the entire fixed point. Indeed, the next chains are traversed at
most once. The test σc,i ∈ D(Vars(c)) of line 7 in seekNextSupportTC-Recomp
being O(r), all the executions of line 11 of valRemoveTC-Recomp are O(r2 · t). Hence
the complexity of O(r2 · t) for valRemoveTC-Recomp during the fixed point.

The space complexity of AC5TC-Recomp is Θ(r ·t+r ·d) as it uses the same next structure
as used in the previous Section and FUS is Θ(r · d). AC5TC-Recomp has to trail FUS ,
which means trailing Θ(r · d) integers. When the fixed point is reached, the FUS structure
is the same as the FS structure in the previous algorithms. The number of modifications to
the structure AC5TC-Recomp has to store in its trailing record for FUS is thus the same as
the number of modifications the previous algorithms have to store for FS . In addition, along



Domain Consistency with Forbidden Values 15

a branch in the search tree containing m nodes, if k tuples are found Q-invalid, AC5TC-Bool
has k elements in its trailing record while AC5TC-Sparse has at most only m integers in its
record. AC5TC-Recomp doesn’t have to store those modifications in its record.

Despite being non optimal, AC5TC-Recomp improves, in the experiments, state-of-the-art
algorithms on some classes of problems. It is the (previously unpublished) table constraint
algorithm of the Comet system.

5 Optimal Algorithms for Table Constraints

In all of the previously presented algorithms, the successive updates of their respective
support structure may revisit the same tuples multiple times. This comes from the static
characteristic of the next structure. Indeed, there is no guarantee that a tuple visited in
a particular next chain, and found to be Q-invalid or invalid, will not be revisited later
in another chain. This redundant work has a cost. This cost is particularly penalizing for
AC5TC (Section 3). In method valRemoveTC (Algorithm 3), all the executions of the
seekNextSupportTC (line 12 of Algorithm 3) take O(r · t) assuming isQValidTC
takes constant time. However, the total time complexity of all the executions of val-
RemoveTC is O(r2 · t). This makes AC5TC reach the non optimal O(r2 · t + r · d) time
complexity per table constraint. Recall that the optimal time complexity per table constraint
is O(r · t + r · d). To remedy this situation, the idea is to use a dynamic collection of the
supports for each literal instead of the static next structure. Those dynamic structures thus
keep the Q-valid supports for the values in D(X,Q, c). This allows to avoid revisiting tuples
because as soon as a tuple is detected Q-invalid, it is removed from the active collections
it belongs to. Those collections are stored in a single structure, called Col . More formally,
for a table constraint c, the structure containing the collections, Col , satisfies the following
invariant before dequeuing an element of Q:

∀x ∈ V ars(c),∀a ∈ D(x,Q, c) :

Col [x, a] = {1 ≤ i ≤ c.length | σc,i[x] = a ∧ σc,i ∈ D(V ars(c),Q, c)}

This invariant simply states that for each variable x and each value in its extended domain
D(x,Q, c), its collection contains all its Q-valid supports. In order to allow different im-
plementations for this collection structure, we have designed a generic propagator. This
propagator uses the abstract methods specified in Specification 2. Those methods simply
form iterators over Col . They enclose all interactions with the collections in Col . For the
iterator requirement, we assume that no remove operation is performed on a collection when
iterating over it. We will refer to them as the specific functions as they are specific to the
concrete propagators implementing the generic propagator.

The optimal generic algorithm for table constraints is called AC5TCOpt. The post and
valRemove methods for AC5TCOpt are presented respectively in Algorithms 9 and 10.
Method postTCOpt first computes the initial collection Colinit. Colinit is represented
by a matrix containing one array per literal. For a literal, its array in Colinit contains the
indexes of its supporting tuples. postTCOpt then initializes the specific structures of the
propagator by calling initSpecStruct. It then removes all the values with no valid sup-
port. Method valRemoveTCOpt(c, y, b) uses methods firstInCollection(c, y, b)
(line 6), nextInCollection(c, y, i) (line 15) and the test i ̸= ⊤ (line 7) to traverse the



16 Jean-Baptiste Mairy et al.

1 initSpecStruct(in c: Constraint, in Colinit: Matrix of Arrays)
2 //pre: the collections in Colinit are sorted
3 //initializes specific structures implementing Col to the
4 //initial collections contained in the matrix Colinit
5 //in Colinit , a collection is represented by an array.
6
7 function firstInCollection(in c: Constraint; in x: Variable;
8 in a: Value): Index
9 //returns the first element in Col[x , a]

10
11 function nextInCollection(in c: Constraint; in x: Variable;
12 in i: Index): Index
13 //returns the element following i in Col[x,a] where a = σc,i [x ]
14
15 //functions firstInCollection, nextInCollection and the test
16 //nextInCollection ̸= ⊤ form iterators over the collections
17 //in Col
18
19 function isCollectionEmpty(in c: Constraint; in x: Variable;
20 in a: Value): Boolean
21 //returns true iff Col[x,a] is empty
22
23 removeFromCollection(in c: Constraint,in x: Variable,in i: Index)
24 //removes i from Col[x,a] where a = σc,i [x ]

Specification 2: The abstract methods used by the generic optimal table constraint propaga-
tor

collection for (y, b). Those are the only tuples that become Q-invalid when (y, b) is popped
out of Q. Those tuples are removed from the collections they belong to and the literals left
without any Q-valid support are included in △.

1 postTCOpt(in c: Constraint; out △: Set of Values){
2 // Pre: c ∈ C, c is a table constraint
3 // Post: △ = Inc(c) + initialization of the data structures
4 △ = ∅;
5 forall(x in Vars(c),a in D(x)) Colinit[x , a]=[];
6 forall(i in 1..c.length: σc,i in D(Vars(c)))
7 forall(x in Vars(c))
8 Colinit[x ,σc,i[x]].append(i);
9 initSpecStruct(c,Colinit);

10 forall(x in Vars(c),a in D(x))
11 if(isCollectionEmpty(c, x , a)) △ += (x,a);
12 }

Algorithm 9: The post method of optimal AC5TCOpt table constraint propagator

Proposition 3 Assuming that initSpecStruct, firstInCollection, nextIn-
Collection, isCollectionEmpty and removeFromCollection are correct,
AC5TCOpt is correct. Assuming a complexity of O(r · t + r · d) for initSpecStruct,
and O(1) for the other specific functions, the time complexity of AC5TCOpt is the optimal
O(r · t+ r · d) per table constraint along a branch in the search tree.



Domain Consistency with Forbidden Values 17

1 valRemoveTCOpt(in c: Constraint; in y: Variable; in b: Value;
2 out △: Set of Values) {
3 // Pre: c ∈ C, c is a table constraint and b /∈ D(y , Q, c)
4 // Post: △ = Inc(c, D(X , Q, c)) ∩ Cons(c, y , b)
5 △ = ∅;
6 i = firstInCollection(c, y , b);
7 while(i ̸= ⊤){
8 forall(x in Vars(c) : x ̸= y){
9 removeFromCollection(c, x , i);

10 a = σc,i[x];
11 if(isCollectionEmpty(c, x , a) && a in D(x)){
12 △ += (x , a);
13 }
14 }
15 i = nextInCollection(c, y , i);
16 }
17 }

Algorithm 10: The valRemove method of optimal AC5TCOpt table constraint propagator

Proof After the execution of Method postTCOpt, the Col invariant is respected. Let’s
suppose that the Col invariant is true before dequeuing a literal (y, b) from Q. As the invari-
ant is verified before the execution, the only tuples that need attention are the tuples becom-
ing Q-invalid. Since the specific methods are correct, valRemoveTCOpt iterates through
all the previously Q-valid tuples σc,i where σc,i[y] = b. Those tuple indexes are removed
from all the sets they belong to. The Col invariant is thus restored. With the Col invari-
ant, it is straightforward to prove that AC5TCOpt is correct. Indeed, both postTCOpt and
valRemoveTCOpt meet Specification 1 since the △s are filled with the literals for which
the collection in Col is empty. With a O(r · t+ r · d) complexity for initSpecStruct
and a O(1) complexity for isCollectionEmpty, postTCOpt is obviously O(r ·t+r ·d).
The complexity of valremoveTCOpt is O(r · t). Indeed, each execution of lines 6 to 16
leads to different values for i in {1, . . . , t}. This is granted by the fact that the indexes of
the visited tuples are removed from all the collections they belong to. The lines 8 to 15 are
thus executed at most t times along a branch in the search tree. The complexity of those
lines being O(r), the overall complexity of valRemove is O(r · t) per table constraint
(assuming the presence of other constraints on which domain consistency is also applied).

We now present two different implementations of AC5TCOpt. They differ in the data struc-
ture they use to backup the implementation of the functions firstInCollection,
nextInCollection, isCollectionEmpty and removeFromCollection.

5.1 AC5TCOpt-Tr

The first propagator is reusing an idea similar to the next structure of AC5TC (Section 3) and
AC5TC-Recomp (Section 4). In order to implement the specific functions of AC5TCOpt,
iterating through the collections in Col , this new structure has to be dynamic and it has to
allow removal of tuples in the collection in O(1). Indeed, the collections in Col depend
on the domains of the variables and thus, have to change during the search. This is why we
used two arrays to represent the index collections in Col : nextTr and predTr . The first one,



18 Jean-Baptiste Mairy et al.

nextTr , contains, for an index i and a variable x, the next tuple index in Col [x,σc,i[x]]. The
second one, predTr , contains the preceding tuple index in Col [x,σc,i[x]]. This propagator
also uses an array, called FS , referring, for a literal (x, a) to the first tuple index in Col [x, a].
The name FS has been chosen for the similarities with the FS array in AC5TC (Section 3).
The nextTr, predTr and FS data structures should be trailed as Col depends on the current
domains. For a variable x and a value a ∈ D(x,Q, c), Col[x, a] can be enumerated by
following the nextTr chain, starting at FS[x, a]. The order between the tuples in nextTr
and predTr is fixed to the table order. The collections in Col are thus here ordered with
respect to this order. As the nextTr and predTr are trailed through the execution of the
propagator, we call the AC5Opt algorithm using those structures AC5TCOpt-Tr (for AC5
Optimal Table Constraint Propagator with Trailing).

The implementation of the specific functions (Specification 2) of AC5TCOpt-Tr is pre-
sented in Algorithm 11. Method initSpecStruct initializes nextTr , predTr and FS .
As explained before, FS contains the beginning of the collection for each different literal,
in this case, the smallest index (the arrays in Col init are sorted). The functions first-
InCollection and nextInCollection are straightforward. For isCollection-
Empty, if the smallest index of an element in a collection is ⊤, that means that the collec-
tion for the literal is empty. The removeFromCollection also takes into account the
increasing order of the indexes in the structures. It has to distinguish between 3 cases. In
the first one, the index to remove is the first one (line 34). In that case, the first one is set to
be the index following it. This effectively removes index i from the collection because the
traversal of the collection is performed from FS to the end of the table. The second case
(line 36) is the one where the index to remove is after the first one. In this case, it must be
removed from the nextTr and predTr structures to remove it from the collection. The third
case is the case where i is smaller than FS [x, a]. In this case, nothing has to be done: thanks
to the traversal order, i will never be visited. It is thus not in the collection.

Proposition 4 The implementation of initSpecStruct, firstInCollection,
nextInCollection, isCollectionEmpty and removeFromCollection is cor-
rect. The time complexity of initSpecStruct is O(r · t + r · d). All the other methods
are O(1). The time complexity of AC5TCOpt-Tr is the optimal O(r · t + r · d) per table
constraint along a branch in the search tree.

Proof The proof that the different functions respect their individual specification (Specifi-
cation 2) is straightforward. The last part of the specification to prove is the requirement
that the functions firstInCollection, nextInCollection and the test nextIn-
Collection̸= ⊤ form iterators over the collections in Col . It is is granted by the fact
that FS is alway referring to the first element in its collection and that the only elements re-
moved from the nextTr and predTr chains are the ones removed from the collections with
removeFromCollection. The complexity of initSpecStruct is O(r · t + r · d)
because the total number of supports for a variable is O(t), hence is the number of elements
in the Col structures for a variable. This guarantees that the loop in line 10 is O(t) for all
the values of a variable. The loop in line 4 is thus O(r · t + r · d). AC5TCOpt-Tr is then
O(r · t+ r · d)

AC5TCOpt-Tr has a space complexity of Θ(r · t+ r · d) since nextTr/predTr are Θ(r · t)
and FS is Θ(r · d). All those structures have to be trailed during the search. AC5TC-Tr has
thus Θ(r·t+r·d) integers to backtrack. Compared to the previous algorithms, the difference



Domain Consistency with Forbidden Values 19

1 initSpecStruct(in c: Constraint, in Colinit: Matrix of Arrays){
2 forall(x in Vars(c), i in 1..c.length)
3 c.nextTr[x , i] = ⊤; c.predTr[x , i] = ⊥;
4 forall(x in Vars(c), a in D(x)){
5 nSup=len(Colinit[x , a]);
6 if(nSup==0)
7 c.FS[x , a]=⊤;
8 else
9 c.FS[x , a]=Colinit[x , a][1];

10 forall(j in 1..nSup-1){
11 c.nextTr[x ,Colinit[x , a][j]]=Colinit[x , a][j + 1];
12 c.predTr[x ,Colinit[x , a][j + 1]]=Colinit[x , a][j];
13 }
14 }
15 }
16
17 function firstInCollection(in c: Constraint; in x: Variable;
18 in a: Value):Index{
19 return c.FS[x , a];
20 }
21
22 function nextInCollection(in c:Constraint; in x: Variable;
23 in i: Index):Index{
24 return c.nextTr[x , i];
25 }
26
27 function isCollectionEmpty(in c: Constraint; in x: Variable;
28 in a: Value):Boolean{
29 return c.FS[x , a] == ⊤;
30 }
31
32 removeFromCollection(in c: Constraint; in x: Variable, in i: Index){
33 a = σc,i[x]
34 if(c.FS[x , a] == i){
35 c.FS[x , a] = c.nextTr[x , i];
36 } else if(i > c.FS[x , a]){
37 if (c.predTr[x , i]!=⊥)
38 c.nextTr[x,c.predTr[x , i],c] = c.nextTr[x , i,c];
39 if (c.nextTr[x , i]!=⊤)
40 c.predTr[x,c.nextTr[x , i],c] = c.predTr[x , i,c];
41 }
42 }

Algorithm 11: Specific Methods of AC5TCOpt-Tr

in backtrackable structure is nextTr/predTr . For a table constraint, along a branch in the
search tree of length m, if k of its tuples are found Q-invalid, AC5TCOpt-Tr has Θ(r · k)
integers in its trailing record. Indeed, upon finding a Q-invalid tuple, for the r variables,
either FS is modified, or the two pointers nextTr /predTr . This is much more than the
previous algorithms. Along the same branch, they have O(r · k) integers to trail for FS and
an additional k elements for AC5TC-Bool and at most m integer for AC5TC-Sparse for the
Q-validity structures. AC5TC-Recomp only has to backtrack FS . As explained before, the
worst case scenario leading to O(r · k) integers in the record for FS is not frequent.



20 Jean-Baptiste Mairy et al.

5.2 AC5TCOpt-Sparse

The implementations of the specific methods of AC5TCOpt presented in the previous Sec-
tion have one drawback: AC5TCOpt-Tr has to trail Θ(r · t + r · d) integers. Trailing such
a large number of integers can be costly. By changing the data structures used to support
the implementation of the specific AC5TCOpt methods, we can obtain a propagator trailing
only Θ(r · d) integers. This new implementation, called AC5TCOpt-Sparse, is the topic of
this section.

The fundamental change to AC5TCOpt-Tr is to remove the order of the elements in the col-
lections. Indeed, inside the nextTr chains, the elements are ordered with respect to their
order of appearance in the table. This is an unnecessary requirement. All that is needed is
that those elements match the ones in the collections. We can therefore replace the nextTr
and predTr structures with efficiently backtrackable sets. The structures we chose for rep-
resenting those sets are an adapted version of Sparse Sets, introduced in Section 3.

Recall that the Sparse Set structure is using two different arrays for representing a set: Map
and Dyn . In addition, Sparse Sets also maintain the size (size) of the set. Map contains, for
each entry of the set, its position in the array Dyn . Dyn contains the elements of the set,
before the index size and the ones which have been removed, after size . There will be one
such set per collection in Col , thus per literal. Each set will contain tuple indexes from Col .
For a variable x and a tuple index i, σc,i[x] is the only value for x. The index i can thus only
be in one collection from Col , thus in one sparse set for x. This means that the Map array
can be shared for all the literals of the same variable. Indeed, for a tuple i and a variable x,
Map[i] will represent the position of i in the Dyn array of the literal (x,σc,i[x]). The link
between the arrays Map and Dyn can be formalized as:

∀x ∈ X, ∀i, j : 1 ≤ i, j ≤ t :

Map[x][i] = j ⇔ Dyn[x,σc,i[x]][j] = i

We will refer to this as the Dyn/Map invariant. Sharing the Map between all the values
of a variable allows the size of the Map array to be Θ(t) (for each variable). After the
creation of the structures, previously unseen elements are never added in Col . This allows
the size of the Dyn array to be fixed to the initial number of support of its literal. Figure ??
shows an example of the structures for variable x. In this example, the arrays Dyn[x, a] and
Dyn[x, b] can be used to traverse the collections. The array Map[x] can be used, together
with the table of the constraint, to locate an element in the different Dyn arrays in O(1).
Amongst those structures, only size has to be trailed.

The implementation of the specific functions (Specification 2) of AC5TCOpt for AC5TCOpt-
Sparse is given in Algorithm 12. Method initSpecStruct fills the Dyn , Map and size
structures. Method firstInCollection returns the first element in Dyn if the sparse
set is not empty, ⊤ otherwise. As the elements are swapped in Dyn on removal, the first ele-
ment is not always the one with the smallest index. Method nextInCollection returns
the element following the current element in Dyn if it is at an index smaller than the size
of this set. It returns ⊤ otherwise. Method removeFromCollection swaps the element
that is to be removed with the last one of the right Dyn array and updates the Map structure.
This keeps the link between Map and Dyn consistent. This is the standard procedure for
removing an element from a sparse set, adapted to the present case.



Domain Consistency with Forbidden Values 21

1 initSpecStruct(in c: Constraint, in Colinit: Matrix of Arrays){
2 forall(x in Vars(c), a in D(x)){
3 j=1;
4 forall(i in Colinit[x , a]){
5 c.Dyn[x , a][j] = i;
6 c.Map[x][i] = j;
7 j+=1;
8 }
9 c.size[x , a] = Colinit[x , a].length;

10 }
11 }
12
13 function firstInCollection(in c: Constraint; in x: Variable;
14 in a: Value){
15 if(c.size[x , a] > 0)
16 return c.Dyn[x , a][1];
17 else
18 return ⊤;
19 }
20
21 function nextInCollection(in c: Constraint; in x: Variable;
22 in i: Index){
23 if(c.Map[x][i] < c.size[x , a]){
24 return c.Dyn[x,σc,i[x]][c.Map[x][i]+1];
25 }else{
26 return ⊤;
27 }
28 }
29
30 function isCollectionEmpty(in c: Constraint; in x: Variable;
31 in a: Value){
32 return c.size[x , a] == 0;
33 }
34
35 removeFromCollection(in c: Constraint; in x: Variable, in i: Index){
36 a = σc,i[x];
37 c.Dyn[x , a][c.Map[x][i]] = c.Dyn[x , a][c.size[x , a]];
38 c.Dyn[x , a][c.size[x , a]] = i;
39 c.Map[x][c.Dyn[x , a][c.Map[x][i]]] = c.Map[x][i];
40 c.Map[x][i] = c.size - 1;
41 c.size-=1;
42 }

Algorithm 12: Specific Methods of AC5TCOpt-Sparse

Proposition 5 The implementation of initSpecStruct, firstInCollection, next-
InCollection, isCollectionEmpty and removeFromCollection for AC5TCOpt-
Sparse is correct. The time complexity of initSpecStruct is O(r ·t+r ·d). All the other
methods are O(1). The time complexity of AC5TCOpt-Sparse is the optimal O(r · t+ r · d)
per table constraint along a branch in the search tree.

Proof The correctness of the specific functions with respect to their individual specifica-
tions (Specification 2) is straightforward provided that Dyn and Map arrays are consis-
tent. They are consistent if and only if the Dyn/Map invariant is respected. The invari-
ant is trivially respected after the initSpectStruct. The only function that changes



22 Jean-Baptiste Mairy et al.

Dyn and Map after their creation is removeFromCollection. If the invariant is re-
spected before removeFromCollection, it is respected after. The invariant is thus al-
ways respected. The functions firstInCollection, nextInCollection and the
test nextInCollection̸= ⊤ thus form iterators over the collections in Col , the ele-
ments from Col [x, a] being in Dyn[x, a] between indexes 1 and size[x, a]. Recall that no
remove operation is performed on a collection while iterating over it (hypothesis from Col ).
The O(r · t+r ·d) time complexity of initSpecStruct is granted by the O(t) elements
in the collections for all the values of a variable.

Although the time complexity of AC5TCOpt-Sparse is the same as the one of AC5TCOpt-
Tr (Section 5.1), the advantage of AC5TCOpt-Sparse is the number of integers to backtrack.
AC5TCOpt-Sparse is backtracking only the size array, which contains one integer per literal.
It has thus only Θ(r · d) integers to backtrack, compared to the Θ(r · t+ r · d) integers that
AC5TCOpt-Tr has to trail. More precisely, for a table constraint, on a branch in the search
tree, if k tuples are found Q-invalid, AC5TCOpt-Sparse has O(r · k) integers on its trailing
record. This worse case scenario corresponds to the situation where each tuple detected Q-
invalid updates the collections of r different literals. Otherwise, only one integer is stored
on the record when multiple updates of the same collection is performed at a node. For a
table constraint, along a branch in the search tree detecting k tuples from the table to be
Q-invalid, AC5TCOpt-Tr has a total number of integers in its trailing record of Θ(r · k).
AC5TCOpt-Sparse always has a number of integers in its trailing record that is less than
or equal to the number in AC5TCOpt-Tr record, but most of the time, it has strictly fewer
integers in its trail.

The total space complexity of AC5TCOpt-Sparse is Θ(r · t + r · d). The size of Dyn is
Θ(r · t) since each tuple index is in exactly r Sparse Sets, the Map structure is Θ(r · t)
(Θ(t) for each variable) and the size structure is Θ(r · d).

6 Experimental Results

All proposed algorithms have been implemented on top of Comet. For comparison, classi-
cal constraint-based algorithms have also been implemented on top of Comet. The AC3 and
AC3rm algorithms [18], designed for binary constraints, have also been reimplemented. In
our implementation, these algorithms use a dichotomic search in the table to verify that a
tuple is allowed by the constraint. The GAC3-Allowed algorithm has been chosen for the
comparison because it is the standard GAC3 algorithm for non-binary table constraints [15].
The three existing state-of-the-art methods were also reimplemented: The MDDc algorithm
from [7], the STR2+ algorithm from [16] and STR3 from [19]. For MDDc, the order of
the variables can have a big impact on the performances of the algorithm. Indeed, the order
strongly influences the size of the constructed MDD. Unfortunately, obtaining the perfect
order is NP-Complete [7]. In the experiments, we used the variable order in the instances.
For the STR2+ reimplementation, the array lastSize is used. Some optimization can be ob-
tained by reusing the structures constructed for a propagator between different constraints
relying on the same table but with different scopes. This is the case, for instance, for the
next structure of our propagators or the MDD of MDDc. This optimization has not been
used in our test, for none of the propagators. All experiments were conducted on an Intel
Xeon 2.53GHz using Comet 2.1.1. The algorithms are compared within a MAC search. The



Domain Consistency with Forbidden Values 23

problems have been selected because they offer very different constraint arities. Some of
them contain only binary tables while other contain up to arity 20 table constraints. This
section thus presents results on the geometric problem, on Langford problem, on the Travel-
ing Salesman Problem, on the RandRegular problem, on fully random instances, on Cross-
words instances and on modified Renault instances. All the instances used are available on
http://becool.info.ucl.ac.be/resources

For each instance set, the experimental results report the mean execution times in seconds
(totTime), the mean “posting” times in seconds (postTime), the number of propagator calls
(nProp), the percentage to the best with respect to execution time (%best), the mean of
percentage to the best algorithm in terms of execution time (µ%best), the number of va-
lidity checks (valChk), Q-validity checks (QvalChk), and the number of pointers followed
(pFollow). The difference between the %best and µ%best is the following: for %best, the
execution times are averaged before computing the quantity. There is thus one best algo-
rithm. For µ%best, the percentages are computed instance by instance and aggregated with
a geometrical mean at the end. This measure takes into account that different instances may
have different best algorithms. The µ%best measure uses a geometrical mean as suggested
in [9]. The last reported quantity, pFollow, has different meanings for different algorithms.
For GAC3-Allowed, it corresponds to the number of times the tuples are accessed. For the
AC5TC algorithms and AC5TCOpt-Tr, it is defined as the number of times the next or nextTr
structures are used to traverse the table. For MDDc, it corresponds to the number of edges
followed in the MDD structure. Although referring to different quantities, pFollow is useful
for comparing the behavior of the propagators as it reflects the usage of their specific struc-
tures. For each instance set, scatter plots of AC5TCOpt-Sparse versus STR2+ and STR3
are given. In those scatter plots, each point is an instance. The x axis of a point is the time
taken by the algorithm on the bottom of the plot and the y axis, the time taken by the other
algorithm. A point with coordinates (5,10) means that this instance has been solved in 5
seconds by the algorithm on the bottom and 10 by the other. The x = y line is also dis-
played. The more points an algorithm has on its opponent side of the line x = y, the faster
it is compared to the other. Those plots allow a detailed vision, instance by instance, of
the performance of the algorithms. STR2+, STR3 and AC5TCOpt-Sparse have been chosen
because AC5TCOpt-Sparse is the fastest of our algorithms and STR2+, STR3 are its best
competitors. For the binary benchmarks, scatter plots of AC5TCOpt-Sparse versus AC3rm
are also given.

The search strategy is given for each benchmark. We used the terminology defined in [1].
The dom variable heuristic chooses first the variable with the smallest domain. The dom/deg
heuristic chooses first the variable with the smallest ratio domain size - degree of the variable
(number of constraints in which it is involved). The lexicographic value ordering consists in
trying first the smallest value with respect to the lexicographic ordering.

The Geometric Problem Instances of the geometric problem are random instances generated
following a specific structure proposed by Rick Wallace [33]. Each variable is randomly
placed in the unit square. A fixed distance (less than

√
2) is randomly chosen. For each

pair of variables (x, y), if the distance between their associated points is less than or equal
to this fixed distance, the arc (x, y) is added to the constraint graph. Constraint relations
are then created as they are in fully random CSP instances [34]. The constraints of this
problem are thus binary. We use the instance set from [14] which counts 100 instances. The



24 Jean-Baptiste Mairy et al.

search strategy uses the heuristic dom/deg with lexicographic value ordering. A timeout of
5 minutes has been used. The quantity %solv gives the percentage of solved instances.

propagator totTime postTime nProp %best µ%best %solv valChk QvalChk pFollow

GAC3-Allowed 10.1 0.3 288 k 276 283 86 28 k 0 28 k
AC5TC-Bool 12.5 0.3 867 k 341 328 84 300 25 k 50 k
AC5TC-Sparse 10.8 0.2 867 k 295 271 86 300 25 k 50 k
AC5TC-Recomp 7.9 0.2 831 k 216 206 87 6 k 0 29 k
AC5TCOpt-Tr 9.6 0.8 867 k 263 412 87 300 0 13 k
AC5TCOpt-Sparse 6.5 0.4 867 k 178 236 87 300 0 0
MDDc 14.7 1.6 288 k 401 694 86 0 0 65 k
STR2+ 24.9 0.3 288 k 680 650 82 26 k 0 0
STR3 15.2 0.6 867 k 413 477 84 300 0 0
AC3 10.4 0.1 288 k 283 234 85 0 0 0
AC3rm 3.7 0.1 288 k 100 100 89 0 0 0

Table 1: Results of the propagators on the geom instances (times in seconds)

Table 1 presents the experimental results on geom instances. The quantities are computed
on instances for which none of the techniques timeouts. All our propagators outperform
the state-of-the-art STR2+, STR3 and MDDc. AC5TCOpt-Tr, AC5Opt-Sparse and AC5TC-
Recomp are also better than the classical AC3 and GAC3-Allowed propagators. AC3rm is
clearly the winning strategy on those instances. It is also the best on each instance, as its
µ%best is 100. AC5TCOpt-Sparse is the fastest of our propagators on those instances. Its
performances are competitive with AC3rm. It is however not the best of our propagators on
each instance. The instances on which it is beaten are the smallest, where AC5TC-Recomp
is the best of our propagators. AC5TCOpt-Sparse is significantly faster than AC5TCOpt-Tr,
due to the cost that AC5TCOpt-Tr has to pay to trail its structures. Checking the validity
(instead of the Q-validity) allows AC5TC-Recomp to follow less pointers than AC5TC-
Bool and AC5TC-Sparse by performing longer jumps in the table. Moreover, as the tables
are binary, the cost of validity check is low. AC5TCOpt-Tr follows far less pointers than
AC5TC-Bool and AC5TC-Sparse because it does not follow pointers to a previously in-
spected tuple.

Scatter plots for the geom instance set are given in Figure 5. On those scatter plots, next
to each technique name, are the number of instances that are solved by this algorithm that
triggered a timeout with the other algorithm. For instance, AC5TCOpt-Sparse solved five
instances that caused STR2+ to timeout. Those instances are not in the plot. As we can
observe on those scatter plots, AC3rm is faster than AC5TCOpt-Sparse on all instances,
except on the easiest ones. AC3rm solves 2 instances causing AC5TCOpt-Sparse to timeout.
AC5TCOpt-Sparse solves more instances and is faster than STR2+ and STR3 on all the
instances, except the easiest ones. We can also observe that STR3 is faster than STR2+. The
time performances of those algorithms are proportional on this instance set.

Langford Number Problem Langford number problem L(k,n) amounts to arranging k sets
of numbers 1 to n into a sequence of numbers, so that each occurrence of a number m is m



Domain Consistency with Forbidden Values 25

0 50 100 150

AC3rm: 2

0

50

100

150

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

0 50 100 150 200

STR2+: 0

0

50

100

150

200

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
5

0 50 100 150 200 250

STR3: 0

0

50

100

150

200

250

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
3

Fig. 5: Scatter plots of the Geom instance set



26 Jean-Baptiste Mairy et al.

numbers apart from its previous occurrence. This is problem 24 of CSPLIB 1. Those prob-
lems can be modeled with binary (positive) table constraints only. The instances with table
constraints can be found in [14]. The search strategy used is dom/deg with lexicographic
value ordering. Problems where all the propagators take more than 5 minutes are removed
from the sets. For k = 2, 12 instances are used: n ∈ {5..12, 15, 16, 19, 20}, for k = 3, 8
instances: n ∈ {3..10} and for k = 4, 9 instances: n ∈ {3..11}. The results for k of 2, 3
and 4 can be found in Table 2.

The winning strategy on those instances is clearly AC3rm. However, except for AC5TC-
Bool on the k = 4 set of instances, all our propagators improve the state-of-the-art STR2+,
STR3 and MDDc. AC5TCOpt-Sparse, AC5TCOpt-Tr and AC5TC-Recomp are faster than
AC3 on the k = 2 set. AC5TCOpt-Sparse and AC5TC-Recomp are faster than AC3 on
the k = 3 set. The three fastest of our propagators on those instances are AC5TCOpt-
Sparse, AC5TCOpt-Tr and AC5TC-Recomp. They are also better than the classical GAC3-
Allowed. AC5TCOpt-Sparse is the fastest propagator on those three instance sets. Our opti-
mal AC5TCOpt-Tr is faster than AC5TC-Recomp only for the k = 2 instance set. Observe
that the number of followed pointers is globally higher for this instance set, due to inclusion
of instances with larger n. The number of calls to the propagators during the search is also
higher for the k = 2 set. This suggests that AC5TC-Tr requires harder instances (found in
the k = 2 set) for amortizing the cost of its data structures. AC5TCOpt-Sparse does not
have this problem thanks to its reduced need in backtrackable structures.

Scatter plots for the Langford problem are given for the k = 4 set in Figure 6. On those
scatter plots are given, next to each algorithm, the number of instances that are solved by
it and that caused the other algorithm to timeout. The scatter plots for the other values of k
displayed the same patterns. The observations are similar than the ones made for the geom
instance set: AC3rm seems linearly faster than AC5TCOpt-Sparse and AC5TCOpt-Sparse
seems linearly faster than STR2+ and STR3. AC5TCOpt-Sparse and AC3rm are solving one
instance more than STR2+ and STR3.

Traveling Salesman Problem We continue with results of the propagators on the Travel-
ing Salesman Problem (TSP) constraint satisfaction instances. We used the set of instances
tsp-20 and tsp-25 [14]. Those structured instances are composed of very different table con-
straints. Their arity varies between 2 and 3 and they may count up to 20 000 tuples but also
as few as 20. The variables also have quite different domains: Some have small domains,
while others feature domains containing up to 1000 values. There are 61 variables and 230
table constraints in tsp-20 instances. The tsp-25 instances count 76 variables and 350 con-
straints. The negative table constraints found in those instances have been transformed into
positive ones. The search strategy used here is dom/deg with lexicographic value ordering.
Both sets contain 15 instances. For the set tsp-25, instance tsp-25-715 has been removed
from the set, as it was unsolved after 3 hours.

Tables 3 and 4 present the results. We first observe that STR2+, STR3 and MDDc perform
worse than our propagators, except for the set TSP-25 where STR3 is faster than AC5TC-
Bool. AC5TCOpt-Sparse is the winning strategy on both instance sets. It is the best for
each instance of the TSP-20 set. Another observation is that AC5TC-Recomp is faster than
our optimal AC5TCOpt-Tr on the TSP-20 set. On the contrary, AC5TCOpt-Tr is faster on

1 www.csplib.org



Domain Consistency with Forbidden Values 27

0 50 100 150 200

AC3rm: 0

0

50

100

150

200

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

0 50 100 150 200

STR2+: 0

0

50

100

150

200

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
1

0 50 100 150 200 250

STR3: 0

0

50

100

150

200

250

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
1

Fig. 6: Scatter plots of the Langford instance set for k = 4



28 Jean-Baptiste Mairy et al.

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

k = 2

GAC3-Allowed 16.3 0.6 1 M 315 324 166 k 0 166 k
AC5TC-Bool 18.6 0.8 2 M 358 342 576 178 k 316 k
AC5TC-Sparse 16.8 0.5 2 M 323 276 576 178 k 316 k
AC5TC-Recomp 10.1 0.4 2 M 195 199 27 k 0 154 k
AC5TCOpt-Tr 9.4 2.5 2 M 182 488 576 0 42 k
AC5TCOpt-Sparse 6.6 0.8 2 M 126 264 576 0 0
MDDc 26.6 3.7 1 M 512 970 0 0 307 k
STR2+ 26.7 1.3 1 M 514 643 46 k 0 0
STR3 23.7 1.6 2 M 456 638 576 0 0
AC3 11.3 0.2 1 M 218 176 0 0 0
AC3rm 5.2 0.1 1 M 100 101 0 0 0

k = 3

GAC3-Allowed 2.5 0.3 75 k 395 310 12 k 0 12 k
AC5TC-Bool 3.5 0.3 242 k 553 395 380 10 k 21 k
AC5TC-Sparse 2.5 0.2 242 k 398 324 380 10 k 21 k
AC5TC-Recomp 1.5 0.2 239 k 244 213 2 k 0 12 k
AC5TCOpt-Tr 2.2 0.9 242 k 342 402 380 0 4 k
AC5TCOpt-Sparse 1.4 0.4 242 k 227 242 380 0 0
MDDc 3.9 1.5 75 k 608 718 0 0 22 k
STR2+ 3.7 0.6 75 k 585 546 5 k 0 0
STR3 4.0 0.7 242 k 639 627 380 0 0
AC3 1.6 0.1 85 k 223 183 0 0 0
AC3rm 0.7 0.1 85 k 100 100 0 0 0

k = 4

GAC3-Allowed 23.4 1.3 419 k 477 379 19 k 0 19 k
AC5TC-Bool 42.5 1.6 1.6 M 867 524 677 20 k 36 k
AC5TC-Sparse 29.8 1.0 1.6 M 608 384 677 20 k 36 k
AC5TC-Recomp 17.0 0.8 1.58 M 347 244 3 k 0 18 k
AC5TCOpt-Tr 21.8 5.0 1.6 M 445 621 677 0 5 k
AC5TCOpt-Sparse 12.3 1.7 2 M 250 315 677 0 0
MDDc 31.2 7.3 419 k 637 957 0 0 35 k
STR2+ 33.2 3.3 419 k 677 676 10 k 0 0
STR3 39.3 3.4 2 M 802 730 677 0 0
AC3 11.7 0.4 419 k 238 188 0 0 0
AC3rm 4.9 0.2 419 k 100 103 0 0 0

Table 2: Experimental Results on Langford instances (times in seconds)

the TSP-25 set. We can also see that checking the validity instead of the Q-validity al-
lows AC5TC-Recomp to follow less pointers and perform fewer validity checks than the
Q-validity checks of AC5TC-Bool and AC5TC-Sparse. Moreover, on these instances, the
small arity makes the validity check (O(r)) cheap compared to Q-validity (O(1)). This ex-
plains the good performances of AC5TC-Recomp.



Domain Consistency with Forbidden Values 29

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

GAC3-Allowed 797 1.7 6.7 M 1 073 795 11 M 0 11 M
AC5TC-Bool 186 0.8 21.2 M 251 254 2 k 1 M 2 M
AC5TC-Sparse 153 0.5 21.2 M 207 195 2 k 1 M 2 M
AC5TC-Recomp 109 0.3 20.9 M 146 140 391 k 0 1 M
AC5TCOpt-Tr 120 3.3 21.2 M 162 222 2 k 0 466 k
AC5TCOpt-Sparse 74 0.5 21 M 100 104 2 k 0 0
MDDc 456 19.0 6.7 M 614 1041 0 0 7 M
STR2+ 398 1.4 6.7 M 536 478 803 k 0 0
STR3 226 1.0 21 M 305 296 2k 0 0

Table 3: Results of the propagators for instance set TSP-20 (times in seconds)

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

GAC3-Allowed 6 607 2.4 73 M 931 764 23 M 0 23 M
AC5TC-Bool 2 625 1.3 198 M 370 350 2 k 11 M 19 M
AC5TC-Sparse 1 937 0.7 198 M 273 263 2 k 11 M 19 M
AC5TC-Recomp 1 315 0.5 196 M 185 180 3 M 0 10 M
AC5TCOpt-Tr 1 089 5.2 198 M 153 151 2 k 0 3 M
AC5TCOpt-Sparse 710 0.9 198 M 100 100 2 k 0 0
MDDc 4 974 25.2 73 M 701 637 0 0 28 M
STR2+ 3 740 2.9 73 M 527 500 5 M 0 0
STR3 2 308 1.9 198 M 325 305 2 k 0 0

Table 4: Results of the propagators for instance set TSP-25 (times in seconds)

To test the effect of the arity on this instance set, we merged binary tables of the instances of
the TSP-20 set into arity 4 tables. The merge is obtained by merging arity 2 constraints into
arity 4 ones. The merged constraints do not share variables. The pruning in this benchmark
is thus the same as in the original one. The results are summarized in Table 5. A timeout of
15 minutes has been set for those experiments. The data in the table concerns only instances
for which none of the propagators timeouts. The percentage of the 15 instances solved by
each propagator individually is also given. AC5TCOpt-Sparse is still the fastest propaga-
tor. Although, STR2+ and STR3 are faster than our other propagators on those instances.
This seems to indicate that those existing state-of-the-art propagators are better for larger
arity constraints. The three propagators solving the largest number of instances are our two
AC5TCOpt algorithms and STR2+.

Scatter plots for the TSP-20 and TSP-20 with quaternary tables are respectively given in Fig-
ure 7 and 8. The patterns on the set TSP-25 are similar to the ones in the scatter plots of the
TSP-20 set. For the modified TSP-20 set, next to each algorithm, is the number of instances
solved by this algorithm for which the other timeouts. As we can see on those scatter plots,
AC5TCOpt-Sparse is linearly better than STR2+ and STR3 on both instance sets. STR2+
is a bit faster on the instance set with quaternary tables while STR3 is disadvantaged. Two
instances with quaternary tables are solved by AC5TCOpt-Sparse while triggering a timeout
for STR3.



30 Jean-Baptiste Mairy et al.

0 500 1000 1500 2000 2500 3000

STR2+: 0

0

500

1000

1500

2000

2500

3000

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

0 500 1000 1500

STR3: 0

0

500

1000

1500

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

Fig. 7: Scatter plots of the TSP-20 instance set

RandRegular The Regular constraint [25] is a global constraint on a sequence of variable
stating that the values taken by the variables have to form a word in a given regular lan-
guage. The regular language is specified by a deterministic finite automaton. This constraint
generalizes some other well known global constraints [25]. Examples of problems where
those constraints are heavily used in CP are rostering problems. In rostering, the regular
constraints are used to enforce the valid patterns of activities.



Domain Consistency with Forbidden Values 31

0 100 200 300 400 500 600 700

STR2+: 0

0

100

200

300

400

500

600

700

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

0 100 200 300 400 500 600

STR3: 0

0

100

200

300

400

500

600

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
2

Fig. 8: Scatter plots of the modified TSP-20 instance set with quaternary tables

The regular constraints can be encoded efficiently with table constraints [2, 26]. Since the
length of the sequence is fixed to the number of variables in the scope of the global con-
straint, additional variables can be introduced to represent the successive states visited in the
automaton. For a regular constraint with scope x1 . . . xr , those state variables are q0 . . . qr .
For all 0 ≤ i < r, a constraint links the variables in the scope and the additional variables:
qi+1 = Trans(qi,xi+1), where Trans is the transition function of the automaton. Those
constraints are posted using table constraints to encode the transition function. The tables



32 Jean-Baptiste Mairy et al.

propagator totTime postTime nProp %best µ%best %solved valChk QvalChk pFollow

GAC3_Allowed 103 7.7 303 k 623 336 60 1 M 0 1 M
AC5TC-Bool 123 6.1 853 k 745 392 60 7 k 881 k 1 M
AC5TC-Sparse 99 4.0 853 k 600 303 67 7 k 881 k 1 M
AC5TC-Recomp 83 3.4 844 k 504 261 73 227 k 0 793 k
AC5TCOpt-Tr 60 44.1 853 k 362 429 93 7 k 0 36 k
AC5TCOpt-Sparse 16.6 7.3 852 k 100 102 93 7 k 0 0
MDDc 130 104 303 k 782 934 87 0 0 456 k
STR2+ 34.2 16.0 303 k 207 200 93 80 k 0 0
STR3 43.8 10.6 853 k 265 217 80 7 k 0 0

Table 5: Experimental Results on tsp-20 instances with arity 4 tables

are computed based on the transition function and the reachable states. Two additional con-
straints are posted: q0 = s and qn ∈ F , where s is the starting state of the automaton and F
is its set of final states.

For those experiments, we generated 100 instances with regular constraints. Those instances
contain 20 regular constraints on 10 different variables. Each regular constraint has a scope
of 5 variables, chosen randomly. The domains of the variable is of size 10. Each regular
constraint is 20 states and has a randomly created transition table, hence the name of the
benchmark: RandRegular. Amongst the states, 30 % of them are randomly chosen to be
final. The parameters were chosen to produce instances with a significant number of fails
and choice points. The regular constraints are transformed in ternary table constraints. The
search strategy used during the resolution is dom/deg variable ordering with lexicographic
variable ordering.

The results of the experiments on the RandRegular instances can be found in Table 6. On
this instance set, all our propagators are faster than the existing state-of-the-art ones. The
winning strategy is our optimal AC5TCOpt-Sparse. Despite the large variability of resolu-
tion times for a single technique between different instances, the small differences between
the %best and µ%best indicates that the performances of the propagators are proportional
through the whole set. The arity of the tables (all tables have an arity of 3) as well as their
medium size that is constant through the set could explain the good performances of our
algorithms on this instance set.

Scatter plots for the RandReg benchmark are given in Figure 9. We can observe that the
solving times are well spread for those instances. We can also see that AC5TCOpt-Sparse is
linearly faster than both STR2+ and STR3, STR3 being faster than STR2+.

Random Instances These instances contain random table constraints of random scope gen-
erated by the RD-model [34]. Parameters are chosen to generate instances close to the phase
transition, using Theorems 1 and 2 from [34]. The instances have 10 variables, a uniform
domain size of 10, and 15 table constraints of arity 5. The expected number of tuples in each
table is thus 20000. 10 instances were generated with those settings. The search strategy is
the dom heuristic with lexicographic value ordering.

Table 7 summarizes the results. Results are similar for other parameter settings which also
generate instances close to the phase transition. The standard MDDc algorithm outperforms



Domain Consistency with Forbidden Values 33

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

GAC3-Allowed 68 0.1 2 M 205 200 1 M 0 1 M
AC5TC-Bool 40.5 0.0 8 M 122 121 137 462 k 955 k
AC5TC-Sparse 42.6 0.0 8 M 128 128 137 462 k 955 k
AC5TC-Recomp 36.4 0.0 8 M 110 109 288 k 0 766 k
AC5TCOpt-Tr 42.5 0.1 8 M 128 129 137 0 367 k
AC5TCOpt-Sparse 33.2 0.1 8 M 100 100 137 0 0
MDDc 105 0.6 2 M 316 313 0 0 1 M
STR2+ 96 0.0 2 M 288 283 371 k 0 0
STR3 69 0.1 8 M 208 207 137 0 0

Table 6: Experimental Results on RandRegular Instances

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

GAC3-Allowed 3 000 1.5 614 k 2 725 2 660 523 M 0 523 M
AC5TC-Bool 4 636 1.0 2.8 M 4 211 4 070 19 k 257 M 481 M
AC5TC-Sparse 3 991 0.8 2.8 M 3 626 3 538 19 k 257 M 481 M
AC5TC-Recomp 3 874 0.8 2.4 M 3 519 3 357 98 M 0 305 M
AC5TCOpt-Tr 994 5.2 2.8 M 903 930 19 k 0 16 M
AC5TCOpt-Sparse 469 1.7 2.8 M 426 440 19 k 0 0
MDDc 110 12.4 614 k 100 100 0 0 12 M
STR2+ 483 0.7 614 k 439 455 22 M 0 0
STR3 913 2.1 2.8 M 829 839 19 k 0 0

Table 7: Results of the propagators on fully random instance set (times in seconds)

our value-based propagators on all instances, as it has a µ%best of 100. The performance
of our optimal AC5TCOpt-Tr is comparable to the performance of the optimal STR3 but
AC5TCOpt-Sparse is significantly faster than both. AC5TCOpt-Sparse is the most efficient
value based propagator. Observe the large number of validity checks of AC5TC-Recomp
and Q-validity checks of AC5TC-Bool and AC5TC-Sparse, as well as the number of times
they follow a pointer. The two AC5TCOpt implementations are performing the same num-
ber of validity checks at post time as the two AC5TC ones but they do not require any
Q-validity checks afterwards. The difference in performance between AC5TCOpt-Tr and
AC5TCOpt-Sparse is reflecting the additional cost AC5TCOpt-Tr has to pay for trailing its
larger data structures. The overall performances of our propagators seems to be impacted
by the augmentation of the arity of the tables as well as their size. Indeed, AC5TC-Recomp,
AC5TC-Sparse and AC5TC-Bool can revisit each tuple r time in the worst case and the
trailable structures of AC5TCOpt-Tr are proportional to r · t.

Figure 10 shows the scatter plots of AC5TCOpt-Sparse versus STR2+ and AC5TCOpt-
Sparse versus STR3. On those graphs, we can see that the performance of STR2+ and
AC5TCOpt-Sparse are similar. On the other side, AC5TCOpt-Sparse is faster than STR3.

Crosswords Problem The Crosswords problem is the problem of filling a predefined grid
with words from a dictionary. We used four instance sets from [14]. Those instances are also
used to test table constraint propagators in [16] and [19]. The instances in those sets differ



34 Jean-Baptiste Mairy et al.

0 50 100 150 200

STR2+: 0

0

50

100

150

200

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

0 20 40 60 80 100 120 140 160

STR3: 0

0

20

40

60

80

100

120

140

160

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

Fig. 9: Scatter plots of the RandRegular instance set

by the dictionary they use to get the words from. The grids are all the same and empty. Inside
a set, different grid sizes are used, varying the arity of the table constraints. The instance set
lexVg is using the dictionary defined in [29]. Instances in ogdVg use a french dictionary. The
set ukVg is using the UK cryptic solvers dictionary. The last instance set, wordsVg uses the
dictionary in /usr/dict/words under Linux. The dictionaries of lexVg and wordsVg instances
sets have a rather small dictionary, leading to small tables. On the contrary, ogdVg and ukVg



Domain Consistency with Forbidden Values 35

0 100 200 300 400 500 600 700 800

STR2+: 0

0

100

200

300

400

500

600

700

800

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

0 200 400 600 800 1000 1200 1400

STR3: 0

0

200

400

600

800

1000

1200

1400

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

Fig. 10: Scatter plots of the Random Benchmark

have large dictionaries. As, for those problems, the same word can be used multiple times,
only table constraints are used to encode the problem.

The search heuristic used for this problem is dom/deg variable ordering with lexicographic
value ordering. A timeout of 20 minutes has been set on the resolution of the instances. The
results concerns only the instances for which none of the propagators timeouts. The grid
sizes used in the experiments are:



36 Jean-Baptiste Mairy et al.

– for lexVg, 42 instances: 4x{4..8}, 5x5, 6x6, 7x{10..11}, 8x{9..12}, 9x{9..13}, 10x{10..14},
11x{11..15}, 12x{12..16}, 13x{13..17}, 14x{14..18}, 15x{15..18}, 16x{16..20}

– for ogdVg, 27 instances: 4x{4..8}, 5x{5..9}, 6x6, 7x7, 13x{16..17}, 14x{16..18}, 15x{15..19},
16x{16..20}

– for ukVg, 23 instances: 4x{4..8}, 5x{5..7}, 6x{6}, 13x17, 14x{16..18}, 15x{15..19},
16x{16..20}

– for wordsVg, 47 instances: 4x{4..8}, 5x{5..7}, 6x6, 7x11, 8x{11..12}, 9x{10..13}, 10x{10..14},
11x{11..15}, 12x{12..16}, 13x{13..17}, 14x{14..18}, 15x{15..17}, 16x{16..18}

The four sets contain a total of 139 instances. The arities of the tables is determined by the
grid size. An instance with grid size x× y has table constraints of arity x and y.

The results of the propagators on the Crosswords instances can be found in Table 8. Except
for AC5TCOpt-Sparse on the lexVg set, both STR3 and STR2+ are faster than all other
propagators. Although, the µ%best quantity indicates that neither of them is the best on
each instance. When compared to AC5TCOpt-Sparse, they are faster on the easiest and
the hardest instances but AC5TCOpt-Sparse is faster on the medium difficulty ones. On
the sets lexVg and ukVg, the two AC5TC propagators have smaller µ%best than STR2+
and STR3, meaning that they are generally closer to the best instance by instance. Another
observation is that, although AC5TCOpt-Tr is optimal, the non optimal AC5TC-Bool and
AC5TC-Sparse are faster on the four sets of crossword instances. On the lexVg and the
wordsVg sets, AC5TCOpt-Sparse is the best of our propagators. Surprisingly, on the ogdVg
and ukVg, the best of our propagator is AC5TC-Sparse, followed by AC5TC-Bool. Those
two instance sets are the ones where the dictionaries used are the bigger, meaning tables
with more tuples. AC5TCOpt-Tr seems particularly disadvantaged by its large backtrackable
structures on this problem. The characteristic of this benchmark, with large arity tables,
seems to disadvantage our propagators.

Scatter Plots for ogdVg and wordsVg are given respectively in Figures 11 and 12. The integer
next to each algorithm is the number of instances solved by it triggering a timeout for the
other algorithm. Those two instance sets have been chosen because ogdVg instances have
a large dictionary and wordsVg instances have a small one. For ogdVg, STR2+ is faster
than AC5TCOpt-Sparse except on some instances where their performance is comparable.
STR3 is clearly faster than AC5TCOpt-Sparse except on three non-easy instances where
AC5TCOpt-Sparse is significantly faster than STR3. AC5TCOpt-Sparse is able to solve one
instance STR3 can’t within the time limit. On wordsVg, the performances of STR2+ and
AC5TCOpt-Sparse are comparable, STR2+ being faster in average. STR3 is also faster than
AC5TCOpt-Sparse on this instance set (except for two non-easy instances) but the relative
difference is smaller here than in ogdVg. AC5TCOpt-Sparse is able to solve one wordsVg
instance causing both STR2+ and STR3 to timeout.

Modified Renault Problem The modified renault problem instances originate from a Renault
Megane configuration problem. This problem has been modified in order to generate a series
of instances. Those instances have the particularity to present large tables (up to 50 k tuples)
of large arities (up to arity 10). Those instances can be found in [14]. The search strategy
used is dom/deg variable ordering with lexicographic value ordering. A timeout of 20 min-
utes has been set on the resolution time. The results concern only the instances for which
none of the propagators timed out. The set of instances found on [14] counts 50 instances.



Domain Consistency with Forbidden Values 37

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

lexVg

GAC3-Allowed 61 0.2 35 k 234 283 9 M 0 9 M
AC5TC-Bool 44.9 0.1 611 k 171 150 2 k 5 M 7 M
AC5TC-Sparse 41.2 0.1 611 k 157 139 2 k 5 M 7 M
AC5TC-Recomp 50 0.1 543 k 192 170 4 M 0 6 M
AC5TCOpt-Tr 66 0.6 611 k 252 378 2 k 0 847 k
AC5TCOpt-Sparse 30.3 0.2 611 k 116 191 2 k 0 0
MDDc 77 7.8 35 k 293 1321 0 0 3 M
STR2+ 31.8 0.2 35 k 121 160 957 k 0 0
STR3 26.2 0.2 611 k 100 167 2 k 0 0

ogdVg

GAC3-Allowed 55 2.9 4 k 264 263 6 M 0 6 M
AC5TC-Bool 41.5 1.2 61 k 200 168 12 k 3 M 4 M
AC5TC-Sparse 37.7 1.0 61 k 182 151 12 k 3 M 4 M
AC5TCRecomp 53 0.9 51 k 254 182 2 M 0 4 M
AC5TCOpt-Tr 122 14.7 61 k 589 563 12 k 0 348 k
AC5TCOpt-Sparse 52 2.8 61 k 249 212 12 k 0 0
MDDc 146 82 4 k 704 1703 0 0 1 M
STR2+ 33.6 1.6 4 k 162 180 548 k 0 0
STR3 20.7 3.1 61 k 100 151 12 k 0 0

ukVg

GAC3-Allowed 76 1.3 14 k 244 290 6 M 0 6 M
AC5TC-Bool 67 0.6 373 k 216 243 7 k 4 M 6 M
AC5TC-Sparse 58 0.5 373 k 186 212 7 k 4 M 6 M
AC5TC-Recomp 83 0.4 292 k 267 275 3 M 0 5 M
AC5TCOpt-Tr 175 4.3 373 k 565 482 7 k 0 506 k
AC5TCOpt-Sparse 77 1.2 372 k 247 203 7 k 0 0
MDDc 222 56 14 k 713 1110 0 0 3 M
STR2+ 41.9 0.6 14 k 135 128 583 k 0 0
STR3 31.1 1.3 373 k 100 150 7 k 0 0

wordsVg

GAC3-Allowed 63 0.3 20 k 246 296 8 M 0 8 M
AC5TC-Bool 49.5 0.2 362 k 193 161 2 k 5 M 6 M
AC5TC-Sparse 43.9 0.1 362 k 171 148 2 k 5 M 6 M
AC5TC-Recomp 56 0.1 317 k 219 173 3 M 0 5 M
AC5TCOpt-Tr 88 1.1 362 k 345 466 2 k 0 734 k
AC5TCOpt-Sparse 39.6 0.3 362 k 155 207 2 k 0 0
MDDc 84 11.8 20 k 328 1840 0 0 2 M
STR2+ 35.4 0.3 20 k 138 180 921 k 0 0
STR3 25.6 0.4 362 k 100 169 2 k 0 0

Table 8: Experimental Results on Crosswords instances



38 Jean-Baptiste Mairy et al.

0 200 400 600 800 1000

STR2+: 0

0

200

400

600

800

1000

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

0 200 400 600 800 1000

STR3: 2

0

200

400

600

800

1000

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
1

Fig. 11: Scatter plots of the crossword instance set ogdVg

Amongst them, 16 are solved by all propagators within the time limit. The percentage of
those 50 instances solved by each individual propagator is also given in the result table.

The experimental results on the Modified Renault Problem are given in Table 9. STR2+ is
the winning strategy on this instance set and it is the fastest on each instance. Our optimal
AC5TCOpt-Sparse is faster than STR3 and it is solving one instance more. However, STR3
is faster than our other propagators. Observe the difference in the number of calls to the
propagator between the value based and constraint based propagators, giving advantage to



Domain Consistency with Forbidden Values 39

0 200 400 600 800 1000

STR2+: 0

0

200

400

600

800

1000

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
1

0 200 400 600 800 1000 1200

STR3: 0

0

200

400

600

800

1000

1200

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
1

Fig. 12: Scatter plots of the crossword instance set wordsVg

the constraint based approaches. The difference in the number of calls between AC5TCOpt-
Sparse and the group AC5TCOpt-Tr, AC5TC-Sparse and AC5TC-Bool comes from the or-
der in which the tuples are visited during propagation. Indeed, all our propagators visit the
tuples in the order of the table, except AC5TCOpt-Sparse. This results in a difference in the
order of the values in the propagation queue and hence, a difference in the number of calls
to the propagators. AC5TC-Recomp has less calls due to its use of the validity, allowing it



40 Jean-Baptiste Mairy et al.

to compute a larger △. Although the large arity of the tables seems to slow our propagators,
AC5TCOpt-Sparse is impacted the less.

propagator totTime postTime nProp %best µ%best %solved valChk QvalChk pFollow

GAC3-Allowed 16.5 1.4 39 k 307 215 34 286 k 0 286 k
AC5TC-Bool 14.4 0.8 268 k 268 202 32 1 k 128 k 221 k
AC5TC-Sparse 13.2 0.6 268 k 244 178 32 1 k 128 k 221 k
AC5TC-Recomp 12.1 0.5 227 k 224 174 32 67 k 0 155 k
AC5TCOpt-Tr 14.5 4.5 268 k 269 389 36 1 k 0 33 k
AC5TCOpt-Sparse 7.6 1.6 275 k 141 176 36 1 k 0 0
MDDc 17.9 15.4 39 k 332 642 36 0 0 21 k
STR2+ 5.4 0.6 39 k 100 100 36 25 k 0 0
STR3 10.4 1.7 268 k 193 198 34 1 k 0 0

Table 9: Experimental Results on the modified Renault problem

Scatter plots for those instances can be found in Figure 13. Next to each algorithm is the
number of instances solved by it that the other algorithm was unable to solve within the
time limit. Although the spreading of the solving time is not good, those plots confirm the
tendency exhibited by the average solving time in the table: STR2+ faster than AC5TCOpt-
Sparse and AC5TCOpt-Sparse faster than STR3. We can also observe that AC5TCOpt-
Sparse solves one instance that STR3 is unable to solve within the time limit.

Summary Table 10 gives a summary of the per benchmark percentage to the best mean time.
The names of our propagators have been shortened by removing the prefix ’AC5TC’. This
table shows the effect of the arity of the table constraints on the propagators. The bench-
marks are separated into three categories depending on the arity of the table constraints: the
binary benchmarks, the small arity benchmarks (arity 3 and 4) and the large arity bench-
marks. For the benchmarks containing only binary table constraints, AC3rm is clearly the
fastest propagator. However, on those benchmarks, our propagators are globally faster than
the existing state-of-the-art MDDc, STR2+ and STR3. AC3rm has been designed for bi-
nary constraints. For the benchmarks where the tables have arity up to 4, our propagators
are globally the best propagators. However, when the arity of the tables in the benchmarks
increases, our propagators become slower than the state of the art. The existing state-of-
the-art propagators considered in this paper are well suited for problems where the arity
is large. The MDDc propagator is the fastest on the random instances. On this set, despite
the random tables, its compressed table is small, allowing it to outperform the other prop-
agators. The optimal STR3 propagator is the fastest on the crosswords instances. STR2+
is the fastest on the modified Renault benchmark. Although it would be statistically mean-
ingless to average the %best in Table 10, it is however clear that, on these benchmarks,
our optimal AC5TCOpt-Sparse is our best propagator. It stays competitive with AC3rm on
half of the binary benchmarks, it is globally the best on the small arity benchmarks and on
some of the large arity benchmarks, its performances are competitive with the state of the
art. The non optimal AC5TC-Recomp and the optimal propagator AC5TCOpt-Tr are the
next fastest ones of our propagators. AC5TC-Tr outperforms AC5TC-Recomp on difficult
instances. However, on easier instances, the cost of its trailable nextTr data-structure makes



Domain Consistency with Forbidden Values 41

0 100 200 300 400 500 600 700 800

STR2+: 0

0

100

200

300

400

500

600

700

800

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
0

0 200 400 600 800

STR3: 0

0

200

400

600

800

A
C
5
T
C
O
p
t
S
p
a
r
s
e
:
 
1

Fig. 13: Scatter plots of the modified Renault instance set

it slower than AC5TC-Recomp. AC5TC-Bool and AC5TC-Sparse are generally slower than
AC5TC-Recomp since they are testing Q-validity, not validity, and hence perform smaller
jumps in the table. However, on the crossword instances, the two AC5TC algorithms are
faster than AC5TC-Recomp on all instance sets and even than AC5TCOpt-Sparse on two of
the four sets. Also, AC5TCOpt-Sparse is always faster than AC5TCOpt-Tr, confirming the
additional cost AC5TCOpt-Tr has to pay for its backtrackable structures. AC5TC-Sparse is
also always faster than AC5TC-Bool, for the same reasons.



42 Jean-Baptiste Mairy et al.

Benchmark GAC3_Allowed Bool Sparse Recomp OptTr OptSparse MDDc STR2+ STR3 AC3 AC3rm

geom 276 341 295 216 263 178 401 680 413 283 100
Langford(2) 315 358 323 195 182 126 512 514 456 218 100
Langford(3) 395 553 398 244 342 227 608 585 639 223 100
Langford(4) 477 867 608 347 445 250 637 677 802 238 100

TSP-20 1 073 251 207 146 162 100 614 536 305 - -
TSP-25 931 370 273 185 153 100 701 527 325 - -
TSP-Quat-20 623 745 600 504 362 100 782 207 265 - -
RandRegular 205 122 128 110 128 100 316 288 208 - -

Random 2 725 4 211 3 626 3 519 903 426 100 439 829 - -
CW-LexVg 234 171 157 192 252 116 293 121 100 - -
CW-ogdVg 264 200 182 254 589 249 704 162 100 - -
CW-ukVg 244 216 186 267 565 247 713 135 100 - -
CW-wordsVg 246 193 171 219 345 155 328 138 100 - -
modified Renault 307 268 244 224 269 141 332 100 193 - -

Table 10: Summary of the experimental results: %best

7 Conclusion

This paper proposed five different value-based, domain-consistency algorithms for table
constraints, all using the AC5 generic framework. The new propagators record, for every
value of the variables, the index of its first current support in the table. They also use, for
each variable of a tuple, the index of the next tuple sharing the same value for this variable.
They differ in their use of information on the validity of the tuples as well as the order of the
tuples in the formed next chains. AC5TCOpt-Sparse is globally the best of our value-based
algorithms. As AC5TCOpt-Tr, AC5TCOpt-Sparse embeds the Q-validity information into
the indexing structure, avoiding unnecessary visits of invalid tuples and leading to an optimal
algorithm with a time complexity of O(r·t+r·d) per table constraint. However, AC5TCOpt-
Sparse relaxes the requirement that the tuples in the structure are ordered as they are in the
table. Doing that allows AC5TCOpt-Sparse to have far less backtrackable structures. While
not changing its theoretical complexity, this relaxation allows AC5TCOpt-Sparse to be more
efficient in practice. Our other algorithms have a time complexity of O(r2 ·t+r ·d) per table
constraint. Experimental results show that, on instances containing only binary table con-
straints, our algorithms are outperformed by AC3rm. However, they are faster than STR2+,
STR3 and MDDc. When the arity of the tables in the instances is up to 4, our propagators
are the fastest ones. The speedups that our propagators provide on those benchmarks are up
to 5.36 over STR2+, up to 7.82 over MDDc and 3.25 over STR3. However, when the ar-
ity of the table increases, the conclusion changes. The existing state-of-the-art propagators
STR2+, STR3 and MDDc are faster than our algorithms on one different benchmark each.
As future work, it would be interesting to extend AC5TC to handle negative tables through
its disallowed tuples and to integrate the compressed representation of tuples introduced in
[27].

Acknowledgments The authors want to thank the anonymous reviewers for their construc-
tive and helpful comments. Thanks to Christophe Lecoutre for a discussion on the complex-
ity of GAC3-allowed and GAC2001-allowed. The first author is supported as a Research
Assistant by the Belgian FNRS (National Fund for Scientific Research). This research is



Domain Consistency with Forbidden Values 43

also partially supported by the Interuniversity Attraction Poles Program (Belgian State, Bel-
gian Science Policy) and the FRFC project 2.4504.10 of the Belgian FNRS. This work was
conducted in part at NICTA and is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence program.

References

1. van Beek P (2006) Backtracking search algorithm. In: [28]

2. Beldiceanu N, Carlsson M, Debruyne R, Petit T (2005) Reformulation of global con-
straints based on constraints checkers. Constraints 10(4):339–362

3. Bessière C (2006) Constraint propagation. In: [28]

4. Bessière C, Régin JC (1997) Arc consistency for general constraint networks: Prelimi-
nary results. In: IJCAI (1), pp 398–404

5. Briggs P, Torczon L (1993) An efficient representation for sparse sets. ACM Letters on
Programming Languages and Systems (LOPLAS) 2(1-4):59–69

6. Carlsson M (2006) Filtering for the case constraint, talk given at the advanced school
on global constraints

7. Cheng K, Yap R (2010) An mdd-based generalized arc consistency algorithm for posi-
tive and negative table constraints and some global constraints. Constraints 15:265–304

8. Deville Y, Van Hentenryck P (2010) Domain consistency with forbidden values. In:
Proceedings of CP 2010, Springer, pp 191–205

9. Fleming PJ, Wallace JJ (1986) How not to lie with statistics: the correct way to summa-
rize benchmark results. Commun ACM 29(3):218–221

10. Gange G, Stuckey PJ, Szymanek R (2011) Mdd propagators with explanation. Con-
straints 16(4):407–429

11. Gent IP, Jefferson C, Miguel I (2006) Watched literals for constraint propagation in
Minion. In: Proceedings of CP 2006, Springer-Verlag, pp 182–197

12. Gent IP, Jefferson C, Miguel I, Nightingale P (2007) Data structures for generalised arc
consistency for extensional constraints. In: Proceedings of the AAAI 07, AAAI Press,
pp 191–197

13. Katsirelos G, Walsh T (2007) A compression algorithm for large arity extensional con-
straints. In: Proceedings of CP 2007, Springer-Verlag, pp 379–393

14. Lecoutre C Instances of the Constraint Solver Competition.
http://www.cril.fr/∼lecoutre/

15. Lecoutre C (2009) Constraint Networks: Techniques and Algorithms. ISTE/Wiley

16. Lecoutre C (2011) Str2: optimized simple tabular reduction for table constraints. Con-
straints 16:341–371



44 Jean-Baptiste Mairy et al.

17. Lecoutre C, Szymanek R (2006) Generalized arc consistency for positive table con-
straints. In: Proceedings of CP 2006, pp 284–298

18. Lecoutre C, Hemery F, et al (2007) A study of residual supports in arc consistency. In:
Proceedings of IJCAI 2007, vol 7, pp 125–130

19. Lecoutre C, Likitvivatanavong C, Yap R (2012) A path-optimal gac algorithm for table
constraints. In: Proceedings of ECAI 2012, pp 510–515

20. Lhomme O (2004) Arc-consistency filtering algorithms for logical combinations of con-
straints. In: Proceedings of CPAIOR 2004, pp 209–224

21. Lhomme O, Régin JC (2005) A fast arc consistency algorithm for n-ary constraints.
In: Proceedings of the Nationnal Conference on Artificial Intelligence, AAAI Press, pp
405–410

22. Mairy J.B., Van Hentenryck P., Deville Y. (2012) An Optimal Filtering Algorithm for
Table Constraints. In: Proceedings of CP 2012, vol 3709, Springer Berlin, pp 496–511.

23. Mohr R, Masini G (1988) Good old discrete relaxation. In: Proceedings of ECAI 1988,
pp 651–656

24. Perron L, Furnon V or-tools, http:// code.google.com/p/or-tools

25. Pesant G (2004) A regular language membership constraint for finite sequences of vari-
ables. In: Proceedings of CP 2004, Springer, pp 482–495

26. Quimper CG, Walsh T (2006) Global grammar constraints. In: Proceedings of CP 2006,
Springer, pp 751–755

27. Régin JC (2011) Improving the expressiveness of table constraints. In: In proceedings
of ModRef 2011 Workshop held with CP 2011

28. Rossi F, Beek Pv, Walsh T (eds) (2006) Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA

29. Samaras N, Stergiou K (2005) Binary encodings of non-binary constraint satisfaction
problems: Algorithms and experimental results. Journal of Artificial Intelligence Re-
search 24(1):641–684

30. Ullmann JR (2007) Partition search for non-binary constraint satisfaction. Information
Sciences 177(18):3639–3678

31. Van Hentenryck P, Ramachandran V (1995) Backtracking without Trailing in
CLP(ℜlin). ACM Transactions on Programming Languages and Systems 17(4):635–
671

32. Van Hentenryck P, Deville Y, Teng CM (1992) A generic arc-consistency algorithm and
its specializations. Artificial Intelligence 57(2-3):291–321

33. Wallace R (2005) Factor analytic studies of csp heuristics. In: Proceedings of CP 2005,
vol 3709, Springer Berlin / Heidelberg, pp 712–726

34. Xu K, Boussemart F, Hemery F, Lecoutre C (2007) Random constraint satisfaction:
Easy generation of hard (satisfiable) instances. Artificial Intelligence 171(8-9):514–534



Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Mairy, J-B;Van Hentenryck, P;Deville, Y

Title:
Optimal and efficient filtering algorithms for table constraints

Date:
2014-01

Citation:
Mairy, J. -B., Van Hentenryck, P. & Deville, Y. (2014). Optimal and efficient filtering
algorithms for table constraints. CONSTRAINTS, 19 (1), pp.77-120. https://doi.org/10.1007/
s10601-013-9156-0.

Persistent Link:
http://hdl.handle.net/11343/282835

http://hdl.handle.net/11343/282835

