
ar
X

iv
:1

70
6.

08
60

1v
1

 [
cs

.D
S]

 2
6

Ju
n

20
17

Domain reduction techniques for global NLP

and MINLP optimization

Y. Puranik1 and Nikolaos V. Sahinidis1

1Department of Chemical Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Abstract

Optimization solvers routinely utilize presolve techniques, including model simplification, reformulation
and domain reduction techniques. Domain reduction techniques are especially important in speeding up
convergence to the global optimum for challenging nonconvex nonlinear programming (NLP) and mixed-
integer nonlinear programming (MINLP) optimization problems. In this work, we survey the various
techniques used for domain reduction of NLP and MINLP optimization problems. We also present a
computational analysis of the impact of these techniques on the performance of various widely available
global solvers on a collection of 1740 test problems.
Keywords: Constraint propagation; feasibility-based bounds tightening; optimality-based bounds
tightening; domain reduction

1 Introduction

We consider the following mixed-integer nonlinear
programming problem (MINLP):

min f(~x)

s.t. ~g(~)x ≤ 0
~xl ≤ ~x ≤ ~xu

~x ∈ R
n−m × Z

m

(1)

MINLP is a very general representation for opti-
mization problems and includes linear programming
(LP), mixed-integer linear programming (MIP) and
nonlinear programming (NLP) in its subclasses. A
variety of applications in diverse fields are routinely
formulated using this framework including water
network design [94, 62], hydro energy systems
management [44], protein folding [143], robust
control [18], trim loss [84], heat exchanger network
synthesis [69], gas networks [128], transportation [68],
chemical process operations [76], chemical process
synthesis [77], crystallographic imaging [178], and
seizure predictions [148]. Modelling via nonconvex
objective functions or constraints is necessitated for
many of these practical applications. Aside from the

combinatorial complexity introduced by the integer
variables, nonconvexities in objective function or
the feasible region lead to multiple local minima
and provide a challenge to the optimization of such
problems.

Branch-and-bound [138] based methods can be
exploited to solve Problem 1 to global optimal-
ity. Inspired by branch-and-bound for discrete
programming problems [109], branch-and-bound was
adapted for continuous problems by Falk and
Soland [58]. The algorithm proceeds by bounding
the global optimum by a valid lower and upper
bound throughout the search process. Whenever
these bounds are within an acceptable tolerance, the
algorithm terminates with the upper bound as a
(near-)global optimum. The algorithm exhaustively
searches the space by branching on variables to
divide the space into subdomains. The lower and
upper bounding procedures are recursively applied
to the new subdomains in a tree search until the
bounds converge. Branch-and-bound algorithms are
known to terminate within ǫ-accuracy (ǫ > 0) to a
global optimum as long as branching, node selection
and lower bounding are designed to satisfy certain
conditions [89]. For special cases, the true global

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/. The formal publication of this article

is available at https://link.springer.com/article/10.1007/s10601-016-9267-5.

http://arxiv.org/abs/1706.08601v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://link.springer.com/article/10.1007/s10601-016-9267-5

Domain reduction techniques for global NLP and MINLP optimization 2

optimum can be finitely achieved with branch-and-
bound [173, 8, 38]. The success of branch-and-bound
methods for global optimization is evident from the
numerous software implementations available, includ-
ing ANTIGONE [135], BARON [185], Couenne [25],
LindoGlobal [117] and SCIP [3].

In this work, we survey the various domain
reduction techniques that are employed within
branch-and-bound algorithms. While these tech-
niques are not necessary to ensure convergence
to the global optimum, they typically speed
up convergence. These techniques often exploit
feasibility analysis to eliminate infeasible parts of
the search space. Alternatively, the methods can
also utilize optimality arguments to shrink the
search space while ensuring at least one optimal
solution is retained. Domain reduction techniques
constitute the major component of the solution
methods for satisfiability problems through unit
propagation [126] and for constraint programming
(CP) through various filtering algorithms that
achieve differing levels of consistencies [29]. They
are also exploited in artificial intelligence (AI) [54]
and interval analysis [142, 98]. Some of the other
names used in the literature for these methods include
bound propagation, bounds tightening, bound
strengthening, domain filtering, bound reduction and
range reduction.

Mathematical-programming-based methods for
solving nonconvex MINLPs often rely on the solution
of a relaxation problem for finding a valid lower
bound. The strength of the relaxations employed
for lower bounding depends on the diameter of the
feasible region. Smaller domains lead to tighter
relaxations. For example, Figure 1 shows the convex
relaxation for a simple univariate concave function.
A convex relaxation for a given function defined on
a nonempty convex set is a convex function that
underestimates the given function on its domain. The
convex relaxation over the reduced domain provides
a better approximation for the univariate concave
function thereby providing better lower bounds.
Domain reduction techniques not only reduce the
diameter of the search space, but they also improve
the tightness of convex relaxations.

Domain reduction techniques have been exten-
sively studied in various communities including AI,
CP, mathematical programming, interval analysis
and computer science where they can be viewed
as chaotic iterations [14]. The primary objective
of this paper is to review key domain reduction
techniques applicable to (nonconvex) NLPs and
MINLPs and point to connections between methods
from constraint programming and interval arithmetic

Original domain

Reduced domain

Figure 1: Reduction in domains leads to tighter
relaxations

communities wherever applicable. We also present
results on standard test libraries with different
global solvers to demonstrate the impact of domain
reduction strategies on their performance.

The remainder of the paper is organized as
follows. Representation of general MINLPs through
factorable reformulations and directed acyclic graphs
is described in Section 2. Methods for constraint
propagation and bounds tightening in global opti-
mization of MINLPs often rely on interval arithmetic.
A brief introduction to this topic is provided in
Section 3. We introduce presolving for optimization
in Section 4. Domain reduction techniques that
rely on eliminating infeasible regions for the problem
are described in Section 5. Techniques that
utilize optimality arguments for carrying out domain
reduction are described in Section 6. Computational
tradeoffs in the implementation of some of the
advanced techniques are discussed in Section 7. The
computational impact of many of these techniques
on the performance of widely available solvers is
investigated in Section 8. Finally, we conclude in
Section 9.

2 Representation

A crucial step in the branch-and-bound algorithm is
the construction of relaxations. One of the most
widely used methods for this purpose is the idea
of factorable reformulations. It involves splitting
a problem into basic atomic functions that are
utilized for computing the function, an idea exploited

Puranik and Sahinidis 3

by McCormick [131], who developed a technique
that constructed non-differentiable relaxations of
optimization problems. Ryoo and Sahinidis [159]
gain differentiability by introducing new variables
and equations for each of the intermediate functional
forms. These functional forms are simple in nature
like the bilinear term. A similar idea was proposed
by Kearfott [97] where new variables and equations
are introduced to decompose nonlinearities to allow
for more accurate computations of interval Jacobian
matrices.

Consider the following example:

min 3x+ 4y
x− y ≤ 4
xy ≤ 3
x2 + y2 ≥ 1
1 ≤ x ≤ 5
1 ≤ y ≤ 5

(2)

A factorable reformulation can proceed by introduc-
ing a new variable for every nonlinearity occurring in
the model. We replace z1 for x2, z2 for y2 and z3 for
xy.

A factorable reformulation of the model is thus
given by:

min 3x+ 4y

x− y ≤ 4

z3 ≤ 3 (3)

z1 + z2 ≥ 1

z1 = x2

z2 = y2

z3 = xy (4)

1 ≤ x ≤ 5

1 ≤ y ≤ 5

It is trivial to outer approximate the univariate terms
of this model (cf. Figure 1), while the bilinear term
in 4 may be outer approximated by its convex and
concave envelopes [131]. The combination of these
outer approximators provides a convex relaxation
of the original problem. In general, factorable
reformulations decompose the problem into simpler
functional forms for which convex relaxations are
known. Thus, a convex relaxation can be obtained by
reformulating a problem into its factorable form and
relaxing each of the simple functional forms present
in the model. For example, see Algorithm Relax f(x)
in Tawarmalani and Sahinidis [185].

Factorable reformulations can be conveniently
represented through a directed acyclic graph [179,

167]. In this graph representation, variables (x, y, z)
and constants are leaf nodes, vertices are elementary
operations (+,−, ∗, /, log, exp, etc.) and the
functions to be represented are the root nodes.
Variable and constraint bounds are represented
through suitable intervals for the root and leaf nodes.
Common subexpressions are combined to reduce the
size of the graph as doing so is known to tighten
the resulting relaxations [185, Theorem 2]. Different
mathematical formulations can be generated from the
same DAG depending on the needs of the solver.
Expressions are evaluated by propagating values from
the leaves to the root node through the edges in a
forward mode. Backward propagation is utilized for
the computation of slopes and derivatives. Slopes can
also be utilized to construct linear relaxations for the
problem. Figure 2 represents the DAG for Problem 2.

3 Interval arithmetic

Interval arithmetic is a system of arithmetic based on
intervals of real numbers [137]. An interval variable
is defined using a variable’s lower and upper bounds;
the variable itself is restricted to lie between the
bounds. Consider the interval variables ~x = [~xl, ~xu]
and ~y = [~yl, ~yu]. Addition on two intervals can be
defined as:

~x+ ~y = [~xl + ~yl, ~xu + ~yu] (5)

The addition operator defined by equation 5 has the
following property:

~x+ ~y = {x+ y | x ∈ ~x and y ∈ ~y} (6)

Extensions to the definitions of other classic operators
can be similarly defined:

~x− ~y = [~xl − ~yu, ~xu − ~yl] (7)

~x× ~y = [min(~xl × ~yl, ~xl × ~yu, ~xu × ~yl, ~xu × ~yu)] (8)

1

~x
= [1/~xu, 1/~xl], 0 /∈ [~xl, ~xu] (9)

~x

~y
= ~x× 1/~y, 0 /∈ [~yl, ~yu] (10)

These operators can be suitably defined to account
for infinities within the intervals and for the case
when 0 lies in the interval of the denominator in
a division operation [107]. Natural extensions of
factorable functions can be computed by replacing
all the elementary operations involved in the
computation of a factorable function with their
interval counterparts. A natural extension provides
valid lower and upper bounds for the value of a

Domain reduction techniques for global NLP and MINLP optimization 4

1

*

3

4

Figure 2: Directed Acyclic Graph representation for Problem 2

function.
Floating point arithmetic is susceptible to round-

ing errors, which can lead to solutions being lost even
for simple problems. Neumaier and Shcherbina [145]
provide an example of a simple MIP problem that
leads to incorrect solutions by major commercial
solvers due to roundoff errors. Interval arithmetic
methods utilize outward rounding to ensure no
points are lost due to roundoff errors. These
methods are utilized to design rigorous branch-and-
bound-based optimization and root finding methods
that ensure no solutions are lost due to roundoff
errors [193, 15]. The methods bound function
values through interval arithmetic and carry out
domain reduction through branching and fathoming
tests based on monotonicity, convexity, infeasibility
as well as interval Newton type methods which
provide conditions for existence and uniqueness of
solutions within a box [81, 142]. Interval-based
methods have been used for practical applications
like solvent blend design [177]. Interval-based solvers
include ICOS [110], Globsol [99] and Numerica [193].
Interval-based solvers are often slower than their
nonrigorous counterparts. More recently, aspects of
safe computations are being introduced with different
parts of nonrigorous optimization algorithms. For
example, Neumaier and Shcherbina [145] describe
methods to guarantee safety in the solution of MIPs
through suitable preprocessing of the LP relaxations
and postprocessing of their solutions. Their methods
lead to valid results even when the LP solver
itself does not use rigorous methods for obtaining
a solution. Borradaile and van Hentenryck [34]
provide ways of constructing numerically safe linear
underestimators for univariate and multivariate

functions. Numerically safe methods for computation
have also been developed by the CP community, and
are referenced in the remainder of the paper including
in Sections 5 and 6.

4 Presolving optimization models

The idea of analyzing and converting an optimization
model into a form more amenable to fast solution is
old. Starting with the work of Brearley et al. [35],
a number of techniques have been used for analyzing
models in the operations research community. We
use the term presolve to denote all the techniques
used for simplification of optimization models. These
techniques have been developed extensively for linear
programming models [189, 190, 93, 74] and for mixed-
integer linear programming models [157, 87, 141,
164, 121]. Bixby and Rothberg [31] observe that
turning off root node presolve at the start of a
branch-and-bound search degrades performance of
CPLEX 8.0 by a factor of 10.8, while turning off
presolve at every node other than the root node
degrades the performance by a factor of 1.3 on
certain MIP models, demonstrating the importance
of presolve. See Achterberg and Wunderling [6] for
an extensive computational analysis of the impact of
various components of presolve algorithms for MIPs.
Some of the ideas for simplification of models include:

• Elimination of redundant constraints

• Identification and elimination of dominated
constraints (dominated constraints are con-
straints with a feasible region that is a superset

Puranik and Sahinidis 5

of the feasible region of other constraints in the
model)

• Elimination of redundant variables

• Assimilating singleton rows into bounds on
variables

• Tightening bounds on dual variables

• Fixing variables at their bounds

• Increasing sparsity in the model

• Rearrangement of variables and constraints to
induce structure

Similar preprocessing operations can be derived for
nonlinear problems [10, 119, 63, 133, 75]. Some of the
general guidelines include:

• Avoid potentially undefined functions

• Reduce nonlinearity in the model

• Improve scaling of model

• Increase convexity in the model through
reformulations

Amarger et al. [10] provide a software imple-
mentation REFORM to carry out many of these
reformulations. Presolve techniques are usually
implemented at the solver level by developers of
various software for optimization. The modelling
systems AIMMS [7] and AMPL [11] also provide
dedicated presolve systems that are applied to
all optimization models [67, 91]. The success
of presolve in mathematical programming has led
to efforts for its extension to general constraint
programming such as automated reformulation of
CP models [115, 147]. These methods can lead to
considerable simplifications in the model, and can
also lead to a reduction in the memory required
to solve the problem. Another advantage of these
presolve methods is that they are often able to
detect infeasibility in optimization models. If a
presolved model is infeasible, then the original model
is also infeasible. Presolve methods can also be
used to detect and correct the causes of infeasibilities
for infeasible optimization models. Chinneck [46]
provides examples of simple cases where infeasibilities
can be correctly diagnosed by analyzing the sequence
of reductions obtained with presolve. More recently,
Puranik and Sahinidis [152] provide an automated
infeasibility diagnosis methodology through the
isolation of irreducible inconsistent sets (IISs). An
IIS is defined as an infeasible set of constraints that
has every subset feasible. Isolating an IIS can help
accelerate the process of model correction by allowing

the model expert to focus onto a smaller problem area
within the model. The authors of [152] propose a
deletion presolve procedure that exploits feasibility-
based bounds tightening techniques in order to
accelerate the isolation of an IIS.

While simplified models are often easier to solve
than their original counterparts, once an optimal
solution has been obtained, the modelling system
must return a solution that can be interpreted by
the user with respect to the original model form
that was specified. Restoration procedures to obtain
primal and dual solutions to the original problem are
described by Andersen and Andersen [12] and Fourer
and Gay [67]. Such procedures are not discussed
here. In the subsequent sections, we review domain
reduction techniques that are a major component of
all presolve algorithms.

5 Reduction of infeasible domains

The methods described in this section eliminate
regions from the search space where no feasible
points of Problem 1 can exist. Global optimization
algorithms maintain continuous and discrete variable
domains through upper and lower bounds. Domain
reduction is achieved by making these bounds tighter.
Therefore, domain reduction is also commonly
referred to as bounds tightening.

The tightest possible bounds based on feasibility
of the constraints of Problem 1 can be obtained
by solving the following problems for each of the n
variables (k = 1, . . . , n):

min ±xk

s.t. ~g(~)x ≤ 0
~xl ≤ ~x ≤ ~xu

~x ∈ R
n−m × Z

m

(11)

±xk in problem 11 denotes two optimization
problems, where xk and −xk are individually
minimized. Solution of these optimization problems
returns the tightest possible bounds on the feasible
region. If these bounds are tighter than the user-
specified bounds in the model, we can achieve
domain reduction by using them. However, since the
constraints of Problem 11 are potentially nonconvex
and due to the presence of integer variables, these are
expensive global optimization problems, which might
be as hard to solve as Problem 1. A computationally
inexpensive way as compared to problem 11 to obtain
valid bounds for each of the variables is by solving
the following problems for each of the n variables

Domain reduction techniques for global NLP and MINLP optimization 6

(k = 1, . . . , n):

min ±xk

s.t. ~gconv(~x) ≤ 0
~xl ≤ ~x ≤ ~xu

~x ∈ R
n

(12)

where ~gconv(~x) ≤ 0 refers to a convex relaxation
of the constraints. The convex relaxation can
be nonlinear. The integrality restrictions on the
variables are relaxed as well. While bounds obtained
from Problem 12 in general are weaker than the
bounds obtained from Problem 11, they require
the solution of convex optimization problems and
are therefore obtained more efficiently. Convex
relaxations are utilized in branch-and-boundmethods
for obtaining valid lower bounds to the optimum, and
are thus already available for bounds tightening. To
exploit the efficiency and robustness of LP solvers,
these convex relaxations are linearized through outer
approximation to obtain linear relaxations [186].
Linear relaxations may provide weaker bounds than
nonlinear ones, but can be solved very efficiently.
This linearization can also be utilized for obtaining
tighter bounds on variables through the solution of
the following problems for each of the n variables
(k = 1, . . . , n):

min ±xk

s.t. ~glin(~x) ≤ 0
~xl ≤ ~x ≤ ~xu

~x ∈ R
n

(13)

where ~glin(~x) ≤ 0 refers to a linearized outer
approximation of the feasible region. The bounds
obtained from Problem 13 are in general weaker
than the bounds obtained from Problem 12, but
require the solution of linear instead of nonlinear
programming problems and are therefore solved more
efficiently.

Feasibility-based arguments for reduction can also
be utilized for tightening constraints. Consider a
linear set of constraints ~Ax ≤ ~b. Tight bounds on
constraint i can be obtained with the solution of
following optimization problems [164]:

min ±~aTi ~x
s.t. ~aTj ~x ≤ bj j = 1, . . . , i− 1, i+ 1, . . . , n

~xl ≤ ~x ≤ ~xu

~x ∈ R
n

(14)
Problem 14 can help identify redundancy if the
maximum value of ~aTi ~x is strictly less than bi.
Conversely, if the minimum value of ~aTi ~x is strictly

greater than bi, this also identifies infeasibility.
In general, full solution of LP or NLP problems

for bounds tightening can be expensive. To balance
the computational effort involved with the reduction
in bounds obtained, these techniques are usually
carried out only at the root node and/or for a
subset of variables. They are utilized only sparingly
through the rest of the search or not at all. In
some cases, however, solving optimization problems
for tightening methods throughout the search has
been shown to provide significant computational
benefits [43].

Note that reduction methods exploiting Prob-
lems 11, 12 or 13 are often referred to in the literature
as optimality-based bounds tightening. While
these methods utilize the solution of optimization
problems, they only carry out reduction of infeasible
regions from the search space. For this reason,
we prefer to classify them under feasibility-based
reduction techniques.

5.1 Bounds propagation techniques

Propagation-based bounds tightening techniques will
be simply referred to as propagation in the remainder
of the paper. These techniques find their roots
in several works in the literatures of mathematical
programming [35], constraint logic programming [47],
interval arithmetic [50], and AI [54]. These
methods are often referred to as bounds propagation
techniques in CP and are a specialization of
constraint propagation. Davis [54] refers to a
constraint network with nodes (variables) which can
take possible labels (domains) and are connected
by constraints. He further refers to six different
categories of constraint propagation based on the
type of information which is updated:

• Constraint inference: New constraints are
inferred and added.

• Label inference: Constraints are utilized to
restrict the sets of possible values for nodes.

• Value inference: Nodes are partially initialized
and constraints are utilized to complete
assignments for all nodes.

• Expression inference: Nodes are labelled with
values expressed over other nodes.

• Relaxation: Nodes are assigned exact values
which may violate certain constraints.

• Relaxation labelling: Nodes are assigned labels
using probabilities. Updates in the network
involve update of the probabilities.

Puranik and Sahinidis 7

Propagation is equivalent to label inference in the AI
community. Davis utilizes the Waltz algorithm [199]
to describe bounds propagation in a constraint
network. In the CP community, these methods
are often utilized for solving discrete constraint
satisfaction problems (CSP) [88] with backtracking-
based search methods [192]. However, they are also
utilized for continuous CSPs [28, 54].

Hager [79] discusses a reduce operator to eliminate
regions outside the solution set for solving systems of
constraints. These methods have also been developed
extensively in the mathematical programming com-
munity, first for LPs, and later for nonlinear program-
ming problems [187, 82, 80, 108, 132]. Mclinden and
Mangasarian [122] demonstrate inference of bounds
for simple monotonic complementarity problems
and convex problems. Lodwick [118] analyzed
the relationship between the constraint propagation
methods from AI and bound tightening methods
from mathematical programming. These methods
typically operate by systematically analyzing one
constraint at a time to infer valid bounds on variables.

Propagation techniques are computationally in-
expensive. For example, consider a set of linear
constraints:

n
∑

j=1

aijxj ≤bi i = 1, ..., k

~xl ≤ ~x ≤~xu

The following inequalities are implied by every linear
constraint:

xh ≤
1

aih
(bi −

∑

j 6=h

min
(

aijx
U
j , aijx

L
j

)

), aih > 0

(15)

xh ≥
1

aih
(bi −

∑

j 6=h

min
(

aijx
U
j , aijx

L
j

)

), aih < 0

(16)
If these inequalities imply tighter bounds on xh

than the ones specified by the model, the bounds
can be updated. For example, consider the set of
inequalities:

x1 + x2 ≥ 4 (17)

x2 + x3 ≤ 1 (18)

x1 ∈[−2, 4]

x2 ∈[0, 4]

x3 ∈[−1, 1]

From inequality 17, we can infer x1 ≥ 4 −
max(0, 4) = 0. Thus, the lower bound of x1 is

updated to 0. From inequality 18, we can infer that
x2 ≤ 1 − min(−1, 1) = 2. Thus, the upper bound
of x2 is updated to 2. By analyzing inequality 17
again, we can update the lower bound of x1 to 2.
The domains of the variables after these bounds
tightening steps are x1 ∈ [2, 4], x2 ∈ [0, 2] and x3 ∈
[−1, 1]. Harvey and Schimpf [85] describe how
bounds can be iteratively tightened in sublinear time
for long linear constraints with many variables.

Inequalities 15 and 16 indicate that only one of
the bounds for a variable can be updated from
an inequality constraint based on the sign of its
coefficient. Achterberg [2] formalizes this through
the concept of variable locks. Thus, inequality 17
down locks variables x1 and x2, since the lower
bounds for x1 and x2 cannot be moved arbitrarily
without violating inequality 17. The concept of
variable locks allows for efficient duality fixing of
variables. Note that there is no up lock for variable
x1 and no down lock for variable x3 based on the
inequalities 15 and 16. Thus, if the coefficient of x1

in the objective function is negative, x1 can be set
to its upper bound. Similarly, if the coefficient of x3

in the objective function is positive, x3 can be set to
its lower bound. The concept of variables locks was
extended for CP to develop presolve procedures for
cumulative constraints by Heinz et al. [86]. Duality
fixing is extended by Gamrath et al. [70] to allow
for fixing of a singleton column. The authors also
define dominance between two variables for a MIP
and show how dominance information can be used
for fixing variables at their bounds.

Figure 3 considers three cases of propagation. In
Case 1, bounds for x and y are successfully tightened
through iterative application of propagation, with no
further tightening possible via Problem 11. In Case
2, the bound obtained for x by propagation is the
tightest, however the bound for y can be tightened
further by Problem 11. In Case 3, bounds for neither
x nor y can be tightened by propagation, whereas
significant reduction is possible via Problem 11.

In general, reduction in domain through propa-
gation is not guaranteed. Consider the following
example:

x1 + x2 ≥ 0

x1 + x2 ≤ 4

−x1 + x2 ≥ −2

−x1 + x2 ≤ 2

x1 ∈[−3, 5]

x2 ∈[−3, 5]

The tightest possible domain for x1 and x2

Domain reduction techniques for global NLP and MINLP optimization 8

1. 2.

3.

Figure 3: Domain reductions through linear propagation

based on feasibility arguments is [−1, 3] and can be
obtained by solving Problem 11. However, analyzing
constraints one-at-a-time leads to no reduction of
bounds for this problem. The reason for this
drawback is that propagation only analyzes one
constraint at a time, whereas Problem 11 utilizes
information from all the constraints in the model
simultaneously.

Belotti [22] considers bound reduction by generat-
ing a convex combination of two linear inequalities
and utilizing this combination for bound reduction.
The author proposes a univariate optimization
problem to determine the optimal value for the
convex multipliers. However, the computational
complexity of considering all possible combinations
of m constraints in n variables is O(m2n3). The
author proposes a heuristic scheme which, when
implemented only on a subset of the nodes of
the branch-and-bound tree, shows computational
benefits of using this method. For other presolve-
based methods for mixed-integer programs analyzing
more than one constraint at a time, see Achterberg
et al. [4]. Domes and Neumaier [55] propose
the generation of a new constraint by taking the
linear combination or aggregation of all constraints
for quadratic problems. This new constraint can
uncover new relationships between the variables
and can lead to domain reduction. The authors
propose the use of the dual multipliers of a
local solution in the case of a feasible subproblem

and the use of a constraint violation measure in
the case of an infeasible subproblem to aggregate
constraints. Their method shows computational
benefits in reducing the cluster effect (Section 6.4).
The notion of global constraints in CP [154] is
related. A global constraint provides a concise
representation for a set of individual constraints.
Filtering algorithms on a global constraint effectively
carry out domain reduction by considering multiple
individual constraints simultaneously. Lebbah
et al. [111] present a global constraint for a
set of quadratic constraints and describe filtering
algorithms. Similar ideas have been extended to
polynomial constraints [113].

Bounds can also be inferred for nonlinear
constraints via propagation. Consider a bilinear term
of the form xi = xjxk. Then,

xi ≤ max{xL
j x

L
k , x

L
j x

U
k , x

U
j x

L
k , x

U
j x

U
k } (19)

and

xi ≥ min{xL
j x

L
k , x

L
j x

U
k , x

U
j x

L
k , x

U
j x

U
k } (20)

represent valid bounds for variable xi and can be used
to potentially tighten any user-specified bounds for
this variable.

In the context of factorable reformulations, an
optimization problem is already decomposed into
simple functional forms, which can be readily utilized

Puranik and Sahinidis 9

for domain propagation. Consider, for instance,
the factorable reformulation for Problem 2. From
constraint 3, we can infer that 0 ≤ z3 ≤ 3. From
constraint 4, we can infer that 1 ≤ y ≤ 3.

The iterative application of simple constraints such
as 15–16 and 19–20 is referred to as poor man’s LPs
and poor man’s NLPs [173, 160] because this iterative
application is an inexpensive way to approximate
the solution of linear and nonlinear optimization
problems that aim to reduce domains of variables.
Propagation based on these techniques can be applied
not only to the original problem constraints but also
to any cutting planes and other valid inequalities that
might be derived by the branch-and-bound solution
algorithm. Moreover, all these techniques can be
implemented efficiently via the DAG representation.
If a bound on a variable x has changed, it can
be propagated to other variables that depend on x
through a simple forward propagation on the DAG
based on interval arithmetic. Similarly, the variables
on which x depends can be updated through a
backward propagation.

5.2 Convergence of propagation

Propagation methods can be carried out iteratively
as long as there is an improvement in variable
bounds. However, these methods can fail to reach
a fixed point finitely. Consider as an example [144]:
x1 + x2 = 0, x1 − qx2 = 0 with q ∈ (0, 1).
Propagation will converge to (0, 0) at the limit, i.e.,
as the number of iterations approaches infinity. On
the contrary, any linear programming based method
will terminate at (0, 0) quickly as the only feasible
point. A necessary condition for nonconvergence of
propagation iterations is the presence of cycles in
expression graphs [59]. The problem of achieving
a fixed point with propagation iterations in the
presence of only integer variables has been shown to
be NP-complete [32, 33]. The fixed point obtained
is independent of the order in which the variables
are considered [41]. In practice, the iterations are
usually terminated when the improvement in variable
domains is insignificant or when an upper limit on the
number of iterations is reached.

For linear inequalities in the presence of continuous
variables alone, the fixed point can be obtained in
polynomial time by the solution of a large linear
program [23]. For nonlinear problems and for
problems with integer variables, a linear relaxation
can be solved to obtain reduced bounds [24].

5.3 Consistency

Constraint programming algorithms for constraint
satisfaction problems rely on the formalized notion
of consistency to propagate domains along constraint
networks and remove values from variable domains
that cannot be a part of any solution. Differing
levels of consistency exist, including arc consistency
and k-consistency, while various algorithms have
been proposed to achieve these consistencies [29].
These concepts were originally proposed for discrete
problems but were also extended to continuous
constraint satisfaction problems [116, 27, 162, 26, 49,
30].

The domain reduction algorithms typically em-
ployed for global optimization of MINLPs are usually
not iterated until they reach a certain level of
consistency because attempting to establish consis-
tency can lead to a prohibitively large computational
effort. However, domain reduction techniques are
not even necessary to prove convergence of branch-
and-bound based methods for global optimization.
In contrast to CP methods, the availability of
relaxation methods for generating bounds allows
the mathematical-programming-based branch-and-
bound algorithms to converge without establishing
any levels of consistency.

5.4 Techniques for mixed-integer linear pro-

grams

Many techniques for presolving LPs can also be
directly utilized for MIPs. However, specialized
reduction methods can be developed for MIPs. For
example, a number of methods have been developed
for the analysis of 0-1 binary programs [78, 51,
164]. Probing and shaving techniques are equivalent
to the singleton consistency techniques from CP.
Singleton consistency techniques [150] proceed by
assigning a fixed value to a variable and carrying out
propagation. If this assignment leads to infeasibility
of the constraint program, the value assigned to the
variable cannot be a part of any solution and can
be eliminated. Probing techniques, that can be used
for binary programs, involve the fixing of a binary
variable xi to say 0. If basic preprocessing and
other domain reduction methods are able to prove
infeasibility for this subproblem, then the variable xi

can be fixed to 1. If fixing the binary variable xi to
both 0 and 1 lead to infeasibility, the problem can
be declared as infeasible. For binary programs, if
probing is carried on all binary variables, it leads to
singleton consistency. Probing has also been utilized
for satisfiability problems [120]. A similar technique

Domain reduction techniques for global NLP and MINLP optimization 10

for continuous problems is called shaving [129, 144].
The method proceeds by removing a fraction of the
domain of a variable [xl

i, x
u
i] as either [xl

i + ǫ, xu
i] or

[xl
i, x

u
i − ǫ] and testing whether the reduced domain

leads to provable infeasibility of the model. If
infeasibility is indeed proved, the domain of the
variable can be reduced to the complement of the
box used for testing. The author suggests using
ǫ = 0.1× (xu

i −xl
i) for this method. Shaving is widely

used in the sub-field of CP based scheduling [191].
Belotti et al. [25] call this technique aggressive
bounds tightening (ABT) and implement it in the
solver COUENNE. Once a fraction of the domain
of a variable has been eliminated, propagation is
invoked in the hopes of proving infeasibility in the
subproblem. However, ABT and shaving techniques
in general are expensive and reduction in the domain
is not guaranteed. Faria and Bagajewicz [62] propose
several variants of this shaving strategy for bilinear
terms and utilize it in a branch-and-bound algorithm
for water management and pooling problems [61, 60].
Nannicini et al. [140] propose a similar strategy which
they refer to as aggressive probing. In contrast to
ABT technique, the nonconvex restrictions created
by restricting a variable domain in their method are
solved to global optimality with branch-and-bound
in order to carry out the maximum possible domain
reduction.

Implication-based reductions utilize relations be-
tween the values of different variables that must be
satisfied at an optimal solution. For instance, if
fixing two binary variables xi and xj to 0 leads to
infeasibility, then we have an implication requiring
that one of the variables must be nonzero, which
can be represented by the inequality xi + xj ≥ 1.
Such relations can be efficiently represented through
the use of conflict graphs [17]. Conflict graphs are
utilized to generate valid inequalities that strengthen
the MIP formulation. In general, if fixing a binary
variable xi to 0 implies that variable xj must take
value v, then the following inequalities are valid for
the problem [121]:

xj ≤ v + (xu
j − v)xi

xj ≥ v − (v − xl
j)xi

Implications can be derived by carrying out
probing by fixing more than one variable at
a time and/or through the analysis of problem
structure. Implications can also be utilized for
identifying and eliminating redundant constraints.
Inequalities derived from implications lead to
automatic disaggregation for some constraints [164].
Disaggregated constraints, while redundant for the

MIP formulation, lead to tighter LP relaxations
for the problem. Achterberg et al. [5] show how
implications can be derived from conflicts (See
Section 5.5) and from knapsack covers.

Tighter formulations can also be obtained for a
problem through coefficient reduction. Consider the
example of a linear constraint on binary variables
from [127]:

−230x10 − 200x16 − 400x17 ≤ −5

The coefficients of this constraint can be reduced to:

−x10 − x16 − x17 ≤ −1

While the set of binary values satisfying both of
the above constraints are the same, the reduced
constraint has a tighter LP relaxation. Approaches
for coefficient reduction are provided by [51, 164].
Andersen and Pochet [13] prove that, if no coefficients
for an MIP system can be strengthened, then there
does not exist a dominating constraint that can be
used to replace an existing constraint in the MIP
system to tighten its relaxation. They also describe
an optimization formulation and an algorithmic
solution to the problem of strengthening a coefficient
in a constraint as much as possible.

5.5 Conflict analysis

Branch-and-bound based algorithms often encounter
infeasibility in subproblems during the search for
global optimum. Solvers for the satisfiability problem
(SAT) also utilize a backtracking-based branching
scheme for their solution [139]. The SAT problem
consists of binary variables constrained by a set of
logical conditions. The SAT problem has a solution
if there exists an instantiation of the binary variables
satisfying all the logical conditions. SAT-based
solvers learn and add conflict clauses from infeasible
subproblems [126]. These clauses are created
by identifying the corresponding instantiations of
a subset of variables leading to infeasibility and
prohibiting them. This often leads to a reduction
in the search tree. The idea of conflict analysis
is similar to the idea of no-good learning from the
CP community [180, 114, 96, 100]. No-good is a
generalization of a conflict clause from SAT to CP.

The ideas of conflict analysis have been extended
for MIP [1, 163]. However, generation of conflict
clauses is more complicated for MIP due to the
presence of both continuous and general integer
variables. Infeasibility in SAT problems and CP
problems is detected through a chain of logical

Puranik and Sahinidis 11

deductions caused by fixing some variables. However,
in MIP, infeasibility can be identified through either
such deductions or an infeasible LP relaxation.
Achterberg [1] proposes a generalized conflict graph
(termed implication graph in [163]) for representation
of bound propagations that can be used to identify
cause of infeasibility. Note that the conflict graph and
the implication graph are defined differently than in
Section 5.4. In the case of an infeasible LP relaxation,
Achterberg proposes identifying a minimum bound-
cardinality IIS. Representation of conflict causes
for MIP requires use of disjunctive constraints
which must be reformulated with additional binary
variables and inequalities. Limited computational
analysis demonstrates a reduction in the number of
nodes and time with conflict analysis.

6 Reduction of suboptimal domains

In contrast to the methods of the previous section, the
methods described here can lead to the elimination of
feasible points from the domain under the condition
that at least one globally optimal solution remains
within the search space.

Consider the following convex relaxation of
Problem 1:

min fconv(~x)
s.t. ~gconv(~x) ≤ 0

~xl ≤ ~x ≤ ~xu

~x ∈ R
n

(21)

As discussed before, convex relaxations are often
constructed and linearized in a global branch-and-
bound search for obtaining valid lower bounds.
Assume that the optimal objective for Problem 21
has value L and, at the optimal solution, a bound
xj ≤ xu

j is active with a Lagrange multiplier λj > 0.
Let U be a known valid upper bound for the optimal
objective function value of Problem 1. Then, the
following constraint does not exclude any optimal
solutions better than U (Theorem 2 in [158]):

xl
j ≥ xu

j −
U − L

λj

(22)

A geometric interpretation of this cut can be observed
in Figure 4, where x∗

j denotes the right-hand-side
of equation 22. The constraint excludes values of
xj for which the convex relaxation is guaranteed to
have its value function to be greater than or equal to
U . Consequently, the nonconvex problem also has its
value function guaranteed to be greater than or equal
to U in this domain. A corresponding cut can also

be derived if, at the optimal solution L of the convex
relaxation, a variable is at its lower bound, i.e.,
xj = xl

j , with the corresponding Lagrange multiplier

λj > 0. The upper bound can then be potentially
tightened without losing optimal solutions by the
following cut:

xu
j ≤ xl

j +
U − L

λj

(23)

For variables that are not at their bounds at the
relaxation solution, probing tests can be carried out
by temporarily fixing variables at their bounds and
solving the restricted problem. For example, Tests
3 and 4 in [158] work as follows. Set xj = xu

j and

solve Problem 21. If the corresponding multiplier λj

is positive, then the following constraint is valid:

xl
j ≥ xu

j −
U − L

λj

(24)

A similar probing test can be developed by fixing a
variable at its lower bound [158, 159, 173]. Reduction
by 22 and 23 only requires the solution of the
relaxation problem, and thus can be implemented
at every node of the branch-and-bound tree without
much computational overhead. On the other hand,
probing with fixing variables at their bounds requires
the solution of 2n convex problems. Probing is
usually carried out only at the root node and
then only at some nodes of the tree or only for
a subset of the variables. The probing tests
are a generalization of probing for the integer
programming case. However, they differ from the
integer programming case in the sense that probing
leads to variable fixing in the case of binary variables,
whereas in the continuous case it leads to reduction
in the variable domains.

Similarly, if at the optimal solution of the
relaxation Problem 21, a constraint gjconv(~x) ≤ 0 is
active with the corresponding multiplier µi ≥ 0, then
the following constraint does not violate any points
with objective values better than U [159]:

gjconv(~x) ≥ −
U − L

µj

(25)

These inequalities can be appended to the original
formulation. However, this process can lead to the
accumulation of a large number of constraints. Al-
ternatively, these are often utilized for propagation-
based tests locally at the current node and then
discarded. Lebbah et al. [112] provide a safe way of
implementing duality-based reduction techniques in
the context of floating point arithmetic. It must be

Domain reduction techniques for global NLP and MINLP optimization 12

Nonconvex problem

Convex relaxation

Value function

Figure 4: Multipliers-based reduction geometrically

noted that suboptimal Lagrangian multipliers often
provide greater reduction through constraints 22,
23, 24 and 25. A more detailed discussion on the
use of other than optimal multipliers is provided in
Tawarmalani and Sahinidis [185] and Sellmann [171].

If a valid upper bound U is available, it can also
be exploited by reformulating Problem 12 as follows:

min ±xk

s.t. ~g(~)x ≤ 0
fconv(~x) ≤ U
~xl ≤ ~x ≤ ~xu

~x ∈ R
n

(26)

Problem 26 differs from Problem 12 by the addition of
a single constraint. In this constraint, fconv(~x) refers
to the convex relaxation of the objective function. It
can be replaced by a suitable linearization flin(~x) for
use in formulation 27.

min ±xk

s.t. ~glin(~x) ≤ 0
flin(~x) ≤ U
~xl ≤ ~x ≤ ~xu

~x ∈ R
n

(27)

Zamora and Grossmann [201] refer to Problem 26
as the contraction subproblem. They define a
contraction operation that uses the solution of
Problem 26 along with multipliers-based reduction
steps described in this section to carry out domain
reduction. Their algorithm is therefore referred to
as branch-and-contract. Optimality-based arguments

can also be used for filtering in CP, see for
example [66, 188].

Note that problem 26 can be solved iteratively to
obtain further tightening. However, convergence to a
fixed point can be slow. Caprara and Locatelli [41]
propose a different approach to carry out bounds
tightening called nonlinearities removal domain
reduction (NRDR). NRDR relies on the solution of
parametric univariate optimization problems to find
tight bounds. The method reduces nonlinearities due
to a single variable at every iteration. The authors
further demonstrate that, under certain assumptions,
their domain reduction method is equivalent to
carrying out optimization-based bounds tightening
iteratively until it reaches a fixed point. Caprara et
al. [42] show that the NRDR method leads to bounds
consistency for a special case of linear multiplicative
programming problems with only two variables in the
objective function.

6.1 A unified theory for feasibility- and

optimality-based tightening

Tawarmalani and Sahinidis [185] provide a unified
theory of feasibility- and optimality-based bounds
tightening techniques. This theory evolves around
Lagrangian subproblems created by the dualization
of constraints. Consider the problem:

min f(~x)

s.t. ~g(~)x ≤ 0
~xl ≤ ~x ≤ ~xu

~x ∈ R
n

(28)

Puranik and Sahinidis 13

Define the Lagrangian subproblem as follows:

inf
~xl≤~x≤~xu

{−y0f(~x)− ~y ~g(x)}

The dual variables y0 and y are nonpositive. Suppose
an upper bound U is available for the optimal solution
of Problem 28. A domain reduction master problem
can be constructed as follows:

inf h(µ0, ~µ)
s.t. f(~x) ≤ µ0 ≤ U

~g(~x) ≤ ~µ ≤ b
~xl ≤ ~x ≤ ~xu

(29)

Using the linear objective function h(µ0, ~µ) = a0µ0+
~aT ~µ, Problem 29 can be equivalently stated as:

inf a0µ0 + ~aT ~µ
s.t. −y0(f(~x)− µ0)

−~yT (~g(~x)− µ) ≤ 0 ∀(y0, ~y) ≤ 0
(µ0, ~µ) ≤ (U, 0)
~xl ≤ ~x ≤ ~xu

(30)

Solving Problem 30 can be as hard as solving Problem
28. Instead, the lower bound for Problem 30 can be
obtained from the solution of the following relaxed
master problem:

inf a0µ0 + ~aT ~µ
s.t. y0µ0 + ~yT~u

+ inf~xl≤~x≤~xu
{−y0f(~x)− ~yT ~g(x)}

≤ 0 ∀(y0, ~y) ≤ 0
(µ0, ~µ) ≤ (U, 0)

(31)

Many domain reduction operations can be obtained
by suitable choice of the coefficients (a0,~a) in the
objective function for Problem 31. For example,
equation 25 can be derived by setting (~a, a0) to ~ej in
Problem 31, where ~ej is the j

th column of the identity
matrix.

Similarly, propagation for linear constraints
described by equations 15 and 16 can derived by
application of duality theory to the relaxed problem
formed by relaxing all but the ith linear constraint
under consideration:

min xh

s.t. ~aTi ~x ≤ bi

~x ≤ ~xu

~x ≥ ~xl

Assuming aih < 0 and ~xh is not at its lower bound,
the optimal dual solution for the linear program can

be obtained as:

µ =1/aih

~λj =−max{aij/aih, 0} for all j 6= h

~σj =min{aij/aih, 0} for all j 6= h

~λh =~σh = 0

Here, µ is the dual multiplier corresponding to ~aTi ~x ≤

bi, ~λj is the dual multiplier corresponding to ~xj ≤ ~xu
j ,

and ~σj is the dual multiplier corresponding to ~xj ≥
~xl
j . The domain reduction master problem can be

constructed as:

min xh

s.t. −xh + µu+ ~λT~v − ~σT ~w ≤ 0
u ≤ bi
~v ≤ ~xu

~w ≤ ~xl

(32)

Equation 16 follows from Problem 32. Equation 15
can be similarly derived.

Tawarmalani and Sahinidis [185] also present a
duality-based reduction scheme that utilizes dual
feasible solutions and a learning reduction heuristic.
In branch-and-bound algorithms, branching is
typically carried out by various heuristics for the
selection of the branching variable and the branching
point. If one of the nodes created due to a
branching decision is proven to be inferior, the
learning reduction heuristic attempts to expand on
the region defined by this node that is proven to be
inferior by the construction of dual solutions for the
other node. The authors remark that all dual feasible
solutions can be utilized to carry out reductions. This
idea is instantiated in the Lagrangian variable bounds
propagation by Gleixner and coworkers [71, 72]. To
avoid solving 2n optimization problems at every
node with Problem 27, valid Lagrangian variable
inequalities can be generated by aggregating the
linear relaxation constraints with the dual solution
of Problem 27. While redundant for the linear
relaxation, these inequalities approximate the effect
of solving Problem 27 locally at every node and
can be used to infer stronger bounds on variables
when variable bounds are updated through branching
or otherwise if a better upper bound is obtained.
Gleixner et al. [71] provides heuristics for ordering
the generated Lagrangian variable inequalities to
achieve maximum tightening. An aggressive filtering
strategy is proposed that involves the solution of LPs
to determine variables for which bounds cannot be
tightened. The optimization steps for these variables
in Problem 27 can therefore be skipped, leading to

Domain reduction techniques for global NLP and MINLP optimization 14

computational savings. The authors also provide
heuristics for ordering the LP solves in Problem 27
to allow for more efficient warm starting and reduce
the number of simplex iterations.

6.2 Pruning

If the lower bound obtained at a node of the branch-
and-bound search is worse than the best known upper
bound U , the current node can be fathomed. We
are guaranteed that the globally optimal solution
cannot lie at this node, since all feasible solutions
at this node have an objective value greater than U .
This process is also referred to as pruning and is a
special case of a general concept called dominance;
node n1 dominates node n2 if, for every feasible
solution s in n2, there is a complete solution in
n1 that is as good or better than s. The idea
of dominance is old, first introduced by Kohler
and Steiglitz [105] and developed in more detail by
Ibaraki [92]. Dominance relations can be utilized to
speed up the search. For MIP problems, Fischetti
and Toth [65] propose solution of an auxiliary MIP
involving only fixed variables at a node to determine
whether the current node is dominated by another
node which may or may not have been explored yet.
However, the overhead of solving the auxiliary MIP
is fairly large. Fischetti and Salvagnin [64] propose
improvements to this scheme and demonstrate
computational benefits for network loading problems
arising in telecommunication. Sewell et al. [172]
propose a memory-based dominance rule for a
scheduling application. Memory-based dominance
rules require storage of the entire search tree, and
their performance is dependent on the memory
available. However, since information from the entire
tree is available, considerably stronger pruning rules
can be determined. Memory-based search algorithms
are related to the heuristic search algorithms from
AI [57, 182].

Problems involving integer variables often have a
high degree of symmetry. Symmetry is detrimental
for branch-and-bound algorithms as it can lead to
repetitive work for the solver. Most symmetry
breaking approaches rely on exploiting information
about the specific problem being considered. A more
general technique called isomorphic pruning has been
proposed by Margot [123, 124]. Isomorphic pruning
relies on lexicographic tests to determine if a node
can be pruned. Orbital branching [146] is another
method that can be utilized to tackle symmetry.
The branching method identifies orbits of equivalent
variables. Orbital branching proceeds by fixing a
variable in the orbit to one at a node, and fixes all

the variables in the node to zero in another node.
Thus, orbital branching implicitly prunes all the
other nodes which involve each of the other variables
in the orbit fixed to one.

6.3 Exploiting optimality conditions

The Karush-Kuhn-Tucker [95, 106] conditions are
necessary for a point to be locally optimal for a
nonlinear programming problem under certain con-
straint qualifications. See Schichl and Neumaier [168]
for a derivation and a general discussion of these
conditions. The conditions can be used to reduce
the search space for a nonconvex NLP, since globally
optimal points also satisfy them. Vandenbussche and
Nemhauser generate valid inequalities for quadratic
programs with box constraints through the analysis of
optimality conditions [196] and also utilize them in a
branch-and-cut scheme [195]. Optimality conditions
have been extensively utilized in branch-and-bound
algorithms for quadratic programs [83, 38, 39, 37, 45,
90]. Optimality conditions can also be utilized for
pruning of nodes. For example, for an unconstrained
optimization problem, if 0 is not contained within the
interval inclusion function for the partial derivatives
of the objective function at a node, the corresponding
node can be pruned [125]. This test is often referred
to as the monotonicity test.

Sahinidis and Tawarmalani [161] have added a
modelling language construct for BARON which
allows for the specification of certain constraints
as relaxation-only. Relaxation-only constraints are
utilized for the construction of convex relaxations
and for domain reduction, but are not utilized in
local search for obtaining upper bounds. The authors
use first-order optimality conditions explicitly as
relaxation-only constraints and observe improved
convergence for some univariate optimization prob-
lems. Amaran and Sahinidis [9] use a similar
strategy and show significant computational benefits
for parameter estimation problems. They analyze
their results and demonstrate that explicit use
of optimality conditions aids in domain reduction
steps of BARON leading to computational speedups.
Puranik and Sahinidis [151] propose a strategy for
carrying out implicit bounds tightening on optimality
conditions for bound-constrained optimization prob-
lems. Their method does not require the generation
of optimality conditions which can be time consuming
and lead to increase in memory requirements. For a
large collection of test problems, this strategy leads to
computational speedups and reduction in the number
of nodes.

Puranik and Sahinidis 15

6.4 Cluster effect

Branch-and-bounds methods often undergo repeated
branching in the neighbourhood of the global solution
before converging. This problem is referred to as
the cluster effect and was first studied by Du and
Kearfott [56] in the context of interval-based branch-
and-bound methods. Subsequent analysis [144, 169,
200] also demonstrates the importance of convergence
order of the bounding operation (see Definition 1
in [200]). These results indicate that at least second-
order convergence is required to overcome the cluster
effect. Thus, tighter relaxations can indeed help
mitigate the cluster effect and their development is
the subject of extensive research in the area [174,
175, 155, 176, 184, 134, 20, 102, 103, 183, 202,
101, 19]. Neumaier and coworkers provide methods
to construct exclusion regions for the solution of
systems of equations [166] and for the solution of
optimization problems [165]. These exclusion regions
guarantee that no other solution can lie within the
exclusion box around a local minimizer or a solution
for systems of equations. These boxes can then
be eliminated from the search space. These boxes
are constructed through existence and uniqueness
tests based on Krawczyk operator or the Kantorovich
Theorem (see Chapter 1, [98]). Other methods to
construct exclusion regions include back boxing [194]
and ǫ-inflation [130].

7 Implementation of domain reduction

techniques

Domain reduction strategies, if successful, typically
lead to a reduction in the number of nodes searched
in a branch-and-bound tree. Techniques like
propagation are computationally inexpensive and can
be applied at every node without much overhead.
However, they are not as efficient in carrying
out domain reduction as the more computationally
intensive strategies like Problem 11 or probing. Thus,
there exists a need to balance the effort involved in
domain reduction in order to reduce the average effort
per node. Multiple heuristic or learning strategies
are employed for this purpose. These ideas are
important in constraint satisfaction problems where
multiple filtering algorithms are available achieving
varying degrees of consistency. Stergiou [181]
experimentally analysed the domain reduction events
through filtering techniques. Drawing insights
from the clustering of this experimental data,
various heuristics are proposed for choosing the
propagation algorithm on the fly. Based on

insights from Stergiou [181] that propagation events
often occur in close clusters, Araya et al. [16]
propose an adaptive strategy. Thus, if a constraint
propagation mechanism succeeds in carrying out
domain reduction at a given node, it should
be exploited repetitively in other nodes that are
geometrically close to the node until the method fails.

Similar heuristics are also utilized for solution
of MINLP problems. For example, the aggressive
probing strategy of Nannicini et al. [140] solves
probing problems to global optimality and thus has
a huge computational overhead. To avoid excessive
work, Nannicini et al. propose a strategy based on
support vector machines [170] to predict when this
aggressive probing strategy is likely to succeed based
on the success of propagation operations. Aggressive
probing is only carried out when its chances of
success are high. Couenne solves linear versions of
Problem 11 in the branch-and-bound tree in all nodes
up to a depth specified by a parameter L. For
nodes at a depth d > L, the strategy is applied
with a probability 2L−d. A similar strategy is
employed by ANTIGONE. The idea of propagation
of Lagrangian variable bounds [72, 71] can also be
thought of as a means of balancing the computational
effort for tightening based on solving variants of
Problem 11. Vu et al. [198] show significant
computational benefits by carrying out propagation
on a subset of the nodes and a partial subgraph
of the DAG rather than the entire graph. Vu et
al. [197] present multiple strategies for combining
the various reduction schemes from constraint
programming and mathematical programming for
constraint satisfaction problems.

8 Computational impact of domain re-

duction

We demonstrate the computational impact of domain
reduction techniques on three widely available
solvers: BARON [185], Couenne [25] and SCIP [3].
BARON is commercial [21] and also free through
the NEOS server [52]. SCIP is free for academics
and commercial for all others. Couenne is open-
source and free software. All three solvers are
available under the GAMS modeling system [36]
and provide options that allow us to turn off their
domain reduction algorithms. The global MINLP
solvers Antigone [135] and LindoGlobal [117] are also
available under GAMS but were not used in these
experiments since they do not offer facilities that turn
off their presolve routines.

The test libraries used in our tests are the

Domain reduction techniques for global NLP and MINLP optimization 16

Global library [73], Princeton library [149], MINLP
library [40] and the CMU-IBM library [48]. Global
and Princeton libraries consist of NLP problems,
while the MINLP and CMU-IBM libraries consist
of MINLP problems. While over 25% of the
Princeton library are convex and the NLP relaxations
of the CMU-IBM library problems are all convex,
the Global and MINLP libraries contain mostly
nonconvex problems. In the sequel we present results
for each library separately so as to demonstrate
that the observed trends are not dominated by any
particular library, convexity, or integrality properties.
Key statistics on the test sets are summarized in
Table 1.

All computational tests were run on a 64-bit Intel
Xeon X5650 2.66 Ghz processor running CentOS
release 7. The tests were carried out with a time limit
of 500 seconds and absolute and relative optimality
tolerances set to 10−6. All solvers were run under
two different settings: (1) default options and (2)
default options with domain reduction turned off.
Our main objective is to compare these two settings.
Comparing the relative impact of the individual
reduction techniques on the performance of global
solvers is beyond the scope of this work. Readers can
refer to Kılınç and Sahinidis [104] for experiments
showing the effect of different bounds reduction
strategies in BARON. In the results presented
below, the suffix “nr” is used to denote a solver
applied with domain reduction techniques turned off.
Comparisons are presented in terms of performance
profiles generated through PAVER [136]. In these
profiles, a solver is considered to have solved a
problem if it obtains the best solution amongst
the solvers compared in the profile within a given
multiple of the time taken by the fastest solver that
solves a problem. CAN SOLVE denotes the number
of problems in the library that can be solved with all
the solvers compared in the profile.

8.1 BARON

The solver options and their values utilized for tests
with BARON are summarized in Table 2. These turn
off the various domain reduction techniques utilized
in BARON. The remaining options are utilized at
their default settings.

Figures 5, 6, 7 and 8 demonstrate the performance
of BARON with and without domain reduction
techniques employed on the Global, Princeton, CMU-
IBM and MINLP libraries. The profiles indicate
a huge deterioration in performance across all test
libraries when reduction is turned off. Interestingly,
for the continuous test libraries, the performance

profile of the no-reduction version of BARON
“catches up” with that of the reduction-based version
at the end of the profiles. This simply means that,
without reduction, BARON’s heuristics are still able
to come up with (near-)global solutions but the
branch-and-bound algorithm is not able to provide
sufficiently strong lower bounds in order to prove
global optimality. For the MINLP case, the no-
reduction-based algorithm is not even able to find
good feasible solutions.

Results in Table 3 show that turning off domain
reduction techniques leads to a huge increase in the
number of nodes required by BARON. The increase
in nodes is also accompanied by a significant increase
in computational time across all test libraries.

8.2 Couenne

The solver options and their values utilized for tests
with Couenne are summarized in Table 4. These turn
off the various domain reduction techniques utilized
in Couenne. The remaining options are utilized at
their default settings.

Figures 9, 10, 11 and 12 demonstrate the
performance of Couenne with and without domain
reduction techniques employed on the Global,
Princeton, CMU-IBM and MINLP libraries. Similar
to BARON, turning off domain reduction techniques
has a huge impact on the performance of Couenne.
Contrary to BARON, without reduction, this solver
is unable to find good solutions for the NLP test
libraries; as a result, the performance profiles for the
no-reduction-based algorithm do not catch up with
the reduction-based algorithm. Table 5 indicates a
significant increase in computational time and the
number of nodes explored in the branch-and-bound
search when reduction is turned off. It should be
pointed out that no comparisons are possible between
BARON and Couenne by looking at their respective
performance profiles since these profiles depend solely
on the solvers included in each figure.

8.3 SCIP

The solver options and their values utilized for tests
with SCIP are summarized in Table 6. As before, the
remaining options are used at their default settings.

Figures 13, 14, 15 and 16 demonstrate the huge
impact of turning off domain reductions with SCIP
on the Global, Princeton, CMU-IBM and MINLP
libraries. Similar to Couenne, this solver is also not
able of finding good solutions for continuous problems
when reduction is turned off. Results in Table 7

Puranik and Sahinidis 17

Figure 5: Performance profiles for BARON on Global library

Figure 6: Performance profiles for BARON on Princeton library

Domain reduction techniques for global NLP and MINLP optimization 18

Figure 7: Performance profiles for BARON on CMU-IBM library

Figure 8: Performance profiles for BARON on MINLP library

Puranik and Sahinidis 19

Figure 9: Performance profiles for Couenne on Global library

Figure 10: Performance profiles for Couenne on Princeton library

Domain reduction techniques for global NLP and MINLP optimization 20

Figure 11: Performance profiles for Couenne on CMU-IBM library

Figure 12: Performance profiles for Couenne on MINLP library

Puranik and Sahinidis 21

Test Library Global Princeton CMU-IBM MINLP
Number of problems 369 980 142 249
Avg. no. of continuous variables 1092 1355 369 346
Avg. no. of binary variables 0 0 139 235
Avg. no. of integer variables 0 0 0 24
Avg. no. of constraints 785 836 956 534

Table 1: Test set statistics

Option Value
LBTTDo 0
MDo 0
OBTTDo 0
PDo 0
TDo 0

Table 2: BARON options used for tests

indicate a significant deterioration in performance for
SCIP as other solvers.

8.4 Relative solver performance

Figure 17 describes the performance of BARON,
Couenne and SCIP on all test libraries aggregated
together. Even without reduction, BARON
dominates over the other two solvers, suggesting that
this solver has an edge over the other two solvers in
terms of its technology for relaxation construction,
branching schemes, and primal feasibility heuristics.
However, the impact of domain reduction techniques
is clear and rather substantial on all three solvers.
Interestingly, the relative order of SCIP and Couenne
changes when reduction is turned off, suggesting that
SCIP is relying much more on domain reduction
than Couenne does. Equivalently, SCIP enjoys a
substantial advantage over Couenne thanks to its
implementation of a more extensive set of reduction
techniques.

9 Conclusions

We have presented a review of the various
domain reduction techniques proposed in literature
for the purpose of global NLP and MINLP
optimization. These techniques vary in complexity
including simple ones like propagation to more
computationally intensive ones that involve full
solution of optimization subproblems. Application of

some of the more complex techniques requires the use
of smart heuristics to ensure that they are utilized
only when domain reduction is likely. We have
also presented computational results with BARON,
SCIP and Couenne on publicly available test libraries.
The results show that domain reduction techniques
have a significant impact on the performance of
these solvers. Incorporation of domain reduction
within branch-and-bound leads to huge reductions in
computational time and number of nodes required for
solution. Future research in this area should focus
on the development of domain reduction techniques
based on sets of constraints (i.e., global filtering
methods) for broad classes of structured problems but
also for important science and engineering problems,
such as pooling problems [153], protein folding [143],
and network design problems [53, 156].

References

[1] Achterberg, T.: Conflict analysis in mixed
integer programming. Discrete Optimization
4, 4–20 (2007)

[2] Achterberg, T.: Constraint Integer Program-
ming. Ph.D. thesis, Technische Universität,
Berlin (2009)

[3] Achterberg, T.: SCIP: solving constraint
integer programs. Mathematical Programming
Computation 1, 1–41 (2009)

[4] Achterberg, T., Bixby, R.E., Gu, Z., Roth-
berg, E., Weninger, D.: Multi-row presolve
reductions in mixed integer programming.
In: Proceedings of the Twenty-Sixth RAMP
Symposium. Hosei University, Tokyo (2014)

[5] Achterberg, T., Sabharwal, A., Samulowitz,
H.: Stronger inference through implied literals
from conflicts and knapsack covers. In:
C. Gomes, M. Sellmann (eds.) Proceedings
of 10th International Conference on AI and
OR Techniques in Constraint Programming for

Domain reduction techniques for global NLP and MINLP optimization 22

Figure 13: Performance profiles for SCIP on Global library

Figure 14: Performance profiles for SCIP on Princeton library

Puranik and Sahinidis 23

Figure 15: Performance profiles for SCIP on CMU-IBM library

Figure 16: Performance profiles for SCIP on MINLP library

Domain reduction techniques for global NLP and MINLP optimization 24

Test Library Global Princeton CMU-IBM MINLP
% increase in number of nodes 1180 261 546 802
% increase in computational time 67 70 75 47

Table 3: Performance deterioration for BARON when domain reduction is turned off

Figure 17: Performance profiles for all solvers on all libraries combined

Option Value
aggressive fbbt no
branch fbbt no
feasibility bt no
max fbbt iter 0
optimality bt no
redcost bt no
fixpoint bt no
two implied bt no

Table 4: Couenne options used for tests

Combinatorial Optimization Problems, pp. 1–
11. Springer, Berlin (2013)

[6] Achterberg, T., Wunderling, R.: Mixed integer
programming: Analyzing 12 years of progress.
In: M. Jünger, G. Reinelt (eds.) Facets
of Combinatorial Optimization, pp. 449–481.
Springer, Berlin (2013)

[7] AIMMS: AIMMS Modeling Language (2015).
http://www.aimms.com/

[8] Al-Khayyal, F.A., Sherali, H.D.: On finitely
terminating branch-and-bound algorithms for
some global optimization problems. SIAM
Journal on Optimization 10, 1049–1057 (2000)

[9] Amaran, S., Sahinidis, N.V.: Global optimiza-
tion of nonlinear least-squares problems by
branch-and-bound and optimality constraints.
TOP 20, 154–172 (2012)

[10] Amarger, R.J., Biegler, L.T., Grossmann, I.E.:
An automated modelling and reformulation
system for design optimization. Computers &
Chemical Engineering 16, 623–636 (1992)

[11] AMPL: AMPL Modeling Language. http://

www.ampl.com/

[12] Andersen, D.E., Andersen, K.D.: Presolving in
linear programming. Mathematical Program-
ming 71, 221–245 (1995)

http://www.aimms.com/
http://www.ampl.com/
http://www.ampl.com/

Puranik and Sahinidis 25

Test Library Global Princeton CMU-IBM MINLP
% increase in number of nodes 129 21 186 171
% increase in computational time 26 19 12 16

Table 5: Performance deterioration for Couenne when domain reduction is turned off

[13] Andersen, K., Pochet, Y.: Coefficient
strengthening: A tool for reformulating mixed-
integer programs. Mathematical programming
122, 121–154 (2010)

[14] Apt, K.R.: The essence of constraint
propagation. Theoretical computer science
221, 179–210 (1999)

[15] Araya, I., Reyes, V.: Interval Branch-and-
Bound algorithms for optimization and con-
straint satisfaction: A survey and prospects.
Journal of Global Optimization pp. 1–30 (2015)

[16] Araya, I., Soto, R., Crawford, B.: Adaptive
filtering strategy for numerical constraint
satisfaction problems. Expert Systems with
Applications 42, 8086–8094 (2015)

[17] Atamtürk, A., Nemhauser, G.L., Savelsbergh,
M.W.P.: Conflict graphs in solving integer
programming problems. European Journal of
Operational Research 121, 40 – 55 (2000)

[18] Balakrishnan, V., Boyd, S.: Global op-
timization in control system analysis and
design. In: C.T. Leondes (ed.) Control
and Dynamic Systems, Advances in Theory
and Applications. Academic Press, New York
(1992)

[19] Bao, X., Khajavirad, A., Sahinidis, N.V.,
Tawarmalani, M.: Global optimization of
nonconvex problems with multilinear in-
termediates. Mathematical Programming
Computation 7, 1–37 (2015)

[20] Bao, X., Sahinidis, N.V., Tawarmalani, M.:
Multiterm polyhedral relaxations for non-
convex, quadratically-constrained quadratic
programs. Optimization Methods and Software
24, 485–504 (2009)

[21] BARON.
http://minlp.com/baron

[22] Belotti, P.: Bound reduction using pairs
of linear inequalities. Journal of Global
Optimization 56, 787–819 (2013)

[23] Belotti, P., Cafieri, S., Lee, J., Liberti, L.:
Feasibility-based bounds tightening via fixed
points. In: W. Wu, O. Daescu (eds.)
Combinatorial Optimization and Applications,
pp. 65–76. Springer, Berlin (2010)

[24] Belotti, P., Cafieri, S., Lee, J., Liberti,
L.: On feasibility based bounds tight-
ening (2012). http://www.optimization-
online.org/DB HTML/2012/01/3325.html

[25] Belotti, P., Lee, J., Liberti, L., Margot,
F., Wächter, A.: Branching and bounds
tightening techniques for non-convex MINLP.
Optimization Methods and Software 24, 597–
634 (2009)

[26] Benhamou, F., Goualard, F., Granvilliers, L.,
Puget, J.: Revising hull and box consistency.
In: Proceedings of the 1999 International
Conference on Logic Programming, pp. 230–
244. Massachusetts Institute of Technology
(1999)

[27] Benhamou, F., McAllester, D., Henten-
ryck, P.V.: CLP(intervals) revisited. In:
M. Bruynooghe (ed.) Proceedings of the 1994
International Symposium on Logic program-
ming, pp. 124–138. MIT Press, Cambridge
(1994)

[28] Benhamou, F., Older, W.J.: Applying interval
arithmetic to real, integer, and boolean
constraints. The Journal of Logic Programming
32, 1–24 (1997)

[29] Bessiere, C.: Constraint propagation. In:
F. Rossi, P. van Beek, T. Walsh (eds.) Hand-
book of Constraint Programming, chap. 2, pp.
29–83. Elsevier, Amsterdam (2006)

[30] Bessiere, C., Stergiou, K., Walsh, T.:
Domain filtering consistencies for non-binary
constraints. Artificial Intelligence 172, 800–822
(2008)

[31] Bixby, R., Rothberg, E.: Progress in
computational mixed integer programming–a
look back from the other side of the tipping
point. Annals of Operations Research 149, 37–
41 (2007)

http://minlp.com/baron

Domain reduction techniques for global NLP and MINLP optimization 26

[32] Bordeaux, L., Hamadi, Y., Vardi, M.Y.:
An analysis of slow convergence in interval
propagation. In: C. Bessiere (ed.) Principles
and Practice of Constraint Programming–CP
2007, pp. 790–797. Springer-Verlag, Berlin
(2007)

[33] Bordeaux, L., Katsirelos, G., Narodytska, N.,
Vardi, M.Y.: The complexity of integer bound
propagation. Journal of Artificial Intelligence
Research 40, 657–676 (2011)

[34] Borradaile, G., van Hentenryck, P.: Safe and
tight linear estimators for global optimization.
Mathematical Programming 102, 495–517
(2005)

[35] Brearley, A.L., Mitra, G., Williams, H.P.:
Analysis of mathematical programming prob-
lems prior to applying the simplex algorithm.
Mathematical programming 8, 54–83 (1975)

[36] Brooke, A., Kendrick, D., Meeraus, A.:
GAMS–A User’s Guide. The Scientific Press,
Redwood City, CA (1988)

[37] Burer, S., Chen, J.: Relaxing the optimality
conditions of box QP. Computational
Optimization and Applications 48, 653–673
(2011)

[38] Burer, S., Vandenbussche, D.: A finite branch-
and-bound algorithm for nonconvex quadratic
programming via semidefinite relaxations.
Mathematical Programming 113, 259–282
(2008)

[39] Burer, S., Vandenbussche, D.: Globally solving
box-constrained nonconvex quadratic pro-
grams with semidefinite-based finite branch-
and-bound. Computational Optimization and
Applications 43, 181–195 (2009)

[40] Bussieck, M.R., Drud, A.S., Meeraus, A.:
MINLPLib–A collection of test models for
mixed-integer nonlinear programming. IN-
FORMS Journal on Computing 15, 114–119
(2003)

[41] Caprara, A., Locatelli, M.: Global op-
timization problems and domain reduction
strategies. Mathematical Programming 125,
123–137 (2010)

[42] Caprara, A., Locatelli, M., Monaci, M.:
Theoretical and computational results about
optimality-based domain reductions. Compu-
tational Optimization and Applications pp. 1–
21 (2016)

[43] Castro, P.M., Grossmann, I.E.: Optimality-
based bound contraction with multiparametric
disaggregation for the global optimization of
mixed-integer bilinear problems. Journal of
Global Optimization 59, 277–306 (2014)

[44] Catalão, J.P.S., Pousinho, H.M.I., Mendes,
V.M.F.: Hydro energy systems management in
Portugal: Profit-based evaluation of a mixed-
integer nonlinear approach. Energy 36, 500–
507 (2011)

[45] Chen, J., Burer, S.: Globally solving
nonconvex quadratic programming problems
via completely positive programming. Math-
ematical Programming Computation 4, 33–52
(2012)

[46] Chinneck, J.W.: Feasibility and infeasibility in
optimization. Springer, New York (2008)

[47] Cleary, J.G.: Logical arithmetic. Future
computing systems 2, 125–149 (1987)

[48] CMU-IBM open source MINLP project test
set.
http://egon.cheme.cmu.edu/ibm/page.htm

[49] Collavizza, H., Delobel, F., Rueher, M.:
Comparing partial consistencies. Reliable
computing 5, 213–228 (1999)

[50] Cornelius, H., Lohner, R.: Computing the
range of values of real functions with accuracy
higher than second order. Computing 33, 331–
347 (1984)

[51] Crowder, H., Johnson, E.L., Padberg, M.:
Solving large-scale zero-one linear program-
ming problems. Operations Research 31, 803–
834 (1983)

[52] Czyzyk, J., Mesnier, M., Moré, J.: The
NEOS server. IEEE Computational Science &
Engineering 5, 68–75 (1998)

[53] DAmbrosio, C., Lodi, A., Wiese, S., Bragalli,
C.: Mathematical programming techniques in
water network optimization. European Journal
of Operational Research 243, 774788 (2015)

[54] Davis, E.: Constraint propagation with
interval labels. Artificial intelligence 32, 281–
331 (1987)

[55] Domes, F., Neumaier, A.: Constraint
aggregation for rigorous global optimization.
Mathematical Programming 155, 375–401
(2016)

http://egon.cheme.cmu.edu/ibm/page.htm

Puranik and Sahinidis 27

[56] Du, K., Kearfott, R.B.: The cluster problem
in multivariate global optimization. Journal of
Global Optimization 5, 253–265 (1994)

[57] Edelkamp, S., Schroedl, S.: Heuristic search:
Theory and applications. Elsevier (2011)

[58] Falk, J.E., Soland, R.M.: An algorithm for
separable nonconvex programming problems.
Management Science 15, 550–569 (1969)

[59] Faltings, B.: Arc-consistency for continuous
variables. Artificial intelligence 65, 363–376
(1994)

[60] Faria, D.C., Bagajewicz, M.J.: Global
optimization of water management problems
using linear relaxation and bound contraction
methods. Industrial & Engineering Chemistry
Research 50, 3738–3753 (2011)

[61] Faria, D.C., Bagajewicz, M.J.: Novel bound
contraction procedure for global optimization
of bilinear MINLP problems with applications
to water management problems. Computers &
Chemical Engineering 35, 446–455 (2011)

[62] Faria, D.C., Bagajewicz, M.J.: A new
approach for global optimization of a class of
MINLP problems with applications to water
management and pooling problems. AIChE
Journal 58, 2320–2335 (2012)

[63] Ferris, M.C., Munson, T.S.: Preprocessing
complementarity problems. In: M.C. Ferris,
O.L. Mangasarian, J. Pang (eds.) Com-
plementarity: Applications, Algorithms and
Extensions, pp. 143–164. Springer, Dordrecht
(2001)

[64] Fischetti, M., Salvagnin, D.: Pruning moves.
INFORMS Journal on Computing 22, 108–119
(2010)

[65] Fischetti, M., Toth, P.: A new dominance
procedure for combinatorial optimization prob-
lems. Operations Research Letters 7, 181–187
(1988)

[66] Focacci, F., Lodi, A., Milano, M.: Cost-
based domain filtering. In: J. Jaffar (ed.)
Proceedings of Principles and Practice of
Constraint Programming: 5th International
Conference, pp. 189–203. Springer, Berlin
(1999)

[67] Fourer, R., Gay, D.M.: Experience with a
primal presolve algorithm. In: W. Hager,
D. Hearn, P. Pardalos (eds.) Large Scale
Optimization: State of the Art, pp. 135–154.
Springer, Boston (1994)

[68] Fügenschuh, A., Homfeld, H., Schülldorf, H.,
Vigerske, S.: Mixed-integer nonlinear problems
in transportation applications. In: Proceedings
of the 2nd International Conference on
Engineering Optimization (CD-ROM), p. 14
(2010)

[69] Furman, K.C., Sahinidis, N.V.: A critical
review and annotated bibliography for heat
exchanger network synthesis in the 20th
century. Industrial & Engineering Chemistry
Research 41, 2335–2370 (2002)

[70] Gamrath, G., Koch, T., Martin, A., Mil-
tenberger, M., Weninger, D.: Progress in
presolving for mixed integer programming.
Mathematical Programming Computation 7,
367–398 (2015)

[71] Gleixner, A.M., Berthold, T., Müller,
B., Weltge, S.: Three enhancements for
optimization-based bound tightening. ZIB
Report pp. 15–16 (2016)

[72] Gleixner, A.M., Weltge, S.: Learning and
propagating Lagrangian variable bounds for
mixed-integer nonlinear programming. In:
Proceedings of 10th International Conference
on AI and OR Techniques in Constraint
Programming for Combinatorial Optimization
Problems, pp. 355–361. Springer, Berlin (2013)

[73] GLOBAL Library.
http://www.gamsworld.org/global/
globallib.htm

[74] Gondzio, J.: Presolve analysis of linear
programs prior to applying an interior point
method. INFORMS Journal on Computing 9,
73–91 (1997)

[75] Gould, N., Toint, P.L.: Preprocessing
for quadratic programming. Mathematical
Programming 100, 95–132 (2004)

[76] Grossmann, I.: Enterprise-wide optimization:
A new frontier in process systems engineering.
AIChE Journal 51, 1846–1857 (2005)

[77] Grossmann, I.E., Caballero, J.A., Yeomans,
H.: Advances in mathematical programming
for the synthesis of process systems. Latin
American Applied Research 30, 263–284 (2000)

[78] Guignard, M., Spielberg, K.: Logical reduction
methods in zero-one programming-minimal
preferred variables. Operations Research 29,
49–74 (1981)

http://www.gamsworld.org/global/globallib.htm
http://www.gamsworld.org/global/globallib.htm

Domain reduction techniques for global NLP and MINLP optimization 28

[79] Hager, G.D.: Solving large systems of nonlinear
constraints with application to data modeling.
Interval Computations 3, 169–200 (1993)

[80] Hamed, A.S.E., McCormick, G.P.: Calculation
of bounds on variables satisfying nonlinear
inequality constraints. Journal of Global
Optimization 3, 25–47 (1993)

[81] Hansen, E.R.: Global optimization using inter-
val analysis. Pure and Applied Mathematics.
Marcel Dekker, New York (1992)

[82] Hansen, P., Jaumard, B., Lu, S.H.: An analytic
approach to global optimization. Mathematical
Programming 52, 227–254 (1991)

[83] Hansen, P., Jaumard, B., Ruiz, M., Xiong,
J.: Global minimization of indefinite quadratic
functions subject to box constraints. Naval
Research Logistics (NRL) 40, 373–392 (1993)

[84] Harjunkoski, I., Westerlund, T., Pörn, R.,
Skrifvars, H.: Different transformations for
solving non-convex trim-loss problems by
MINLP. European Journal of Operational
Research 105, 594–603 (1998)

[85] Harvey, W., Schimpf, J.: Bounds consistency
techniques for long linear constraints. In:
Proceedings of TRICS: Techniques foR Imple-
menting Constraint programming Systems, pp.
39–46 (2002)

[86] Heinz, S., Schulz, J., Beck, J.C.: Using
dual presolving reductions to reformulate
cumulative constraints. Constraints 18, 166–
201 (2013)

[87] Hoffman, K.L., Padberg, M.: Improving LP-
representations of zero-one linear programs for
branch-and-cut. ORSA Journal on Computing
3, 121–134 (1991)

[88] Hooker, J.N.: Integrated methods for optimiza-
tion. Springer Science & Business Media, New
York (2007)

[89] Horst, R., Tuy, H.: Global Optimization:
Deterministic Approaches, Third edn. Springer
Verlag, Berlin (1996)

[90] Hu, J., Mitchell, J.E., Pang, J.: An LPCC
approach to nonconvex quadratic programs.
Mathematical programming 133, 243–277
(2012)

[91] Hunting, M.: A nonlinear presolve algorithm
in AIMMS. An AIMMS white paper, Paragon
Decision Technology, BV (2011)

[92] Ibaraki, T.: The power of dominance relations
in branch-and-bound algorithms. Journal of
the ACM 24, 264–279 (1977)

[93] Imbert, J., Hentenryck, P.V.: Redundancy
elimination with a lexicographic solved form.
Annals of Mathematics and Artificial Intelli-
gence 17, 85–106 (1996)

[94] Jezowski, J.: Review of water network design
methods with literature annotations. Industrial
& Engineering Chemistry Research 49, 4475–
4516 (2010)

[95] Karush, W.: Minima of functions of several
variables with inequalities as side constraints.
Master’s thesis, Department of Mathematics,
University of Chicago, Chicago, IL (1939)

[96] Katsirelos, G.: Nogood processing in CSPs.
Ph.D. thesis, University of Toronto (2008)

[97] Kearfott, R.B.: Decomposition of arithmetic
expressions to improve the behavior of interval
iteration for nonlinear systems. Computing 47,
169–191 (1991)

[98] Kearfott, R.B.: Rigorous Global Search: Con-
tinuous Problems, Nonconvex Optimization
and Its Applications, vol. 13. Kluwer Academic
Publishers, Dordrecht (1996)

[99] Kearfott, R.B.: GlobSol user guide. Optimiza-
tion Methods and Software 24, 687–708 (2009)

[100] Kell, B., Sabharwal, A., van Hoeve, W.: BDD-
guided clause generation. In: L. Michel
(ed.) Integration of AI and OR Techniques
in Constraint Programming, pp. 215–230.
Springer (2015)

[101] Khajavirad, A., Michalek, J.J., Sahinidis,
N.V.: Relaxations of factorable functions with
convex-transformable intermediates. Mathe-
matical Programming 144, 107–140 (2014)

[102] Khajavirad, A., Sahinidis, N.V.: Convex en-
velopes of products of convex and component-
wise concave functions. Journal of Global
Optimization 52, 391–409 (2011)

[103] Khajavirad, A., Sahinidis, N.V.: Convex en-
velopes generated from finitely many compact
convex sets. Mathematical Programming 137,
371–408 (2013)

[104] Kılınç, M., Sahinidis, N.V.: Solving MINLPs
with BARON (2014). Presented at MINLP
Workshop, Pittsburgh http://http://minlp.
cheme.cmu.edu/2014/papers/kilinc.pdf

http://http://minlp.cheme.cmu.edu/2014/papers/kilinc.pdf
http://http://minlp.cheme.cmu.edu/2014/papers/kilinc.pdf

Puranik and Sahinidis 29

[105] Kohler, W.H., Steiglitz, K.: Characterization
and theoretical comparison of branch-and-
bound algorithms for permutation problems.
Journal of the ACM 21, 140–156 (1974)

[106] Kuhn, H.W., Tucker, A.W.: Nonlinear
programming. In: J. Neyman (ed.) Proceedings
ofthe Second Berkeley Symposium on Mathe-
matical Statistics and Probability, pp. 481–492.
University of California Press, Berkeley (1951)

[107] Kulisch, U.W.: Complete interval arithmetic
and its implementation on the computer.
In: A. Cuyt, W. Krämer, W. Luther,
P. Markstein (eds.) Numerical Validation in
Current Hardware Architectures. Springer,
Berlin (2009)

[108] Lamar, B.W.: An improved branch and bound
algorithm for minimum concave cost network
flow problems. Journal of Global Optimization
3, 261–287 (1993)

[109] Land, A.H., Doig, A.G.: An automatic method
for solving discrete programming problems.
Econometrica 28, 497–520 (1960)

[110] Lebbah, Y.: ICOS: A branch and bound
based solver for rigorous global optimization.
Optimization Methods and Software 24, 709–
726 (2009)

[111] Lebbah, Y., Michel, C., Rueher, M.: A
rigorous global filtering algorithm for quadratic
constraints. Constraints 10, 47–65 (2005)

[112] Lebbah, Y., Michel, C., Rueher, M.: Using
constraint techniques for a safe and fast
implementation of optimality-based reduction.
In: Proceedings of the 2007 ACM symposium
on Applied Computing, pp. 326–331 (2007)

[113] Lebbah, Y., Michel, C., Rueher, M., Daney,
D., Merlet, J.P.: Efficient and safe global
constraints for handling numerical constraint
systems. SIAM Journal on Numerical Analysis
42, 2076–2097 (2005)

[114] Lecoutre, C., Sais, L., Tabary, S., Vidal,
V.: Recording and minimizing nogoods from
restarts. Journal on Satisfiability, Boolean
Modeling and Computation 1, 147–167 (2007)

[115] Leo, K., Tack, G.: Multi-Pass High-Level
Presolving. In: Twenty-Fourth International
Joint Conference on Artificial Intelligence
(2015)

[116] Lhomme, O.: Consistency techniques for
numeric CSPs. In: International Joint
Conference on Artificial Intelligence, vol. 93,
pp. 232–238 (1993)

[117] Lin, Y., Schrage, L.: The global solver in
the LINDO API. Optimization Methods and
Software 24, 657–668 (2009)

[118] Lodwick, W.A.: Constraint propagation,
relational arithmetic in AI systems and
mathematical programs. Annals of Operations
Research 21, 143–148 (1989)

[119] Lodwick, W.A.: Preprocessing nonlinear
constraints with applications to the pooling
problem. ORSA Journal on Computing 4, 119–
131 (1992)

[120] Lynce, I., Marques-Silva, J.: Probing-based
preprocessing techniques for propositional
satisfiability. In: Proceedings of 15th ICTAI,
pp. 105–110 (2003)

[121] Mahajan, A.: Presolving Mixed-Integer Linear
Programs. In: J.J. Cochran, L.A. Cox,
P. Keskinocak, J.P. Kharoufeh, J.C. Smith
(eds.) Wiley Encyclopedia of Operations
Research andManagement Science. JohnWiley
& Sons, Inc., New York (2010)

[122] Mangasarian, O.L., McLinden, L.: Simple
bounds for solutions of monotone comple-
mentarity problems and convex programs.
Mathematical Programming 32, 32–40 (1985)

[123] Margot, F.: Pruning by isomorphism in
branch-and-cut. Mathematical Programming
94, 71–90 (2002)

[124] Margot, F.: Exploiting orbits in symmetric
ILP. Mathematical Programming 98, 3–21
(2003)

[125] Markót, M.C., Schichl, H.: Bound constrained
interval global optimization in the COCONUT
Environment. Journal of Global Optimization
60, 751–776 (2014)

[126] Marques-Silva, J.P., Sakallah, K.A.: GRASP:
A search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers 48,
506–521 (1999)

[127] Martin, A.: General Mixed Integer Pro-
gramming: Computational Issues for Branch-
and-Cut Algorithms. In: M. Jünger,
D. Naddef (eds.) Computational Combinatorial
Optimization: Optimal or Provably Near-
Optimal Solutions, pp. 1–25. Springer, Berlin
(2001)

Domain reduction techniques for global NLP and MINLP optimization 30

[128] Martin, A., Möller, M., Moritz, S.: Mixed
integer models for the stationary case of
gas network optimization. Mathematical
programming 105, 563–582 (2006)

[129] Martin, P., Shmoys, D.B.: A new approach to
computing optimal schedules for the job-shop
scheduling problem. In: H.W. Cunningham,
T.S. McCormick, M. Queyranne (eds.) Inter-
national Conference on Integer Programming
and Combinatorial Optimization, pp. 389–403.
Springer, Berlin (1996)

[130] Mayer, G.: Epsilon-inflation in verification
algorithms. Journal of Computational and
Applied Mathematics 60, 147–169 (1995)

[131] McCormick, G.P.: Computability of global so-
lutions to factorable nonconvex programs: Part
I—Convex underestimating problems. Mathe-
matical Programming 10, 147–175 (1976)

[132] Messine, F.: Deterministic global optimization
using interval constraint propagation tech-
niques. RAIRO-Operations Research 38, 277–
293 (2004)

[133] Mészáros, C.S., Suhl, U.H.: Advanced pre-
processing techniques for linear and quadratic
programming. OR Spectrum 25, 575–595
(2003)

[134] Meyer, C.A., Floudas, C.A.: Convex envelopes
for edge-concave functions. Mathematical
programming 103, 207–224 (2005)

[135] Misener, R., Floudas, C.A.: ANTIGONE:
Algorithms for coNTinuous/Integer Global
Optimization of Nonlinear Equations. Journal
of Global Optimization 59, 503–526 (2014)

[136] Mittelmann, H.D., Pruessner, A.: A server for
automated performance analysis of benchmark-
ing data. Optimization Methods and Software
21, 105–120 (2006)

[137] Moore, R.E., Kearfott, R.B., Cloud, M.J.:
Introduction to interval analysis. Siam,
Philadelphia (2009)

[138] Morrison, D.R., Jacobson, S.H., Sauppe, J.J.,
Sewell, E.C.: Branch-and-bound algorithms:
A survey of recent advances in searching,
branching, and pruning. Discrete Optimization
19, 79–102 (2016)

[139] Moskewicz, M.W., Madigan, C.F., Zhao, Y.,
Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the
38th annual Design Automation Conference,
pp. 530–535 (2001)

[140] Nannicini, G., Belotti, P., Lee, J., Linderoth,
J., Margot, F., Wächter, A.: A probing
algorithm for MINLP with failure prediction
by SVM. In: T. Achterberg, J.C. Beck
(eds.) Integration of AI and OR Techniques
in Constraint Programming for Combinatorial
Optimization Problems, pp. 154–169. Springer,
Berlin (2011)

[141] Nemhauser, G.L., Savelsbergh, M.P., Sigis-
mondi, G.C.: MINTO, a mixed INTeger
optimizer. Operations Research Letters 15, 47–
58 (1994)

[142] Neumaier, A.: Interval methods for systems of
equations. Cambridge university press (1990)

[143] Neumaier, A.: Molecular modeling of proteins
and mathematical prediction of protein struc-
ture. SIAM review 39, 407–460 (1997)

[144] Neumaier, A.: Complete search in continuous
global optimization and constraint satisfaction.
Acta numerica 13, 271–369 (2004)

[145] Neumaier, A., Shcherbina, O.: Safe bounds
in linear and mixed-integer linear program-
ming. Mathematical Programming 99, 283–296
(2004)

[146] Ostrowski, J., Linderoth, J., Rossi, F.,
Smriglio, S.: Orbital branching. Mathematical
Programming 126, 147–178 (2011)

[147] O’Sullivan, B.: Automated Modelling and
Solving in Constraint Programming. In:
Twenty-Fourth AAAI Conference on Artificial
Intelligence (2010)

[148] Pardalos, P.M., Chaovalitwongse, W.,
Iasemidis, L.D., Sackellares, J.C., Shiau,
D., Carney, P.R., Prokopyev, O.A., Yatsenko,
V.A.: Seizure warning algorithm based
on optimization and nonlinear dynamics.
Mathematical Programming 101, 365–385
(2004)

[149] Princeton Library.
http://www.gamsworld.org/performance/
princetonlib/princetonlib.htm

[150] Prosser, P., Stergiou, K., Walsh, T.: Singleton
consistencies. In: R. Dechter (ed.) Proceedings
of 6th International Conference, CP 2000
Singapore, pp. 353–368. Springer, Berlin (2000)

[151] Puranik, Y., Sahinidis, N.V.: Bounds tight-
ening on optimality conditions for nonconvex
bound-constrained optimization. Journal of
Global Optimization (in preparation)

http://www.gamsworld.org/performance/princetonlib/princetonlib.htm
http://www.gamsworld.org/performance/princetonlib/princetonlib.htm

Puranik and Sahinidis 31

[152] Puranik, Y., Sahinidis, N.V.: Deletion
presolve for accelerating infeasibility diagnosis
in optimization models. INFORMS Journal on
Computing (in review)

[153] Rajagopalan, S., Sahinidis, N.V.: The pooling
problem. In T. Terlaky, M. Anjos and
S. Ahmed (eds.), Advances and Trends in
Optimization with Engineering Applications,
MOS-SIAM Book Series on Optimization,
SIAM, Philadelphia (2017)

[154] Régin, J.C.: Global constraints: A survey. In:
P. Van Hentenryck, M. Milano (eds.) Hybrid
optimization: The Ten Years of CPAIOR, pp.
63–134. Springer, New York (2011)

[155] Rikun, A.D.: A convex envelope formula
for multilinear functions. Journal of Global
Optimization 10, 425–437 (1997)

[156] Rı́os-Mercado, R.Z., Borraz-Sánchez, C.:
Optimization problems in natural gas trans-
portation systems: A state-of-the-art review.
Applied Energy 147, 536555 (2015)

[157] Roy, T.J.V., Wolsey, L.A.: Solving mixed
integer programming problems using automatic
reformulation. Operations Research 35, 45–57
(1987)

[158] Ryoo, H.S., Sahinidis, N.V.: Global optimiza-
tion of nonconvex NLPs and MINLPs with
applications in process design. Computers &
Chemical Engineering 19, 551–566 (1995)

[159] Ryoo, H.S., Sahinidis, N.V.: A branch-
and-reduce approach to global optimization.
Journal of Global Optimization 8, 107–139
(1996)

[160] Sahinidis, N.V.: Global optimization and
constraint satisfaction: The branch-and-reduce
approach. In C. Bliek, C. Jermann, and
A. Neumaier (eds.), Global Optimization
and Constraint Satisfaction, Lecture Notes in
Computer Science, Vol. 2861, Springer, Berlin
pp. 1–16 (2003)

[161] Sahinidis, N.V., Tawarmalani, M.: Acceler-
ating branch-and-bound through a modeling
language construct for relaxation-specific con-
straints. Journal of Global Optimization 32,
259–280 (2005)

[162] Sam-Haroud, D., Faltings, B.: Consistency
techniques for continuous constraints. Con-
straints 1, 85–118 (1996)

[163] Sandholm, T., Shields, R.: Nogood learning
for mixed integer programming. In: Workshop
on Hybrid Methods and Branching Rules in
Combinatorial Optimization, Montréal, p. 138
(2006)

[164] Savelsbergh, M.W.P.: Preprocessing and prob-
ing for mixed integer programming problems.
ORSA Journal on Computing 6, 445–454
(1994)

[165] Schichl, H., Markót, M.C., Neumaier, A.:
Exclusion regions for optimization problems.
Journal of Global Optimization 59, 569–595
(2014)

[166] Schichl, H., Neumaier, A.: Exclusion regions
for systems of equations. SIAM Journal on
numerical analysis 42, 383–408 (2004)

[167] Schichl, H., Neumaier, A.: Interval analysis on
directed acyclic graphs for global optimization.
Journal of Global Optimization 33, 541–562
(2005)

[168] Schichl, H., Neumaier, A.: Transposition
theorems and qualification-free optimality
conditions. SIAM Journal on Optimization 17,
1035–1055 (2006)

[169] Schöbel, A., Scholz, D.: The theoretical and
empirical rate of convergence for geometric
branch-and-bound methods. Journal of Global
Optimization 48, 473–495 (2010)

[170] Scholkopf, B., Smola, A.J.: Learning with
kernels: Support vector machines, regulariza-
tion, optimization, and beyond. MIT press,
Cambridge (2001)

[171] Sellmann, M.: Theoretical foundations of CP-
based Lagrangian relaxation. In: M. Wallace
(ed.) Proceedings of 10th International Confer-
ence, CP 2004, Toronto, Canada, pp. 634–647.
Springer, Berlin (2004)

[172] Sewell, E.C., Sauppe, J.J., Morrison, D.R.,
Jacobson, S.H., Kao, G.K.: A BB&R algorithm
for minimizing total tardiness on a single
machine with sequence dependent setup times.
Journal of Global Optimization 54, 791–812
(2012)

[173] Shectman, J.P., Sahinidis, N.V.: A finite
algorithm for global minimization of separable
concave programs. Journal of Global
Optimization 12, 1–36 (1998)

Domain reduction techniques for global NLP and MINLP optimization 32

[174] Sherali, H.D., Adams, W.P.: A hierarchy of
relaxations between the continuous and convex
hull representations for zero-one programming
problems. SIAM Journal of Discrete Mathe-
matics 3, 411–430 (1990)

[175] Sherali, H.D., Adams, W.P.: A hierarchy of
relaxations and convex hull characterizations
for mixed- integer zero-one programming
problems. Discrete Applied Mathematics
52(1), 83–106 (1994)

[176] Sherali, H.D., Adams, W.P.: A Reformulation-
Linearization Technique for Solving Discrete
and Continuous Nonconvex Problems, Noncon-
vex Optimization and its Applications, vol. 31.
Kluwer Academic Publishers, Dordrecht (1999)

[177] Sinha, M., Achenie, L.E.K., Gani, R.: Blanket
wash solvent blend design using interval
analysis. Industrial & Engineering Chemistry
Research 42, 516–527 (2003)

[178] Smith, A.B., Sahinidis, N.V.: Optimization
techniques for phase retrieval based on single-
crystal X-ray diffraction data. In: C.A.
Floudas, P.M. Pardalos (eds.) Encyclopedia of
Optimization, pp. 2858–2863. Springer, Boston
(2009)

[179] Smith, E.M.B., Pantelides, C.C.: Global
optimisation of general process models. In:
I.E. Grossmann (ed.) Global Optimization
in Engineering Design, pp. 355–386. Kluwer
Academic Publishers, Boston (1996)

[180] Stallman, R.M., Sussman, G.J.: Forward rea-
soning and dependency-directed backtracking
in a system for computer-aided circuit analysis.
Artificial intelligence 9, 135–196 (1977)

[181] Stergiou, K.: Heuristics for dynamically
adapting propagation in constraint satisfaction
problems. AI Communications 22, 125–141
(2009)

[182] Sturtevant, N.R., Felner, A., Likhachev, M.,
Ruml, W.: Heuristic search comes of age.
In: AAAI12: Proceedings of the 26th AAAI
Conference on Artifical Intelligence (2012)

[183] Tawarmalani, M., Richard, J.P., Xiong, C.:
Explicit convex and concave envelopes through
polyhedral subdivisions. Mathematical Pro-
gramming 138, 531–577 (2013)

[184] Tawarmalani, M., Sahinidis, N.V.: Convex
extensions and convex envelopes of l.s.c.
functions. Mathematical Programming 93,
247–263 (2002)

[185] Tawarmalani, M., Sahinidis, N.V.: Global
optimization of mixed-integer nonlinear pro-
grams: A theoretical and computational
study. Mathematical Programming 99, 563–
591 (2004)

[186] Tawarmalani, M., Sahinidis, N.V.: A poly-
hedral branch-and-cut approach to global
optimization. Mathematical Programming
103, 225–249 (2005)

[187] Thakur, L.S.: Domain contraction in nonlinear
programming: Minimizing a quadratic concave
function over a polyhedron. Mathematics of
Operations Research 16, 390–407 (1990)

[188] Thorsteinsson, E.S., Ottosson, G.: Linear re-
laxations and reduced-cost based propagation
of continuous variable subscripts. Annals of
operations research 115, 15–29 (2002)

[189] Tomlin, J.A., Welch, J.S.: Formal optimization
of some reduced linear programming prob-
lems. Mathematical programming 27, 232–240
(1983)

[190] Tomlin, L.A., Welch, J.S.: Finding duplicate
rows in a linear programming model. Opera-
tions Research Letters 5, 7–11 (1986)

[191] Torres, P., Lopez, P.: Overview and possible
extensions of shaving techniques for job-shop
problems. In: 2nd International Workshop
on Integration of AI and OR techniques in
Constraint Programming for Combinatorial
Optimization Problems, pp. 181–186. Springer,
Paderborn (2000)

[192] van Beek, P.: Backtracking search algorithms.
In: F. Rossi, P. van Beek, T. Walsh
(eds.) Handbook of Constraint Programming,
chap. 4, pp. 85–134. Elsevier, Amsterdam
(2006)

[193] Van Hentenryck, P., Michel, L., Deville, Y.:
Numerica: A Modeling Language for Global
Optimization. The MIT Press, Cambridge, MA
(1997)

[194] van Iwaarden, R.J.: An improved uncon-
strained global optimization algorithm. Ph.D.
thesis, University of Colorado at Denver (1996)

[195] Vandenbussche, D., Nemhauser, G.L.: A
branch-and-cut algorithm for nonconvex
quadratic programs with box constraints.
Mathematical Programming 102, 559–575
(2005)

Puranik and Sahinidis 33

[196] Vandenbussche, D., Nemhauser, G.L.: A
polyhedral study of nonconvex quadratic
programs with box constraints. Mathematical
Programming 102, 531–557 (2005)

[197] Vu, X., Sam-Haroud, D., Faltings, B.: Enhanc-
ing numerical constraint propagation using
multiple inclusion representations. Annals of
Mathematics and Artificial Intelligence 55,
295–354 (2009)

[198] Vu, X., Schichl, H., Sam-Haroud, D.:
Interval propagation and search on directed
acyclic graphs for numerical constraint solving.
Journal of Global Optimization 45, 499–531
(2009)

[199] Waltz, D.: Understanding line drawings of
scenes with shadows. In: P.H. Winston (ed.)
The Pyschology of Computer Vision. McGraw-
Hill, New York (1975)

[200] Wechsung, A., Schaber, S.D., Barton, P.I.: The
cluster problem revisited. Journal of Global
Optimization 58, 429–438 (2014)

[201] Zamora, J.M., Grossmann, I.E.: A branch and
contract algorithm for problems with concave
univariate, bilinear and linear fractional terms.
Journal of Global Optimization 14, 217–249
(1999)

[202] Zorn, K., Sahinidis, N.V.: Global optimization
of general nonconvex problems with interme-
diate bilinear substructures. Optimization
Methods and Software 29, 442–462 (2013)

Domain reduction techniques for global NLP and MINLP optimization 34

Option Value
presolving/maxrounds 0
presolving/components/maxrounds 0
presolving/convertinttobin/maxrounds 0
presolving/domcol/maxrounds 0
presolving/dualagg/maxrounds 0
presolving/dualinfer/maxrounds 0
presolving/gateextraction/maxrounds 0
presolving/implfree/maxrounds 0
presolving/implics/maxrounds 0
presolving/inttobinary/maxrounds 0
presolving/redvub/maxrounds 0
presolving/stuffing/maxrounds 0
presolving/trivial/maxrounds 0
presolving/tworowbnd/maxrounds 0
propagating/maxrounds 0
propagating/dualfix/maxprerounds 0
propagating/genvbounds/maxprerounds 0
propagating/obbt/freq -1
propagating/obbt/maxprerounds 0
propagating/obbt/tightintboundsprobing False
propagating/probing/maxprerounds 0
propagating/pseudoobj/maxprerounds 0
propagating/redcost/maxprerounds 0
propagating/rootredcost/maxprerounds 0
propagating/vbounds/maxprerounds 0
conflict/useprop False
conflict/useinflp False
conflict/usepseudo False
heuristics/bound/maxproprounds 0
heuristics/clique/maxproprounds 0
heuristics/randrounding/maxproprounds 0
heuristics/shiftandpropagate/freq -1
heuristics/shifting/freq -1
heuristics/vbounds/maxproprounds 0
misc/allowdualreds False
misc/allowobjprop False

Table 6: SCIP options used for tests

Puranik and Sahinidis 35

Test Library Global Princeton CMU-IBM MINLP
% increase in number of nodes 174 152 417 56
% increase in computational time 24 33 141 18

Table 7: Performance deterioration for SCIP when domain reduction is turned off

	1 Introduction
	2 Representation
	3 Interval arithmetic
	4 Presolving optimization models
	5 Reduction of infeasible domains
	5.1 Bounds propagation techniques
	5.2 Convergence of propagation
	5.3 Consistency
	5.4 Techniques for mixed-integer linear programs
	5.5 Conflict analysis

	6 Reduction of suboptimal domains
	6.1 A unified theory for feasibility- and optimality-based tightening
	6.2 Pruning
	6.3 Exploiting optimality conditions
	6.4 Cluster effect

	7 Implementation of domain reduction techniques
	8 Computational impact of domain reduction
	8.1 BARON
	8.2 Couenne
	8.3 SCIP
	8.4 Relative solver performance

	9 Conclusions

