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Abstract. The traveling salesman problem (TSP) is a challenging opti-
mization problem for CP and OR that has many industrial applications.
Its generalization to the degree constrained minimum spanning tree prob-
lem (DCMSTP) is being intensively studied by the OR community. In par-
ticular, classical solution techniques for the TSP are being progressively
generalized to the DCMSTP. Recent work on cost-based relaxations has
improved CP models for the TSP. However, CP search strategies have not
yet been widely investigated for these problems.
The contributions of this paper are twofold. We first introduce a natu-
ral generalization of the weighted cycle constraint (WCC) to the DCM-
STP. We then provide an extensive empirical evaluation of various search
strategies. In particular, we show that significant improvement can be
achieved via our graph interpretation of the state-of-the-art Last Conflict
heuristic.

1 Motivation

The traveling salesman problem (TSP) involves finding a Hamiltonian cycle
of minimum weight in a given undirected graph G = (V,E) associated with
a weight function w : E → Z. It has been widely investigated by the opera-
tional research (OR) community for more than half a century, because it is an
important optimization problem with many industrial applications. Its simple
structure has enabled the development of general techniques, such as cutting
planes, variable fixing, Lagrangian relaxation, and heuristics. These techniques are
the key to the success of dedicated solvers (e.g., Concorde [3]), and they can be
adapted to a range of optimization problems. Some have even been integrated
into general MIP solvers, leading to great improvements in OR.

A natural extension of the TSP is the degree constrained minimum span-
ning tree problem (DCMSTP). Given an undirected weighted graph G = (V,E)
associated with a weight function w : E → Z and an integer array dmax, the
DCMSTP involves finding a minimum spanning tree (MST) of G for which
every vertex v ∈ V has at most dmax[v] neighbors. In this way, a TSP can be
reduced to a DCMSTP in which for any v ∈ V , dmax[v] = 2. Consequently, the
techniques developed for the TSP have been generalized to the DCMSTP.



From the constraint programming (CP) point of view, the TSP is very chal-
lenging, because it is only slightly constrained, and the cost function is a major
difficulty. This means that only a poor propagation can be expected from a ba-
sic CP approach. However, when relaxations are considered, a good cost-based
filtering can be achieved [7, 9]. Indeed, the most successful CP approaches to
date owe their success to the introduction of relaxations, first introduced in OR,
in the global constraints [2, 8]. From this perspective, the TSP allows us to study
the behavior of CP solvers on problems that are dominated by optimization and
to experiment with hybridization between CP and OR. However, search has not
yet been widely investigated for this problem. Furthermore, none of the recent
advances have been generalized to the DCMSTP, although such generalization
is natural.

The contributions of this paper are twofold. First, in Section 2.2 we introduce
a natural generalization of the weighted cycle constraint (WCC) [2] to the DCM-
STP. Second, we empirically evaluate a wide range of graph search heuristics
on the TSP and the DCMSTP. These heuristics are presented in Section 3. They
include a graph adaptation of Last Conflict [15], which brings a greedy form of
learning to the model. The experimental analysis (Sections 4 and 5) shows that
significant improvement can be achieved by considering some simple graph
properties at the search level. More precisely, the runtime is improved by up
to four orders of magnitude over that of the state-of-the-art TSP approach of
Benchimol et al. [2]. This pushes further the limits of CP, although dedicated
OR solvers [3] remain ahead. For the DCMSTP, the results show that CP is a
competitive approach.

2 The state-of-the-art CP models for the TSP and the DCMSTP

This section presents the state-of-the-art TSP model in CP (Section 2.2) and de-
rives a DCMSTP model from it (Section 2.3). Since these models rely on a graph
variable, we begin by providing an introduction to graph variables (Section 2.1).

2.1 Graph variables

Graph variables were introduced in [16]. We recall that a graph variable GRAPH
has a domain defined by a graph interval dom(GRAPH) = [GRAPH,GRAPH]. A
value for GRAPH is a graph included between GRAPH and GRAPH; see Figure 1
for an illustration.

The solving process involves adding to GRAPH (enforcing) some vertices
and edges, and removing from GRAPH some other vertices and edges. Such
operations are triggered by either filtering algorithms or the search process.
These steps are performed until the graph variable is instantiated, i.e., until
GRAPH = GRAPH. In other words, GRAPH and GRAPH are respectively monoton-
ically increasing and decreasing.
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Fig. 1. Graph variable illustration.

We use an undirected graph variable for which every vertex is mandatory,
so the branching and filtering will concern only edges. More precisely, we use a
binary search process in which each decision selects an unfixed edge, enforcing
it in the left branch and removing it in the right branch. One can view the graph
variable as an abstraction over a set of binary variables representing edges. In
this representation, a decision selects a non-instantiated binary variable associ-
ated with an edge, and tries to assign it first the value 1 and then 0. Additional
information on graph variables can be found in [6, 17].

2.2 TSP state-of-the-art model

The state-of-the art CP formulation for the TSP uses a single graph variable
GRAPH to represent the expected cycle and an integer variable Z to represent
the objective function:

INPUT: Undirected graph G = (V,E)
Weight function w : E → Z

CP MODEL:
Minimize Z (1)
Constraint WCC(GRAPH,Z, w) (2)
Initial domains dom(GRAPH) = [(V, ∅), (V,E)], (3)

dom(Z) = [−∞,LKH(G,w)] (4)



As can be seen, the TSP can be modeled as a minimization problem (1)
involving a single graph constraint (2), the WCC, introduced by Benchimol et
al. [2]. The graph variable GRAPH is defined (3) as a spanning subgraph of G.
The domain of the objective variable Z (4) is initialized via the Lin–Kernighan–
Helsgaun heuristic (LKH) [14], which is probably the most efficient heuristic for
the TSP. No initial lower bound is given since the WCC propagation handles the
lower bounding.

The WCC of Benchimol et al. [2] was a significant step forward that enabled
CP to be competitive on instances of a reasonable size. This constraint is defined
over a graph variable and embeds the 1-tree relaxation of Held and Karp [13],
which provides a very powerful filtering. The 1-tree relaxation is roughly a care-
ful adaptation of the minimum spanning tree relaxation to the case where a cy-
cle is expected instead of a tree. More precisely, a 1-tree rooted in a vertex u ∈ V
consists of a minimum tree spanning every vertex but u, plus the two cheap-
est edges that are incident to u, so that the resulting relaxation has as many
edges as a Hamiltonian cycle. This relaxation is improved with the subgradi-
ent optimization of Held and Karp [13], which tends to the linear relaxation of
the classical TSP linear programming model. In addition to lower bounding,
back-propagation can be achieved from this relaxation: edges in (resp. out of)
the relaxation support can be enforced (resp. removed) based on replacement
(resp. marginal) costs [2]. The filtering rules of WCC are detailed in [2], and they
mainly stem from [13, 18, 19], which form good further references. An illustra-
tion is provided in Figure 2(c). This relaxation is rooted at vertex F and gives a
lower bound of 12.

2.3 Extending the TSP model to solve the DCMSTP

From the above TSP model, we can naturally derive a CP model for the DCM-
STP. It uses a single graph variable GRAPH to represent the expected tree, an
array of n integer variables D to represent the vertex degrees, and an integer
variable Z to represent the objective function:

INPUT: Undirected graph G = (V,E)
Weight function w : E → Z
Maximum degree function d : V → N

CP MODEL:
Minimize Z (5)
Constraint DCWSTC(GRAPH,Z, w,D) (6)
Initial domains dom(GRAPH) = [(V, ∅), (V,E)], (7)

dom(D[v]) = [1, d(v)], ∀v ∈ V (8)
dom(Z) = [−∞,+∞] (9)

The DCMSTP is modeled as a minimization problem (5) involving a single
graph constraint (6), the degree constrained weighted spanning tree constraint
(DCWSTC) that we introduce as a generalization of WCC. The graph variable
GRAPH is defined as a spanning subgraph of G (7). The degree variables D are



defined according to the maximum degree function d (8). The domain of the
objective variable Z has no initial bounds (9).

The DCWSTC is a direct generalization of the WCC in which the 1-tree is re-
placed by a spanning tree, and the vertex degrees are no longer constrained to
be 2 but are equal to the corresponding degree variable. It thus involves a La-
grangian process that iteratively solves the MST problem and updates the cost
function according to the violations of the degree constraints, as described in
[1, 4]. The filtering rules are directly derived from the WCC.

In contrast to the TSP model, the DCMSTP model has no particular up-
per bounding procedure. Since DCWSTC requires an upper bound for its sub-
gradient method, we set up our own preprocessing step by simply changing
the search strategy of the model. We compute a first solution by branching on
the cheapest edges and propagating constraints (with Lagrangian relaxation
turned off). Once a solution has been found, the solver restarts and the prepro-
cessing is over. Thanks to the powerful DCWSTC filtering, the model is better at
finding a good lower bound than improving the upper bound. Therefore, we
use a bottom-up minimization strategy: instead of computing improving solu-
tions, the solver aims to find a solution that has the value of the objective lower
bound. If no such solution exists, then the objective lower bound is increased
by one unit. This scheme is implemented by branching on the objective vari-
able and enumerating its values. Once the objective variable has been fixed, we
must branch on the graph variable to either find a solution or prove that none
exists. This paper focuses on the use of graph search heuristics for this step.

3 Studying graph search strategies

This section describes the application of various general heuristics to a graph
variable. We also suggest several graph adaptations of Last Conflict [15], which
may be useful for solving many other graph problems.

3.1 General graph heuristics

We believe that simpler heuristics are more likely to be used in different con-
texts and therefore more likely to yield general results. We describe some heuris-
tics that can naturally be applied to a graph variable, and we experimentally
compare them in the next section:

– General graph heuristics consider only the graph variable:
• LEXICO: Selects the first unfixed edge.
• MIN_INF_DEG (resp. MAX_INF_DEG): Selects an edge for which the

sum of the endpoint degrees in GRAPH’s lower bound is minimal (resp.
maximal).

• MIN_SUP_DEG (resp. MAX_SUP_DEG): Selects an edge for which the
sum of the endpoint degrees in GRAPH’s upper bound is minimal (resp.
maximal).



• MIN_DELTA_DEG (resp. MAX_DELTA_DEG): Selects an edge for which
the sum of the endpoint degrees in GRAPH’s upper bound minus the
sum of the endpoint degrees in GRAPH’s lower bound is minimal (resp.
maximal).

– Weighted-graph heuristics have access to the cost function w:

• MIN_COST (resp. MAX_COST): Selects an edge with the minimal (resp.
maximal) weight.

– Relaxation-based graph heuristics have access to a problem relaxation, pre-
sumably embedded in a global constraint, which maintains a support, vari-
able marginal costs, and variable replacement costs:

• IN_SUPPORT (resp. OUT_SUPPORT): Selects an edge in (resp. out of) the
support of the relaxation.

• MIN_MAR_COST (resp. MAX_MAR_COST): Selects an edge with the min-
imal (resp. maximal) marginal cost, i.e., the edge outside the relaxation
support for which enforcing involves the smallest (resp. largest) in-
crease in the relaxation value.

• MIN_REP_COST (resp. MAX_REP_COST): Selects an edge for which the
replacement cost is minimal (resp. maximal), i.e., the edge of the relax-
ation support for which removal involves the smallest (resp. largest)
increase in the relaxation value.

To keep this study simple, we break ties in a lexicographic manner. Figure
2 illustrates the behavior of the heuristics. Given the graph variable domain of
Figure 2(a) and the relaxation of Figure 2(b), Figure 2(c) indicates the edge that
each heuristic would branch on at the next decision.

It is worth mentioning that the TSP model of [2] uses MAX_REP_COST to
branch on edges. However, it uses an opposite branching order: it first removes
the selected edge and then enforces it upon backtracking. We found that the
branching order had no significant influence on the results, so we decided to
consider only the case where the edge is first enforced and then removed. This
order is more natural, by analogy to integer variables for which decisions are
usually value assignments, not value removals.
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Fig. 2. Illustration of various strategies.

3.2 Adapting Last Conflict to graph problems

This paper focuses on exact approaches that are able to provide an optimality
certificate. Because of the need to prove optimality, the search will presumably
spend much time in infeasible regions of the search space. Hence, the Fail First
principle [12] recommends first taking the decisions that are the most likely to
fail, in order to get away from infeasible regions as soon as possible. To follow
this principle, we apply a graph adaptation of the Last Conflict search pattern
together with a heuristic.

Last Conflict [15] is a generic heuristic that is designed to be used together
with any other heuristic, whence the term search pattern. We recall that its main
rule is basically: If branching on some variable x yields a failure, then continue branch-
ing on x. Let us consider a decision involving a variable x that resulted in a fail-
ure. Last Conflict is based on the intuition that including x in the next decision
would have a similar result, i.e., another failure. More precisely, there exists a
minimal unsatisfiable set (MUS) of constraints [11], CMUS , that is responsible
for the failure that occurred. There is no guarantee that x is involved in a con-
straint of CMUS . However, if x is not responsible for the unsatisfiability of the



problem, it has allowed propagation to determine that the problem was not sat-
isfiable at the previous search node. This could be a matter of luck, or it could
occur because the problem structure is such that x is strongly related to CMUS . If
so, and if the problem remains unsatisfiable after several backtracks, it is likely
that branching on x will allow the solver to again determine the unsatisfiability.
Thus, this process should speed up the recovery of a satisfiable state as well as
the proof of optimality. For this reason, Last Conflict can be seen as a form of
greedy learning, coming with no overhead.

In our case, the LKH heuristic [14] provides an extremely good initial upper
bound for the TSP. Furthermore, since our DCMSTP model involves a bottom-
up minimization, the objective upper bound of the DCMSTP is also low. Thus,
both the TSP model and the DCMSTP model are presumably unsatisfiable dur-
ing most of the search, and failing again is therefore desirable. However, when
we use a single graph variable, Last Conflict is useless because any decision al-
ready considers this variable. Thus, we must modify Last Conflict to achieve
its expected behavior. We suggest a graph adaptation that involves a vertex,
instead of a variable, in the last decision. The resulting branching rule is illus-
trated in Figure 3. Whenever a decision over an edge (u, v) ∈ E is computed,
one of its endpoints, say u, is arbitrarily chosen to be stored. While failure oc-
curs, our graph interpretation of Last Conflict states that the next decision must
involve an edge that is incident to u, if at least one such edge is unfixed. In
other words, the heuristic continues branching in the same region of the graph,
because it believes that there is more structure to exploit there.

We empirically investigate several policies for choosing the vertex to reuse
after a failed branching decision over an edge (u, v) ∈ E:

– LC_FIRST: Reuses the first vertex, u.

– LC_RANDOM: Keeps both u and v in memory and randomly chooses which
to reuse.

– LC_BEST: Keeps both u and v in memory and reuses that most suited for
the heuristic. For instance, if MIN_COST is used, then this policy will select
the vertex with the cheapest unfixed edge in its neighborhood.

A simple way to implement LC_FIRST is given by Algorithm 1. This branch-
ing rule adjusts the heuristic upon failure by restricting the decision scope to the
subset of unfixed edges induced by the neighborhood of a given vertex (line
7), if this subset is not empty. Otherwise, while no failure occurs, the heuris-
tic operates normally. For the sake of generality, we show how it can be used
when branching on vertices as well (see the NEXTVERTEX function). However,
in the context of the TSP, only edge selection is relevant because every vertex is
mandatory.



Algorithm 1 Implementation of LC_FIRST as a composite GraphHeuristic
global int fails_stamp
global GraphHeuristic h
global Vertex last_vertex

1: function NEXTEDGE(GraphVar g)
2: Edge next_edge
3: if (fails_stamp = nbFails()
∨ (|g.getNeighbors(last_vertex)| = |g.getNeighbors(last_vertex)|)) then

4: next_edge← h.NEXTEDGE(g)
5: last_vertex← next_edge.getF irstV ertex()
6: else // Adjusts the heuristic h by forcing it to branch around last_vertex
7: next_edge← h.NEXTEDGEINCIDENTTO(last_vertex, g)
8: end if
9: fails_stamp← nbFails()
10: return next_edge
11: end function
12:
13: function NEXTEDGEINCIDENTTO(Vertex i, GraphVar g)
14: return h.NEXTEDGEINCIDENTTO(i,g)
15: end function
16:
17: function NEXTVERTEX(GraphVar g)
18: if (last_vertex /∈ g ∨ last_vertex ∈ g) then
19: last_vertex← h.NEXTVERTEX(g)
20: end if
21: return last_vertex
22: end function

An illustration of the behavior of LC_FIRST with the MAX_COST heuristic
is given in Figure 3. MAX_COST sequentially selects edges (B,E), (G,H), and
(A,B). The constraint propagation then raises a failure, so the solver backtracks
and removes edge (A,B). This leads to another failure, as well as the removal
of edge (G,H), so the solver backtracks and deduces that edge (B,E) must be
removed. Propagating this information leads to no failure, so a new decision
has to be computed to continue the solving process. LC_FIRST now adjusts
MAX_COST by forcing it to use an edge around vertex A, because A was in the
last decision.

. . .

(B,E)

(G,H)

(A,B)

failure failure

failure

(A, ?)

enforce

remove

Fig. 3. Illustration of the search tree when using LC_FIRST with MAX_COST on the ex-
ample. After a failure, the next decision must involve the last decision’s first vertex (A).



4 Experimental analysis for the TSP

4.1 Settings

Our implementation has been integrated into Choco-3.1.1, a Java library for
constraint programming, so that the community can reproduce our results. The
state-of-the-art model of [2] was implemented in C++; it was compiled with gcc
with optimization flag -O3. All the experiments were performed on a Macbook
Pro with a 6-core Intel Xeon at 2.93 Ghz running MacOS 10.6.8 and Java
1.7. Each run had one core.

We considered the TSP instances of the TSPLIB data set, which is a refer-
ence benchmark in OR. This library is a compilation of the most challenging
TSP instances that have been studied in the literature. These instances are due
to various authors and stem from routing, VLSI design, simulations, etc. We
considered instances with up to 300 vertices, which seems to be the new limit
for exact CP approaches on this benchmark.

This study is divided into two parts. First, we compare the heuristics of
Section 3.1, together with the Last Conflict policies of Section 3.2 and the case
where no policy is used, in order to highlight both good and bad design choices.
Second, we compare the best model found with the state-of-the-art approach
and measure the speedup we achieve.

4.2 Heuristic comparison

We now evaluate the heuristics suggested in Section 3.1, together with the graph-
based Last Conflict policies of Section 3.2, to determine the best combination. To
reduce the computational time, we consider the 42 simplest instances of the
TSPLIB and use a time limit of one minute. Figure 4 gives the results for the
various search heuristics, together with several Last Conflict policies. The policy
NONE corresponds to the case where we do not use any form of Last Conflict.

The best results are achieved by MAX_COST and MIN_DELTA_DEG. In con-
trast, MIN_COST is surprisingly bad. This result confirms the intuition of the
Fail-First principle on which our approach is based. Indeed, MIN_DELTA_DEG,
which selects edges in sparse graph areas, may trigger failures from structure-
based propagation, and MAX_COST, which selects expensive edges, may trigger
failures from the 1-tree relaxation. This result also shows that simple heuristics
perform better than more elaborate ones that require access to a problem relax-
ation (to obtain marginal and replacement costs). Surprisingly, MAX_REP_COST
does not give good results. Since it is used in the state-of-the-art model, this con-
firms the claim that search plays an important role in the solution process and
that it can still be improved.

Furthermore, whatever the policy, Last Conflict improves every search strat-
egy evaluated. LC_FIRST allows us to solve 27% more instances on average.
While it is the simplest policy, it performs better than both LC_RANDOM and
LC_BEST. Overall, using LC_FIRSTwith either MIN_DELTA_DEG or MAX_COST



enables us to solve 41 of the 42 instances within the one-minute time limit. In-
terestingly, the instance that remains unsolved varies from one heuristic to an-
other. However, we were not able to solve all 42 instances by combining two
heuristics. In summary, Last Conflict significantly improves the model, and im-
portant performance differences can be observed from one heuristic to another.

(a) Graphical representation: whatever the search heuristic, it
is always better to use it with one of the Last Conflict policies.
LC_FIRST and LC_BEST respectively provide the best results
for 10 and 4 of the 15 tested heuristics.
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NONE 26 33 25 25 29 35 24 24 34 26 26 30 22 31 23 22 27.5 35
LC_FIRST 32 39 35 33 37 41 35 27 41 32 39 37 34 33 29 27 34.9 41
LC_BEST 31 38 30 35 38 39 28 27 40 30 36 41 31 36 27 27 33.8 41
LC_RANDOM 32 38 34 31 37 40 33 27 40 29 36 37 30 33 26 26 33.5 40
Minimum 26 33 25 25 29 35 24 24 34 26 26 30 22 31 23
Average 30.3 37.0 31.0 31.0 35.3 38.8 30.0 26.3 38.8 29.3 34.3 36.3 29.3 33.3 26.3
Maximum 32 39 35 35 38 41 35 27 41 32 39 41 34 36 29

(b) Table representation, with minimum, average, and maximum: LC_FIRST,
MIN_DELTA_DEG, and MAX_COST provide the best average results.

Fig. 4. Quantitative evaluation of search heuristics, together with various Last Conflict
policies: number of instances among 42 simple instances of the TSPLIB solved within a
one-minute time limit.



4.3 Pushing the limits of CP

We now compare our model to the state-of-the-art CP approach of Benchimol
et al. [2], referred to as SOTA. For these comparisons we use MAX_COST with
LC_FIRST, which appears to work well. We note that similar results are ob-
tained when MIN_DELTA_DEG is used instead of MAX_COST.

For this study, we increase the time limit to 30, 000 seconds to obtain a
more precise evaluation of the speedup possible. We consider 34 challenging in-
stances, with between 100 and 300 vertices, which represents the current limit of
CP. The simpler instances are solved in less than a second by both approaches,
whereas the harder ones cannot be solved by either approach. Figure 5 com-
pares our approach with SOTA. The horizontal axis represents the instances.
The first vertical axis shows the speedup (black), which is defined as the ra-
tio of the solution time of SOTA over the solution time of CHOCO, with a log
scale. The second vertical axis shows the solution time of CHOCO (dark gray)
and SOTA (light gray), in seconds. The raw solution times are also provided.

Figure 5 shows that our heuristic gives a significant speedup on most in-
stances. More precisely, the speedup is 511 on average, and it increases with the
instance difficulty, up to four orders of magnitude (on bier127). The speedup
then decreases because of the time limit. The solution time of the two approaches
clearly shows that we have pushed the exponential further, from 100–200 to
200–300 vertices. This remains however below the performance of Concorde
[3], the state-of-the-art TSP solver in OR (see [2] for a comparison).

(a) Comparison of solution time in seconds for SOTA [2] and CHOCO with LC_FIRST and
MAX_COST. The speedup is computed as the solution time of SOTA over the solution time
of CHOCO. The speedup decrease is due to the time limit.



CHOCO CHOCO SOTA [2]
Instance LC_FIRST + MAX_COST LC_FIRST + MIN_DELTA_DEG (MAX_REP_COST)
pr107 1.5 1.5 1.1
rat99 0.8 0.8 1.5
eil101 0.8 1.0 3.0
kroD100 3.1 0.9 10.1
pr144 4.8 12.9 23.5
pr264 21.0 21.6 23.8
pr226 10.3 6.4 68.0
gr120 7.4 3.3 76.1
kroC100 4.7 5.9 101.9
pr152 14.0 89.2 258.1
pr124 5.0 12.7 503.0
gr96 7.5 3.3 754.2
u159 1.8 7.3 1, 126.5
kroE100 20.3 69.2 1, 661.1
kroA100 19.9 20.5 2, 556.4
gr137 29.5 33.7 5, 283.4
kroB100 28.4 17.0 7, 236.0
ch150 23.6 28.0 12, 875.7
ch130 17.0 72.0 15, 411.5
bier127 2.4 1.8 30, 000.0
gr202 41.9 24.4 30, 000.0
kroA150 75.0 119.9 30, 000.0
a280 99.4 806.6 30, 000.0
d198 273.1 76.1 30, 000.0
si175 581.6 4, 544.1 30, 000.0
rat195 610.0 330.5 30, 000.0
kroB200 1, 490.2 2, 218.9 30, 000.0
kroB150 2, 295.5 1, 609.0 30, 000.0
tsp225 4, 659.7 4, 171.4 30, 000.0
gr229 12, 999.6 14, 025.4 30, 000.0
kroA200 30, 000.0 30, 000.0 30, 000.0
ts225 30, 000.0 30, 000.0 30, 000.0
gil262 30, 000.0 30, 000.0 30, 000.0
pr299 30, 000.0 30, 000.0 30, 000.0

(b) Raw results (solution time in seconds).

Fig. 5. Comparison with the state-of-the-art CP approach on challenging instances of the
TSPLIB with a 30, 000-second time limit.

5 Experimental analysis for the DCMSTP

5.1 Settings

Our implementation has been integrated into Choco-3.1.0, a Java library for
constraint programming, so that the community can reproduce our results. We
reproduced the state-of-the-art approach of [5]. All our experiments were done
on a Macbook Pro with a 6-core Intel Xeon at 2.93 Ghz running MacOS
10.6.8 and Java 1.7. Each run had one core.

We consider the hardest DCMSTP instances in the literature, the data sets
ANDINST, DE, and DR [4]. In the ANDINST and DE instances, each vertex is
associated with a randomly generated point in the Euclidean plane. The cost
function is then the Euclidean distance between the vertices. The maximum
degree of each vertex is randomly chosen in [1, 4] for the ANDINST instances,
and it is in [1, 3] for the DE instances. Thus, DE can be said to be harder to
solve. In the set DR, the cost function associates with each edge a randomly



generated value in the range [1, 1000], and the maximum degree of each vertex
is in [1, 3]. This last set is known to be hard to solve by existing approaches.
The ANDINST instances have from 100 to 2, 000 vertices, while the DE and DR
instances involve graphs of 100 to 600 vertices.

This study is divided into two parts. First, we compare the heuristics of
Section 3.1, together with the Last Conflict policies of Section 3.2 and the case
where no policy is used, in order to highlight both good and bad design choices.
Second, we compare the best model found with the state-of-the-art approach
and measure the speedup we achieve.

5.2 Heuristic comparison

We now extend the previous experimental analysis to the DCMSTP. As a first
step, we evaluate the heuristics of Section 3.1, together with the graph-based
Last Conflict policies of Section 3.2, to determine the best combination. To re-
duce the computational time, we consider the 36 smallest instances and use a
time limit of one minute. These 36 instances have up to 400 vertices, and they
are evenly spread over the data sets ANDINST, DE, and DR. Figure 6 shows the
number of instances that could be solved within the time limit, for each heuris-
tic combination. NONE corresponds to the case where we do not use any form
of Last Conflict.

Fig. 6. Evaluation of search heuristics, together with various Last Conflict policies: num-
ber of instances among the 36 smallest DCMSTP instances solved within a one-minute
time limit. LC_FIRST provides the best results for every heuristic except one.



We make two observations. First, Last Conflict has a similar impact on the
results as in the TSP case. Whatever the policy, it improves every search strategy
evaluated. Furthermore, LC_FIRST again provides the best results on most of
the problems. It gives a significant improvement, allowing us to solve 14% more
instances on average.

Second, when LC_FIRST is used, all the search heuristics lead to similar
results (between 29 and 31 solved instances). This is quite different from the
observations for TSP instances.

5.3 Competitiveness of CP

We now compare our model to the state-of-the-art approach of Salles da Cunha
and Lucena [5], referred to as SOTA. This method is inspired by techniques
found in [3] that are used to solve the TSP. It combines local search, Lagrangian
relaxation, filtering, and cutting planes. We used the MIN_SUP_DEG heuristic
with LC_FIRST, which appears to work well for solving the DCMSTP with CP.

For this study, because some of the instances are hard to solve, we increase
the time limit to 30, 000 seconds. We consider all the instances of the data sets
ANDINST, DE, and DR that were studied in [5]. Figure 7 depicts the improve-
ment (or deterioration) over SOTA. The horizontal axis represents the instances.
The first vertical axis shows the speedup (black), which is defined as the ratio
of the solution time of SOTA to the solution time of CHOCO, with a log scale. The
second vertical axis shows the solution time of CHOCO (dark gray) and SOTA
(light gray) in seconds. Figure 7 is split according to the data sets.

Figure 7(a) shows that our CP approach to the DCMSTP is competitive with
[5] on most easy Euclidean instances. However, it has difficulty solving three
2, 000-vertex instances. Since the input graphs are complete, this represents
about two million edge instances. In the Euclidean case, when the maximum
vertex degrees become more restricted (Figure 7(b)), the CP approach gets into
trouble on smaller instances. More precisely, it cannot solve two instances, with
500 and 600 vertices respectively, within the time limit. This indicates that, up
to a certain size, CHOCO is competitive with SOTA. However, for large instances,
the dedicated OR approach is more efficient. One reason that Euclidean in-
stances are hard to solve in CP is the fact that the proximity relationship be-
tween the vertices is transitive: if vertex A is close to vertex B and if B is close
to C, then vertices A and C are also close. This impacts the behavior of the
Lagrangian relaxation, which may have weak marginal costs and therefore an
insufficient filtering. In contrast, CP is well suited to random instances (see Fig-
ure 7(c)). CHOCO achieves a significant speedup over SOTA, up to two orders
of magnitude. On such instances, the vertex proximity is no longer transitive,
and so the propagation of any edge removal (or enforcing) through the DCWSTC
provides a strong filtering. This enables CHOCO to solve every instance in less
than three minutes, whereas SOTA takes, for example, more than two hours to
solve dr_600_2.



(a) Easy Euclidean instances (ANDINST): CP and OR are comparable on most instances.
CP has difficulty solving some 2, 000-vertex instances.

(b) Hard Euclidean instances (DE): CP has difficulty scaling over 400 vertices.

(c) Random instances (DR): CP beats OR!

Fig. 7. Comparison with the state-of-the-art OR approach for the DCMSTP (SOTA) [5],
with a 30, 000-second time limit. The CHOCO model uses LC_FIRST and MIN_SUP_DEG.
The speedup is computed as the solution time of SOTA over the solution time of CHOCO.
The instances are sorted by increasing size.



6 Conclusion

This paper suggests a generalization of the WCC, which requires a graph vari-
able to form a weighted spanning tree for which every vertex degree is con-
strained. As the WCC requires an important implementation investment, this
natural generalization is convenient.

We have presented an extensive experimental study of the ability of numer-
ous general graph heuristics to solve the TSP and the DCMSTP. We decided
to study simple and natural heuristics, which we believe are more likely to
be implemented and extended to other problems than sophisticated and ded-
icated ones are. Additionally, we have investigated several ways to adapt Last
Conflict to graph variables. All of them improve the CP model, whatever the
underlying heuristic. This gives a general significance to our results. Surpris-
ingly, the experiments indicate that the simplest heuristics have the best per-
formance, which is desirable. From a more practical point of view, we show
how to improve the state-of-the-art CP approach for the TSP by up to four or-
ders of magnitude, pushing further the limits of CP. We have shown that the
CP model outperforms the state-of-the-art OR method on random DCMSTP in-
stances. However, it does not yet compete with OR [3, 5] on the hardest TSP
and DCMSTP instances.

Since Last Conflict is a greedy form of learning, a natural next step for the CP
community would be to further investigate how learning can help the solution
process, e.g., by explaining the WCC constraint. Recent work on explaining the
circuit constraint [10] provides a promising starting point.
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