
On The Roles of APIs in the Coordination
of Collaborative Software Development

Cleidson R. B. de Souza1 & David F. Redmiles2
1Universidade Federal do Pará, Belem, Brazil (E-mail: cdesouza@ufpa.br); 2University of
California, Irvine, Irvine, CA, USA (E-mail: redmiles@ics.uci.edu)

Abstract. The principle of information hiding has been very influential in software engineering since its
inception in 1972. This principle prescribes that software modules hide implementation details from other
modules in order to reduce their dependencies. This separation also decreases the dependency among
software developers implementing these modules, thus simplifying the required coordination. A common
instantiation of this principle widely used in the industry is in the form of application programming
interfaces (APIs). While previous studies report on the general use and benefits of APIs, they have glossed
over the detailed ways in which APIs facilitate the coordination of work. In order to unveil these
mechanisms, we performed a qualitative study on how practitioners use APIs in their daily work. Using
ethnographic data from two different software development teams, we identified three roles played by
APIs in the coordination of software development projects. These roles are described using three
metaphors: APIs as contracts, APIs as boundaries, and APIs as communication mechanisms. As contracts,
APIs allow software developers to work in parallel and independently. As a communication mechanism,
APIs facilitate communication among software developers by giving them something specific to talk
about. At the same time, APIs establish the boundaries between developers, and, accordingly, what should
be talked about. This paper also reports on problems the studied teams face when using APIs to coordinate
their work. Based on these results, we draw theoretical implications for collaborative software engineering.

Key words: interfaces, application programming interfaces, coordination, collaborative software
development, software engineering

1. Introduction

Software development is typical of a collaborative endeavor where several software
engineers work together to achieve the same goal: the delivery of a software system
on time, on budget and according to specification. As a cooperative effort, some of
the problems faced by software developers are the same problems faced by
professionals in other domains: communication breakdowns, coordination problems,
lack of knowledge about colleagues’ efforts, and so on (Schmidt and Simone 1996).
In fact, researchers and practitioners have long recognized that breakdowns in
communication and coordination efforts constitute a major problem in collaborative
software development (Brooks 1974; Curtis et al. 1988).

To be able to successfully coordinate dozens or hundreds of engineers working
in the construction of a complex, fundamentally invisible, and highly dependent

Computer Supported Cooperative Work (2009) 18:445–475 © The Author(s) 2009. This article
DOI 10.1007/s10606-009-9101-3 is published with open access at Springerlink.com

product is a challenging task. Several approaches have been proposed to facilitate
this work, ranging from software development methods, processes, tools,
principles, organizational strategies, and so on. Among these approaches, one
of the most important and influential is the principle of information hiding
(Parnas 1972). According to this principle, software modules should hide
implementation details that are likely to change and expose only aspects that
are less likely to change. The information-hiding principle is instantiated as
several different mechanisms in programming languages including data encap-
sulation, separation of interface specifications and their implementation, and
polymorphism (Larman 2001).

In this paper we are particularly concerned with interfaces and APIs. In Software
Engineering an interface is the set of services provided by a software component,
while a component’s implementation describes the way these services are
implemented (Ghezzi et al. 2003). A clear distinction between the interface of a
component and its implementation is a key aspect of good software design. In
general, several interface specifications are combined creating what is known as an
Application Programming Interface (or simply API). For the purposes of this paper,
we will adopt a definition of an API as proposed by des Rivieres (2004): “a well-
defined interface that allows one software component to access programmatically
another component and is normally supported by the constructs of programming
languages.” In a programming language like Java, an API corresponds to a set of
public Java-interface specifications, methods, and classes. APIs are in widespread
use in the industry (des Rivieres 2001; des Rivieres 2004).

Over the years, practitioners and researchers have recognized the benefit of
interfaces and APIs to the coordination of software development work. For
instance, Grinter and colleagues describe how:

“(…) interface specifications play the well-known role of helping to coordinate
the work between developers of different components. If the designers of two
components agree on the interface, then design of the internals of each
component can go forward relatively independently. Designers of component A
need not know much about the design decisions made about component B, so
long as both sides honor their well-specified commitments about how the two
will hook together.” (Grinter et al. 1999)

In fact, the relationship between interface specifications and the coordination of
work has become such a well-known argument that can even be found in
software engineering textbooks:

“If a design is composed of highly independent modules, it supports the
requirements of large programs: independent modules form the basis of work
assignments to individual team members. The more independent the modules are
the more independently the team members can proceed in their work.”(Ghezzi
et al. 2003,p. 241)

446 Cleidson R. B. de Souza and David F. Redmiles

CSCW researchers have also recognized the importance of APIs in the
coordination of development work. Grinter and colleagues (1999) for instance
argue that interfaces are coordination mechanisms. A coordination mechanism is:

“a construct consisting of a coordinative protocol (an integrated set of
procedures and conventions stipulating the articulation of interdependent
distributed activities) on the one hand and on the other hand an artifact (a
permanent symbolic construct) in which the protocol is objectified.” (Schmidt
and Simone 1996) [emphasis in the original]

By using the two aspects of a coordination mechanism— artifact and protocol—
as an analytical lens to look at studies of collaborative software engineering, we can
conclude that previous research has essentially focused on the artifact aspect of
APIs. For instance, there is increasing research in how to design APIs (Michi 2009),
how to evaluate their usability automatically (de Souza and Bentolila 2009) or
manually (Ellis et al. 2007), how to use APIs based on examples (Xie and Pei 2006),
and so on. Some of this previous work describes limitations of APIs. For instance,
Ellis and colleagues (Ellis et al. 2007) studied the usability of the Factory pattern
(Gamma et al. 1995) and found out that the use of factories can and should be
avoided in many cases. Another example is the work of Kizcales and colleagues
(Kiczales 1996; Kiczales et al. 1997) who maintained that users of software
components need to know some information about a component’s implementation—
and not just its API— in order to make appropriate decisions about whether to use the
component and how to use it. For instance, consider a window system API that
provides functionality of display, mouse-tracking, and so on. If an API user wanted to
implement a spreadsheet using this API he would not be able to do so without major
performance overheads because the window-system implementation was not tuned for
this kind of use allocating excessive objects and memory (Kiczales 1996).

While very insightful and important, previous work on APIs and their
limitations mostly ignores the protocol aspect of APIs. In other words, APIs
certainly facilitate the coordination of software developers’ work, and both
practitioners and researchers certainly agree with that. However, naming an API a
coordination mechanism actually hides the details of how the coordination takes
place, i.e., the ways in which APIs help software developers to coordinate their
work are taken for granted instead of being carefully inspected. In this paper, we
argue that the coordination facility provided by interfaces is to be studied, not
assumed. That is precisely our contribution: we unveil the protocol that goes
along the APIs, i.e., the unwritten division of labor, rules, and conventions that an
API implies. Instead of assuming that coordination is achieved using APIs in
collaborative software development efforts, we illustrate how coordination
through the usage of APIs is achieved by describing in details the ways in
which software developers get their work done using APIs. By questioning
assumptions about APIs, we were also able to observe, describe, and discuss
problematic situations in the daily use of APIs.

447On The Roles of APIs in the Coordination of Collaborative

The work presented in this paper is an extension to our previous work, where
we document a number of roles, advantages, and disadvantages of APIs (de
Souza et al. 2004a). That is to say, it is our intent with this current publication to
further elucidate the common practice of using APIs to coordinate work, and in
particular, the problems and the practices employed to compensate and manage
the process. To support our arguments, we use ethnographic data from two
software development teams, both coordinating their work using APIs but each
having different goals, experiences, and management styles. In both teams, the
implementation of the APIs is being developed in parallel with the code that uses
these APIs1. Using grounded theory techniques (Strauss and Corbin 1998) to
analyze the data, we identify three complementary roles for APIs. These roles
were described using 3 metaphors: APIs as contracts, APIs as boundaries, and
APIs as communication mechanisms. As contracts, APIs allow software
developers to work in parallel and independently. As boundaries, APIs allow
developers to focus on their work isolated from their colleagues. As communi-
cation mechanisms, APIs facilitate the communication among software devel-
opers by defining what developers should talk about. When simultaneously
fulfilling these roles, APIs support the coordination of software developers’ daily
work allowing them to work in parallel, in isolation, and focused on specific parts
of their colleagues’ work. However, our results also present surprising side effects
we observed, i.e., problems that one needs to pay attention to when using APIs.
Arguably, the more important observation is that the adoption of APIs by the
development teams studied created the illusion that developers could work
independently of their colleagues without problems. Finally, our observations
confirm a number of individual results in the literature but reveal particular details
that provide a foundation for future research in collaboration and collaborative
software engineering in particular. The foundation can support further exploration
in software tools and management techniques.

The rest of the paper is organized as follows. The next section defines some key
concepts surrounding APIs and briefly explains their adoption by industry. After
that, Section 3 presents the teams studied, while Section 4 describes the research
methods that we used in our study. Then, Section 5 describes the multiple roles
played by APIs in the sites studied. Section 6 discusses the problems when dealing
with APIs. After that, Section 7 presents a discussion and implications of our
findings. Finally, we present our final conclusions.

2. Application Programming Interfaces

2.1. API definition

In order to further explain the concept of application programming interfaces, we need
to first explain a couple of important software engineering principles. Separation of
concerns, for example, is one the most important principles in software engineering

448 Cleidson R. B. de Souza and David F. Redmiles

that allow one to deal with different individual aspects of a problem, so that it is
possible to concentrate on each separately.When different parts of the same system are
dealt with separately, a particular type of separation of concerns called modularity is
used (Ghezzi et al. 2003). It is then necessary to define how to divide a software
system in modules. Parnas (1972) proposed the information hiding principle that
recommends how modules should be designed. According to this principle, software
modules should hide implementation details that are likely to change and expose only
aspects that are less likely to change, i.e., modules should be both “open (for extension,
and adaptation) and closed (to avoid modifications that affect clients)” (Larman 2001).
This principle is instantiated in programming languages as several different
mechanisms such as data encapsulation, polymorphism, or interface specifications
(also called APIs — application programming interfaces) (Larman 2001).

des Rivieres’s API definition, presented in Section 1, describe APIs as
interfaces between software components, among professional software engineers
the term API is coming to mean any well-defined interface that defines the service
that one component, module, or application provides to others software elements.
In the rest of the text, we will use the terms component and module indistinctly,
since they do not change the purpose of using APIs. Typically, in a programming
language such as Java, an API corresponds to a set of public methods, classes and
interfaces, and the associated documentation (in this case, javadoc files).

Finally, the word interface in the abbreviation is used to explicitly indicate that
APIs are constructs that exist in the boundaries of different software components.
These two (or more) components are often developed by different teams, and
hardly ever individuals. An example of a well-known API is the Microsoft
Windows API that allows a program to access and use resources of the
underlying operating system such as file system, scheduling of processes, and so
on. Of course in that usage, an API is being perceived in terms of its functional
role, versus a social role in terms of coordination.

2.2. API adoption

APIs are largely adopted by industry because they support the separation of
interface from implementation (Fowler 2002), i.e., they are a common way of
hiding component specification and implementation details from users of those
components (e.g. see (des Rivieres 2004)). The main advantage of this approach
is the possibility of separating modules into public (the API itself) and private
(the implementation of the API) parts so changes to the private part can be
performed without impacting the public one. By using APIs, companies are able
to provide functionality to thousands of developers (e.g., Java Swing API) in such
a way that developers do not need to know how this functionality is implemented.
As a consequence, these APIs can evolve without impacting developers.

In the rest of the text, we will adopt the terms API consumers and API producers.
API consumers are software developers who write code with method calls to an API,

449On The Roles of APIs in the Coordination of Collaborative

and API producers are software developers who write the API implementation. An
API can be classified according to its consumers (Fowler 2002): when the consumers
are programmers from different organizations — for instance, if the API provides
services from a Web application — the API is called published, but if the consumers
are internal to the company, or at least, known by API producers, the API is called
public. In this paper, the APIs studied were public according to this classification, i.e.,
API producers and consumers were in the same organization, BSC. Furthermore, API
providers were implementing the APIs while consumers were trying to use these APIs.
This situation, while is not unique to BSC, is rather different from a more “traditional”
view of APIs were an API is only made available to developers after it is fully
implemented. Since performing these field studies and spending time analyzing data
from the socio-technical perspective, we have noticed that other field sites had similar
issues with APIs. Therefore, though this work is limited to two field sites, we believe
the observations will be useful to any organization were APIs play a major role.

An important aspect of any API is stability. A stable API is not subject to
frequent changes, therefore leveraging the promised independence between the
API producers’ and consumers’ code. Changes in the API itself require changes in
the API consumers’ code because this code uses services provided by the API. This
situation might become problematic if changes to the API happen too often. As a
result, API consumers expect that APIs will not change often, and if it does happen,
they also expect that these changes will not severely affect them. Recent work in
software engineering tries to provide advice on how to properly change APIs so
that the impact of those changes is minimized (Fowler 2002; des Rivieres 2004).

3. Research sites

Our fieldwork was conducted in a software development company that we will
call BSC (a pseudonym). BSC is one of the largest software development
companies in the United States with products ranging from operating systems to
software development tools, including e-business and tailored applications. Two
different teams were studied: MCW and MBL (also pseudonyms), each one of
them is detailed below.

3.1. The MCW team

The first team studied, called MCW, is responsible for developing a client-server
application that had not yet been released during the period of the study. The
project staff includes 57 software engineers, user-interface designers, software
architects, and managers, who are divided into five different sub-teams, each one
developing a different part of the application. The sub-teams are designated as
follows: lead, client, server, infrastructure, and test. The lead sub-team was
comprised of the project lead, development manager, user interface designers,
and so on. The client sub-team was developing the client side of the application,
while the server sub-team was developing the server side of it. The infrastructure

450 Cleidson R. B. de Souza and David F. Redmiles

sub-team was working in the shared components to be used by both the client and
server sub-teams. Finally, the test sub-team was responsible for the quality
assurance of the product, testing the software produced by the other sub-teams.

3.2. The MBL team

The second team we studied, MBL, was responsible for developing a mobile version
of the same application developed by the MCW team. MBL developers wanted to
use, asmuch as possible, theMCWAPIs and implementation, but this was not always
possible because of hardware constraints in the mobile device they were targeting.

The MBL project staff was divided into three major groups: user interface (UI)
designers, software developers, and the quality assurance (QA) team. The staff was
distributed over five different sites in three countries: North Carolina, US;
Massachusetts, US; Beijing, China; Shanghai, China; and Taipei, Taiwan. To be
more specific, user interface design and evaluation was performed by six
professionals in North Carolina. The implementation was performed in all other
sites, distributed as follows: nine developers in Massachusetts, five in Shanghai,
five in Beijing, and four in Taipei. The quality assurance team was divided between
the US and Chinese sites: three engineers were located in Massachusetts and six
engineers in Beijing. The main coordination of the project and the project manager
for this project were located in Massachusetts, where all the data were collected.

There was no intersection between members of the MCW and the MBL teams.
Note that in the MCW team, software developers — those responsible for writing
code — were split among different sub-teams, while in the MBL team all
developers belonged to the same sub-team. We also interviewed three members
of another team whose component provided services to the MBL application, but
not to the MCW application.

3.3. The organizational approach to APIs

At the time of the study, BSC had recently adopted a strategy of developing
reusable software applications. This strategy aimed to create applications (each
one developed by a different project) from software components that could be
used by other applications (projects) in the organization. In fact, both projects
studied used several software components provided by other projects, which
means that team members of both teams needed to interact with other software
developers in other parts of the organization.

To facilitate the reuse program, BSC enforced the use of a reference architecture
during the development of software applications. The BSC reference architecture
prescribed the adoption of some particular design patterns (Gamma et al. 1995), but
at the same time gave software architects across the organization flexibility in their
designs. This architecture was based on tiers (or layers) so that components in one
tier could request services only to the components in the tier immediately below them
(Buschmann, Meunier et al. 1996). Data exchange between tiers was possible

451On The Roles of APIs in the Coordination of Collaborative

through well-defined objects called “value objects.” Meanwhile, service requests
between tiers were possible through Application Programming Interfaces (APIs) that
hide the details of how those services were performed (e.g., either remotely or
locally, with cached data or not, etc.).

In this organization, APIs were designed by software architects in a technical
process that involves the definition of classes, method signatures, and other
programming language concepts, and the associated documentation. Accordingly,
each software component would have a public API through which its consumers
could access the set of services provided by that component.

To be more descriptive, we asked how an API would look; one of the MBL
developers defined it as follows:

MBL developer 04: Maybe for each component more — not more than 15
classes on average over the three components. ...

Each software component and its respective API were developed by a different
project team, and could be used by other projects teams in the organization. Most
projects implemented different sets of services, therefore implementing several
APIs. Despite their willingness to reuse software components, different teams in
the company developed different software components that provided similar sets
of services. For example, one team would provide access to a particular type of
service implemented in one particular platform. Another team would also provide
access to the same type of services in a different platform. In this case, these
software components would provide similar APIs. To guarantee that APIs were
consistent and that software components were indeed reused throughout the
organization, each project team had a software architect responsible for the
specification of the APIs. Weekly meetings of the organization’s software
architects were used to monitor this work.

Despite the importance of the APIs in the BSC software development process,
the organization had no established formal process to create, implement, deploy,
and maintain APIs. In one of the meetings that we observed, developers from
different groups discussed the lack of recommendations by the software architects
on how to proceed when facing such issues. As a senior MCW developer pointed
out: “All APIs need to look, feel, and smell the same.” This lack of an established
process had already been identified by the software architects and was starting to
be discussed in the software architects’ weekly meetings.

4. Research methods

In order to properly study the use of APIs by software developers, we adopted a
qualitative research approach because this allowed us to focus on how individuals and
groups experience, view and understand the world and, more importantly, construct
meaning out of their experiences. To be more specific, we conducted an ethnographic
study of the two software development teams, MCW and MBL, to understand how

452 Cleidson R. B. de Souza and David F. Redmiles

APIs are used in practice. Field studies are one approach for qualitative research that
requires researchers to spend time in the “field,” the natural context where the
phenomena take place. Only by doing that is it possible to obtain an adequate
understanding of the phenomena being investigated (Fetterman 1997). Accordingly,
the first author spent 11 weeks with the MCW team during the summer of 2003
conducting non-participant observation (Jorgensen 1989) and semi-structured inter-
views (McCracken 1988).We conducted 15 semi-structured interviews with members
of all five sub-teams. The questions were designed to encourage the participants to talk
about their everyday work, including work processes, collaboration and coordination
efforts, problems, tools, and so on. Interviews lasted between 35 and 90 min. In
addition, we collected different documents, including meeting invitations, product
requests for software changes, and emails and instant messages exchanged among the
software engineers. We were also granted access to shared discussion databases used
by the software engineers. All this information was used in addition to field notes
generated by the observations and interviews.

Before the analysis of the data, interviews were transcribed and field notes were
typed. Both types of data, as well as the documents collected were integrated into a
software tool for qualitative data analysis. All the material collected was analyzed
using grounded theory techniques (Strauss and Corbin 1998). In other words, the
three major steps proposed by the grounded theory — open coding, axial coding,
and selective coding — were performed. The result was a theory grounded
exclusively on the existing data that explains the roles of the APIs in the
coordination of the work.

The grounded theory approach calls for an interplay between data gathering
and analysis to develop an understanding of what is going on in the field.
Basically, as the fieldwork progresses, hypotheses are generated, tested and
modified according to the ongoing analysis of the data being collected. During
our fieldwork, we eventually realized the fundamental role of APIs in the
coordination of software developers’ work. For instance, early in the data
collection process a MCW software developer explained the work of the different
sub-teams by describing their relationship with APIs:

“Our only work is to make these APIs work … the client [sub]-team’s [work] is
to consume the APIs and create user interfaces.”

Accordingly, we collected more information about this aspect in order to get a
broader understanding of the APIs’ importance and to verify whether we had
understood developers’ work. Finally, the interviewees provided feedback on our
interpretation of the roles of APIs. In fact, the importance of APIs in the
coordination of the software developers was clearly recognized by members of
the software development team, who agreed: “APIs are the heart of the whole
exercise.” This feedback was fundamental to improving our understanding of
their work and to give us confidence in our results. As mentioned before, results
of this initial work are reported in (de Souza et al. 2004b).

453On The Roles of APIs in the Coordination of Collaborative

During the summer of 2004, the first author returned to BSC to study the MBL
team. In this case, data were collected through document analysis and semi-
structured interviews (McCracken 1988). Among other documentation, emails and
instant messages exchanged among the software engineers were collected. We again
were granted access to shared discussion databases used by the software engineers.
This information was used in addition to notes generated by the interviews. We
conducted 17 semi-structured interviews with members of all sub-teams from the
different sites: some interviews were conducted face to face, and others were
conducted by telephone, with one interview conducted by using instant messaging.
We reused some of the questions used in the interviews with MCW team members,
but we also explored communication, collaboration, and coordination efforts
between their collocated and distributed colleagues, and between the MCW and
MBL team members. Interviews lasted between 20 and 70 min.

Interviews were again transcribed and field notes were typed. All the data
collected was integrated into the software tool for qualitative data analysis used
before in order to reuse the same codes used in the analysis of the MCW data. In
addition, during the analysis of the MBL data, new codes were created, while
others were removed to clearly document the differences (or similarities) between
the teams. This additional material was used to expand our understanding of the
roles of APIs in the coordination of software developers’ work. And again, MBL
developers provided feedback on our interpretation of the roles of APIs and
helped us to tease out aspects that were specific to the MBL team, in contrast to
the MCW team. Results of our analysis are described in the following sections.

5. The roles of application programming interfaces

During our analysis of the data, patterns of general roles played by APIs began to
emerge. Similarly to Smolander (2002) and other researchers in different areas,
we use metaphors to describe these roles because they allows us to understand
these roles “by means of other concepts that we understand in clearer terms”
(Larkoff and Johnson 1980).

In our analysis, we identified three general metaphors for APIs in the software
development processes of the MCW and MBL teams. These metaphors, or roles,
are named as follows:

1. APIs as Contracts;
2. APIs as Boundaries; and
3. APIs as Communication mechanisms.

Some of these metaphors arose out of the simple analysis of the data. For
instance, an informant suggested the first metaphor during an interview: “APIs
are like a contract, they promise to deliver something.” Other metaphors required
a more careful analysis of the data. Each one of these metaphors is described in
detail in the following sections.

454 Cleidson R. B. de Souza and David F. Redmiles

5.1. APIs as contracts

As Parnas (1972) theorized, the information-hiding principle allows one module
to hide its implementation details that are likely to change from its client
modules. As discussed in Section 2, interface specifications, and APIs, are one
implementation of this principle and, as predicted, allow different software
developers to go about doing their work in parallel. Our analysis suggests that
this parallelism is possible because, in practice, APIs can be seen as contracts
between two parties, i.e., each developer can work independently because one
party knows what will be delivered by the other party — it is specified in the
contract. MCW and MBL software developers themselves defined APIs as
contracts: according to MCW-developer-04 “APIs are like a contract, they
promise to deliver something.” As contracts, APIs minimize the coordination
needs required to the successful construction of the software product.

Software developers’ parallel work starts after the contract is established, i.e.,
there is a consensus about what the API is supposed to look like. In the MCW
team, this happens after a formal design review meeting when all the interested
parties discuss the API:

Researcher: Who is invited to those [API design review] meetings?

Informant: People on our [sub]-team who are responsible for implementing
the feature from the server side. The [another project] people who have
implemented, whose APIs we have decided to share or use. Some of the
management [sub]-team and the architects for our projects. They are the
primary people who are involved in that meeting …

Researcher: What about QA [quality assurance]?

Informant: Yes, they are involved as well.

Researcher: Why did they go [to the API meeting] if there is no
implementation yet?

Informant: Basically to give them an opportunity to participate in the process,
to be aware of what is coming in the process so they can prepare for it, even
though there was no implementation that day. If they had any questions or
concerns or nothing else just to inform them that the service was coming on
and they were ultimately involved with testing it. It gave them an opportunity
to have a look early on, or it just came over the wall to them.

Usually the person scheduling the meeting was the API developer responsible
for implementing the API, or his manager. The meeting is scheduled only when
this developer had defined a technical strategy for implementing from scratch or
reusing the API. This strategy would be preceded by several technical discussions
(face-to-face, over email, IM, etc) between the developer and other software
engineers and architects in the organization.

455On The Roles of APIs in the Coordination of Collaborative

Design review meetings play an important role in such a large organization as
BSC: in addition to allow the technical discussion about the API, they are also an
opportunity for all software developers interested in a particular API to meet.
This is particularly important because these developers still need to coordinate
their work, despite the parallelism in their work allowed by APIs. For instance,
members of the MCW test sub-team meet the developers who will implement the
API (the API providers) during the meetings. Later, testers will email information
to these API providers about how the APIs are going to be tested, with the intent
of avoiding minor integration problems that could delay the development
schedule.

In the MBL team, the definition of the API — and the establishment of the
contract that goes along with it — is more informal because APIs, in this team,
are located between software developers in the same team (see next section):

Researcher: So can he ask you for a new method, a new API — a new method
in the API or something like that?

Informant: Yeah, at the beginning when I was doing the design, I was really
talking with him and then I discussed what API he needs. So and then we come
up with a set of API and then we start from there. But now it is very unlikely,
he does not really ask for any more. He did not ask for a long, long time
already.

After the API is defined, all interested parties are ready to work independently
because they all expect that the established contract is going to be fulfilled.
However, before that, one last step is necessary. As mentioned before, an API
defines an interface, a set of services to be provided by a component. In order for
an API to be usable, it is necessary to implement these services. Therefore, the
MCW software architect defining the API provides a stub implementation of the
API for those interested in the API. The purpose of this implementation is to
allow API consumers to immediately start programming against this API.
According to one MCW software architect:

“The first-pass delivery (…) is a shallow implementation, just enough to start
some work but it does not really flesh out anything.”

Software developers would refer to these stub implementations as “local
APIs,” in contrast to “remote APIs,” which are the real APIs implemented by the
server team2. Periodically, API providers replace parts of the “local APIs” by
their real implementation often based on suggestions and needs of the API
consumers: “(…) when it [the implementation] is ready, I replace the dummy
code for the real implementation.” More formally, MCW managers decide which
deliveries each sub-team makes:

Informant: [A deliverable from the server sub-team] is in form of milestones.
We deliver certain pieces of the API. Actually, the way that the [MCW] project

456 Cleidson R. B. de Souza and David F. Redmiles

is meant to work was we were really expected to stub in the whole API so even
if the functions did not do anything they were callable by the client [sub-team].
Then, as the driver scheduled progresses various pieces of functionality are
actually enabled in the server and the client can then actually use them.

Researcher: So who defines which pieces are enabled?

Informant: Generally the team leads. The client [sub]-team leads and the
server [sub]-team leads which would be [X] and [Y] and the management
[sub]-team. The management [sub]-team are the people who decide what we
deliver for any given milestone … and when it should come in and when the
schedules should be set to deliver certain pieces based on our inputs.

A similar approach was adopted in the MBL team regarding the deliveries
from the developer implementing the API to the developer who is consuming it:

MBL developer 03: [MBL developer 01] does not — he did not wait for me to
finish my implementation. So we kind of like agreed on interface, roughly to say,
yes, this should work or might work.… And they can start to code his stuff. And by
the time I’m done and he’s done sort of like partly done and we can just — can
start to use my implementation. But even before I provided my implementation, UI
is already started working assuming this interface, this set of [methods] will work
and he will be able to use— he would use this method…, which is how we did it.

In short, APIs facilitate the coordination of the work only to the extent that they are
seen as contracts, as promises that will eventually be fulfilled during the software
development process. The coordination of the work is achieved by allowing software
developers to work in parallel: APIs isolates the work that each [sub-]team or
developer needs to perform. However, for that to happen, stub implementations of the
APIs are necessary because they allow API consumers to have something to
implement against.

In addition to allowing independent work, APIs also minimize the impact of
changes in one module into other modules. Software developers are aware of that,
but they are also aware that this is only possible to be achieved in their
organization when APIs are used, because as contracts, they can be trusted. In
fact, a developer in the MCW team asked another team in the organization to
create APIs out of their internal interfaces. By doing that, he could make sure that
he would not be affected by changes in this other team’s code, because the team
would have to guarantee the stability of the API:

“I formally made a request to them to expose the API and test the functionality
that I needed”. The [software component’s name] team had problems before
because they used unexposed APIs. He learned that from the manager of the
[software component’s name] teamwhen he was suggesting to not expose the API,
but because of the “hard time” they had, he wanted to avoid it: “I don’t want to be
in this situation where there’s a new version and I have to change [my] code”.

457On The Roles of APIs in the Coordination of Collaborative

5.2. APIs as boundaries

As discussed in Section 3.3, in the BSC organization, each software application is
created out of different software components, whereas each component provides
different services to other components within the same application or in a
different application. These services are made accessible through different APIs
as specified in the reference architecture, i.e., APIs are the external boundaries of
a software component.

We observed, during the first data collection period, that a unique software
development team implements each software component. Furthermore, APIs were
used to divide the work between sub-teams in the MCW project: for instance, there
were six different APIs between the MCW server and the client sub-teams. In other
words, APIs are not only boundaries between different parts of the software
architecture, but also boundaries between the [sub]-teams: they define the limits of
what is usually known about a [sub]-team and what needs to be done by each [sub]-
team. For instance, being an API provider means to be a member of the sub-team who
is implementing this API, and consequently to understand its implementation details.
On the other hand, to be anAPI consumer means to be part of a different sub-team, one
that does not need to know the API implementation details. In short, APIs are then
reifications of the organizational boundaries: any two given teams and sub-teams that
need to interact (i.e., that their code needs to interact with each other) in the BSC
organization will do so through the appropriate set of APIs that will integrate their
software components. As described by MCW-developer-13: “APIs are the layers that
should be between teams or the public…”

Typically, complex components need to interact with several other compo-
nents, meaning that several APIs will mediate the cooperation among members of
these two [sub]-teams. As mentioned, MCW architects reported that there are, at
least, six different APIs mediating the work between the MCW client and server
sub-teams. In addition, each one of these sub-teams needed to interact with other
teams in the organization because their components needed to somehow interact.
As described by MCW-developer-12:

Researcher: ... The thing that struck me ... is that one way of doing that
[collaboration between teams of software developers] is through APIs. Is there
anything else? Am I missing the point?

Informant: So you have to define what a team is. For example, in a first pass
you have the client, infrastructure and server [MCW] teams. Another pass
there is a [MCW] team and the [other team name] team. And even in another
higher level there is now [BSC product 1, which encompasses MCW and other
teams], [BSC product 2], and [BSC product 3]. Each of those teams has levels
of collaboration and cooperation. The closer you are, the tighter it happens. ...

Researcher: … even according to those levels, the APIs seem to be the
boundaries between the teams or not?

458 Cleidson R. B. de Souza and David F. Redmiles

Informant: Yes, I would say so.

Within the MCW team, we also observed that APIs were used to coordinate the
work of software developers in the same sub-team. However, this was the
exceptional case. During the second data collection period, we observed a different
situation. In the MBL team, there were no sub-teams, except for one responsible
for the synchronization between the mobile application and the desktop. As
mentioned before, technical dependencies in the MBL team were also handled
through the usage of APIs, but in this case, APIs were used to separate the work
done by software developers from the same team. APIs were used to separate the
work according to the reference software architecture: a developer A and a
developer B would have an API between them, if A was working in a part of the
software architecture that provided services to the part of the software architecture
B was working on. Because MBL developers who are implementing and
consuming the API — in the example above developer A and developer B,
respectively — are part of the same sub-team, coordination among them was easy
when compared to the MCW team. This is illustrated by the second quote in
Section 5.2 and by the following example (more details in Section 6):

Researcher: … I'm just wondering if you need something from [component 1]
on that or from [component 2] or from whatever and then that's not
implemented yet ...

Informant: We're at the stage now where enough of the building blocks are
there where it's, “Okay, I need a method.” You know just a scenario, “When
am I going to be able to do this?” and he says two or 3 days, and I wait for
him to deliver [i.e., to commit the code in the configuration management
repository] before I rely on the code.

In short, in both teams, APIs divided the work of software developers according to
the reference architecture; and, by doing that, they established boundaries between
the developers implementing the different parts of the software architecture.
However, in theMCW teamAPIs were also reifications of organizational boundaries
so that developers interacting through APIs were from different teams.

5.3. APIs as communication mechanisms

The third role played by APIs in the coordination of software development
projects was to facilitate the communication of software developers about their
own work. For instance, the following quote resumes the division of labor
between the client and server teams:

“Our only work is to make these APIs work … the client team’s [work] is to
consume the APIs and create user interfaces” [member of the server team]

This description was explained by a senior developer to the author, but could
be used to explain the division of labor to a novice programmer. Furthermore,

459On The Roles of APIs in the Coordination of Collaborative

APIs allow different software developers to have specific pieces of code to talk
about, creating a “common ground” for them. For instance, according to MBL-
developer-03:

Researcher: And whenever you had to change [the API], so what would
happen? He would ask for you to change something [in the API]? You would
tell him you were changing something?

Informant: Yes, if he starts an issue or problem, then he would [ping me] — or
sometime or just come to my office saying, “Well, I need this thing...” And
we’ll have a discussion and then say, “What groundwork … Should be that
way? from my point of view it should be done this way and that way.”

In addition to data from the interviews, we also collected extracts from email
messages exchanged between developers where they discussed, for instance,
whether one particular method had already been implemented, the exception
raised by another method, and so on.

During their meetings, MCW developers also talked about their work by
simply referring to the APIs they needed. For instance, in one of the several
weekly meetings, we attended, we observed an advice given by the MCW client
manager: “Please contact your server-side API provider”. In a API design review
meeting, one of the MCW developers asked: “have you gone over every single
method to discuss what each one has to do?”

It is important to mention that communication during a software development
project changes as the project progresses. At the time of the data collection of the
MBL team, most of the code was already implemented:

Researcher: … so because you are consuming those other pieces of code, so
I’m just wondering if you need something from [component 1] or from
[component 2] and then that’s not implemented yet. So, is there like — that
happens a lot, or not?

MBL developer 01: We're at the stage now where enough of the building
blocks are there, where it's, “Okay, I need a method.” You know just a
scenario, “When am I going to be able to do this?” and he says two or 3 days,
and I wait for him to deliver before I rely on the code.

5.4. Summary

We used three metaphors to explain the three roles — contracts, boundaries and
communication mechanisms — that APIs play in the coordination of software
development work. By fulfilling these different roles APIs provide important
advantages to the coordination of software development work. As contracts, they
allow software developers to work independently and minimize the impact that a
developer has on his/her colleagues when he makes changes to his code. In
addition, APIs facilitate the communication among software developers by giving

460 Cleidson R. B. de Souza and David F. Redmiles

them something specific to talk about, and, at the same time, they establish the
boundaries between developers, and, accordingly, what should be talked about.
However, our data suggests that there are also limitations to the advantages
provided by APIs and that their usage might be problematic both for technical
and organizational/social reasons. All these aspects will be discussed in the
following section.

6. Limitations of APIs

This section describes some problems that the MCW and the MBL project teams
faced in the light of API adoption and usage.

6.1. Limits on parallel work

The adoption of APIs in the BSC organization created the illusion that developers
could work in parallel without problems. As discussed before, this is a fairly
common assumption among software researchers and practitioners. To be more
specific, the adoption of “local” and “remote” APIs was the work-around used by
MCW developers since the API was not available until later in the process, i.e.,
parallel work can happen when APIs are adopted if additional mechanisms are
used3. This approach is limited, however; it only works in the early stages of
development becoming problematic as work progresses:

“I think … this [the usage of stub implementations] works to some extent. But
as you push further along implementation dummy stuff starts not working. So,
for example, the list displays stuff, just dummy stuff, that works, but as soon as
you want to open one of those dummy stuff, there is no stuffy behind the
dummy stuff so the list can not hand off to the launcher [component] that can
not hand off to the [component] … you can not open up because there is really
nothing that far…It is a matter of how deep does the dummy stuff goes. You
dive a really bit and then, there is no more there. It kind of works in the start
but as you go further along (…)”

In order to handle this limitation, MCW client managers, software architects
and software developers evaluate the “local” APIs during every weekly meeting.
Their goal is basically to assess either if the “local” API can still be used (work
can still proceed in parallel) or if it is time to use the “remote” API (parallel work
has to stop and integration needs to start). Sometimes, API consumers can
continue using the “local” APIs, which means that they will go on working
without contacting their API providers. However, when the “remote” API is
needed, the client manager will contact the server sub-team manager and suggest
the API consumer contact his or her API provider. Note that there is an
assumption here, which is that the API consumer knows who his or her API
provider is. But this is not always true. Often, API providers are not aware of the

461On The Roles of APIs in the Coordination of Collaborative

consumers of their APIs, and vice-versa. According to MCW-developer-07: “In
talking to them [another BSC team] directly, they don’t even know that we have
this deliverable by [date].” This was mentioned as an example of an API provider
in the BSC organization not being aware of the existence of an API consumer in
the MCW team. In addition, the following quote clearly illustrates the lack of
knowledge from a MCW server developer about who the API consumers were in
the MCW client sub-team:

“Researcher: Who depends on you?

Informant: The client [sub]team. Our [MCW] client [sub]team. Whoever on
that team is going to be writing that end of our software that we will need to
[perform some actions].

Researcher: Do you know who they are?

Informant: I am not entirely sure. My guess would probably be either [MCW
client developer 01] or [MCW client developer 02]. I know the whole client
[sub]team and I think that they are sort of working on this area. At the stage
that I am in now I am implementing everything on the server side and having
been at the client [sub]team and telling them to turn this on.”

Another side-effect of adopting APIs was software developers’ expectation that
the task of integrating the API producer’s and consumer’s codes would proceed
smoothly. According to a MCW manager: “if we use [N, a large number] weeks
for integration, then we’re doing something wrong.” However, in reality,
problems arose during the integration period. In the MCW team, for example,
several problems happened during the last organizationally scheduled integration
period. This situation led both the client and server teams to adopt a “pre-
integration” period before the official integration period. The manager of the
server team also decided to assign a new hire to perform “smoke tests” to
minimize integration problems.

The main reason why there are problems during the integration period, i.e., despite
the amount of effort spent in the design of an API, is that an API is necessarily
incomplete. That is, an API defines the syntactic aspects of an interface, however, it
does not provide enough details about its implementation, and sometimes these
details are necessary to the API consumer (Kiczales 1996; Kiczales et al. 1997) (see
the discussion section). This is recognized by MCW developers:

“[MCW-developer-04] is complaining about a recent change in the API that
he depends on. The new API was sent to him by email. He tells me that it is ‘a
stupid idea’ because there is only the doc files but he can’t understand the
dataflow or how one class works with the others because there is no diagram
or “source-code”. After talking about the source code, he checks the
configuration management tool to find out whether the source code of the
new API is available, but it is not.”

462 Cleidson R. B. de Souza and David F. Redmiles

In the quote above, it is clear that MCW-developer-04 is interested in
additional information that is not provided with the API. For instance, the
rationale for the API that was changed.

6.2. Problems of rigid boundaries

APIs divide the work necessary to develop software into two distinct parts: a
production part responsible for implementing the API and a consumption part
responsible for using this API. In theMCW team, the internal and external parts would
belong to different teams or sub-teams, while in the MBL team the internal and
external parts were part of the same team (see Section 5.2). In any case, APIs play the
role of boundaries between software developers. In the MCW team, these boundaries
were also organizational boundaries. As Mintzberg (Mintzberg 1979) discusses these
organizational boundaries “work to the advantage of the organization, allowing each
unit to give particular attention to its own special problems”. However, exactly
because of that, APIs in theMCW team caused several problems in the coordination of
developers’ work. For instance, we noticed that teams lacked awareness about other
teams’ work precisely because they belonged to different teams: they had different
managers to report to, different meetings to attend to, sometimes even different
schedules. Developers often did not even know who they were supposed to be aware
of (de Souza and Redmiles 2007). A MCW server developer, when asked about who
were his API consumers, replied: “I think I am supposed to provide an implementation
to [pause]… But I am a littler unclear right now.”

In the MCW team, this problem was remedied, to some extent, by the manager
who maintained constant and intensive communication about their teams’ progress
and schedules. Additionally, an approach adopted by the MCW client and server
teams was to pair developers (one from each team) according to the APIs they were
working on: for each server team member responsible for implementing an API,
there was a client team member who was the consumer for that API. This
organizational solution failed in some occasions because API consumers did not
want to appear to be pressuring their server developer counterparts. Similarly, we
found out that in the server team, some software engineers were not aware of their
client counterparts, i.e., those who would consume the API they were implement-
ing. According to the software architect interviewed:

“[You could observe] in our team meeting yesterday and other ones… people
seem to be reluctant to talk to their counterparts too much … in the sense that
they feel they’re bugging the other person … and that is a problem because, I
mean, the reason why we are here … the reason we’re getting paid, we are
developing a product and that interaction [between client and server
developers] needs to happen.”

One might think that this type of knowledge about their counterparts is not
necessary during the initial stages of software development while team

463On The Roles of APIs in the Coordination of Collaborative

members might still be able to work independently. However, this same
software architect pointed out, this lack of awareness is problematic even in
this occasion:

“People think there’s somebody else doing something [on the API] and when,
you know [the API is needed] … it is an empty void because they did not step
up and said: ‘I tried to identify my server counterpart or my client counterpart
or if there is anyone. We got a problem here!’”

Note that API design review meetings play an important role in the
coordination of the work of the MCW team because they are events that allow
all software developers interested in a particular API to meet, potentially avoiding
some of the problems described above. However, the design of the API, and
consequently the API review meetings, occur well-before the implementation of
the API starts. Changes in people’s roles and assignments during the software
development process therefore remove this knowledge about API consumers and
producers.

In addition, by reifying organizational boundaries in the MCW team, APIs
indirectly hindered the collaboration among members of different teams that were
not paired. For instance, we observed that another team in the organization was
responsible for implementing a component that provided services for both the
MCW server and the infrastructure team. Members of these teams were not aware
that they shared this dependency and were working in parallel in overlapping
aspects of this task. One software engineer identified this issue and decided to
talk to the members of the other team so that they all could align their efforts and
avoid duplicate work.

In the MBL team, APIs were boundaries between software developers working
in different parts of the software architecture, but within the same team. As
members of the same team, there were no organizational barriers among software
developers and, therefore, the problems described above were not observed nor
reported by our informants. In fact, when asked, MBL-developer-10 described his
communication with his API provider as follows:

Informant: ... and then I’ll send her an email that, “Is it okay for me to — is
that ready for me now?” Then she will tell me that, “Okay, it’s ready,” or
“Sorry, it’s not implemented yet.”

This quote is particularly relevant because MBL-developer-10 is located in
Taipei and is a consumer of an API being implemented by another MBL
developer located in Massachusetts suggesting that the geographical distribution
did not hinder the collaboration between these developers.

Being in the same team also allowed MBL API consumers and providers to
have access to the same code base, and therefore, API consumers could easily
find out information about the status of the API implementation by just
consulting the configuration management tool.

464 Cleidson R. B. de Souza and David F. Redmiles

A different engineer, MBL-developer-13, described her communication about
the API design:

Researcher: So can he [the API consumer] ask you for a new method, a new
API — a new method in the API or something like that?

MBL Developer 13: Yeah, at the beginning when I was doing the design, I was
really talking with him and then I discussed what API he needs, and then we
come up with a set of APIs and then we start from there.

Furthermore, developers in the MBL team were aware of their colleagues so
that API consumers and providers would talk to each other when necessary. For
instance:

Researcher: So basically, in case this — assuming that she has to make a
change in API, so is she — does she send you an email or something telling
that she’s changing those or…?

Informant: Oh, no. She’ll tell me. Well, because the problem is if she actually
changed the API, she’s going to break my code; my code won’t compile, so…

Researcher: she’s going to send you an email or ping you or even stop by or
something?

Informant: Yeah, exactly. And I’d have to search through my code and — to
make those changes and know that my code wasn’t going to compile until it
(inaudible) with hers.

MBL-developer-04’s quote below suggests that members of his team even pro-
actively took action to avoid causing problems for their colleagues (in this case,
avoiding to block their colleagues’ work).

Researcher: So basically when you start implementing [an API] you have to
choose which class you’re going to do first, which services are you going to
start implementing … right?

Informant: That’s correct.

Researcher: Do you negotiate with them [the API consumers] or do you tell
them, so,’okay, we’re only going to start by this part’ or do they tell you ‘you
should start by this part’ …?

Informant: Well, typically, everybody wants their own changes; then, they
don’t care about other people’s changes. So … it’s more — it’s less about
negotiation. Sometimes it’s just that, okay, well, is the person that’s
requesting this change totally, totally blocked? And if they’re blocked, that’s
got to be a high priority because someone is sitting there not having
anything to do.

465On The Roles of APIs in the Coordination of Collaborative

6.3. The not-so-contractual nature of APIs

As discussed earlier, the stability of an API is important: since software
developers see APIs as contracts, they do not expect these APIs to change.
Therefore, whenever they change, this is a major cause of burden for them
because that requires them to make changes in their code. This situation might be
more or less problematic depending on the type and amount of changes in the
API and the frequency in which these changes occur. Software developers of both
MCW and MBL acknowledge that changes in APIs were inevitable. According to
a MBL developer:

“… because we're dealing with such rapid development and things are going
to evolve over time. So, it's expected that the interface is going to change. We
didn't cast interfaces in concrete before we started code. We couldn't — we
didn't have the luxury of being able to do that…”

And according to a MCW developer:

“I’ve never seen a technical spec that describes functional requirements that
have been implemented without changes.”

“while you’re developing code, everything can change.”

Note that APIs did change despite all the discussion that took place during the
API design (e.g., during the API review meetings). Furthermore, although
software developers of both teams recognized the need to change APIs, only
MCW developers reported this situation as problematic because of the frequency
of changes. According to a MCW client developer:

“But what has happened is that the server team has been publishing
capabilities and APIs on a milestone basis. Every 2 months we have a
milestone. … which makes it more difficult to design against because there are
some future stuff that we are working that we don’t know quite how it is going
to be delivered …”

Changes in the MCW APIs were so frequent that client developers often would
ask questions like: “Is the [name] API changing?” They would ask this question in
their weekly meetings before starting to work in the API in order to avoid problems.

To minimize the problems caused by changes in the APIs, members of the
MCW server team (the API producers), before changing an API, meet and
negotiate these changes with members of the client team (the API consumers).
This is only possible, however, when a MCW server developer is aware of his
API consumers, a situation not so common (see Section 6.2). When the
negotiation is not possible, API providers try to, at least, notify their clients
about changes in the API. To complicate further, we observed that in some
occasions client developers would be notified about changes in the API, but the

466 Cleidson R. B. de Souza and David F. Redmiles

actual changes would not be delivered to them right away. As explained before,
the client team needs the server APIs to be able to use them as “local” APIs,
creating a temporary independence from the server’s team. In some cases, the
changes to the API are not spread in the organization. And since other teams also
depend on the set of services that the component makes available through its API,
this situation makes the design and implementation tasks much harder. As one
software developer reported: “this [the task of designing using an evolving API]
is a total moving target”.

The instability of the APIs was not a problem for MBL developers.
Reexamining a quote used earlier, API consumers reported:

Researcher: So basically, in case … assuming that she has to make a change
in the API, so is she — does she send you an email or something telling that
she’s changing those or…?

Informant: Oh, no. She’ll tell me. Well, because the problem is if she actually
changed the API, she’s going to break my code.

6.4. Summary

Both MCWandMBL developers faced problems or limitations when using APIs to
coordinate their work: parallel work between API consumers and providers was
limited because developers did not know who their counter-parts were; by reifying
organizational boundaries, APIs indirectly reduced communication between
developers leading to lack of awareness about their colleagues’ work; and the
instability of some APIs caused coordination problems between developers. It is
important to note that some of these problems arise out of interactions between
technical constructs (APIs) and organizational aspects (team boundaries), clearly
illustrating how software development is a socio-technical endeavor.

7. Discussion

7.1. Advantages provided by APIs

The use of interfaces or APIs in software development projects is a fairly
common approach because of the technical (and social) advantages they provide.
Our study explores and illustrates in depth some of these advantages:

& APIs minimize the impact one developer might cause into another;
& They allow software developers to work in parallel and independently; and
& Finally, they limit what one developer needs to know about the work that his

colleagues are performing.

While these advantages are widely recognized by practitioners and
researchers, little is known about how these advantages are achieved in
software developers’ daily work. Our data suggest that these advantages are

467On The Roles of APIs in the Coordination of Collaborative

possible because APIs play three different roles: contracts, boundaries, and
communication mechanisms. By simultaneously fulfilling these roles, APIs
achieve the critical goal of facilitating the coordination of software development
work. As contracts between parties, APIs allow parallel and independent work
when accompanied by their “stub implementations”. In addition, as any other
contract, APIs are negotiated between the interested parties. This negotiation
can be formal — during an API design review meeting as in the MCW team —
or informal — through software developers’ conversations as in the MBL team.
MCW software architects bring the client and test teams into the API design
review meeting to approve the API. This is similar to what has been observed
by Grinter (Grinter 1999), who discusses how software architects need to
convince other members of the organization to “buy in” to their designs. In the
MBL team, discussion between API consumers and providers takes place in the
course of their daily work. In any case, without this negotiation between the
parties, parallel work will not be achieved, despite the use of APIs. Overall, in
the BSC organization one can argue that designing an API is as much a social
process as a technical process, involving communication, coordination, and
negotiation (Bucciarelli 1996).

APIs can also be seen as boundaries between developers, i.e., they limit what
one developer needs to know about the work that his colleagues are performing.
In the MCW team, these technical boundaries were also aligned with
organizational boundaries establishing a very clear distinction about who is
providing and who is consuming an API. As boundaries, APIs “work to the
advantage of the organization, allowing each unit to give particular attention to its
own special problems” (Mintzberg 1979). They help developers to work
independently, to go about doing their work focusing only on the required
information from their colleagues. In fact, APIs can also be seen as
communication mechanisms that allow software developers to communicate
more effectively about their work, since they provide a focus on what specifically
should be talked about. By pairing developers from different teams, MCW
managers also reduced the communication and coordination needs regarding API
use: one client developer needs to engage in communication with one server
developer only.

It is important to mention that the need for independent work is a common
theme in software engineering research and practice. Independent work is
necessary because of the several interdependencies that occur in these efforts:
between tasks, between different artifacts, and within different parts of the same
artifact. Several different approaches have been proposed including the principle
of information hiding (Parnas 1972), and design by contract (Meyer 1992) just to
mention a few. However, as illustrated by the study reported here and other
studies (McDonald and Ackerman 1998; de Souza et al. 2003; Grinter 2003;
Sarma et al. 2003), this isolation might hinder communication and coordination.
This is discussed in the following section.

468 Cleidson R. B. de Souza and David F. Redmiles

7.2. Problems when using APIs

Our data also illustrate some of the “side effects” that arise out of the adoption of APIs
by a large organization. As presented in Section 6, parallel work is possible but limited.
In fact, MCW software developers need to constantly question whether this parallel
work should still take place. The integration period— the period in which the parallel
work carried by two software developers must be brought together—was particularly
problematic for the MCW team in the previous project iteration and took longer than
expected. This problem led the server sub-team manager to allocate human resources
to work to facilitate the next integration period. As one can expect, integration
problems also happened when APIs changed and those changes were not broadcast to
all interested parties. This situation was fairly common in theMCW team, since in this
case, APIs reified organizational boundaries. This allowed software developers to
work independently, but, at the same time, led these developers to “ignore” their
colleagues working with the API counterparts hindering the collaboration among
these developers. In short, MCW developers working with one part of the API (either
as an API provider or consumer) were not aware of their colleagues working with the
other part of the API. Therefore, when APIs changed, information about these changes
were not properly propagated and caused coordination problems. Furthermore, in the
MCW team integration problems occurred even when APIs did not change often
because developers were still not aware of their API counterparts.

Grinter (1998) names the process of integrating parallel work recomposition,
i.e., the work of putting all pieces together to create a software artifact. This work
is required in any software development effort because the initial process of
decomposition of a software system creates social relationships among the
stakeholders that need to be maintained during the whole development process;
otherwise the software cannot be later recomposed [ibid.]. In other words, our
results illustrate that when APIs reify organizational boundaries, recomposition is
harder to be achieved because it requires crossing organizational boundaries
(Thompson 1967). They also show a technical solution (APIs) interacts with
organizational aspects creating barriers for coordination.

Meanwhile, in the MBL team, APIs reified boundaries between developers who
belonged to the same team, which did not lead to problems in the information flow. In
fact, we have no data reporting coordination problems because of changes in the APIs.
On the contrary, the data that we presented suggests that these MBL developers were
able to successfully handle API changes. That was true even when the API producer
and consumer were located in different geographical locations. A possible explanation
for that is that the dependency between API producers and consumers forced these
developers to coordinate their work, despite the geographical distance between them.
This result contrasts with Grinter’s work (Grinter et al. 1999) that describe the usage of
interface specifications as a mechanism to coordinate a distributed software
development project in the Delta organization. In their study, one of the problems
faced by Delta was that components evolved independently making it hard to align

469On The Roles of APIs in the Coordination of Collaborative

features during the integration period. In other words, Grinter describes problems
faced by a distributed project because of changes in the interfaces, while our data
suggest that, even when interfaces change in distributed projects, this might not be
problematic as long as both parties are part of the same team and, therefore, are able to
coordinate their work effectively (as in the MBL case).

Note that in both the MCW and MBL teams, APIs were used to isolate the
same software components as specified in the BSC reference architecture. That is
to say that the technical dependencies were very similar since these teams were
also developing the same application for two different domains (desktop vs.
mobile). Our data suggest that the coordination problems in the MCW team result
as much from the organizational boundaries between team members as from
dependencies between the software components. Similarly, despite the geograph-
ical distance, MBL developers were able to successfully coordinate their work
because they had no organizational boundaries.

The discussion presented in Sections 7.1 and 7.2 suggests that APIs do facilitate the
coordination of software development work (as theorized by Parnas (Parnas 1972) and
assumed by other researchers (Herbsleb and Grinter 1999; Ghezzi et al. 2003).
However, work-arounds are necessary (e.g., using stub implementations, pairing
developers) for that coordination to be effective. Furthermore, it is necessary to make
sure that software developers implementing and consuming the APIs engage enough
in communication and coordination to make sure that both parts of the API —
providers and consumers — are properly aligned, which will eventually lead to
smooth work integration, or easy recomposition. This need for communication
between software developers implementing dependent parts of the software is
discussed in the following section.

7.3. Software structures and coordination

Over 40 years ago Conway (1968) had already recognized that the structure of
the system mirrors the structure of the organization that designed it, a relation
known as Conway’s Law. According to him, in any design process, several
design options are not made available to an organization because they do not
reflect communication patterns of its members. Conway argues that the system
structure will be overridden by the communication structure of the organization
because the communication needs of those doing the work are inevitably reflected
in the system. Conway’s argument should not be understood as a prediction,
because organizations are not immutable, they might change to facilitate the
coordination of product development (Thompson 1967). Instead, Conway’s
proposal should be interpreted as advisory, an organizational pattern (Coplien and
Harrison 2005, pg. 192), suggesting that software development can be facilitated
by aligning the organizational structure and the software architecture.

As mentioned before, 4 years later, Parnas proposed the principle of information
hiding (Parnas 1972), which minimizes communication needs among software

470 Cleidson R. B. de Souza and David F. Redmiles

developers by restricting the information they exchange. Parnas suggested that by
reducing dependencies between modules, it is possible to reduce software developers’
dependencies on one another, creating a managerial advantage (Parnas, 1972). Taken
together, Parnas’ and Conway’s arguments suggest that software dependencies shape
the coordination and communication activities performed by software developers,
and, at the same time, these dependencies reflect these coordination and communi-
cation activities (de Souza and Redmiles 2009).

The results of this paper corroborate this observation: API providers and
consumers need to coordinate their efforts, even though they are using APIs that
reduce communication needs between software developers. In the BSC organization,
APIs were the points of interaction between API consumers and providers, i.e., the
code from these developers interacted through the API. According to Parnas and
Conway, these points should be accompanied by communication and coordination
activities. In the MCW team, this did not happen because of organizational
boundaries and even though API consumers and providers were collocated in the
same city. On the other hand, in the MBL team this communication and coordination
took place even though developers where located in distributed countries.

What is more interesting, however, is the temporal aspect of this communication
and coordination needs. In the beginning of the project, strong communication and
coordination are required to negotiate the APIs (through formal meetings or informal
communication). Then, communication is reduced, or becomes less relevant, while
API consumers and producers go about doing their work independently, as we
discussed earlier with the help of stub implementations and other work-arounds.
After that, communication and coordination become relevant again to guarantee the
smooth integration of the work, the recomposition of the software system. In sum, it
is possible to observe a “fluctuation” of software developers’ communication and
coordination needs as the project progress. This result is particularly relevant in the
light of current approaches aiming to match technical dependencies needs and
communication and coordination needs among software developers. Examples of
this approach include software tools and conceptual approaches. An example of this
approach is the Ariadne tool (Trainer et al. 2005; de Souza et al. 2007) that aims to
identify dependencies between software developers from dependencies in the code
they are developing. A conceptual approach is the idea of socio-technical congruence
(Cataldo et al. 2006), which aims to explore the match between coordination
requirements and actual coordination. A recent focus of these approaches is the
identification of the “right” set of technical dependencies that drive the coordination
work of software developers (Cataldo et al. 2008). Furthermore, these approaches
assume that the technical dependencies are somewhat stable, i.e., they do not change
over time. Our results show that it is necessary to identify not only the “right” set of
the technical dependencies, but also when these dependencies are relevant. For
instance, a technical dependency between an API client and the API implementation
is not be relevant, at least for a while, after the API is negotiated between the parties.
Another result from our work is that these “right” dependencies can be easily defined

471On The Roles of APIs in the Coordination of Collaborative

by identifying the APIs that exist among the different software components. This
approach is more efficient than syntactic dependencies (like call-graphs), which
require analysis of the entire source-code, or evolutionary dependencies (Gall et al.
1998), which require analysis of the change history of the project.

The concept of awareness has come to play a central role in CSCW research
(Schmidt 2002). In fact, this concept has led to different venues of research, from
computational tool support, such as media spaces and event propagation mechan-
isms (Fitzpatrick et al. 2002), to ethnographic studies of work (Heath et al. 2002).
Some of these studies discuss the role of awareness in settings as varied as ship
bridges (Hutchins 1995a), aircraft cockpits (Hutchins 1995b), and transportation
control rooms (Heath and Luff 1992). In particular, recent work has shown the
importance of awareness in software development as well (see (Grinter 1995),
(Grinter 1998), (Teasley et al. 2000),(de Souza et al. 2003)). Based on this empirical
evidence, tools have been built in the last few years to support this approach (such as
Jazz (Cheng et al. 2003a; Cheng et al. 2003b) and Palantír (Sarma et al. 2003)). This
study builds upon this previous work by providing information about what
information software developers need to be aware of. That is, API consumers need
to be aware of changes in the API that they are using because the code that they are
writing depends on it. Furthermore, both API consumers and providers need to be
able to clearly identify each other, and be aware of each other because their work
needs to be aligned. This need for information about their colleagues crosses
organizational barriers, since an API might be written by a developer from a different
software development team. This is in contrast to what Grinter (1998) suggests in her
discussion about organizational awareness. She suggests that team information
should be aggregated, while we present evidence that information about a single
developer from another team is also necessary.

8. Conclusions

This paper investigates APIs as socio-technical constructs that facilitate the
coordination of software development projects. APIs support coordination in
software engineering by acting as contracts, boundaries, and communicational
devices. By examining these roles, we identified strategies required for the
successful coordination of the project. We also uncovered coordination problems
that needed to be properly handled so that APIs’ advantages could be fulfilled. In
particular, our data show that when APIs reify organizational boundaries,
communication regarding APIs is less effective.

APIs can be used to explain, enable and enforce the division of labor in the BSC
organization. In fact, MCW and MBL informants explained their work in terms of
API providers and consumers. APIs enabled providers and consumers to go about
doing their work independently and in parallel, since these same APIs enforced
boundaries between these software developers. Our results also illustrate how APIs
create the fiction that developers can work completely independently of their

472 Cleidson R. B. de Souza and David F. Redmiles

colleagues without problems. But we also found that with appropriate communica-
tion, APIs can support the coordination of large software development efforts.

Acknowledgments

The first author was supported by the Brazilian Government under grants CAPES
BEX 1312/99-5, CNPq 479206/2006-6, CNPq 473220/2008-3, and by the
Fundação de Amparo à Pesquisa do Estado do Pará (FAPESPA) through “Edital
Universal N.° 003/2008”. Both authors received support for this work from the
U.S. National Science Foundation under grants 0534775 and 0205724, and by an
IBM Eclipse Technology Exchange grant. Both authors wish to thank MCW and
MBL teams for their participation, the reviewers for their detailed and careful
comments, and Matt Bietz for several careful proof readings and critiques.

Open Access This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use,
distribution, and reproduction in any medium, provided the original author(s) and
source are credited.

Notes

1. This might not be true for other software development teams.
2. These APIs are called “remote” because when the application is released, they will be located in

a remote machine, an application server. Note that “local” and “remote” APIs are in fact the
same APIs; the unique distinction between them is their implementation.

3. As discussed in Section 5.1, “local APIs” are the dummy implementations that were provided
with the APIs, and the “remote APIs,” were the real APIs implemented by the server team.

References

Brooks, F. P. (1974). The mythical man-month: Essays on software engineering, Addison-Wesley.
Bucciarelli, L. L. (1996). Designing engineers. Cambridge: MIT.
Buschmann, F., R. Meunier, et al. (1996). Pattern-oriented software architecture: A system of

patterns. Chichester, West Sussex, UK, Wiley.
Cataldo, M., J. D. Herbsleb, et al. (2008). Socio-technical congruence: a framework for assessing

the impact of technical and work dependencies on software development productivity.
Proceedings of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement. Kaiserslautern, Germany, ACM.

Cataldo, M., P. A. Wagstrom, et al. (2006). Identification of coordination requirements: implications
for the design of collaboration and awareness tools. 20th Conference on Computer Supported
Cooperative Work. Banff, Alberta, Canada, ACM Press.

Cheng, L.-T., De Souza, C. R. B., et al. (2003a). Building collaboration into IDEs. Edit ->Compile
->Run ->Debug ->Collaborate? ACM Queue, 1, 40–50.

Cheng, L.-T., S. Hupfer, et al. (2003b). Jazz: a collaborative application development environment.
ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications, Anaheim, CA, USA, ACM Press.

473On The Roles of APIs in the Coordination of Collaborative

Conway, M. E. (1968). How do committees invent? Datamation, 14(4), 28–31.
Coplien, J. O., & Harrison, N. B. (2005). Organizational patterns of agile software development.

Upper Sadle River: Pearson Prentice Hall.
Curtis, B., Krasner, H., et al. (1988). A field study of the software design process for large systems.

Communications of the ACM, 31(11), 1268–1287.
de Souza, C. R. B. and D. Bentolila (2009). Automatic evaluation of API usability using

complexity metrics and visualizations (to appear). New Ideas and Emerging Results —
International Conference on Software Engineering. Vancouver, B.C., Canadá, IEEE Press.

de Souza, C. R. B. and D. Redmiles (2007). The awareness network: Should I display my actions to
whom? And, whose actions should I monitor? European Conference on Computer-Supported
Cooperative Work. Limerick, Ireland, Springer: 99–117.

de Souza, C. R. B. and D. Redmiles (2009). On the alignment of organizational and software
structure. Handbook of Research on Socio-Technical Design and Social Networking Systems. B.
Whitworth and A. de Moor, IGI Publications. 1: 93–103.

de Souza, C. R. B., S. Quirk, et al. (2007). Supporting collaborative software development through
the visualization of socio-technical dependencies. ACM Conference on Supporting Group Work,
Sanibel Island, FL, ACM Press.

de Souza, C. R. B., D. F. Redmiles, et al. (2003). "Breaking the Code", Moving between private and
public work in collaborative software development. International Conference on Supporting
Group Work (GROUP'2003), Sanibel Island, Florida, USA.

de Souza, C. R. B., D. Redmiles, et al. (2004a). How a good software practice thwarts
collaboration-The multiple roles of APIs in software development. Foundations of Software
Engineering, Newport Beach, CA, USA, ACM Press.

de Souza, C. R. B., D. Redmiles, et al. (2004b). Sometimes you need to see through walls— a field
study of application programming interfaces. Conference on Computer-Supported Cooperative
Work, Chicago, IL, USA, ACM Press.

des Rivieres, J. (2001, May 18, 2001). "How to Use the Eclipse API." Retrieved March 9., 2004,
from http://www.eclipse.org/articles/Article-API%20use/eclipse-api-usage-rules.html.

des Rivieres, J. (2004). "Eclipse APIs: Lines in the sand." EclipseCon Retrieved March 18, 2004,
from http://eclipsecon.org.

Ellis, B., J. Stylos, et al. (2007). The factory pattern in API design: A usability evaluation.
Proceedings of the 29th international conference on Software Engineering, IEEE Computer
Society: 302–312.

Fetterman, D. M. (1997). Ethnography step by step. Thousand Oaks: Sage Publications.
Fitzpatrick, G., Kaplan, S., et al. (2002). Supporting public availability and accessibility with Elvin:

Experiences and reflections. Journal of Computer Supported Cooperative Work, 11(3–4), 299–316.
Fowler, M. (2002). Public versus published interfaces. IEEE Software, 19(2), 18–19.
Gall, H., K. Hajek, et al. (1998). Detection of logical coupling based on product release history.

Proceedings of the International Conference on Software Maintenance, IEEE Computer Society.
Gamma, E., Helm, R., et al. (1995). Design patterns: Elements of reusable object-oriented software.

Addison-Wesley: Reading.
Ghezzi, C., M. Jazayeri, et al. (2003). Fundamentals of software engineering, Prentice Hall.
Grinter, R. E. (1995). Using a configuration management tool to coordinate software development.

Conference on Organizational Computing Systems, Milpitas, CA.
Grinter, R. E. (1998). Recomposition: Putting it all back together again. Conference on Computer

Supported Cooperative Work (CSCW'98), Seattle, WA, USA.
Grinter, R. E. (1999). System architecture: Product designing and social engineering. work

activities coordination and collaboration. ACM: San Francisco.
Grinter, R. E. (2003). Recomposition: Coordinating a web of software dependencies. Journal of

Computer Supported Cooperative Work, 12(3), 297–327.

474 Cleidson R. B. de Souza and David F. Redmiles

http://www.eclipse.org/articles/Article-API%20use/eclipse-api-usage-rules.html
http://eclipsecon.org

Grinter, R., J. Herbsleb, et al. (1999). The geography of coordination: Dealing with distance in R&D
work. ACM Conference on Supporting Group Work (GROUP '99), Phoenix, AZ, ACM Press.

Heath, C., & Luff, P. (1992). Collaboration and control: Crisis management and multimedia
technology in London underground control rooms. Journal of Computer Supported Cooperative
Work, 1(1–2), 69–94.

Heath, C., Svensson, M. S., et al. (2002). Configuring awareness. Journal of Computer Supported
Cooperative Work, 11(3–4), 317–347.

Herbsleb, J. D. and R. E. Grinter (1999). "Architectures, coordination, and distance: Conway's law
and beyond." IEEE Software: 63–70.

Hutchins, E. (1995a). Cognition in the wild. Cambridge: MIT.
Hutchins, E. (1995b). How a cockpit remembers its speeds. Cognitive Science, 19, 265–288.
Jorgensen, D. L. (1989). Participant observation: A methodology for human studies. Thousand

Oaks: SAGE.
Kiczales, G. (1996). Beyond the Black Box: Open implementation. IEEE Software, 13(1), 8–11.
Kiczales, G., J. Lamping, et al. (1997). Open implementation design guidelines. International

Conference on Software Engineering, Boston, MA, USA, IEEE Press.
Larkoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: The University of Chicago.
Larman, G. (2001). Protected variation: The importance of being closed. IEEE Software, 18(3), 89–91.
McCracken, G. (1988). The long interview. Thousand Oaks: SAGE.
McDonald, D. W. and M. S. Ackerman (1998). Just talk to me: a field study of expertise location.

Conference on Computer Supported Cooperative Work (CSCW '98), Seattle, Washington.
Meyer, B. (1992). Applying "Design by Contract". IEEE Software, 25(10), 40–51.
Michi, H. (2009). API design matters. Commun. ACM, 52(5), 46–56.
Mintzberg, H. (1979). The structuring of organizations: A synthesis of the research. Englewood

Cliffs: Prentice-Hall.
Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12), 1053–1058.
Sarma, A., Z. Noroozi, et al. (2003). Palantír: Raising awareness among configuration management

workspaces. Twenty-fifth International Conference on Software Engineering, Portland, Oregon.
Schmidt, K. (2002). The problem with 'Awareness' — introductory remarks on 'awareness in

CSCW'. Journal of Computer Supported Cooperative Work, 11(3–4), 285–298.
Schmidt, K., & Simone, C. (1996). Coordination mechanisms: Towards a conceptual foundation of

CSCW systems design. Journal of Computer Supported Cooperative Work, 5(2–3), 155–200.
Smolander, K. (2002). Four metaphors of architecture in software organizations: finding out the

meaning of architecture in practice. In Proceedings of the First International Symposium in
Empirical Software Engineering, Nara, Japan, IEEE Press.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for
developing grounded theory. Thousand Oaks: SAGE.

Teasley, S., L. Covi, et al. (2000). How does radical collocation help a team succeed? Conference
on Computer Supported Cooperative Work, Philadelphia, PA, USA, ACM Press.

Thompson, J. D. (1967). Organizations in action: Social sciences of administrative theory. New
Brunswick: Transaction Publishers.

Trainer, E., Quirk, S., et al. (2005). Bridging the gap between technical and social dependencies
with Ariadne. San Diego: Eclipse Technology Exchange.

Xie, T. and J. Pei (2006). MAPO: Mining API usages from open source repositories. International
Workshop on Mining Software Repositories, Shanghai, China.

475On The Roles of APIs in the Coordination of Collaborative

	On The Roles of APIs in the Coordination of Collaborative Software Development
	Abstract
	<AQ_Q2/>Introduction
	Application Programming Interfaces
	<AQ_Q2>API definition
	<AQ_Q2/>API adoption

	<AQ_Q2/>Research sites
	<AQ_Q2/>The MCW team
	<AQ_Q2/>The MBL team
	<AQ_Q2/>The organizational approach to APIs

	<AQ_Q2/>Research methods
	<AQ_Q2/>The roles of application programming interfaces
	<AQ_Q2/>APIs as contracts
	<AQ_Q2/>APIs as boundaries
	<AQ_Q2/>APIs as communication mechanisms
	<AQ_Q2/>Summary

	<AQ_Q2/>Limitations of APIs
	<AQ_Q2/>Limits on parallel work
	<AQ_Q2/>Problems of rigid boundaries
	<AQ_Q2/>The not-so-contractual nature of APIs
	<AQ_Q2/>Summary

	<AQ_Q2/>Discussion
	<AQ_Q2/>Advantages provided by APIs
	<AQ_Q2/>Problems when using APIs
	<AQ_Q2/>Software structures and coordination

	<AQ_Q2/>Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

