Skip to main content

Advertisement

Log in

Artefactual Multiplicity: A Study of Emergency-Department Whiteboards

  • Published:
Computer Supported Cooperative Work (CSCW) Aims and scope Submit manuscript

Abstract

Whiteboards are highly important to the work in emergency departments (EDs). As a collaborative technology ED whiteboards are usually placed in the dynamic centre of the ED, and all ED staff will approach the whiteboard regularly to organize their individual yet interdependent work. Currently, digital whiteboards are replacing the ordinary dry-erase whiteboards in EDs, which bring the design and use of whiteboards in ED to our attention. Previous studies have applied the theoretical lenses of common information spaces, coordination, and awareness to the investigation of whiteboard use and design. Based on an ethnographic study of the work practices involving two differently designed ED whiteboards, we found these concepts insufficient to explain one essential characteristic of these heterogeneous artefacts. In this paper, we suggest an additional theoretical concept describing this characteristic of heterogeneous artefacts; namely artefactual multiplicity. Artefactual multiplicity identifies not only the multiple functions of heterogeneous artefacts but also the intricate relations between these multiple functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. CTAS: Canadian Triage and Acuity Scale

  2. In the Canadian Pediatric ED they use the term ‘consultant’ to indicate whether a patient needs to be seen by a medical specialist. If the attending physician requests that a consultant from, say, the orthopedic department must see the patient, the charge nurse will call the orthopedic department. At this time the charge nurse does not know which orthopedic consultant will arrive and, therefore, writes the requested service ‘ortho’, instead of the name of the consultant, on the whiteboard. When they know the name, they will write, e.g., ‘Smith’. This way, the label ‘consultant’ may seem confusing, because the content of the column is more of a service even though the label ‘consultant’ refers to a role.

References

  • Aronsky, D., Jones, I., Lanaghan, K., & Slovis, C. M. (2008). Supporting patient care in the emergency department with a computerized whiteboard system. Journal of the American Medical Informatics Association, 15(2), 184–194.

    Article  Google Scholar 

  • Balka, E., Bjørn, P., & Wagner, I. (2008). Steps towards a typology for health informatics. In Proceedings of the CSCW 2008 conference on computer supported cooperative work (pp. 515–524). New York: ACM Press.

  • Bannon, L., & Bødker, S. (1997). Constructing common information spaces. In J. A. Hughes, W. Prinz, T. Rodden, & K. Schmidt (Eds.), ECSCW1997: Proceedings of the fifth European conference on computer supported cooperative work (pp. 81–96). Amsterdam: Kluwer.

    Google Scholar 

  • Barbot, J., & Dodier, N. (2002). Multiplicity in scientific medicine: the experience of HIV-positive patients. Science, Technology, & Human Values, 27(3), 404–440.

    Google Scholar 

  • Bardram, J. (2000). Temporal coordination—on time and coordination of collaborative activities at a surgical department. Computer Supported Cooperative Work, 9(2), 157–187.

    Article  Google Scholar 

  • Bardram, J., & Bossen, C. (2005a). Mobility work: the spatial dimension of collaboration at a hospital. Computer Supported Cooperative Work, 14(2), 131–160.

    Article  Google Scholar 

  • Bardram, J., & Bossen, C. (2005b). A web of coordinative artefacts: Collaborative work in a hospital ward. In Proceedings of the GROUP 2005 conference on supporting group work (pp. 168–176). New York: ACM Press.

  • Bardram, J., Hansen, T., & Soegaard, M. (2006). AwareMedia: A shared interactive display supporting social, temporal, and spatial awareness in surgery. In Proceedings of the CSCW'06 conference on computer supported cooperative work (pp. 109–118). New York: ACM Press.

  • Berg, M., & Akrich, M. (2004). Introduction—bodies on trial: performances and politics in medicine and biology. Body & Society, 10(2&3), 1–12.

    Article  Google Scholar 

  • Berg, M., & Mol, A. (1998). Differences in medicine: Unraveling practices, techniques, and bodies. London: Duke University Press.

    Google Scholar 

  • Bjørn, P., & Rødje, K. (2008). Triage drift: a workplace study in a pediatric emergency department. Computer Supported Cooperative Work, 17(4), 395–419.

    Article  Google Scholar 

  • Bjørn, P., Burgoyne, S., Crompton, V., MacDonald, T., Pickering, B., & Munro, S. (2009). Boundary factors and contextual contingencies: configuring electronic templates for health care professionals. European Journal of Information Systems, 18(5), 428–441.

    Article  Google Scholar 

  • Bossen, C. (2002). The parameters of common information spaces: The heterogeneity of cooperative work at a hospital ward. In Proceedings of the CSCW2002 conference on computer supported cooperative work (pp. 176–185). New York: ACM Press.

  • Burns, C. M. (2000). Navigation strategies with ecological displays. International Journal of Human Computer Studies, 52(1), 111–129.

    Article  Google Scholar 

  • Chaboyer, W., Wallen, K., Wallis, M., & McMurray, A. M. (2009). Whiteboards: one tool to improve patient flow. The Medical Journal of Australia, 190(11), S137–S140.

    Google Scholar 

  • Egger, E., & Wagner, I. (1993). Negotiating temporal orders: the case of collaborative time management in a surgery clinic. Computer Supported Cooperative Work, 1(4), 255–275.

    Article  Google Scholar 

  • Endsley, M. R. (2006). Situation awareness. In G. Salvendy (Ed.), Handbook of human factors and ergonomics (3rd ed., pp. 528–542). New York: Wiley.

    Chapter  Google Scholar 

  • Forsythe, D. (1999). It’s just a matter of common sense: ethnography as invisible work. Computer Supported Cooperative Work, 8(1&2), 127–145.

    Article  Google Scholar 

  • France, D. J., Levin, S., Hemphill, R., Chen, K., Rickard, D., Makowski, R., et al. (2005). Emergency physicians’ behaviour and workload in the presence of an electronic whiteboard. International Journal of Medical Informatics, 74(10), 827–837.

    Article  Google Scholar 

  • Gasser, L. (1986). The integration of computing and routine work. ACM Transactions on Office Information Systems, 4(3), 205–225.

    Article  Google Scholar 

  • Grudin, J., & Grinter, R. (1995). Ethnography and design. Computer Supported Cooperative Work, 3(1), 55–59.

    Article  Google Scholar 

  • Heath, C., & Luff, P. (1992). Collaboration and control: crisis management and multimedia technology in London underground line control rooms. Computer Supported Cooperative Work, 1(1&2), 69–94.

    Article  Google Scholar 

  • Heath, C., Svensson, M. S., Hindmarsh, J., Luff, P., & vom Lehn, D. (2002). Configuring awareness. Computer Supported Cooperative Work, 11(3&4), 317–347.

    Article  Google Scholar 

  • Hertzum, M., & Simonsen, J. (2008). Positive effects of electronic patient records on three clinical activities. International Journal of Medical Informatics, 77(12), 809–817.

    Article  Google Scholar 

  • Hine, C. (2007). Multi-sited ethnography as a middle range methodology for contemporary STS. Science, Technology, & Human Values, 32(6), 652–671.

    Article  Google Scholar 

  • Law, J. (2004). After method: Mess is social science research. London: Routledge.

    Google Scholar 

  • Lundberg, N., & Hellioglu, H. (1999). Understanding complex coordination processes in health care. Scandinavian Journal of Information Systems, 11, 157–182.

    Google Scholar 

  • Mark, G. (2002). Conventions and commitments in distributed CSCW groups. Computer Supported Cooperative Work, 11(3&4), 349–387.

    Article  Google Scholar 

  • Mol, A. (2002). The body multiple: Ontology in medical practice. London: Duke University Press.

    Google Scholar 

  • Riley, R., Forsyth, R., Manias, E., & Iedema, R. (2007). Whiteboards: mediating professional tensions in clinical practice. Communication & Medicine, 4(2), 165–175.

    Article  Google Scholar 

  • Schmidt, K. (2002). The problem with ‘awareness’. Computer Supported Cooperative Work, 11(3&4), 285–298.

    Article  Google Scholar 

  • Schmidt, K., & Bannon, L. (1992). Taking CSCW seriously: supporting articulation work. Computer Supported Cooperative Work, 1(1&2), 7–40.

    Article  Google Scholar 

  • Schmidt, K., & Simone, C. (1996). Coordination mechanisms: towards a conceptual foundation of CSCW system design. Computer Supported Cooperative Work, 5(2&3), 155–200.

    Article  Google Scholar 

  • Scupelli, P., Xiao, Y., Fussell, S. R., Kiesler, S., & Gross, M. D. (2010). Supporting coordination in surgical suites: Physical aspects of common information spaces. In Proceedings of the CHI 2010 conference on human factors in computing systems (pp. 1777–1786). New York: ACM Press.

  • Strauss, A., Fagerhaugh, S., Suczek, B., & Wiener, C. (1985). Social organization of medical work. Chicago: University of Chicago Press.

    Google Scholar 

  • Suchman, L. (1995). Making work visible. Communications of the ACM, 38(9), 56–64.

    Article  Google Scholar 

  • Tang, A., Lanir, J., Greenberg, S., & Fels, S. (2009). Supporting transitions in work: Informing large display application design by understanding whiteboard use. In Proceedings of the GROUP'09 conference on supporting group work (pp. 149–158). New York: ACM Press.

  • Whittaker, S., & Schwarz, H. (1999). Meetings of the board: the impact of scheduling medium on long term group coordination in software development. Computer Supported Cooperative Work, 8(3), 175–205.

    Article  Google Scholar 

  • Wilkie, A., & Michael, M. (2009). Expectation and mobilisation: enacting future users. Science, Technology, & Human Values, 34(4), 502–522.

    Article  Google Scholar 

  • Wong, H. J., Caesar, M., Bandali, S., Agnew, J., & Abrams, H. (2009). Electronic inpatient whiteboards: improving multidisciplinary communication and coordination of care. International Journal of Medical Informatics, 78(4), 239–247.

    Article  Google Scholar 

  • Xiao, Y., Lasome, C., Moss, J., Mackenzie, C., & Faraj, S. (2001). Cognitive properties of a whiteboard: A case study in a trauma centre. In ECSCW 2001: Proceedings of the seventh European conference on computer supported cooperative work (pp. 259–278). Amsterdam: Kluwer.

Download references

Acknowledgements

This study is a part of the research project ACTION for Health, funded by the Social Sciences and Humanities Research Council of Canada, Grant #512-2003-1017, titled ‘The role of technology in the production, consumption and use of health information: Implications for policy and practice’ with contributions from Simon Fraser University and Vancouver General Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pernille Bjørn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjørn, P., Hertzum, M. Artefactual Multiplicity: A Study of Emergency-Department Whiteboards. Comput Supported Coop Work 20, 93–121 (2011). https://doi.org/10.1007/s10606-010-9126-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10606-010-9126-7

Key words

Navigation