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ABSTRACT 

 

Science and technology always have been interdependent, but never more so than with 

today’s highly instrumented data collection practices. We report on a long-term study of 

collaboration between environmental scientists (biology, ecology, marine sciences), 

computer scientists, and engineering research teams as part of a five-university 

distributed science and technology research center devoted to embedded networked 

sensing. The science and technology teams go into the field with mutual interests in 

gathering scientific data. “Data” are constituted very differently between the research 

teams. What are data to the science teams may be context to the technology teams, and 

vice versa. Interdependencies between the teams determine the ability to collect, use, and 

manage data in both the short and long terms. Four types of data were identified, which 

are managed separately, limiting both reusability of data and replication of research. 

Decisions on what data to curate, for whom, for what purposes, and for how long, should 

consider the interdependencies between scientific and technical processes, the 

complexities of data collection, and the disposition of the resulting data.  

 

KEY WORDS 

Cyberinfrastructure; data curation; data practices; eScience; scientific collaboration, 

scientific software development; technology research; sensor networks; environmental 

sciences. 
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1. INTRODUCTION 

 

Today’s scientific instrumentation yields data of unprecedented volume and granularity.  

Some of these instruments are constructed for scientific innovation; others for 

technological innovation. The best case is when innovations of both kinds occur, which 

in turn depends on effective collaborations between scientific and technical researchers. 

Data are the “glue” of a collaboration, hence one lens through which to study the 

effectiveness of such collaborations is to assess how they produce and use data.  The 

research reported here is drawn from a series of studies conducted in the Center for 

Embedded Networked Sensing, a National Science Foundation Science and Technology 

Center. We address the following research questions: 

1. What are the “data” in science and technology research collaborations? 

2. How do concepts of “data” vary by purpose of research activity? 

3. What roles do data serve within and between science and technology 

collaborations? 

4. What can be learned about collaborative work by following the data? 

 

We first examine concepts of data in scientific and technical research practice. We then 

introduce our research setting, the Center for Embedded Networked Sensing (CENS), a 

science and technology collaboratory, and detail the data practices of the CENS science 

and technology researchers, respectively. Our discussion identifies ways in which those 

data practices are interdependent, implications of those interdependencies for 

collaborative research projects, and implications for curation of the data that those 
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projects produce. By studying how data are created, conceived, handled, managed, and 

curated in multi-disciplinary collaborations, we can inform science policy and practice. 

 

2. SCIENCE, TECHNOLOGY, AND DATA 

 

Data are both visible and invisible in scientific collaborations. The empirical studies 

reported here address the roles of data in collaborations between science researchers and 

technology researchers. They work together to develop new instrumentation and to 

deploy it for field research.  The data produced by these joint projects sometimes is 

shared and sometimes is separate. One investigator’s data may be context to another 

investigator, and vice versa. By focusing on the data, we can identify the collaborative 

tensions, the short and long term goals of the research teams, and the successful (and 

unsuccessful) practices in the capture, management, and use of data. Data curation – 

adding value through documentation, standardization, migration to new formats – is 

essential for long-term use and reuse of data. Public policy for data management plans 

and data sharing, in turn, depends upon the proper care and curation of data from 

scientific and technological research. Thus studies of data and data practices have 

implications for social policy as well as for cooperative work.  

 

2.1. Science, Technology, and Sensor Networks 

 

Scientists learn how to use tools, instruments, and materials to accomplish their research 

as part of membership in the community. They sometimes build their own tools, adapting 
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them to the task or question at hand. In larger projects, scientific and tool-building 

activities usually are done by different people, resulting not only in collaboration but in 

interdependencies (Fry, 2006; Shrum, Genuth & Chompalov, 2007). Technologies for 

data-intensive science include hardware, such as sensor networks, laboratory instruments, 

and telescopes, and software, such as workflow systems, analytic tools, and visualization 

tools.  

 

The deployment of satellites for remote sensing, starting in the 1970s and 1980s, 

transformed many areas of the environmental sciences (Kwa, 2005); satellite sensing 

became an essential component of scientific infrastructure. Changes in weather and in 

crops could be seen from above, enabling geospatial and temporal comparisons never 

before possible. Embedded sensor networks, which are the inverse of remote sensing with 

satellites, are transforming scientific practice in much the same way. Many small and 

discrete sensors can be placed in situ to study local conditions, providing data at far 

greater spatial and temporal detail than is possible with hand sampling of soil, water, or 

plants. As many ecological phenomena happen at a scale smaller than a mile square, 

embedded sensor networks are far superior to remote sensing for studying local 

phenomena.  

 

Sensor networks, per se, are not a new technology. Large manufacturing operations and 

chemical processing plants, for example, rely heavily on sensor networks to manage 

operations. Similarly, water flow and water quality monitoring employ embedded sensor 

networks. In the U.S. alone, public regulatory agencies monitor several hundred million 
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individual sensors on streams, lakes, and rivers. The use of embedded sensor networks 

for scientific data collection emerged as a means to accelerate inductive and experimental 

data collection in research specialties heretofore characterized by flexible, hand-crafted 

field research (Embedded, Everywhere: A Research Agenda for Networked Systems of 

Embedded Computers, 2001). 

 

Sensor networks are now used widely to collect observational data for environmental 

research. They fall into two general categories: static sensor networks and dynamic 

deployments. Static networks, such as the LTER (U.S. Long Term Ecological Research 

Network, 2010), GEON, which originally was an acronym for Geosciences Network 

(GEON, 2010), and NEON (National Ecological Observatory Network, 2010) consist of 

sensors placed in appropriate positions to report data continuously on local conditions. 

The sensors are monitored, both by humans and by computers, to determine changes in 

conditions. Autonomous networks can rely on machine actuation to capture scientifically 

relevant data, to alter data collection (e.g., capture data more frequently if excessive 

pollution is suspected), or to report emergencies that require intervention (e.g., faults in 

dams, water contamination).  

 

While static sensor network deployments are effective for large-scale data collection, 

participants must agree on common data structures, semantics, services, ontologies, and 

preservation policies. Once agreements and technologies are in place, static networks can 

stream data directly into data repositories. Sensor equipment must be robust enough to be 

left in the field for months or years. Security is a constant concern, as sensors left 
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unattended can be vandalized or can be damaged by animals, farm equipment, or 

weather.  

 

Dynamic deployments, in contrast, are suited to experimental field research. “Human in 

the loop” sensor networks allow investigators to adjust monitoring conditions in real 

time. Teams can conduct data collection “campaigns” in which they deploy a sensor 

network in the field for a few hours or a few days. The dynamic nature of mobile 

equipment and reconfigurable networks allows sensors to be moved to maintain coverage 

of interesting phenomena or to adjust resolution to capture phenomena that were 

previously unobservable. Teams may return to the same site, or a similar site, repeatedly, 

each time with slightly different equipment or research questions. Dynamic deployments 

provide opportunities for science and technology researchers to collaborate in field 

research, especially in refining instrument design and data collection methods. Fragile, 

research-grade equipment can be deployed in campaigns, as teams are on site to protect, 

adjust, and maintain the devices. The inherent variability in the science conducted with 

dynamic sensor deployments results in data products that also are highly variable. Data 

variability is a constant challenge for digital data repositories (Mayernik, 2011; 

Mayernik, Wallis & Borgman, in review).  

 

2.2 Data in Science and Technology 

 

Data often are boundary objects, both bridging and demarcating the lines between 

communities (Star & Griesemer, 1989). A focus on data can reveal much about 
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communities and relationships (see for ex. Collins, 1998; Aronova, Baker, & Oreskes, 

2010). “Data” is a difficult concept to define, as data may take many forms, both physical 

and digital. Among the most widely cited definitions is this one, from a National 

Academy of Sciences report:  “Data are facts, numbers, letters, and symbols that describe 

an object, idea, condition, situation, or other factors.” (A Question of Balance: Private 

Rights and the Public Interest in Scientific and Technical Databases, 1999, p. 15). A more 

current working definition, from an internal Academy document, better reflects the 

variety of data types that may arise in collaborative work:  

 

The term “data” as used in this document is meant to be broadly inclusive. 

In addition to digital manifestations of literature (including text, sound, 

still images, moving images, models, games, or simulations), it refers as 

well to forms of data and databases that generally require the assistance of 

computational machinery and software in order to be useful, such as 

various types of laboratory data including spectrographic, genomic 

sequencing, and electron microscopy data; observational data, such as 

remote sensing, geospatial, and socioeconomic data; and other forms of 

data either generated or compiled, by humans or machines. (Uhlir & 

Cohen, 2011). 

 

The above notion of “data” transcends the sciences and other domains of scholarship, 

acknowledging the many forms that data can take. Sources of data also vary widely. In 

the physical and life sciences, most data are gathered or produced by researchers, such as 
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by observations, experiments, or models. In the social sciences, researchers may gather or 

produce their own data, or they may obtain data from other sources such as public records 

of economic activity (Borgman, 2007; 2012). 

 

Data also can be categorized by type or origin. The typology presented in an influential 

U.S. policy report (Long-Lived Digital Data Collections, 2005) and incorporated in 

National Science Foundation strategy (Cyberinfrastructure Vision for 21st Century 

Discovery, 2007) is now widely accepted. Observational data include weather 

measurements, which are associated with specific places and times, and attitude surveys, 

which also might be associated with specific places and times (e.g., elections or natural 

disasters), or involve multiple places and times (e.g., cross-sectional, longitudinal 

studies). Computational data result from executing a computer model or simulation, 

whether for physics or for cultural virtual reality. Replicating the model or simulation in 

the future may require extensive documentation of the hardware, software, and input 

data. In some cases, only the output of the model might be preserved. Experimental data 

include results from laboratory studies such as measurements of chemical reactions or 

from field experiments such as controlled behavioral studies. Whether sufficient data and 

documentation to reproduce the experiment are kept varies by the cost and reproducibility 

of the experiment. It should be noted that records of government, business, and public 

and private life also yield useful data for scientific, social scientific, and humanistic 

research. 

 

The term “dataset” is sometimes conflated with the notion of “data.” However, 
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definitions of “dataset” in the scientific literature have at least four common themes – 

grouping, content, relatedness, and purpose – each of which has multiple categories 

(Renear, Sacchi & Wickett, 2010). While “dataset” may be useful to refer to a collection 

of data for the purposes of citation, the term does little to clarify what is meant by data.  

 

Data collections are larger than datasets, and can be categorized into three levels: 

Research collections, in support of small communities, which may not conform to 

broader standards; Resource data collections, which may serve larger communities and 

either set or abide by community standards; and Reference collections, which support 

large segments of the scholarly community and drive standards processes (Long-Lived 

Digital Data Collections, 2005). A collection may start as a small research collection and 

take on a greater role over time; the Protein Data Bank is the canonical example of this 

transition (Protein Data Bank, 2006; Berman et al., 2000; Bourne, 2005).  

 

Efforts to define and categorize data, datasets, and data collections risk obscuring the 

complexity of work practices around data. These complexities include reward structures, 

authority structures, formalization of knowledge, interdependencies among groups, trust 

mechanisms, and the “transitional nature” of data collections (Cragin & Shankar, 2006). 

Data are deeply embedded in tacit knowledge and in local practices, which make them 

difficult to extract from their context (Kanfer et al., 2000). The challenge is to capture 

data in a sufficiently rich form that they can be interpreted, while making them “mobile” 

enough to manage in information systems. Cole (2008) refers to this process as 

“differentiation,” acknowledging the lack of coherence and the need for scaffolding to 
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maintain the integrity of data. All too often, as he notes, information systems and policies 

simply take data as a given or else treat them as a commodity. These approaches either 

assume or impose coherence, in Cole’s terms.  

 

2.3. Computer Supported Cooperative Work in Science and Technology 

 

Cyberinfrastructure is the point of intersection between the interests of those who study 

computer-supported cooperative work and those who study scientific and technical 

collaboration (Jirotka, Procter, Rodden & Bowker, 2006; Lee, Ribes, Bietz, Jirotka & 

Karasti, 2010; Turner, Bowker, Gasser & Zacklad, 2006). Ribes and Lee (2010) 

identified seven themes at this intersection. Their second theme, “integration of 

heterogeneity,” focuses on interdisciplinary relations that must be fostered to develop 

“cyberinfrastructure and the novel science that it is hoped CI will thereafter bring about.” 

Among the relationships they identify are those between “the computer and information 

scientists that develop the technological systems and on the other hand the domain 

scientists that collaborate with them to develop technology, but who are ultimately 

interested in the final stable and functioning scientific resources” (Ribes & Lee, 2010, 

234). Similarly, Faniel and Jacobsen (2010) identified how the multiple contexts of data 

production in these collaborations influence the ability of researchers to evaluate and trust 

data for reuse. Context, curation, and dissemination of data are concerns that arise 

consistently in cyberinfrastructure collaborations (Karasti, Baker & Halkola, 2006; 

Karasti, Baker & Millerand, 2010).  
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Collaborations between researchers in science and in technology require a delicate 

balance between autonomy and interdependence. Shrum et al. (2007, p. 123-) distinguish 

between three types of collaborations involving scientific instruments: (1) Use of 

standardized and familiar instrumentation, where the science contribution is based on 

how the instruments are deployed; (2) adaptation of extant instrumentation to improve the 

science; and (3) design and construction of “an unprecedented instrument.” For each 

type, the interdependencies varied temporally. For instance, the third type of 

collaboration required a high level of initial coordination, but once the equipment was in 

place collaborators were free to work at their own pace. While Shrum et al. were studying 

physicists, the analogy to sensor networks applies. Static sensor network deployments fall 

into the first category, while field deployments in CENS fall into all three categories, thus 

increasing the complexity of the data interactions between collaborators. 

 

The type of instrument-based collaboration also influences the choice, use, and 

interpretation of data (Collins, 1975; Shrum et al., 2007). Some teams integrate their data 

collection and others collect data independently. Shrum et al. found that data sharing was 

most effective when standard protocols were in place. Collins, in a study of physicists, 

found that the aftermath of data collection is a most interesting time to study data 

practices, for that is the collaborative stage where participants explore the meaning of 

their data and phenomena.  
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2.3.1. Scientific Data Practices  

In ecology, science takes the form of “naturalistic realism” in which models of reality are 

established and then compared to the real world (Giere, 1999; Maurer, 2004). The 

practice of ecological science is largely inductive, beginning with accumulation of 

observations in the field, with the intent to discover patterns. In the search for repeatable 

patterns, parameter estimation often is more useful than formal hypothesis testing. When 

patterns are well established, deductive methods may be applied in which data are 

gathered to test hypotheses (Maurer, 2004). Ecology researchers are studying complex 

systems that do not lend themselves as well to consistent methods and measures as do the 

physical sciences (Aronova, Baker & Oreskes, 2010).  

 

Field-based research in ecology takes place in unpredictable real-world settings, making 

technology design particularly daunting. Data practices in ecological research can be 

associated with the four salient features identified by Bowen and Roth (2007): (1) 

research design in ecology has a highly emergent character; (2) tools and methods are 

developed in situ, often from locally available materials, and are highly context-specific; 

(3) studies are not easily replicable because of the dynamic nature of ecological systems; 

and (4) social interactions between members of the community are highly important. 

While all of these features exist to some extent in other scientific disciplines, they are 

central to the practices of field ecology.  

 

Small science areas such as ecology are in the early stages of collaborating with computer 
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scientists and engineers to build research instruments. Traditionally, scientists in these 

fields – working alone or in small groups – have taken samples and sensor readings by 

hand, a process that is time- and labor-intensive. New technologies such as networked 

embedded sensors enable ecologists and environmental scientists to study the context of 

phenomena at much finer spatial and temporal scales than was previously possible 

(Arzberger et al., 2004a; b; Hamilton et al., 2007; Szewczyk et al., 2004). Although 

sensors do not replace the need for hand collection of biological samples, sensors can 

capture data on physical conditions such as ambient temperature, wind speed and 

direction, and chemical concentrations in water and soil.  

 

Case studies of scientific collaboration reveal many kinds of data that may mean different 

things to different participants (Kanfer et al., 2000; Lawrence, 2006; Lee, Dourish & 

Mark, 2006; Ribes & Finholt, 2007). Ribes and Finholt (2007), for example, identify 

competing interests of environmental engineers and hydrologists, despite their common 

interests in water. Environmental engineers collect data such as pollution, contamination, 

sewage, and potability as indicators of water quality. Hydrologists gather data on 

drainage and erosion as indicators of water quantity. Tensions between the short and long 

term value of data are illustrated in a study of the Long Term Ecological Research 

(LTER) centers (Karasti et al., 2006). In the short term, participants focused on issues 

such as technology solutions, data volume, and metadata, whereas long-term concerns 

addressed scientific inquiry, data sharing, and stewardship.  
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2.3.2. Computer Science and Engineering Data Practices 

Computer science research is characterized by a focus on system development and theory 

building over conducting empirical experiments (Basili & Zelkowitz, 2007). The most 

notable exception is computer science research on information retrieval, which can be 

highly experimental (Voorhees, 2007; Voorhees & Harman, 2005). Computer software, 

rather than experimental data, is the primary non-publication research product. De Souza, 

Froehlich, and Dourish (2005) show how in open-source development projects, software 

artifacts are “not merely the objects of software development processes, but are also the 

means by which those processes are enacted and regulated” (pg. 205). Thus, the structure 

and state of software can constrain or enable the ways that the development process 

proceeds, similar to the role that data play in experimental scientific research.  

 

2.3.3. Science and Technology Interdependence 

Scientists often rely on professional software engineers to construct tools for data 

collection and analysis. Here the collaboration challenges lie in the lack of clear software 

specifications for scientific instrumentation, in comparison to industrial projects 

(Easterbrook & Johns, 2009; Segal, 2005; 2009). When scientists collaborate with 

technology researchers, tensions often arise between the needs for research-grade and 

production-grade technologies. Scientists in the application domain need technologies to 

use in their own research, thus they have to define features and architecture sufficiently 

for the systems to yield the requisite research data. Conversely, computer scientists are 

engaged in their own research and desire as much flexibility as possible in pursuing their 

own questions (Lawrence, 2006). In contrast, when scientists write their own software, 

the resulting code is often more functional than elegant, as the optimization of code tends 
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to be secondary to its utility to the science and its portability to other settings (Carver et 

al., 2006).  

 

Some big science areas of the physical sciences such as high-energy physics and 

astronomy, have a long history of scientists and technologists working closely together to 

design and build instruments, and to write software. Endeavors such as linear colliders 

and space telescopes take many years to design, build, and deploy. Requirements 

definitions are rigorous, yet must adapt to changes in technology and in the scientific 

questions to be asked (Latour, 1987; Traweek, 1992; 2004). These kinds of collaborations 

are more novel in the field-based life sciences. 

 

In sum, new data collection technologies such as embedded networked sensors offer great 

research opportunities to small life science areas such as field ecology and marine 

biology. Taking advantage of these technologies requires collaborations with computer 

science and engineering researchers. Conversely, computer science and engineering 

researchers need partners in the domain sciences if they are to design, develop, and 

deploy their research in real world settings. These collaborations between scientists and 

technology developers take both groups out of their comfort zone: technologists must test 

new equipment in highly unpredictable field settings, scientists must rely on technologists 

to ensure that field excursions are successful, and everyone must be able to assess the 

trustworthiness of the data.  
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2.4. Center for Embedded Networked Sensing 

 

The Center for Embedded Networked Sensing (CENS), the site of the research reported 

here, is a National Science Foundation Science and Technology Center established in 

2002 and funded to 2012 by two five-year awards (http://research.cens.ucla.edu/). CENS 

supports multi-disciplinary collaborations among faculty, students, and staff of five 

partner universities (UCLA, USC, CalTech, UC-Merced, UC-Riverside). The Center’s 

goals are to develop and implement innovative wireless sensor networks. Most projects 

involve researchers in sensing technologies and researchers in scientific application 

domains. About 80% of CENS collaborators (which now number about 300 faculty, 

students, staff, and post-doctoral researchers) are in computer science or engineering. 

This group cuts a wide swath across environmental, electrical, and structural engineering, 

and computer science areas such as robotics, systems theory, networks, and actuators. 

Their research focuses on dynamic deployments of networked sensing technologies, 

which allow for more flexible capture of local phenomena than observatory networks do. 

The remaining 20% of CENS collaborators are in application domains such as 

environmental sciences, biology, seismology, and geology; a few are in the arts, 

architecture, or medicine, principally concerned with cell phone-based mobile 

applications. These participants’ research focuses on science or other domain problems 

that can be investigated using sensor networks. 

 

Research in the first three years of the Center (2002-2005) was driven more by computer 

science and engineering requirements than by scientific problems. Initial research 
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focused heavily on the design and deployment of sensing technology. Concerns about 

equipment reliability, capacity, and battery life, and whether data were being captured at 

all outweighed considerations of data quality and usefulness. Once the basic technical 

problems were resolved, the CENS research program became more science-driven, while 

continuing to explore core computer science and engineering problems in wireless 

sensing networks. The initial framework for CENS was based on static networks. Early 

scientific results revealed the difficulty of specifying field requirements in advance well 

enough to operate systems remotely. Most CENS’ research since 2005 involves dynamic 

deployments where investigators adjust monitoring conditions in real time (Batalin et al., 

2004; Chen et al., 2003; Estrin, Michener & Bonito, 2003; Hamilton et al., 2007; 

Mayernik et al., in review; Pon et al., 2005; Rahimi, Kaiser, Sukhatme & Estrin, 2005). 

 

The period from 2005 to 2009 was the peak of scientific deployments in CENS. By late 

2009, funding for NIMS, the largest technology platform in CENS, was ending (NIMS: 

Networked Infomechanical Systems, 2006; Batalin et al., 2004; Harmon et al., 2007; Pon 

et al., 2005; Rahimi et al., 2005; Sutton, 2003). Researchers were transitioning to other 

projects, inside and outside of CENS, and many turned to non-science applications, such 

as participatory sensing using mobile telephone platforms (Mun et al., 2009). Figure 1 

depicts many of the sensor technologies developed or deployed by CENS.  
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Figure 1: Heterogeneous sensor deployment. Graphic by Jason Fisher 

 

As a founding co-investigator of CENS, the lead author of this paper has conducted data 

practices research in the Center since its inception. Despite the minimal amount of 

research data produced in the first three years of CENS’ existence, our presence as 

participant observers enabled us to follow the trajectory of the science and technology 

research from its early days. 

 

Our early research at the Center revealed the division of labor between the science 

researchers and the technology researchers. The research of technical teams addresses the 

design, development, and deployment of sensor technology and networks. The research 

of science teams addresses patterns of physical and biological phenomena. Technology 

researchers are interested in science questions only to the extent necessary to design for 

“real world” problems. Scientists are interested in technology issues only to the extent 
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necessary to calibrate, trust, and interpret the resulting sensor data (Borgman, Wallis, 

Enyedy & Mayernik, 2006). In other studies, we found that data on the same variables are 

gathered by multiple means, data exist in many states and in many places, and that 

publication practices often drive data collection practices. Scientists, computer scientists, 

and engineering researchers may make use of common datasets but interpret the data 

differently (Borgman, Wallis & Enyedy, 2007). Metadata creation is a distributed process 

within collaborations, as different members have different pieces of the overall picture. 

Frictions can arise at several stress points: (a) conflicting standards, (b) temporal 

rhythms, (c) data sharing practices, and (d) the availability of support (Edwards, 

Mayernik, Batcheller, Bowker & Borgman, 2011; Mayernik, 2011; Mayernik, Batcheller 

& Borgman, 2011). Pepe, in conducting a multi-year social network analysis of CENS, 

found that as the Center progressed, CENS members were more likely to publish papers 

with CENS members in academic departments other than their own, reflecting an 

increase in the interdisciplinarity of their collaborations (Pepe, 2010; Pepe & Rodriguez, 

2010).  

 

In our effort to track the life cycle of CENS data from experiment design to publication, 

we participated in technology-only deployments, science-only deployments, and joint 

science and technology deployments (Wallis, Borgman, Mayernik & Pepe, 2008; Wallis, 

Pepe, Mayernik & Borgman, 2008). Our prior research in CENS highlights the role of 

collaboration in research processes and phases during which the integrity of the captured 

data could be compromised. The present article explores these collaborative behaviors in 

depth. 
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3. METHODS 

 

This article is based on field observations of five CENS environmental science projects 

conducted between 2006 and 2009, interviews conducted in 2006 with participants in 

these projects, and experiences from being part of the community throughout the life of 

the Center, from the proposal writing stage to the present. Interpretations are based on 

these data and on later discussions with the project participants, both formal and 

informal.  

 

The period of 2005-2009 was ideal for capturing the perspectives of scientists and 

technology researchers about their data, their research, and their collaborations. Science 

and technology field deployments were at their peak; interviews took place in the fourth 

year (2006) of CENS’ decade-long existence (2002-2012) as an NSF Science and 

Technology Center. CENS activities were maturing – the technology had begun to 

stabilize, research activities were less constrained by the battery life in the sensors, the 

networks were beginning to produce data of scientific and technological research value, 

and collaborators had learned more about the capabilities, strengths, and weaknesses of 

their partners.  

 

We briefly described the initial interview results in a conference paper (Borgman, Wallis, 

Mayernik & Pepe, 2007). In this article we present our full analysis of the interviews and 

field deployments of the five CENS projects included in our study, focusing on science 
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and technology data practices and their interdependence. Results reported here also serve 

as a baseline for later rounds of interviews, document analysis, and field research that are 

currently in progress. 

 

3.1. Interviews 

At the time of these intensive interviews (2006), CENS was comprised of about 70 

faculty and other researchers, about 140 student researchers, and some full-time research 

staff who are affiliated with the five participating universities. For each of five CENS 

environmental sensing projects, we interviewed a complementary set of science and 

technology participants, including faculty, post-doctoral fellows, graduate students, and 

research staff. A pilot ethnographic study in 2005 consisted of in-depth interviews with 

two participants, each two to three hours over two to three sessions (Borgman, Wallis & 

Enyedy, 2006). From these pilot interviews, we identified the most compelling topics in 

how researchers talked about their data and the problems they encountered in managing 

their data. The questions used in the pilot interviews were modified to cover these areas 

at greater depth. The areas and sample questions are described below.  
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In the full study, we interviewed 22 participants involved in these five projects. Sessions 

lasted 45 minutes to two hours in length, averaging about 60 minutes, and were audio-

recorded.  Most interviews took place in the subjects’ offices or laboratories. Transcripts 

of the audio-recordings were returned to subjects for review, comment, correction, or 

deletion. A few subjects made corrections; none asked to remove any comments from the 

record.  

 

As shown in Table 1, the 22 participants consist of 11 faculty, doctoral students, and 

research staff in the science application domains of CENS and 11 in the technology areas. 

Given the interdisciplinary nature of CENS, some judgments had to be made about 

drawing the sample to pair science and technology collaborators on projects. Those in 

fields such as biology, oceanography, or public health are easily classified as science 

participants. Similarly, those in computer science and electrical engineering are easily 

classified as technology researchers. Participants in environmental engineering and 

statistics (4 of the 22) were classified based on their role in the project rather than by their 

academic affiliation. Two of these four participants are classified as science partners, as 

their roles were more concerned with scientific applications, and two were classified as 

technology, as they were more focused on the design and use of the technology. In 

reporting our results, we draw particular attention to the activities of these boundary 

spanners in the deployments. 
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Interviews Pilot Terrestrial Contam Aquatic Total 

Faculty  3 1 2 6 

Staff 1 1  1 3 Scientists 

Students 1  1 1 3 

Faculty  3 1 1 5 

Staff  3  1 4 
Technology 

researchers 
Students  2 1  3 

Total 2 12 4 6 24 

 Table 1: Interview participants and their distribution
 

Our interview questions clustered as follows:   

• Data characteristics: What data are being generated? To whom are these data? To 

whom are these data useful?  

• Data sharing: When will scientists share data? With whom will they share data? What 

are the criteria for sharing? Who can authorize sharing? 

• Data policy: What are fair policies for providing access to these data? What controls, 

embargoes, usage constraints, or other limitations are needed to ensure fairness of 

access and use? What data publication models are appropriate?  

• Data architecture: What data tools are needed at the time of research design? What 

tools are needed for data collection and acquisition? What tools are needed for data 

analysis? What tools are needed for publishing data? What data models do the 

scientists who generate the data need? What data models do others need to use the 

data? 
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3.2. Field Deployments 

 

Two members of our research team participated in 12 CENS sensor deployments for 

environmental science projects, both observing and taking part in deployment activities, 

encompassing approximately 22 days of participant observation over three years (2006-

2009). The number of CENS researchers participating in each of these deployments 

ranged from two to ten. The length of our participant observations in the environmental 

science deployments ranged from single-day excursions to a four-day stay with CENS 

researchers at a remote field site. Observers took ethnographic field notes and digital 

photographs about the nature of deployments, field-based scientific research practices, 

and the role of information systems in these instrumented field-based research projects. 

Research teams put us to work as lab assistants, recorders, haulers, or anything else 

within our perceived skill sets. We participated in equipment installation tasks, data 

collection, and numerous other field activities. Our participant observations were 

supplemented by informal interviews and discussions with CENS researchers before, 

during, and after deployments regarding their data collection and collaboration practices, 

using the interview questions listed above or similar versions thereof. Our willingness to 

participate in team activities made us welcome partners, and we often are invited to join 

deployment excursions. 
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3.3. Data Analysis 

 

The interviews were audio-recorded, transcribed, and complemented by the interviewers’ 

memos on noteworthy phenomena. Transcription of interviews totaled 312 pages. Field 

notes varied in depth and format by observer; several dozen pages of notes also were 

including in the analysis. Photographs taken at field sites were used as memory tools and 

aids in description, but were not coded, per se. We developed a full coding process using 

NVIVO, which was used to test and refine themes in coding of subsequent interviews and 

field notes. Initial codes were based on our research and interview questions; other codes 

were developed iteratively by examining the data to identify themes of interest. With 

each coding scheme refinement, the remaining corpus was searched for confirming or 

contradictory evidence.  

 

We submit sections of our papers that describe research deployments or other activities to 

the participants to review for accuracy. If we send them full papers, we mark the sections 

where we are particularly concerned about accuracy, which increases the likelihood they 

will respond quickly. Our science and technology colleagues in CENS have been 

extremely helpful in clarifying our understanding of their work. Most corrections are to 

our errors in describing instruments, findings, or scientific concepts. 
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4. RESULTS 

 

The results are divided into several sections. First, we briefly present a scenario of a 

CENS field deployment in which both scientists and technology researchers (computer 

science and engineering) participated. Second and third, we present science and 

technology perspectives on data as seen in the interviews and deployments. Fourth, we 

draw out the interdependencies between the science and technology partners for data, 

context, and interpretation. The discussion section develops the comparisons more fully.  

 

Interview quotations from members of science teams are prefixed with an S (e.g., [S16]) 

and those from members of computer science or engineering teams are prefixed with a T 

(e.g., [T5]). Comments from field deployments are paraphrased, as these were not formal 

interviews for which we have transcriptions. People, projects, and equipment to which 

these individuals refer are anonymized with bracketed descriptions, e.g., [Prof. X] or 

[System Z]. 
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4.1. Science and Technology Joint Deployment Scenario 

 

While science and technology teams each conduct independent field studies, the joint 

deployments provide the richest sources for studying the interaction between groups. 

Each team has to be more articulate about its goals so they can explain them to their 

partners who have different academic training and research methods. Conflicts in 

methods and interpretations can arise, which also offer insights to data practices.  

 

This scenario is drawn from a series of similar field deployments to study harmful algal 

blooms (HAB) that occurred over the course of the summer of 2006. A harmful algal 

bloom is a situation in which a particular algae suddenly becomes dominant in the water. 

HAB create toxic conditions that kill fish and other animals such as sea lions by 

consuming the available dissolved oxygen that fish need, or by releasing domoic acid, a 

harmful neurotoxin that affects large mammals. HAB can occur in fresh water and in 

oceans. The environmental conditions under which HAB occur are poorly understood, 

partly because they are difficult to predict and partly because few means exist to capture 

HAB in sufficient density to understand the underlying processes. While rare, they can 

cause severe damage, potentially killing tens of thousands of fish in a day. The 

deployment scenario described here takes place at a lake known for summer blooms that 

kill off all the fish stocked in the lake. 
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From the marine biologists’ perspective, HAB are a good application for sensor networks 

as they can collect a much larger number of observations, and study more variables than 

is possible with hand-sampling techniques. Scientists can adjust their data collection to 

local conditions by moving sensors. From the computer science and engineering 

perspective, HAB are a good application for sensor networks because they test the ability 

of physical and biological sensors to collect large numbers of variables. HAB are of 

particular interest in robotics, for the rapidly changing science data can be used to actuate 

or trigger sensing systems on robotic boats, buoys, helicopters, cameras, and other 

autonomous vehicles that can follow the phenomena in greater detail than static sensor 

networks. 

 

The science team has conducted research on this lake for several years. They have access 

to baseline data collected by the Department of Fish and Game in addition to their own 

data from earlier visits. To design their field study, the team assembles background 

information about this lake such as peak months for algae, a topology of the lakebed, 

phytoplankton and zooplankton species they are likely to see, and nutrient presence and 

concentration. Prior to going into the field, they calibrated their sensors in their 

laboratory using known solutions.  

 

The technology team, in contrast, had no prior experience at this lake. Their research site 

is wherever the scientists are. They planned to field test their equipment based on the 

science team’s requirements as a means to conduct their own research on algorithms for 

robotic guidance, for network health, for sensor fault detection, and for the design of 
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sensor technology interfaces. The computer science and engineering researchers relied on 

discussions with the science team to guide their choices of equipment, specific sensors, 

and the time, place, and length of deployment of each. For this HAB deployment, the 

technology researchers’ main goal was to test a new vision algorithm for navigating the 

robotic boat. The team prepared and tested their equipment in their campus laboratories 

or local water bodies, at a university fountain and a faculty member’s pool, prior to the 

deployment.  

 

Participation in this four-day deployment differed from day to day. Most of the students 

and research staff arrived the first day to set up equipment; faculty investigators arrived 

on the second day; others came and went, staying for hours or days. The scene was often 

chaotic. Of the 20 or so people involved, eight to ten were associated with the electrical 

engineering team that built the sensing system, six to eight with the marine biology team, 

four or five were part of the robotics team from computer science and engineering, and 

two were from statistics. Participants came from at least three universities. The numbers 

are approximate due to the overlapping roles and responsibilities of many individuals. 

 

Sensing equipment was deployed as soon as everyone arrived, using a tethered buoy 

network along this narrow lake, a robotic boat that could respond to data collected by the 

buoys, and a fixed robotic system to transect across the lake. The team documented GPS 

coordinates (latitude and longitude) of the sensors, times of placement, and serial 

numbers of each sensor as it was dropped at its sensing location. In addition to the 

sensing equipment, the marine biologists brought equipment to set up a wet lab for 



Who’s got the data?, Borgman, Wallis, Mayernik, JCSCW accepted, reformatted, 5 June 2012, page 32 of 77  

processing samples on-site. Once the equipment was collecting data, minor changes were 

made to sensor placements to capture more “interesting” phenomena, which typically 

means that more sensor density is required in areas with greater change of some physical 

variable, such as light, temperature, or water flow. Data were collected by sensors and by 

hand-collecting samples of water at different depths. Corroboration in the field of these 

data and sensor data led to more changes in the topography of the sensor network. When 

data collection was finished, everyone pulled their equipment from the lake and from the 

lodge where the wet lab was established, packed up, and headed to their respective 

institutions. 

 

After the deployment, the scientists analyzed the water samples for nutrient 

concentrations and for organism identification and concentrations. The technology 

researchers adjusted the sensor data to reflect calibration and cleaned them to remove 

outliers, equipment artifacts, and other identifiable errors. The sensor-collected data 

elements of interest to the science team were provided to those teams. Once the science 

team received the sensor data from the technology team, those sensor data were 

compared to the in-lab and in-field calibration curves and to other trusted data sources. 

Water sample data and sensor data were integrated for analysis. The technology 

researchers used the sensor data for simulations and to generate algorithms for automatic 

sampling strategies of interest to the marine biologists. The output of these simulations 

and results of subsequent testing became the basis for technical research publications. 

After data analyses were complete and papers are published, the scientific data are burned 
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to DVDs and shelved with other data. Observational data used by the technology 

researchers were maintained on servers, but simulated data usually were discarded. 

 

As is evident from the harmful algal blooms scenario, science and technology researchers 

work side by side in planning and conducting environmental field research, but go into 

the field with different research questions and methods. The teams’ data needs and uses 

are both complementary and competing. Each team is dependent on the other for some 

aspects of the research. We report on science perspectives on the data from these 

deployments, then technology perspectives, and then interdependencies between them.  

 

4.2. Science Perspectives on Data 

 

The scientists are seeking patterns in their data. Their research questions usually address 

correlations between phenomena and trends in the environment. In the case of the 

harmful algal blooms scenario, for example, the scientific goal is to predict, and 

ultimately to prevent, such blooms. We participated in two lake deployments that fit the 

scenario described above, where we observed the scientists placing a network of static 

sensors and taking hand samples of the water. 

 

4.2.1. Sensor Data for Scientific Variables 

Among the many scientific phenomena that can be observed with these embedded sensor 

networks are chemical and physical variables such as soil moisture, wind direction, sap 
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flow, bird calls, temperature, sounds, and images, and the presence of substances such as 

dissolved oxygen, ammonia, or indicators for the presence of mercury.  

 

The ability to geo-locate and time-stamp observations is among the scientific advantages 

of sensor networks and is now trivial from a technical standpoint. Geographic coordinates 

may be insufficient for scientific purposes, however. Satellite ground positioning systems 

(GPS) provide latitude and longitude coordinates, i.e., two-dimensional positions. These 

scientists may need four or more dimensions to interpret data from the sensors. Altitude 

above or below sea level and altitude relative to the ground or water level are also 

needed. For example, it matters scientifically whether the sensor is collecting 

observations on the ground, 1m above the ground, or 10m above the ground – or 1m or 

10m below the water surface. CENS scientists who compare patterns of plant growth at 

different altitudes and light levels need to know if the sensor is above or below a leaf or 

other object of interest, or obstructed by a rock or a tree. Capturing these additional 

dimensions is often beyond the technical capabilities of the sensor network, and must be 

recorded by hand. 

 

Some of the sensor data “is generic, so it’s pretty much applicable to anybody’s study:  

plants, animals, climate, soils, insects –you name it” [S12]. Generic data, such as weather 

and environmental variables, usually provide context for experimental variables. 

Scientists “don’t necessarily study their weather at that [Site A], but maybe they’re 

studying some animal and they could look at how the weather pattern has changed and 

see there might be a correlation with this animal’s behavior. Having that environmental 
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data is just another sort of useful piece of information that a researcher could need. Other 

data I hope to eventually provide our researchers … is geographic data, like GIS, 

different layers of the [Site A], vegetation layers, and elevation stuff” [S17]. These 

“generic data” typically come from static or autonomous networks. For these CENS 

researchers, these data usually serve as baselines for comparing experimental variables. 

In other types of research, such as climate monitoring, these data may be of primary 

interest.  

 

4.2.2. Hand-Sampling in the Field 

Hand-sampling is the scientific activity that has no counterpart in technology research. 

Many of the CENS science teams collect physical samples of water, soil, or plants to 

accompany the sensing data. One team does “old traditional … methods of stream 

sampling. So I go out to site, take my water sample, do my little algal counts, take my 

algae samples and bring it all back to the lab and analyze it” [S1]. Another team that 

gathers hand samples analyses them to “get data that relate to what kind of classes of 

algae and cyanobacteria are present, in what sorts of abundances and things like that.” 

[S10].  

 

To take water samples, science researchers must judge the density and type of 

phenomena to determine which screens and dilutions to use. The principal investigator, 

an experienced marine biologist, is able to estimate parameters such as chlorophyll 

concentration by visual examination of the lake. He said he thought the lake was “about a 

10,” meaning 10 micrograms per liter, which turned out to be fairly accurate. When the 
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weather warms up the biomass concentration will increase by another order of 

magnitude, and HAB growth is off the charts. Chlorophyll concentration provides a 

rough estimate of plankton biomass. 

 

We observed the marine biology team perform a multi-step process to determine what 

they were finding in the way of organisms and concentrations and then to act on those 

results to determine their next round of sampling. They would take three samples at each 

site, observe the activity in one of those samples, and kill the organisms in the other two 

samples using formaldehyde and liquid nitrogen to preserve them for more detailed 

examination later in the campus lab. Their goal is to assess their samples at different 

levels of concentration. Based on the chlorophyll estimate, they used 200-micrometer 

pore screens to separate out the zooplankton and 20-micrometer pore screens to separate 

out the phytoplankton, which are an order of magnitude smaller. They only brought 

enough bottles to collect six samples at each of the three sites in this lake. Thus they 

needed to process the samples right away – filtering, petri dishing, freezing, etc, so that 

the bottles could be reused. They need multiple bottles for each sample because so much 

liquid is used for each process and to add redundancy for contamination.  

 

A graduate student participant proceeded to kill and preserve samples while the PI 

examined the third sample of zooplankton under the microscope. The PI and two of his 

graduate students all viewed the samples, then speculated about the types of limnological 

samples they had, pointing out various characteristics of the two predominant species. 

The 200-micrometer pore sample was packed with daphnia or daphnids, a very common 
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zooplankton that even we, the social scientists, were able to identify; they were very 

active and the phytoplankton in their digestive tracts were visible as a green line. In this 

sample, the biologists also found a much rarer type of zooplankton, a volvox with 

offspring visible within the super-structure that would need to be more closely identified 

in the lab. The 20-micrometer pore sample was given the same treatment by the PI and 

his graduate students. This sample had some green balls and some clear objects that 

looked to us like snowflakes but were clearly more meaningful to the marine biologists. 

These phytoplankton are apparently unusual, making them difficult to identify in the 

field, but the biologists narrowed the options to a couple of candidate families. The 

samples are marked with a collection time and location for future identification. Based on 

what was known about the zooplankton and phytoplankton families identified, the 

biologists decided that in the next steps, they would do a surface sample first and then 

profiles of samples at multiple depths for each location that samples are collected. 

 

4.2.3. Sensor placement 

Sensor placements are determined by research questions, technical capabilities of the 

sensor network, and local conditions such as variations in the depth of the lake. Sensors 

may descend no deeper than a half meter above the lakebed or else they will churn it up, 

clouding the instruments, which limits how much of the lake can be measured. During the 

day, the sensors placed at a half meter and one meter depth below the lake surface were 

of the most interest because the light in the water is strongest at the former and barely 

reaches the latter, making these the critical depths for tracking organism activity. At 

night, deeper sensors become more important as the organisms migrate down through the 
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water column. 

 

Based on the results of hand samples, the science team adjusted their sensing to take three 

samples spaced by eight hours, instead of four samples by six hours, because they now 

think that will be sufficient for their research questions. Because no algae were presently 

blooming, they could not observe algae movement in the lake. Measures from this 

deployment would serve as a baseline for later data collection. 

 

While the sensors and hand samples are measuring some of the same variables, the 

duplication of effort is necessary to minimize risk of sample contamination and to serve 

as a “ground truthing” mechanism. “Ground truthing” refers to the use of known 

measurement methods to test the validity of new measurement methods. In this case, 

contamination data collected via established hand-sampling techniques provided a 

“ground truth” that could be used to validate the contamination data that came from the 

sensors. 

 

4.2.4. Derivation and Analysis of Data 

Chemical and physical sensors yield measurements such as voltage; they do not measure 

the phenomena of interest directly. These voltages need to be converted into data by 

integrating the calibration coefficients captured before data collection, or, in some cases, 

the voltages are used as indicators and need to be interpreted as data through models of 

scientific phenomena and relationships. Our scientists offered a number of examples of 

how measurements are derived from sensor data through filters and calculations: “We’re 

interested in something which an instrument isn’t going to tell us, (such as) we’ve 
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reached a certain level … Dew point temperature is the temperature at which air gets 

saturated and begins to condense. … You’ve got to calculate it from other measurements. 

So there are a lot of things like that that you want the machine to tell you when something 

interesting happens, and you’ve got to give it a model of how you’re going to calculate 

what that is, so what kind of output do we want” [S3]. For the [Site B] arsenic project, 

“there’s no arsenic sensor, so we were looking at, let’s see, iron, ammonium, chloride, 

nitrate, just geochemical parameters, pH, oxidation reduction potential. So it’s just things 

to help us understand the chemistry” [S11]. 

 

Physical samples of water and soil also require processing and manipulation to yield 

useful data. Water samples are diluted to expected detection levels, for example. Soil 

samples must be centrifuged. Some hand samples are analyzed in the field with portable 

wet labs. Other samples are brought back to the campus laboratory for testing that 

requires specialized equipment or extensive processing. Some physical samples must be 

cultured for 24 hours or longer to yield useful data. DNA testing of samples for the 

presence or absence of living organisms requires expensive equipment and supplies. In 

another example, environmental scientists described to us how the EPA-defined protocol 

for measuring mercury in soil samples would take from 9 months to a year to complete. 

 

4.2.5. Interpretation and Trust in Data 

Scientists’ ability to interpret their data depends heavily on their trust in their instruments 

and in the accuracy of the data that the instruments yield. As noted in the above scenario, 

they calibrate their equipment in the laboratory and again at the field site. Most of the 
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science researchers (faculty, post-doctoral fellows, students) we interviewed reported that 

they needed to know as much about the instruments as possible to be able to interpret 

their data. An ecologist provided the richest quote on this point: 

Oh, I think you need to know everything that you can about the 

instrument. Yeah, so there’s hundreds of different ways of measuring 

temperature. If you just say, “The temperature is,” then that’s really low-

value compared to, “The temperature of the surface measured by the 

infrared thermopile, model number XYZ, is…” That means that I know 

that it’s measuring a proxy for a temperature. Rather than being in contact 

with a probe and it’s measuring it from a distance, I know that its accuracy 

is plus or minus .05 of a degree based on the instrument itself. I want to 

know that it was taken outside versus inside in a controlled environment. 

I’d like to know how long it had been in place and the last time since it’s 

been calibrated. That might tell me whether it’s drifted. You know, these 

are all of these pieces of the metadata that will hopefully automatically get 

associated with the fact that it’s a temperature point. [S12] 

 

Reconciling timestamps of individual sensors is a continuing problem in research that 

relies on sensor networks. In the early days of CENS, sensors often rebooted themselves 

after an electrical fault or battery decay, which would restart their clock. The inability to 

synchronize timestamps on data from individual sensors wreaked havoc on scientific data 

collection. Most of the battery and rebooting problems had been resolved by the time of 

these interviews, but the scientists remained sensitive to the issues of synchronization in 
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interpreting their data. This sensitivity was noted by a faculty scientist who described 

how his student had reliability issues related to timestamps from sensor data:  

Well “data” are the instrument feeds, … A lot of what [my student] is trying to do 

now is to get good reliable data out of these [instruments]. …The problem is it’s 

really been difficult to keep those stations running reliably….[My student] wanted 

the time all the same on each one, and the real time, and not just set to zero 

randomly. We’ve just got a lot of issues of data matching. [S3] 

 

4.3. Technology perspectives on data 

 

The research questions that computer science and engineering teams study in the field 

address the design, health, and efficacy of the sensing technologies. “In robotics people 

are most interested in the performance characteristics of the robot. So in our case we 

report in robotics journal papers that we can control the robot – meaning the robot based 

on its sensing can control itself to accurately go from one location to the other” [T18]. 

Computer science research on networking is “looking at the network itself. So instead of 

looking at ‘is this sensor bad,’ it would say ‘is this node not communicating very well,’ 

‘are the batteries low,’ ‘does it have a tree that’s blocking its communication’ kind of 

thing” [T6]. These types of research are highly iterative. Teams in the field are constantly 

debugging, whether to make robots go where they want them to go, to identify faults in 

networks in real time so they can be corrected, or to compensate for sensor limitations by 

collecting more hand-samples. 
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A continuing theme in the deployments, in the weekly CENS seminars, and in other 

venues such as NSF site visits and annual research reviews, was the amount of science 

that the technology teams had to learn to do their own research. While the need to learn 

sufficient domain knowledge to design instruments – whether in biology, chemistry, 

ecology, or public health – seemed to come as a surprise to many of them, they also 

appeared to welcome the challenge. Most were proud of how much science they had 

learned by working in CENS. The science teams learned more technology, though many 

were technophiles, eager to tweak technology in the field, or to construct their own 

devices when necessary. On balance, the science teams appear to have brought more 

technical knowledge to these collaborations than the technology teams brought science 

knowledge.  

 

4.3.1. Sensor Data for Technology Variables 

 

Computer science and engineering researchers’ initial concern was getting any data of 

scientific relevance at all: “at that point we weren’t looking at the quality of the data. We 

were just looking at the quantity of the data” [T6].  Another subject simply said, “a 

temperature sensor is a temperature sensor” [T5].  

 

Four types of data were identified in the interviews with technology researchers and in 

our participation in field deployments: First are observations of physical and chemical 

phenomena, sounds, and images of scientific phenomena; these data are provided to the 

scientific partners. Second are observations of natural phenomena used to actuate or to 
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guide the robotic sensors to a place in the environment. The sensor system could move 

autonomously toward brighter sunlit patches of earth or toward areas of water with higher 

concentrations of algae, for example. These first two categories of data are the same 

observations but are used for different purposes by the science and technology research 

teams. The third category is performance data by and about the sensors, such as the time 

that sensors are awake or asleep, the faults they detect, battery voltage, and network 

routing tables [T6]. A fourth category of data identified in the interviews and in field 

studies is proprioceptive data collected by the sensors – data to guide robotic devices 

such as motor speed, heading, roll/pitch/yaw, and rudder angle [T18].  

 

These four types of data played different roles in the technology research. Scientific field 

data are of interest to the technology researchers as a basis for their guidance or network 

algorithms. In robotics,  

one way you convince people that that’s the case is you take your 10 runs, 

here’s the commanded location, here’s where the robot actually ended up, 

and look, it’s close, right? And in a robotics experiment that would be 

called data. That’s purely from a robotics point of view. And in fact, the 

robot actually needn’t be doing anything. It needn’t be sampling the water 

at all because most of the sampling is based on being able to go someplace 

accurately, so you’d abstract away the task the robot is actually doing, and 

only really focus on how well it can navigate to get someplace. [T18] 
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An engineering staff member said that “Every piece of information that comes back is 

data, because I care about both the environmental data, which is what we’re collecting, 

but I also care about the system data, if you will, the sensor health data, those kinds of 

things, network status” [T4].  A computer science researcher studying the sensor 

networks distinguished between two types of data: (1) data from the sensors, and (2) 

system metrics. [T6]. 

 

Another robotics and engineering researcher was able to distinguish among three 

categories of data associated with his system:  

One would be data that our instruments acquire that is to be supplied to the 

user, that the [System A] will not observe, that it has archived or 

transmitted. But the [System A] will not observe, it’s not of interest to the 

[System A], other than it’s of interest to collect. Another class of data is 

collected by the [System A] and it also pertains to an environmental 

measurement, and it might be used to guide [System A], that is, to collect 

more samples or to reveal a sensing task that then must be executed. Like 

for example, [team members A, B, C] are pursuing our systems where an 

imager examines a forest floor and finds patches that are bright, and are 

regions where [System A] should be sent to collect high resolution data. 

…. There’s this third class of data which is really about the [System A] 

itself, which might be data associated with fault detection, with 

degradation, overall performance, energy usage and so on. Some of that 
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itself is acted on, and other data is archived and simply used to drive 

future design advances. [T15] 

As this last quote illustrates, the data types are used by the technology researchers 

in combination to evaluate system functionalities, facilitate additional data 

collection, and isolate problems. The validity of the sensor data, while useful in 

evaluating some sensor system functionalities, is irrelevant to questions about the 

effectiveness of the communication systems or the accuracy of a robot’s mobility. 

 

4.3.2. Sensor Placement 

Compared to the scientists, technology researchers were flexible about sensor placement.  

Technology researchers could gather their data if sensors were deployable in ways that 

the scientists might use them. Given the high failure rate of sensors in the field, scientists 

were very cautious in trusting the technology. Carrying sensor platforms on a long car 

ride often rendered them useless, for example. Technology researchers needed to take the 

equipment out of their labs to experience the pitfalls faced by their science partners. 

Technology-only deployments took equipment to the locations of scientific research and 

ran them in ways that would mimic deployments. These activities allowed the technology 

teams to perform more rapid hardware and software iteration cycles, making changes on 

the fly, because they did not need to support scientific practice concurrently.  

 

4.3.3. Derivation and Analysis of Data 

As noted above, the technology teams often “abstract away” the science data to focus on 

their technical findings. They are concerned, for example, with whether they can guide a 
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robot to the correct location for sampling, or whether they can model the fault patterns in 

a network. Issues of calibration, time-stamping, and error detection are paramount to 

these teams. 

 

The role of software “code” for the technologists is roughly parallel to the role of data for 

the science teams. The centrality of software in the data collection and interpretation 

process was more apparent in the deployments than in our interviews. We observed 

several deployments of a fixed robotic system for use in forest canopies, rivers, and lakes. 

To interpret the data from these experiments, it is necessary to know which of the many 

versions of code and hardware were used to generate them. Questions about versions and 

states of CENS’ data are closely linked with questions about versions and states of 

software. The developers use version control systems to maintain records of the states of 

their code. 

 

A river deployment of the fixed robotic system offered insights to how parameters are 

adjusted on site in response to field conditions. Most of the sampling was determined on 

site; the science team arrived with a general idea of their sampling plan (including desired 

sampling locations and methods), but knew from past experience that these plans would 

have to be adjusted based on the state of the field site. The technical team arrived without 

a sampling plan of their own beyond “piggy-backing” on the scientists' activities. A 

science graduate student conducted the first three sampling runs. In the first run, they set 

the horizontal and vertical intervals for the sensors, which determined the grid size in the 

water that would be observed, and set the dwell time (the length of time the sensors 
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captured data at a given location) to 60 seconds. In the second run, the intervals were held 

constant but the dwell time was halved. The third run had the same observation 

parameters, but started at a different point below the water, thus increasing sampling 

density overall. The principal investigator for the project then examined the student’s 

three transect profiles. For the fourth and final run, he changed several parameters. The 

horizontal and vertical intervals were both changed, the dwell time was much longer, and 

a sonar sensor also was attached to the system.  

 

4.3.4. Interpretation and Trust in Data 

The technology researchers are very conscious of the fact that data from scientific sensors 

are a means and not an end for their own research. Thus the sensors “are the payload the 

robot is carrying. And so if you think like a roboticist, sure, the robot is being built to do 

something, but your focus is on getting the robot to accurately do motion or avoid 

obstacles” [T18]. Roboticists abstract away the “real world” task. Like real estate agents, 

their concern is location, location, location. As another researcher put it, “the [System A] 

isn’t really concerned with any scientific objective” [T15]. 

 

In several deployments, we noted how technology researchers use scientific data to adjust 

their systems in real time. In most cases this is a manual process of assessing targeting 

results and making decisions, as described above with the varying parameters on the 

robotic system. In the longer term, a research goal is to create algorithms and systems 

that will create sampling paths adaptively based on one or two initial runs, a process 

known as adaptive sampling. 
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The scientists were in charge of the science and the technology researchers were in 

charge of the technology. The technology researchers had a much better idea of what data 

could be trusted because they had access to information about sensor and network health 

that influence the interpretation of sensor readings. The technology researchers were 

interested in the presence or absence of data, while the scientists were interested in the 

data as evidence of phenomena.   

 

4.4. Science and technology interdependencies 

 

Observations of physical, chemical, and biological phenomena are of interest to all of the 

researchers, but these data serve different research purposes for each team. Robotics and 

network researchers may be able to use the real-time data in the field, but most of the data 

require cleaning to be of full value, especially to the science teams. The technology teams 

devote considerable effort to reconciling timestamps from multiple sensors before 

passing those data to the science teams. For scientists to assess trends or to compare 

phenomena between places or over time, they need accurate records of exactly when and 

where an observation was taken. These interdependencies fall into several categories, 

which we illustrate with examples from our interviews and field deployments. 

 

4.4.1. Data Collection Interdependencies 

Science and technology teams go into the field together to gather scientific data and to 

test and evaluate hardware and software. The science teams also collect water samples to 
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calibrate, verify, and validate the sensor data. Sensor data can be gathered at much higher 

spatial and temporal granularity than can physical samples, hence the scientific teams 

gather far more sensor data points than water samples. 

 

In the four-day lake deployment described in the scenario, one of the primary robotic 

instruments failed to function. The science team had hoped to corroborate the data 

collected at the buoy right next to the robotic system node. As a result of losing the 

robotic system, the joint teams were unable to accomplish their three goals for the week: 

1) corroborate biological and buoy data, 2) test the system interfaces with the biologists, 

and 3) test a new algorithm to give the robotic boat location points that it could use to fill 

in data collection gaps between buoys.  

 

While the failed technology undermined the planned goals of the deployment, another 

exchange between the teams improved both short- and long-term data collection. The 

technology team was dropping the sensor kit to the lowest depth in the lake and then 

making sampling stops on the way up to the surface. The biologists pointed out that they 

would get cleaner data, literally, if the sampled on the way down rather than up. By 

starting at the bottom, they were churning the lakebed, which changed the characteristics 

of the sample. This lesson was applied in other CENS water deployments thereafter.  

 

4.4.2. Interdependent Knowledge of Instrumentation 

In our interviews and deployment observations, science and technology researchers said 

they needed to know as much about the technology as possible to interpret the resulting 



Who’s got the data?, Borgman, Wallis, Mayernik, JCSCW accepted, reformatted, 5 June 2012, page 50 of 77  

data. One scientist, in particular, felt that he needed to know much more about the 

instruments than he was being told by his technology partners:  

To be frank, for a lot of our engineers, if it works, that’s it. … And to me, 

‘No, it doesn’t work. You haven’t told me anything about that data point.’ 

How do I know that that difference between that data point and that data 

point is not due to an engineering issue, rather than due to a microclimate 

variation? Why are you confident that that measurement and that 

measurement are the same? It’s like, ‘Well, it’s still working.’ That’s not 

the answer I want to hear. That’s the answer I get. [S12] 

Similarly, technologists rely on scientists to help them interpret the output from 

technical systems. In the following exchange, a technologist explains how 

calibration information produced by scientists is critical to understanding 

instrument output:  

Q: What do you need to know about the instrument to interpret the data? 

T5: I just need calibration data, like in chlorophyll, what quantity of 

chlorophyll produces what voltage output per se, or temperature or wind 

speed or whatever. 

Q: Do you find that that varies over time, those calibration equations? 

T5: It depends on the instrument. Some instruments are more stable than 

others. 

Q: How do you get the calibration data? 
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T5: The biology technician gets an algae sample which she characterizes in the 

lab and dilutes to different dilutions and we do direct readings.  

 

4.4.3. Data Cleaning and Handoff 

Until data are verified and corrected, they are difficult to interpret. Research-grade 

equipment is often unreliable, wreaking havoc on data of interest to both scientists and 

technology researchers. Sensors failed in predictable and unpredictable ways, whether 

suddenly, gradually, or erratically. Clocks drifted, and sensors sometimes would reboot 

themselves, resetting the clock each time. While the worst of these problems had been 

resolved by the time of these interviews and field deployments, measurement reliability 

remained a concern and a research issue. The accuracy of space and time measurements 

depends on GPS technology, on the ability to triangulate signals between sensors, and on 

clocks in sensors.  

 

The technology teams would clean data by adjusting measurements to observed or 

predicted calibration curves and by reconciling differences between instruments. As a 

result, scientists might have to wait some days for their data, and trust the skills and 

judgment of the people between them and their data. One scientist was concerned about 

both of these matters:  

Even when my student, who is the one I really interact with, when I've asked him 

for something I know that then he has to wait until [Prof. B’s student] has time to 

do it. What would be great would be if he could just… when the data came in, he 

could just use it. As it is now, he can't just use it. He has to wait. And [Prof. B’s 
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student] is like the gatekeeper. He's the only person who knows how to do that 

right now and can do that [S20].   

The graduate student of this scientist expressed a similar concern about the bottleneck 

that occurs, but also added a concern about the quality of the work: 

[Prof. B’s student] usually takes it from there and futzes with it in MATLAB, 

because really synching all of the sensors is a chore. And that’s to put it lightly. 

And he does an excellent job with it, but it’s still a concern of mine, actually. 

Because I’ve received data sets that I’m sure are not synched properly [S1]. 

 

In addition to synchronization problems was the concern as to whether outliers were 

sensor artifacts or the result of actual phenomena. By increasing spatio-temporal 

resolution, the scientists were navigating uncharted territory. The models the scientists 

used to interpret their data were calibrated for lower-resolution data collection, but what 

was actually happening may not be so smooth. Disagreements arose over whether 

individual data points were “real” or not. Similarly, the determination of what were the 

“interesting” features of data involved an iterative exchange between the scientists – who 

understand the phenomena being studied – and the technologists, who understood the 

instrument and statistical methods used to derive data: 

 

Q: This idea of having the static nodes kind of identify something that’s 

potentially interesting for the actuated sensor robot, this idea of 

"interesting" seems to be kind of a thorny issue in and of itself. 
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T18: Yes it’s a big issue.  

Q: Is that something that you use the biologists for, to tell you what could 

potentially be interesting? 

T18: A lot, absolutely. 

Q: Okay. But also using statistical methods… 

T18: Exactly. So one way to do it is to say, well you look for patterns, and the 

other way is to do a combination of providing statistical tools and then 

getting some insight from people who are interested in measurements, 

biologists. And often in some cases, they’re able to articulate exactly what 

is interesting, and in some cases they’re sort of in the mode where they 

say, well what can your network discover, and then I can decide whether 

it’s interesting or not. So there’s some room for both. 

 

Such exchanges exemplified the tensions that arose when one set of partners had 

difficulty understanding or assessing the veracity of data produced by the other set. The 

technology researcher learned what phenomena or patterns his partners in biology would 

value, and combined that knowledge with his own expertise in robotics and statistics. 

 

5. DISCUSSION 

 

The science and technology teams in the Center for Embedded Networked Sensing go 

into the field together with mutual interests in gathering more scientific data, at higher 
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sampling rates and finer granularity, at more locations, and with greater ability to adapt to 

field conditions than is possible with manual methods. The technology teams endeavor to 

learn enough about the science domain to collect data that are appropriate and accurate to 

scientific standards. The science teams endeavor to understand the technology well 

enough to assess the scientific accuracy of the data and to assist their technology partners 

in improving the scientific efficacy of their systems. Beyond these commonalities, their 

goals diverge. The scientists need the technology to gather observations of greater 

volume, variety, granularity, and complexity. Their scientific interest is to find patterns in 

their data. The technologists need domain problems of sufficient complexity to test their 

algorithms and code for actuation, guidance systems, fault detection, and networking. 

Each team’s data is context to the other. Despite these interdependencies, the data are 

managed in ways that limit the ability to recombine them for later reuse. 

 

We addressed four research questions spanning computer-supported collaborative work 

in science and technology, exploring concepts of data, interdependencies of practice, and 

tensions within and between teams, as discussed below.  

 

5.1. What are the “data” in science and technology research collaborations? 

We identified four categories of data that are gathered or generated from these sensor 

network deployments in the environmental sciences, as illustrated in Figure 2. The data 

types shown in the figure are examples of the many indicators that can be obtained from 

sensors and from physical sampling.  
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Figure 2: CENS Data Types from Joint Science-Technology Research Deployments. 

Based on figure that first appeared in Borgman, Wallis & Enyedy (2007). 

 

In the center of the figure are the sensor-collected scientific data; these are the objects 

that first came to mind as “data” in our interviews with scientists and technologists alike. 

In the bottom set are the hand-collected scientific data. These are the physical samples of 

water, plants, and organisms that scientific teams collect. Some of these data are used to 

calibrate or corroborate the sensor data; some are used independently. At the top right are 

the sensor-collected performance data. Performance data are used to reconcile temporal 

and other indicators on the sensors so that observations can be matched and compared 

accurately. Technology teams use these data to improve the technology, to study network 

processing, and to assess the characteristics and quality of other types of data. 

Performance data are of central interest to the technology teams and of indirect value to 
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the science teams as context. The set at the top left of Figure 2 is sensor-collected 

proprioceptive data. These are used to guide mobile sensors on cables, boats, submarines, 

and other devices. The technology teams also use these data to refine their code and to 

clean and verify the sensor-collected science data. Once the scientific data are released to 

the science teams, the technology teams may keep or discard the sensor-collected 

performance and proprioceptive data.  

 

5.2. How do concepts of “data” vary by purposes of research activity? 

The four sets of data illustrated in Figure 2 serve two distinct purposes. To the scientists, 

data from the sensors and from the samples are evidence. They are seeking patterns in 

their observations of the natural world, making comparisons over time, location, and 

conditions. In the harmful algal blooms example, marine biologists seek to identify the 

conditions under which such blooms occur, and ultimately to prevent them. To do so, 

they need observations before, during, and after a bloom.  

 

To the technologists, the data from sensor networks are a means to test and to improve 

their software code, algorithms, and instrument configurations. Their goals are to design 

and construct instruments that can help to reveal such patterns in the natural world. They 

are concerned with accurate and consistent measurements and with the ability to locate 

and respond to targets. While the science problem motivates their research problem, they 

can abstract away the science to accomplish their goals. If their software code can guide 

their robotic sensor to a target object quickly and accurately, while avoiding obstacles, 

their research is successful. The performance and proprioceptive data they generate in a 
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field study are indicators to be used for refining the code and the instruments. The code 

and instruments are the scholarly products of their research, rather than the data as 

evidence of scientific phenomena. 

 

In sum, what is data to one team is context to the other. Two types of information 

gathered in field deployments – the sensor-collected scientific data and the physical 

samples – are data to the science teams, and the other two are context. Conversely, the 

information that is context to the science teams – the performance and proprioceptive 

data – are data to the technology teams, while the other types of data are context to them. 

The technology researchers are able to abstract away the scientific domain information in 

using those data to guide their sensing systems. The physical samples may also be viewed 

as context for them, but they have little direct involvement with those data. 

 

5.3. What roles do data serve within and between science and technology 

collaborations? 

Data remain useful as evidence of phenomena to the scientists over the long term. In 

contrast, the technology researchers rarely return to the sensor data, as these data serve as 

indicators of the effectiveness of their technology rather than as evidence, per se. The 

science teams keep their observations in some form indefinitely. They may or may not 

keep the physical samples and may or may not keep multiple states of the derived data, 

but in all cases the scientists claimed to keep the final, cleaned datasets. The science 

teams maintained their data for their own future uses, whether as points of comparison 

across time and sites or for calibration purposes. Most scientists were willing to share 
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their data, at least in principle, although few contributed their data to repositories or 

otherwise posted them. Our findings on sharing these data are reported elsewhere 

(Borgman, Wallis & Enyedy, 2007) and are a continuing line of inquiry (Borgman, 

2012). 

 

The technology teams were mixed in their choices of what data to maintain for the long 

term. Those who worked mostly with simulated data saw little reason to keep them. 

Those who were concerned with patterns of data flows in the network, network health, 

and modeling of sensor data had more reasons to maintain data from the field 

deployments, at least for awhile. These data did not appear to have the long-term value 

accorded to scientific observations, even though they inform the interpretation of those 

observations.  

 

The research methods employed by CENS’ joint science and technology teams reflect all 

four salient features of ecology research identified by Bowen and Roth (2007). In all the 

deployments observed, research design was highly emergent. Teams went into the field 

with stated goals, but finalized their data collection plans on site. While the tools were 

rarely developed in situ, they often were adapted to the local context with locally 

available materials. Keeping track of which sensors were used in what location was 

essential to later interpretation of the observations. Some sensors were “off the shelf” 

commercial grade, others were research-grade technologies developed by CENS 

researchers, and some were fashioned in the field out of sensor parts, aluminum foil, zip 

ties, duct tape, and other objects. Ecology studies remain difficult to replicate due to the 
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dynamic nature of field conditions, but the ability to obtain consistent data from 

instruments makes these studies more replicable. Social interactions between members of 

the community also have great significance, as Bowen and Roth found. Data collection is 

iterative, with team members consulting each other to determine subsequent activities. 

We observed stochastic data collection activities within and between the science and 

technology teams. The choice of action depended directly upon the assessment of the 

prior action, or on several prior actions.  

 

While all four types of data shown in Figure 2 are obtained concurrently in deployments, 

their control is independent. The science teams control only their own physical samples 

and the derivations thereof. The technology teams control the other three sets of data. 

Performance and proprioceptive data are used to clean the scientific data from the sensors 

before releasing the cleaned data to the science teams. Once that process is complete, the 

performance and proprioceptive data may or may not be kept by the technology teams. 

Thus, an open question is whether curating the cleaned scientific sensor data and the 

sample derivations are sufficient for scientific replication and reuse. These data are the 

evidence reported in scientific publications. Subsequent reproducibility of the research is 

likely limited to the cleaned data. Rolling back the sensor-collected data to prior states 

will rarely be possible, due to the divergence of the datasets and to differential practices 

for retention of the four types of data. 

 

In our decade of studying data in CENS, we continue to struggle with questions of what 

are the data and which of those data should be curated. Our ambitious plans to construct 
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a comprehensive data repository that would grow along with the Center were undermined 

by the diversity of the data, the lack of standards for data description, and the lack of 

infrastructure to support data curation (Wallis, Mayernik, Borgman & Pepe, 2010). The 

core of the challenge, as is evident from the findings reported here, is that “the data” are 

of at least four different types, each with its own considerations for curation. The physical 

samples are the only ones that have evidentiary value independent of the other three 

types. Even those samples are more valuable when corroborated with scientific data from 

the sensor networks. These two categories of data are observations, in the usual scientific 

sense (Long-Lived Digital Data Collections, 2005). The other two categories, sensor-

collected performance and proprioceptive data, are indicators that are used to interpret the 

scientific data and to improve the code, algorithms, and physical instruments. 

 

5.4. What can be learned about collaborative work by following the data? 

The interdependencies of the science and technology teams resulted in at least three  

tensions in collecting and using data. The first was particularly evident in the early stages 

of CENS: the technology teams were focused on whether any data were flowing from the 

sensors, while the science teams were concerned with the quality of the data. These 

differences were most apparent around seemingly simple measurements such as 

temperature. While a technology team member might casually remark that “temperature 

is temperature,” the scientists held such measurements to far higher standards. They 

wanted to know precisely the conditions and instrumentation being used to assess 

temperature. At one research site, the scientists were running parallel tests of three 

temperature sensors for a full year to determine their accuracy. 
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The second tension related to the different research rhythms of the collaborators. 

Scientists were willing to work with technology teams to develop useful technology for 

their own purposes. Once stabilized, they wanted to use the sensor instruments and 

networks for longer periods of time, ranging from months to years, to assure comparable 

observations. The technologists, however, usually were more interested in developing the 

next new technology than in “hardening” the prior ones. These differences in the rhythms 

of collaboration, where partners operate on different time scales, often plague joint 

ventures (Jackson, Ribes & Buyuktur, 2010). 

 

A third tension arose around the mediation of access to scientific data by the technology 

researchers. Sensor data flows into the computers of those who control the sensors, which 

usually are the technologists. Once the data were collected in the field, the technology 

teams would reconcile time stamps and location information for the observations before 

releasing the dataset to the science teams. This task usually was delegated to a graduate 

student. Thus the science team could not acquire the data immediately; they might have 

to wait some days or weeks while the data were being cleaned. Sometimes two people 

might be between the data acquisition and the investigator – a person in the field who 

managed the sensors and another who cleaned the data. Scientific investigators were 

understandably concerned about the accuracy of the synchronization processes and the 

data handling. As evidenced in several of the interview quotations reported above, 

scientists were not always sure they were getting the full story or the full data from their 

partners. After a particularly devastating data loss, when the failure of sensors in a 
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deployment on a distant continent was evident only upon returning home, much more 

attention was paid to assessing sensor and network health in real time. In the latter period 

of our field observations, especially after more statisticians were involved in 

deployments, data could be viewed in real time. Trust in the data appeared to improve 

accordingly. 

 

The interdependencies between the science and technology teams also reflected all three 

types identified by Shrum et al. (2007). In some cases, deployments used commercial 

grade sensors designed for other applications to support scientific inquiry. In other cases, 

the technology itself was adapted in support of science. In many cases, especially with 

the robotic instruments we observed, the technology teams were designing and deploying 

novel instruments in support of the science teams’ goals. To the extent that standard 

protocols for data collection existed, they were the science teams’ practices for gathering 

and analyzing physical samples. The sensor-collected data varied by instrument, and each 

team made its own choices for what, how, and where the data were to be kept. While 

Collins (1975) found that collaboration was richest after data collection, when 

participants explore the meaning of data and phenomena, we found the opposite. The 

science and technology teams took their data to their respective labs to analyze 

independently. This difference is likely due to Collins’ focus on intra-disciplinary 

collaborations between physicists, whereas CENS collaborations are highly 

interdisciplinary. 
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6. CONCLUSIONS 

 

Science and technology have been interdependent since Galileo’s time. Today, few 

individuals have Galileo’s talents as both instrument builder and scientific observer. The 

requisite expertise is spread across teams of scientists and technology researchers, each 

learning enough about the other’s domain to address common problems together. As 

teams grow in size and technology increases in complexity, the interdependencies 

multiply. However, those dependencies may be deeply buried in the minutiae of complex 

systems and research methods. Teasing out those relationships may require many years of 

study, as we report here.  

 

From our nuanced descriptions of research activity, we draw five conclusions for 

cooperative work and for science policy. These are based on the interdependencies of 

scientific and technology research practices.  First is that “data” is a complex notion, and 

one that is not well understood even by the parties creating and using them. Data, like 

beauty, exist in the eye of the beholder. Researchers give only partial accounts of their 

data when asked. What one team or individual considers to be data may not be 

recognized as such by another. Concepts of data vary considerably by research activity 

and by individual. One consequence is that data cannot be managed and shared as a 

“black box.” The box must be pried open and its contents examined, under a microscope 

if necessary, to determine what data exist in a collaboration, how they are used, and how 

they are managed or should be managed. 

  



Who’s got the data?, Borgman, Wallis, Mayernik, JCSCW accepted, reformatted, 5 June 2012, page 64 of 77  

Our second conclusion is that science and technology researchers depend upon each 

other’s data for interpretation of their own data.  What are data to one researcher are 

context to another. The relationship is reflexive.  Scientists use the sensor network data 

produced by the technology teams to interpret and to corroborate evidence gathered from 

physical samples of water, soil, sand, or other matter. The scientists thus depend upon the 

technology researchers to obtain useful data. Conversely, the technology researchers need 

the scientific data to validate their algorithms and to interpret their results. Without the 

scientists, the technology researchers lack real world problems to study.  

 

Third, data curation practices are not consonant with the interdependence of the teams on 

each other’s data. Of the four categories of data we identified, only one was deemed 

worthy of preservation by all parties: scientific data from the sensor networks. These data 

are evidence to the scientists and are context to the technology teams. The other three 

categories of data are managed separately, if they are kept at all. The scientists keep 

records of data derived from hand-collected samples, whether or not they keep they 

physical materials. The technology researchers use sensor-collected proprioceptive and 

performance data such as system health, guidance accuracy, speed, and direction for 

adjustments in the field, but often discard them after the deployment or after the paper 

reporting their findings was written. Simulated data used to develop the technologies 

were not of long-term interest. Technology researchers do keep and maintain their 

software, however, and may submit them to a code repository for public reuse.  
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Our fourth conclusion is that interdependent field research of the type described here 

tends not to produce data that are easily reusable, particularly for outside researchers. 

Neither the scientific nor the technological research data can be interpreted without the 

other, yet these datasets are quickly separated, never to be reconciled again. As a result, 

none of these data remain useful beyond the teams that generated them. Even those teams 

may not be able to reuse them, given the difficulty of obtaining the context data necessary 

for interpretation, which often are held by others. Reconstructing such data sets for the 

purpose of reuse would require extensive communication with the researchers who 

collaborated to collect those data. A corollary of this conclusion is that interdependent 

research studies of this type are difficult, if not impossible, to replicate.  

 

Lastly, successful collaboration depends upon each party working in good faith to capture 

the best possible data to the standards of their partners. The scientists need to trust their 

technology partners’ ability to obtain scientifically accurate data. The technology 

researchers depend upon scientists’ ability to document accurately their use of the 

technology.  When these elements were not in place, as they sometimes were not, the 

collaboration weakened. Technology researchers did not always respect scientific 

standards for instrumentation. Scientists sometimes moved or adjusted sensors without 

recording those changes, which made the sensor records difficult to interpret.  

 

Overall, we found that following the data provides a rare set of insights into science and 

technology research collaborations, with significant implications for data curation and 

scientific policy.  Researchers are often unaware, or minimally aware, of what their 
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partners consider to be valid and reliable data. While such tensions are not new, they take 

on new implications in an age of data management, data sharing, and pressure to make 

research results more replicable. For data to be sharable and reusable, they must be 

interpretable. We find that the context necessary for interpretation is quickly lost in these 

partnerships. Few of these data are made available in public repositories or otherwise 

released. Technological advances in scientific data collection do not necessarily lead to 

advances in the management of those data. Until partners begin to recognize the value in 

each other’s data for their own purposes, and for the collective good, the situation is 

unlikely to change. Much more research is needed on how data are created, conceived, 

handled, managed, and curated in multi-disciplinary collaborations to inform science 

policy and practice. 
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