
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Creating portable and efficient packet processing applications / Morandi, Olivier; Risso, FULVIO GIOVANNI OTTAVIO;
Rolando, Pierluigi; Valenti, S.; Veglia, P.. - In: DESIGN AUTOMATION FOR EMBEDDED SYSTEMS. - ISSN 0929-5585.
- STAMPA. - 15:1(2011), pp. 51-85. [10.1007/s10617-011-9072-8]

Original

Creating portable and efficient packet processing applications

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s10617-011-9072-8

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10617-011-9072-8

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2381917 since:

Springer

Noname manuscript No.
(will be inserted by the editor)

Creating Portable and Efficient Packet Processing Applications

Olivier Morandi · Fulvio Risso · Pierluigi
Rolando · Silvio Valenti · Paolo Veglia

Received: date / Accepted: date

Abstract Network processors are special-purpose programmable units deployed in many
modern high-speed network devices, which combine flexibility and high performance. How-
ever, software development for these platforms is traditionally cumbersome due both to the
lack of adequate programming abstractions and to the impossibility of reusing the same
software on different hardware platforms.

In this context, the Network Virtual Machine (NetVM) aims at defining an abstraction
layer for the development of portable and efficient data-plane packet processing applica-
tions. Portability and efficiency are achieved altogether by virtualizing the hardware and by
capturing in the programming model the peculiar characteristics of the application domain.

This paper validates the NetVM model, demonstrating that the proposed abstraction
coupled with a proper implementation of the NetVM Framework is able to provide gener-
ality (i.e., capability to support a wide range of applications), software portability across
heterogeneous network processor architectures, and efficiency of the generated code, often
exceeding the one obtained using state-of-the-art compilers.

Keywords Network Virtual Machine · Network processors · High-speed packet processing ·
Network code portability

1 Introduction

During the last decade, the increasing requirements in terms of flexibility for the design of
high-speed networking devices have pushed the Industry towards the development of net-
work processors. These programmable devices usually provide several concurrent execution
units with instruction set architectures specifically targeted to packet processing, and inte-
grate special-purpose hardware coprocessors for offloading computationaly intensive func-
tionalities (e.g. hashing). Even though such devices may not be able to achieve the same

O. Morandi, F. Risso, P. Rolando
Department of Computer and Control Engineering, Politecnico di Torino - ITALY
Tel.: +39-348-723-06-76
E-mail: {olivier.morandi, fulvio.risso, pierluigi.rolando}@polito.it

S. Valenti, P. Veglia
TELECOM ParisTech, Paris - FRANCE
E-mail: {silvio.valenti, paolo.veglia}@enst.fr

2

level of performance of custom-designed ASICs, they guarantee more flexibility thanks to
their programmability.

However, network processors have traditionally their Achilles’ heel in the lack of a
proper programming infrastructure. In order to achieve maximum performance, program-
mers have to deal with low-level hardware details, e.g., by explicitly accessing special-
purpose coprocessors, or by manually partitioning program sub-tasks across the many avail-
able execution units. In fact, although vendors provide Software Development Kits (SDKs),
these either require the use of an assembly language for some specific functions, or, if some
C language flavor is available, hardware units must still be explicitly accessed through ad-
hoc primitives and functions, denoting an obvious lack of abstraction. Due to the extreme
variety of architectures (which span from symmetric multi-processing platforms like the In-
tel IXA family [16] and the more recent Cavium Octeon [28] network processors, to systolic
array dataflow processors like the Xelerated X11 [33] and the Bay Microsystems Chesa-
peake [21]), the reuse of the same software on different hardware platforms (often even
on other processors of the same family) becomes almost impossible. Applications devel-
oped and optimized for a specific Network Processing Unit (NPU) must be redesigned from
scratch upon being ported to a different processor, undergoing once more the entire devel-
opment cycle.

Given such high heterogeneity, the problem of defining a common programming model
able to provide generality (i.e., capability to support a wide range of applications), porta-
bility (across a wide range of network processor architectures) and efficiency is particularly
difficult. Current solutions generally focus on one or two of these aspects, but nothing exists
that looks at the problem in a comprehensive manner. Particularly, generality and portability
are usually not taken into account, since proposed solutions are mainly targeted to specific
hardware architectures or application classes.

In such a scenario, the Network Virtual Machine (NetVM) [3][2] aims at applying the
“write once, run everywhere” paradigm proposed by the Sun Java Virtual Machine [19] and
the Microsoft Common Language Runtime [11] to the field of network processing, where
performance is a key factor. The NetVM defines a virtual computing platform, based on a
data-driven programming model, in which hardware is virtualized, thus hiding the quirks of
the target architecture from the programmer.

One of the main objections to this approach is that the adoption of a hardware abstrac-
tion layer, while enabling portability, would result in a substantial overhead, wasting the
benefits of using special-purpose and optimized hardware architectures. In this paper we
demonstrate that this claim is not necessarily true in the case of a virtual machine specif-
ically designed for packet processing applications, such as the NetVM. In particular, the
NetVM model exposes a set of key features that, besides making it a good target for dif-
ferent high-level languages, enables both portability and efficient feature mapping, at least
on four target platforms tested, namely the Intel x86 and x64 general purpose architectures,
the Cavium Octeon [28] multi-core processor and the systolic-based Xelerated X11 [33]
network processor.

In order to support our vision, we designed and implemented the NetVM framework,
whose main component is a multi-target optimizing compiler implementing the NetVM
model. Optimizations, crucial for performance, operate on two different levels: first an
architecture-independent module removes redundancies and useless computations, then a set
of target-specific backends performs the actual mapping between the NetVM model and the
target machine, possibly exploiting the special hardware features available on the selected
NPU. Experimental results will show that NetVM applications can be efficiently executed,

3

without any change, on the three platforms of choice, with performance often better than
state-of-the-art compilers and manually optimized code.

This paper is structured as it follows. Sec. 2 summarizes the related works, Sec. 3
presents the NetVM model and Sec. 4 outlines the implementation of the framework and
the general optimizer module. Even if part of the NetVM framework, the backends repre-
sent a key component for achieving the wanted objectives, and hence are presented in Sec. 5.
Experimental results are reported in Sec. 6 and conclusions are drawn in Sec. 7.

2 Related Works

Recent years have seen the problem of creating a suitable framework for programming net-
work processors being widely investigated.

Click [25] is a framework for implementing a modular router by interconnecting dif-
ferent packet processing modules (under the form of C++ classes) that implement specific
functions (e.g., packet classification, queuing, scheduling). The interconnections between
modules create a directed graph that represents the flow of packets inside the router. NP-
Click [29] extends the Click programming model and maps it on Intel IXP network pro-
cessors, showing that the level of abstraction introduced makes the application development
easier and enables an efficient mapping on the Intel IXP1200 special-purpose architecture.
Memik et al. [20] demonstrate the advantages of a modular structure in network process-
ing applications and describe a system, called NEPAL, which is able to extract the consti-
tuting modules of a sequential network-processing program for mapping them on parallel
execution units. PPL (Packet Processing Language) [27], defined by IP Fabrics Inc., is a
declarative language for programming network processors of the Intel IXA family. A virtual
machine executes PPL programs on the target platform and maps high-level constructs onto
the available hardware features, enabling the transparent exploitation of parallel process-
ing engines. Wagner et al. [31] propose a C compiler for an industrial NPU, showing that
exposing low-level details in the language through compiler-known functions allows an effi-
cient exploitation of the available hardware features without relying on assembly language.
PacLang, by Ennals et al. [10], is a framework that provides application designers with a
simple high-level language able to automatically partition packet processing programs on
parallel execution units and that works on Intel IXP NPUs. Shangri-la [8] follows a more
general approach and consists in a domain-specific programming language named Baker and
a profile-guided compiler infrastructure, which is able to optimize and map an application
onto Intel IXP NPUs. The Network Runtime Environment (NRTE) [32] is a runtime sys-
tem implemented as a C library, aiming at providing a network programming environment
for multicore NPUs. The programmer is in charge of defining a set of thread-safe packet
processing functions that the runtime environment will map onto the underlying platform,
possibly replicating some of them across the available hardware threads.

These approaches generally fail to provide a comprehensive framework for achieving
both efficiency and portability across heterogeneous architectures. In particular, solutions
targeted to a specific platform focus on performance and therefore tend to expose a set of
primitives tied to the characteristics of the hardware in high-level programming languages,
resulting in a lack of abstraction. For instance, programming models targeted to multi-core
network processors often include explicit primitives for task/thread synchronization. On the
other hand, others may provide means for directly accessing hardware coprocessors, for
example through library functions and APIs, or language intrinsics (e.g., compiler-known
functions). As such, programmers are forced to structure their software according to the

4

RegEx

coprocessor

Packet memory

Info memory

Data path

. . .

Processing

Unit

Data

Memory

StackLocals

Code

Memory

Packet memory

Info memory

Processing

Unit

Data

Memory

StackLocals

Code

Memory

PacketPacket PacketPacket

NetVM

Lookup

coprocessor
StringMatching

coprocessor

NetIL Bytecode NetIL Bytecode

NetPE NetPE

Input

Socket

Output

Socket

Input Port Input PortOutput Port Output PortExchange Buffer

Fig. 1 NetVM Architecture

execution model supported by the hardware, e.g., by defining the appropriate task/thread
partition and dealing with synchronization issues explicitly. In other words, these models
are too tightly tied to a target architecture and their porting to another platform may be
too costly if not impossible (e.g., thread synchronization cannot be mapped on a systolic
array processor). Vice versa, approaches that are more application-oriented usually tend to
completely hide the details of the underlying hardware in order to enable software portabil-
ity. However, these proposals lack in flexibility, being targeted towards a specific class of
applications only.

In conclusion, to the authors’ knowledge, there exists no approach to packet processing
software development which is able to simultaneously achieve generality, portability and
efficiency.

3 The Network Virtual Machine

The NetVM can be considered as a system composed of the combination of a programmer-
visible model and set of APIs and its implementation as a portable framework. Both portions
are critical to our design goals: the definition of a powerful yet easy-to-use programming
model makes the NetVM flexible and generic enough to support multiple kinds of packet
processing applications without requiring exceptional programmer efforts, while an opti-
mized implementation is required to ensure portability of NetVM applications across a wide
range of platforms and provide high performance.

The issues of designing a good programming model and providing a suitable implemen-
tation are intertwined. If the model is too rich or offers complex features then the under-
lying implementation will have to be complex as well in order to provide all the required
functionality; besides, simple hardware platforms might prove unable to provide support for
every feature without incurring in excessive emulation overhead. On the other hand, a model
too basic presenting only low-level abstractions would make programming harder and also
increase the difficulty required for implementing an adequate compiler as less semantical
information is conveyed. As it is often the case in software engineering, a delicate balance
must then be achieved between the previous two conflicting aspects; the rest of this sec-

5

tion presents the NetVM programming model and the interactions of its programmer-visible
components and describe how its design goals are achieved.

3.1 Programming model

The foremost design requirement for the NetVM programming model [3,2] is to provide
the programmer with suitable abstractions for developing packet processing applications.
In order to introduce this model we adopt a bottom-up approach, presenting the basic pro-
cessing components first and then moving up in order to explain how we can create a rich
application out of them.

3.1.1 Network Processing Element

The basic building block of any NetVM application is the Network Processing Element
(NetPE). NetPEs are packet-oriented processors and their work units reflect this concept by
containing a single network packet and associated ancillary information in the form of an
Exchange buffer (detailed in Sec. 3.1.2).

NetPEs are programmed in a mid-level 32-bit stack-based language called Network In-
termediate Language (NetIL); as an example, Fig. 2 presents an example of NetIL code and
its x86 assembly counterpart referred to a simple filter that checks if the ethertype field of
an Ethernet frame is equal to 0x0800 (i.e. if the Ethernet frame contains an IP packet).
The adoption of a mid-level assembly language helps making the NetVM general enough
to be independent from any specific high-level language. In fact, NetIL can be an excellent
target for several high-level languages, ranging from declarative (e.g., rule based such as
NetPFL [24]) to imperative ones (e.g., C).

NetIL is targeted towards data-plane network applications and hence it includes several
network-oriented primitives while leaving other functionalities (e.g., floating point) out of
the instruction set. Some examples can be found in bit manipulation instructions such as
Cyclic Redundant Code (CRC) and hashing computations. Furthermore, some high-level
operations widely used in data-plane applications are captured by the NetIL assembly in or-
der to facilitate their effective mapping on the actual hardware architecture. The most notable
example is represented by the multi-way branch (modeled after the switch-case construct of
the C language that uses the value of a variable to select the target jump among several pos-
sible destinations), which is captured by a set of specific NetIL instructions. Finally, some
even higher-level constructs are possible through coprocessors, which will be presented in
Sec. 3.1.3.

In contrast to traditional register-based languages, NetIL is stack-based, following the
design of most contemporary virtual machines (e.g., the Java Virtual Machine and Microsoft
Common Language Runtime). Although stack- and register-based languages have equiva-
lent expressiveness and although programs for the latter are likely to be more readable, the
former have some practical advantages [30]. Among the others, stack-based languages can
be considerably simpler to verify, e.g., checking programs for correct variable usage can
be performed by statically emulating stack operations instead of tracing variable uses and
definitions across multiple, potentially complex code paths. Furthermore, the compactness
of the binary representation is improved because the implicit presence of an operand stack
avoids specifying locations for source and destination operands.

6

; Code Segment
segment .push
.maxstacksize 10 ; define the maximum stack depth

pop ; discard the "calling" port
push 12 ; push the ethertype offset on the stack
upload.16 ; load 2 bytes at previous offset from packet memory
push 0x800 ; push 0x800 (i.e., ip) on the stack
jcmp.neq discard ; if not equals jump to discard, otherwise...
ret 1 ; return 1

discard:
ret 0 ; return 0

ends

(a) NetIL code for filter “ethernet.ethertype == 0x0800”

; Packet buffer base in ecx
001 cmp word ptr [exc+12], 0x8 ; load packet_buffer[12:2]
002 jne 005 ; if not equals jump to return 0
003 mov eax, 1 ; move return code in EAX
004 ret ; return 1
005 mov eax, 0 ; move return code in EAX
006 ret ; return 0

(b) Corresponding x86 code for filter “ethernet.ethertype == 0x0800”

Fig. 2 Comparing NetIL and x86 code

3.1.2 Memories

NetPEs carry a set of different, architecturally-visible memories which is structured to re-
flect the need of packet processing programs for accessing the current network packet, pass-
ing data to downstream modules (i.e., other NetPEs), and storing temporary and persistent
information separately.

The first two memory types are Packet memory, which stores incoming packets, and Info
memory that stores the execution context associated to a packet and therefore flows along
NetPEs with the packet itself. Programmers can use this separate area to store informa-
tion that should be consumed by later processing elements, e.g., a module can compute the
starting offset of the TCP payload, while a following module can look for specific patterns
starting at that location. Packet memory and Info memory taken together are called Exchange
buffer and (as the name suggests) they represent the main mean of internal communication
between different NetPEs running within the same virtual machine instance.

The lifespan of an exchange buffer is directly tied to the packet it carries: after a packet
is either forwarded outside the NetVM or dropped its execution context is destroyed as well.
Whenever persistent storage is required (e.g., to keep track of statistics, store tables, etc.) it is
possible to use Data memory, a storage area private to each NetPE that is retained as long as
the NetVM instance is running. On the other hand, scratchpad areas for information required
only during a specific call to a NetPE handler are provided by both the execution stack and a
set of directly-addressable local variables that are erased whenever a new execution context
enters the processing element.

7

An explicit choice in designing the NetVM memory subsystem was not to provide any
user-visible memory allocation and deallocation primitives: all memory segments are stat-
ically allocated, either during a dedicated NetVM instance initialization phase, or at the
creation of an exchange buffer; in all cases area sizes are decided by the programmer and
must be strictly enforced by NetVM implementations. This choice is mainly dictated by per-
formance constraints, as run-time memory management can be costly on some architectures,
and contributes also to reduce a relevant source of complexity and errors; in most real-world
packet processing applications persistent or complex data structures (e.g., a forwarding ta-
ble) are usually created by the control plane (e.g., through a routing protocol process or
manual configuration) and consumed in a read-only fashion by the data-plane program, thus
requiring no complex primitives for their manipulation.

The rationale behind the rich NetVM memory model is to satisfy the need perceived by
the programmer to have memory areas available with just the “right” semantics, depending
on the specific requirements. A single, large, shared memory area (as it is natively available
on most general-purpose platforms) would make the task of the programmer harder because
it might require to reimplement multiple times commonly-used operations (such as those re-
quired to handle the flow of exchange buffers), and would also impede the work of the com-
piler. In fact, explicitly partitioning memory accesses into different categories allows ad-hoc
compilation strategies to be used, e.g., to decide data placement where multiple memory
areas with different properties are available on a hardware platform, without requiring ex-
tensive code analysis. The NetVM memory model is also tailored to the network-of-NetPE
execution model and it contains provisions to allow and simplify parallel implementations:
as an example, no data can be (nor needs to) be shared among multiple NetPEs, as data mem-
ory is private and info memory belongs to a single NetPE at any given time, thus simplifying
the automatic introduction of synchronization strategies by the compiler1.

3.1.3 Coprocessors

A quick study of packet processing applications and their typical hardware platforms shows
that it is easy to identify a common set of high-level functionalities that are commonly
required and that are often implemented directly in hardware on many network processor
architectures. Some examples are table lookups, either exact or following a longest prefix
matching algorithm, string matching, regular expression matching, etc., all of which are
often accelerated using appropriate coprocessors such as Content Addressable Memories
(CAMs), Ternary CAMs (TCAMs) or other appropriate hardware.

While it is certainly possible to delegate the implementation of these functionalities to
the programmer, it is more productive to encapsulate them behind a clearly-defined inter-
face and offer them as ready-to-use components. For this purpose the NetVM exposes the
concept of Virtual Coprocessors, abstract functional modules that interact with NetPEs as
black boxes hidden behind a well-defined, platform-independent interface. Instances of vir-
tual coprocessors can be attached to NetPEs and accessed through dedicated NetIL instruc-
tions; each coprocessor exposes sets of input and output registers where parameters can
be stored and results read back, and offers a set of operations acting on interface registers
and its internal state representing the desired computation. Besides simplifying application
development, the availability of coprocessors also improves NetVM performance as wher-
ever possible direct mapping to hardware primitives is employed to implement coprocessor

1 It is worth noting that synchronization primitives are not needed when programming at the NetVM level
(as detailed in Sec. 3.1.5), but may be needed when mapping the NetIL code on the the underlying hardware.

8

instructions; even on platforms with no suitable support it is possible to provide a single
optimized implementation that can be readily reused with little effort.

In addition to the aforementioned built-in coprocessors, new ones can be defined by
NetVM users and implemented with custom code; apart from their interface specification,
new coprocessors do not have to abide by any rule of the NetVM model, nor require new
dedicated NetIL instructions. For this reason they can be used to extend NetVM capabilities
or to bypass any constraint imposed by the NetVM, as an example to provide resizable
memory areas, storage that is persistent across NetVM instance restarts and more.

3.1.4 Building NetVM applications

In data-plane network applications is often possible to isolate specific operations or self-
contained functional modules that perform a well-defined set of operations on a packet, then
send it away, along with their results, for further processing. As an example, most packet
processing applications start with simple filtering modules that discriminate between packets
that can be processed (as they are destined to the specific program or machine) and those that
can be immediately discarded (being malformed or not required by next modules); routing,
switching or classification modules can follow and other more complex functions, such as
regular expression-based payload inspection, are also often present. In order to support this
scenario, it is necessary for the NetVM to provide an easy way to define and interconnect
these modules, and standard interfaces for their interaction.

Being NetPEs the basic building blocks of any NetVM application, a complex NetVM
application can be composed of a set of independent NetPEs, each one in charge of a spe-
cific task, connected together in a logical network; Fig. 1 shows an example of a NetVM
application composed of two NetPEs interconnected in a pipeline. Each NetPE can be seen
as a functional module, acting as a black box with its own private execution context, its per-
sistent data in the data memory and user-specified programming, working sequentially on
a single packet at a time. The impossibility to share persistent data across NetPEs does not
represent a limitation when writing applications, since the programmer can simply place all
the code that requires the same persistent data into the same NetPE. For instance, keeping
persistent memory private to a single NetPE also matches the intuition that data required by
a specific functional module (e.g., pattern matching) does not have to be shared outside that
component in an uncontrolled fashion.

The NetVM model allows the programmer to define arbitrary topologies of NetPEs as
long as they constitute a direct acyclic graph, a requirement which derives both from mod-
eling choices and implementation considerations. With regard to the former, it makes sense
to disallow cyclic networks because packet processing applications usually perform their
work by following the natural header sequence of network packets, going from low layers
(e.g., Ethernet headers for the MAC layer) to high layers (e.g., HTTP payloads). Once a
lower-layer header is processed, all the relevant information required for later computation
is usually saved in memory to be reused by latter modules that take care of other packet por-
tions; only in specific cases (such as tunneling) multiple runs of the same algorithms might
be needed. In any case, since the NetVM does allow loops to be executed within NetPE, the
inability of having loops in NetPE interconnections does not restrict the formal expressive-
ness of the model. On the other hand, acyclic interconnections simplify the implementation
of the NetVM by providing a strict guarantee that no matter what run-time path is chosen,
each NetPE will be traversed at most once. In turn this assumption proves valuable for imple-
menting NetPE interconnections (intuitively, multi-NetPE programs can always be inlined)
and for supporting implementations where NetPEs are able to process multiple work units

9

concurrently or in an optimized fashion, as there is a guarantee that after one is completed
it will never reenter the same processing element to further affect its internal status.

Each NetPE defines a set of incoming and outgoing Ports that are used to receive or
send work units; a port can lead to another NetPE or to/from external units that are used
to exchange data to/from the outside world. Those ports, global to the whole NetVM, are
called Sources and Sinks and allow various external entities to be connected to the NetVM,
such as physical network interfaces or application interfaces, enabling the virtual machine
to interact also with user-defined control-plane modules. The NetVM reacts to the arrival
of a packet by wrapping it with the appropriate data structures (the Exchange buffer), then
sending it along the NetPE network.

3.1.5 The NetVM processing model: sequentiality, modularity, and data-driven execution

The NetVM processing model is build upon three pillars: sequentiality, modularity (through
NetPEs), and data-driven execution.

The NetVM model is strictly sequentially in order to ensure in-order processing and
delivery. In fact, it considers a single packet being processed at any given time; this design
choice also simplifies programming because, being sequential, requires no specific precau-
tion (e.g., synchronization) from the programmer. Although this completely sequential ex-
ecution appears to be an unacceptable limitation, especially when considering that modern
processors (either network-oriented or general purpose) are usually composed of multiple
cores, we have to distinguish between the model (that is mainly oriented to programmabil-
ity, to guarantees formal properties of applications, etc.), and its implementation2. Indeed, a
sequential model does not necessarily imply a sequential implementation: on the contrary,
the model expresses a set of criteria any compliant NetVM implementation must adhere to,
but it does not dictate their exact behavior and deviations are allowed as long as the final
result (in terms of internal state, packet content and ordering, etc.) is the same that would be
computed by a completely sequential machine.

The second pillar is modularity, which is achieved by proposing a programming model
that invites the programmer to split its application in multiple NetPEs, which act as elemen-
tary “processing elements”. Since NetPEs limit the scope of persistent data (which cannot be
seen from another NetPE3), they implicitly represent critical regions for parallel NetVM im-
plementations. This is the reason why “fat” NetPEs are discouraged: the compiler could find
an hard task when trying to provide an efficient parallelization of the code when instantiated
on real hardware.

The third pillar is data-driven processing. Instead of a fully imperative programming
model where communication between different modules is based on function calls, NetPEs
are event driven and their handlers are activated upon the arrival of an exchange buffer on
one of the input ports, in a way that resembles a dataflow architecture. In a similar fashion,
after a NetPE has finished processing its current work unit it will either drop it (thereby
causing another packet to enter the NetVM instance) or forward it on one of its outgoing
interfaces which, if connected to another NetPE, will trigger its handler in cascade. Due to
their flexible interconnection topology, it is possible for a single NetPE to be connected to
multiple subsequent processing elements: in this case an exchange buffer will be sent only

2 Parallel implementation of the NetVM will be presented in Sec. 5.4.
3 Persistent data can be found also in coprocessors; however also in this case the access is strictly sequential

and the data is not visible outside the coprocessor, hence having the same properties described for the data
inside NetPEs.

10

to a single destination. In this case, exchange buffer duplication is required; furthermore the
execution for the original packet is frozen until the duplicate flows out of the virtual machine,
hence preserving the invariant of having at most an active execution context at a time in every
NetVM instance. While simplistic, the duplication semantic currently supported is adequate
in most practical cases, e.g. to support multicast or broadcast transmissions. It should also
be noted that the reverse (e.g. multiple packets contending for the same NetPE) can never
happen no matter what the toplogy is, as the invariant of having a single packet in transit is
strictly enforced.

Finally, in addition to its processing handler, each NetPE can also define an initialization
handler which is called once upon startup to initialize its persistent state, if required.

The processing model is a mixture of an imperative execution model (inside each NetPE),
which is compatible with traditional, single-threaded programming paradigms, and a data-
driven model (when connecting NetPEs together); together, they are designed to simplify
the parallelization of NetVM applications on real hardware by appropriately restricting data
sharing and control flow evolution. Having work units flow in a way that is similar to what
is specified by the dataflow model is not a novelty in networking applications [25,20,8,32],
as these applications can be effectively described as a collection of relatively independent
packet-processing tasks. In our case, the data-driven processing model allows a seamless
migration of jobs between one processing element to the following, while sequentiality
avoiding the usage of synchronization primitives in the code. Furthermore, data isolation
(achieved by the NetPE-scoped persistent data memory and the exchange buffers) favors a
parallel implementation.

3.2 Support for control-plane operations

The core of a packet processing application is often the portion which operates on the fast
path of network devices, that is, where performance is an essential requirement.

Most applications, however, also include another part, often executed asynchronously,
that takes care of tasks such as handling configuration or exceptional conditions: this portion
is the control plane. As an example, in a layer-2 forwarding application (e.g., an Ethernet
bridge) the data plane receives network packets and forwards them to the appropriate in-
terface (while updating the forwarding table); the control plane is responsible for enabling
or disabling interfaces to prevent loops in the global network topology, and for periodically
purging stale entries (i.e., those beyond a certain age) from the forwarding table.

Requirements for an application control plane are rather different from those of its data
plane: while the latter needs high processing performance, this aspect is less sensitive in the
former as its routines are rarely called on critical processing paths. For this reason control-
planes are most often physically implemented with separated, general purpose processors
that are able to instruct and control the faster network processor (or processors) constituting
the data-plane. Since general purpose processors are easily programmed in a portable fash-
ion using vanilla languages such as C and since most control-planes do not perform packet
processing activities, the NetVM does not provide support for control-plane operations.

3.3 Safety of NetVM applications

An important aspect of modern virtual machines is the level of isolation they offer, sepa-
rating applications from the rest of the hardware and software execution environment. Such

11

separation is possible because of the NetVM position in the application stack: acting as a
filter, it can have full control over what instructions are actually executed and how other
software components (such as libraries or the underlying operating system) are accessed.
The isolation provided by virtual machines is especially important in the case of packet
processing applications that usually run on embedded hardware where little or no protec-
tion is offered by an operating system while, at the same time, applications are subject to a
continuous stream of untrusted and potentially malicious input.

Complementing its model, the NetVM has been designed to offer a set of run-time safety
provisions that prevent applications from adversely affecting their execution environment
by exhausting memory, corrupting the state of other processes or misusing computational
resources by getting stuck into infinite loops.

NetVM safety features are implemented through multiple means. In order to keep run-
time overhead low, whenever possible safety is enforced through design provisions. As an
example, acyclic NetPE interconnections have the side effect of making packet process-
ing times finite if each NetPE can be shown to terminate; fixed-size memory areas prevent
memory exhaustion problems from surfacing and allow NetVM users to calculate how much
memory will be required by each application. Perhaps more importantly, NetPEs do not ex-
pose code memory to the programmer: this choice prevents self-modifiable code issues and,
together with memory protection, makes VM-level programming errors such as buffer over-
flows unable to inadvertently overwrite NetPE instructions.

A second layer of protection is introduced by static checks that analyze NetIL programs
before they are executed. Upon startup the NetVM verifies that its programs are syntactically
correct (e.g., each opcode is valid and well-formed, programs terminates with instructions
to either drop or forward exchange buffers, all jumps point to valid locations and so on) and
also runs a large set of semantical checks designed to catch erroneous stack usage, accesses
to uninitialized variables, etc.; there is also a module dedicated to catching and handling
out-of-bounds memory accesses, when this is possible at such an early stage (i.e. offsets and
the related memory area size are both known).

Finally, in order to handle the exceptional situations that are impossible or very hard
to catch at compile-time, the NetVM is capable of automatically inserting run-time safety
checks designed to handle memory bounds checking and termination enforcement. In the
first case it is ensured that instructions accessing a specific memory area are always executed
with a valid offset so that out of bounds accesses are prevented both beyond the NetVM
instance memory space and, additionally, within the same instance different memory areas
are kept isolated from one another; no hardware or operating system support is required.
As for termination, it is often important that packet processing applications finish within a
predefined time frame in order to prevent programming errors leading to infinite loops or
abnormal consumption of CPU resources due to untested or excessively slow code paths.
For this reason it is possible to enable a software watchdog mechanism that keeps track of
a pre-allocated instruction budget, triggering a fatal exception when it is exceeded. Both the
checks required termination enforcement and those related to memory safety are carefully
placed and optimized as to incur in a very low run-time overhead.

3.4 Achieving Generality, Portability and Efficiency

The abstraction layer introduced by the NetVM exposes a set of key features which guar-
antee generality of the model, portability of the applications, and finally enable an efficient
mapping of applications to different hardware architectures.

12

Generality is achieved thanks to the mid-level instruction set provided by NetIL: instead
of being directly tied to any high-level programming language, it provides functionalities
commonly used in packet processing applications (e.g. field comparison, bit test-and-set,
multi-way branches, etc.), leaving out unneeded features.

Efficiency and portability can be achieved at the same time because of the abstraction
layer the NetVM model sits on: features specific to a given target architecture are completely
hidden away for portability, while at the same time the programmer can provide the com-
piler with all the relevant information about application semantics, thus enabling an efficient
mapping. In other words, the NetVM programming model allows the programmer to specify
an accurate description of his intentions through specific constructs borrowed from the ap-
plication domain; while this limits the freedom of the programmer when compared to more
general languages such as C, this more detailed view enables the compiler to perform more
aggressive optimizations that would otherwise be inapplicable. The aforementioned abstrac-
tions are also designed to effectively model operations performed by real-world hardware
platforms thus facilitating a subsequent mapping of their high-level functionalities onto spe-
cific hardware units.

More in detail, efficiency and portability are achieved because of four main reasons. The
NetPE-based, sequential and data-driven programming model, while avoiding the usage of
synchronization primitives from the programmer, invites it to partition the application into
self-contained functional units, thus explicitly describing the coarse-grained modularity and
the parallelism of the application. When coming to a real parallel implementation, the mod-
ularity achievable through NetPE-based programming allows to prune away many sources
of non-determinism that are intrinsic in multi-threading [18], with major advantages for
both the programmer and the compiler. On the other side, the data-driven execution model
is easy to understand and favors building complex applications, also thanks to the efficient
inter-NetPE communication primitives based on the “moving” exchange buffer.

A domain-specific intermediate language presents the programmer with high-level con-
structs that are commonly used in packet processing applications (e.g., the multiway branch),
making it possible to capture some high-level operations that can be afterwards mapped ef-
ficiently on hardware platforms with noticeable speed-ups. However, in a departure from
other proposals, these details are captured by a language that is not tied to any specific
hardware platform, therefore preserving portability.

A structured memory model closely reflects the needs of the programmer with respect
to storing (i) temporary or (ii) persistent state, (iii) to exchange information across different
application modules, and (iv) to access the contents of network packets. This way each
memory reference acquires a semantic meaning both for the programmer and the compiler,
paving the way for specific optimizations. It is worth noticing that no information is given to
the programmer about which kind of hardware device should be used for mapping a NetVM
memory on the target architecture. In the common case of the underlying platform offering
different memory devices, the compiler that can always choose the more efficient mapping
solution, therefore enabling portability while preserving efficiency.

Finally, virtual coprocessors enable the exploitation of advanced and common function-
alities that may be present as hardware coprocessors in NPUs (e.g., lookup, string matching,
etc.). These abstractions are provided to guarantee code portability through well-defined in-
terfaces, while making it straightforward to directly use hardware devices, where available.
Extensibility is also ensured, since new coprocessors can be easily added to the architecture.

Although the current implementation of the NetVM framework is still unable to offer
the automatic partition of packet processing programs on multi-core architectures (in case
multiple NetPEs are present, each one can be mapped on a different core, but the code of

13

NetVM

Application

Management

NetIL

Assembler

Runtime

Environment

Instantiantion &

Management

Optimizing

Compiler

Control Plane API

Host/Target Architecture

(e.g. x86, x64, Octeon)

Compiler Backends

(a) Management and Control Components

NetIL

Interpreter

Data Plane API

Target Architecture

(e.g. x86, x64, Octeon, X11)

x86 HAL
Octeon

HAL
X11 HAL

Target Independent HAL

Exchange Buffer Management

Generated Target Code

x64 HAL

(b) Data Processing Components at Run-Time

Fig. 3 Architecture of the NetVM Framework

a single NetPE cannot be partitioned automatically on multiple cores), results presented
in Sec. 6 will confirm that previous speculations are correct and that the NetVM model is
able to deliver high performances, while ensuring complete code portability and generality
through a proper mid-level abstraction layer.

4 The NetVM Framework

The NetVM framework is a C library that implements the NetVM model, including a portable
runtime environment, an optimizing multi-target compiler and interface functions for the
creation and instantiation of application configurations. An overview of its architecture is
presented in Fig. 3(a), which shows in detail the components involved in creating NetVM
applications and starting their execution, and Fig. 3(b) that presents the components that
perform the actual packet processing. APIs are available to control both aspects.

In Fig. 3(a), the NetVM Application Management module provides the functions for
creating the basic entities of a NetVM application, namely NetPEs, Sockets and Connec-
tions; the NetIL Assembler generates bytecode for a specific NetPE from a source listing.
Other functions create an application instance along with its runtime environment, while the
compiler translates application code into native instructions through multiple backends.

In order to be executed on a given platform, NetVM applications require a transparently-
provided runtime environment acting as an adaptation layer to hide hardware characteristics
and to provide the facilities required for communicating with the external world. Some ex-
amples include I/O functions, e.g., to read packets from a network interface, augment them
with the appropriate metadata (e.g., timestamps), and deliver the result to the input socket of
the NetVM; coprocessor handling, e.g., the required code to exploit existing hardware mod-
ules or equivalent software implementations of unavailable components; and the capability
to manage application resources (e.g., defining the appropriate memory space). These func-
tionalities are provided by the components of the NetVM framework shown in Fig. 3(b). An
ad-hoc API allows the programmer to programmatically inject packets into the application,
which are converted in proper Exchange Buffers and sent to either the previously-compile
native program or to the NetIL interpreter (that is able to directly execute NetIL code) for
processing. A Hardware Abstraction Layer (HAL) provides the functionalities needed for
correctly mapping the NetVM model onto the target architecture. On platforms with no

14

High level

Front-end

High level

Front-end

Target
Independent

Phases

NetIL bytecode front-end

High level

Front-end

Mid-level optimizations

Target
Specific
Phases

(1)

(2)

Code Emission

(3)

(4)

NetIL

Tree

Based

SSA

(MIR)

Target

Specific

IR

(LIR)

High-Level

Languages

Target-Specific

Transformations

Target

Assembly

Language

(5)

BUR Instruction Selection

NetIL bytecodeNetIL bytecode

Native code in memory, or Native code in memory, or

assembly and configuration files

Fig. 4 Architecture of NetVM Compiler Infrastructure

hardware component suitable for a specific NetVM entity (e.g., a coprocessor), the HAL
provides its software emulation.

4.1 Compiler Infrastructure

The compiler follows the classical 3-stage model commonly employed in the design of
multi-target optimizing compilers, as shown in Fig. 4. In order to support retargeting, most
of the compilation process phases are designed to be shared to all the possible targets, while
platform-specific code generation phases are isolated in different back-ends. The overall
compilation process is structured as follows: (1) the compiler front-end checks the formal
correctness of the source program and builds a medium-level intermediate representation
(MIR) of the code; (2) the MIR is fed into the optimizer, that aims at removing code redun-
dancies and improving efficiency; (3) a platform-dependent backend lowers the optimized
MIR to a low level intermediate representation (LIR), which is very close to the assembly
language of the target architecture and (4) performs additional optimizations, then, finally,
(5) the resulting machine code is emitted.

A program in MIR form is a list of expression trees: their root nodes represent statements
(i.e. assignment and control flow operators), while leaves contain the expression operands
(e.g., constant values or registers). The LIR form, instead, represents the program as a se-
quence of three-address instructions, closer to the target machine language. A multi-level
intermediate representation is used because of the need to delay the lowering phase, so that
as much information as possible on the source program is provided to the optimizer. This
enables more aggressive optimizations based on the knowledge of the semantic of the high-
level constructs employed by the programmer, as will be pointed out in Sec. 5.

The whole compilation framework is designed to be modular, in order to facilitate the
implementation of new back-ends. Additionally, the optimization algorithms are able to
work on both on MIR and LIR, and each backend can configure the optimizer in order
to apply only the transformations that are suitable for the target platform.

Depending on the selected backend, the compiler can operate either in Just in Time or
in Ahead of Time mode. In the former, the target binary code is directly emitted in memory

15

STORE r0

ADD

LOAD r1 CONST(14)

STORE r2

ADD

LOAD r0 CONST(20)

(a) Original code

STORE r2

ADD

CONST(20)

STORE r2

ADD

LOAD r2 CONST(34)ADD

LOAD r1 CONST(14)

(b) Optimized code

Fig. 5 Optimization of packet demultiplexing code

and executed within the same process. In the latter, the NetVM operates as a cross-compiler
and the target code is emitted into a set of assembly files that can be further processed by
platform-specific tools and linked with the run-time of the NetVM framework.

4.2 Mid-Level Optimizations

In order to provide a general framework for simplifying the development of dataflow analy-
sis and optimization algorithms, the NetVM compiler translates the MIR into Static Single
Assignment (SSA) form [9], where every variable is assigned exactly once. This transfor-
mation preserves program semantics while making explicit in the MIR the relationships
between the definition and the uses of each variable, a fundamental requirement for many
optimization algorithms.

The optimizations implemented in the NetVM framework derive from well-known tech-
niques [26] based either on Data-flow analysis, which focus on the data dependencies in
order to simplify or delete redundant instructions, or on Control-flow analysis that optimize
the execution of a program by exploiting the properties of the control-flow graph. The code
transformation algorithms actually implemented have been chosen after an accurate anal-
ysis of existing NetIL code, either hand-written or automatically generated through a set
of high-level frontends. As an example, the code generated by the packet filter compiler
described in [23], presents several redundancies and suboptimal recurrent patterns. The im-
plemented algorithms take into account such situations and aim at removing the negative
effects introduced by automatic code generation.

Among the data-flow optimization algorithms implemented in the framework, Constant
Propagation replaces most constant-initialized registers with their respective values and of-
ten enables the application of other optimizations, such as Constant Folding and Dead Code
Elimination; the former tries to simplify operations whose operands are constants by replac-
ing them with the result computed at compile-time, while the latter removes instructions that
define variables that are never used (i.e. dead variables). Algebraic Simplification has some
similarities with constant folding, but, instead of computing at compile time the result of
constant expressions, it exploits algebraic properties of arithmetic and logic instructions to
replace whole sub-expressions that can be computed at compile time with their result: as an
example it is able to replace (a * 1) with (a). Reassociation joins different statement trees
into deeper ones, providing larger scopes for further transformations such as Constant Fold-
ing. The role of Reassociation is evident when considering the structure of typical packet
demultiplexing programs, that usually contain sequences of operations to find the offsets
of protocol headers and fields in the packet buffer. Fig. 5(a) shows an example of such a

16

sequence of statements where a variable holding the current offset (r0) is incremented to
point to the beginning of the TCP header: this operation is done in two steps by adding
the lengths of the Ethernet and IP headers (14 and 20 bytes respectively). The reassociation
algorithm joins the two statements, thus producing the tree on the left of Fig. 5(b), which
allows further optimizations: constant folding can now remove the second ADD node and
replace it with the corresponding result calculated at compile-time, resulting in the tree on
the right.

This pattern is very frequent in our code, particularly when we generate packet filter-
ing programs with our NetPFL compiler [23] (available as part of the NetBee library [34]),
which generates the code that computes the offset of a given field as the sum of the length
of all the preceding fields. Reassociation and Constant Folding, acting together, can com-
pact most of these elementary instructions and hence are very effective in reducing the total
number of instructions of the program. Furthermore, reassociation plays an important role
on the X11 platform, where we can access the memory only when the packet is in some
special positions in the pipeline (i.e., in the Engine Access Point blocks) and access op-
erations can be bundled together to reduce their number. An additional side-effect of this
algorithm is to reduce the number of intermediate registers needed in the program, which is
particularly effective on the x86 platform where spilling is common due to the low number
of architecturally-visible registers and the relatively high cost of memory accesses.

All the optimizations described above are performed on the MIR in SSA form, which
is not directly executable; in order to produce actual running code, the program has to be
reverted back to normal form: this step leaves the program in a state where most variables
are still defined only once and a large number of copies are performed. This is suboptimal
because such a great quantity of copies is cumbersome to manage and a large number of vir-
tual registers burdens subsequent compiler modules, affecting compilation times. For these
reasons we implemented a Copy Coalescing [6] algorithm, which scans the code for copies
and tries to assign the same name to both the source and the destination variables.

Besides dataflow optimizations, the optimizer also provides algorithms that simplify the
control flow structure of the program, such as Branch Simplification, for replacing all condi-
tional jumps that can be evaluated at compile-time with unconditional jumps, Jump-to-Jump
Elimination for bypassing and removing basic blocks containing only a jump instruction,
and Unreachable Code Elimination for removing unreachable code.

Although these architecture-independent optimization algorithms are simple and widely
known from classical compiler theory, they have proved to be extremely effective for two
main reasons: (i) packet processing applications expose a very simple structure of the code,
compared to general purpose ones, and (ii) these provide the base for further target-specific
transformations that can be applied by backends, as detailed in Sec. 5. The combination of
architecture-independent and target-specific optimizations results in the production of code
that can be faster than the one generated by state-of-the-art C compilers, as shown in Sec. 6.

5 Compiler Backends

The NetVM framework currently implements four backends: the Intel x86 and x64 architec-
tures, the Cavium Octeon massive multicore processor and the Xelerated X11 systolic array
processor. In particular, as shown in Fig. 6, the first two share a very similar structure, while
the rest, being targeted to a very special-purpose architecture, rely on a more complicated
sequence of compilation phases. Every backend translates MIR statements into sequences
of equivalent LIR instructions. This task is performed by a Bottom-Up Rewriting System

17

BURS-based

Instruction Selection

Switch Lowering

Graph-coloring

Register Allocation

Binary

Code Emission

Tree

Based

IR

x86/x64

IR

(Infinite

Regs)

x86/x64

Binary

Code Linking

x86/x64

IR

(Machine

Regs)

Medium level IR

(MIR)

(a) x86 and x64 Backends

BURS-based

Instruction Selection

Switch Lowering

Graph-coloring

Register Allocation

Assembly

Code Emission

Tree

Based

IR

MIPS

IR

(Infinite

Regs)

MIPS

Assembly

Code
Further Compilation and

Linking (Octeon SDK)

MIPS

IR

(Machine

Regs)

Medium level IR

(MIR)

(b) Octeon Backend

BURS-based

Instruction Selection

NetPE Modules Inlining

Low Level

Transformations & VLIW

Instruction Merging

Assembly

Code Emission

Tree

Based

IR

X11

IR

(Infinite

Regs)

X11

Assembly

Code

(Infinite

Regs)
Further Compilation and

Linking (x11SDK)

Medium level IR

(MIR)

(c) X11 Backend

Fig. 6 Compilation phases for the four compiler backends

(BURS) [13], executing a tree-matching algorithm driven by a set of architecture-specific
rules that dictate how a portion of a MIR expression sub-trees can be translated into target
instructions. Depending on how the source code is written, it can happen that input patterns
end up split across different statements. Since the BURS operates on a single LIR expression
tree at a time, pre-processing steps that rearrange subtrees into deeper structures may help
creating more recognizable patterns. This is the case with the aforementioned reassociation
algorithm. When a tree or subtree can be matched by multiple rules, the BURS is able to
chose the combination that results in the least expensive LIR instruction sequence.

The power of BURS lies in the recognition of very specific patterns, tailoring code
emission to the target platform. For instance, some portions of an algorithm can make use of
native hardware components on a specific hardware platform, while traditional instructions
are generated on another platform. Two examples can be found in the LEA opcode available
in the x86 instruction set (detailed in Sec. 5.1) that replaces a bunch of NetIL instructions and
the TCAM of the X11 (detailed in Sec. 5.3.2) that provides a very efficient implementation
for the switch-case construct.

In any case, even though such techniques work well in very specific cases, their general
validity still needs to be proved because they are tuned on patterns of instructions and not on
algorithms: a minor reordering in the original source code might lead to different statement
tree configurations that fool the system.

5.1 x86 Backend

The x86 backend follows the Just-In-Time paradigm: it generates a function in memory that
includes the proper binary instructions and that receives an Exchange Buffer as an argument.

The sequence of compilation phases involved is shown in Fig. 6(a). After MIR state-
ments are mapped onto x86 LIR instructions, a register allocation step is performed in order

18

to assign a machine register or a memory location to each virtual register defined in the MIR
program. The register allocation algorithm implemented is based on graph coloring [14,5],
using the spill heuristic proposed in [4] for minimizing spill costs and for guaranteeing an
optimal utilization of machine registers.

The set of BURS rules implemented in the backend aims at addressing two problems:
(i) the optimal exploitation of the complex instruction set of the target machine, and (ii) the
application of packet-processing specific optimizations.

With respect to the first goal, the CISC nature of the Intel x86 instruction set enables
certain complex NetIL instruction patterns to be translated into single x86 opcodes: the
BURS instruction selection algorithm makes this operation straightforward. As an example,
Fig. 7 presents an x86 code fragment that computes the length of the IP option fields with
both its naı̈ve and its optimized version. This value is calculated by loading the IP header
field, masking it, multiplying it by four and finally subtracting 20; we can compact most of
the processing into the x86 LEA (Load Effective Address) 4 instruction.

Non optimized Optimized

movzx eax, byte ptr [ebx+14]
and eax, 0xf
mov esi, 4
mul esi
mov esi, eax
add esi, -20

movzx eax, byte ptr [ebx+14]
and eax, 0xf
lea ecx, dword ptr[ecx+eax*4-20]

Fig. 7 Exploiting complex instructions in the Intel x86 instruction set

We have also implemented special rules for optimizing frequent operations of packet
processing applications. For example, these often need to load a field from the packet header
and compare it with a constant value: this operation is particularly expensive on the little-
endian x86 processor because the standard network byte order is big-endian and a byte
swap would be required. Our solution, on the contrary, uses the BURS to recognize those
patterns of instructions and moves the byte swapping operation at compile time, when it can
be performed by swapping the constant instead of swapping the value read from the packet
buffer. A simple example is presented in Fig. 8, which shows a check to determine if an
Ethernet header is followed by an IP header.

Non optimized Optimized

mov eax, word ptr [12]
shr eax, 0x10
bswap eax
cmp eax, 0x800

cmp word ptr [12], 0x8

Fig. 8 Constant byte order swapping optimization

4 The LEA instruction stores in a register the effective value of a pointer that can be expressed as [base
+ offset * scale + displacement], where base and offset are registers, scale is an integer among 2, 4, 8, and
displacement is an immediate value.

19

Another example is represented by the multi-way branch (similar to the switch-case
construct of most imperative languages), which has a very sophisticate mapping on the x86
code. In fact, the back-end includes a switch lowering module that follows an approach
similar to the one implemented in the LLVM compiler [17]. This technique is able to select
the best mapping algorithm according to the cardinality and the density of the case set, e.g.,
transforming the switch into a set of if-then-else operations is the number of cases
is small (e.g., ≤ 3), or using a jump table if the values on which we “switch” are almost
contiguous, etc.

Finally, the x86 back-end includes a specific phase that implements an efficient linking
strategy for code associated to different NetPEs: direct linking avoids returning the control
to the framework when a NetPE task ends, hence reducing the overhead introduced by the
runtime environment.

5.1.1 Intel x64 Backend

The compiler architecture for the Intel x64 platform (64 bits) is similar to the x86 backend
and it implements all the optimizations already presented in the previous section.

The most important differences of the x64 platform consists in the extended addresses
and operands (64bits registers and immediates are available), in the larger number of general
purposes registers (16 against 8 available in 32 bit mode), the availability of 16 128-bit reg-
isters (formally defined for SSE instructions, the Streaming SIMD Extensions, but available
to some degree also for general purpose computing) and, of course, different opcodes for
the new instructions.

The x64 architecture does not provide many additional advantages compared to the x86
platform, at least for our purposes; hence the limited number of improvements compared
to the previous backend. The extended range of registers makes the job of the register allo-
cation algorithm easier, since variables have to be spilled in memory less frequently. SSE
registers can also be used as additional storage but cannot be accessed directly by most tradi-
tional x86 instructions (explicit moves are required) and, under the standard platform ABI,
they are also volatile across functions calls; if a system or user-provided function is used
from NetPE handlers (e.g., to invoke a coprocessor that is not available in hardware or send
a packet outside the virtual machine), the content of those registers may not be preserved.
64 bits operands enable to pack some 32-bit instructions in the same opcode; e.g., a check
on the IP source and destination addresses (32 bits each) can be done with a single x64 in-
struction. However this pointed out one of the limitation of the BURS: instruction patterns
are recognized only when contained in the same basic block (i.e., a straight piece of code
without jumps). Being the NetVM a 32bit machine, any 64-bit compare-and-branch opera-
tion requires two basic blocks and hence this optimization has been implemented through a
peephole optimization phase in the x64 compiler backend, after the Low Level Intermediate
Representation (LLIR) generation done by the BURS.

Since the similarities between the x64 and x86 backends we will omit the x64 back-
end from the following sections; also the tests in Section Sec. 6 will only refer to the x86
platform5.

5 Incidentally, the performance we measured on the x64 platform were extremely dependent on the pro-
cessor architecture; older CPUs usually execute x86 code faster then x64, while newer CPUs do the opposite.
In any case, we never observed more than 10% improvement of x64 code compared to x86, even on our most
recent machines.

20

5.2 Octeon Backend

Since the Octeon platform is probably less known than the x86 one, we will present a brief
description of the characteristics of the processor before introducing how the NetVM model
is mapped onto it.

5.2.1 The Octeon Architecture

Like most NPs, the Cavium Octeon tries to exploit the parallelism of typical packet pro-
cessing applications: for this reason it features up to 16 MIPS-64 cores at frequencies up
to 800 MHz. Each core has a private L1 cache, while the L2 cache and DRAM are shared.
Communication primitives between cores are provided by specific hardware mechanisms;
for instance, shared memories cannot be used for this tasks because a private virtual memory
space is assigned to each core. The primary on-chip communication mechanism is the work,
which is an entity created upon the arrival of a packet and queued into a specific hardware
unit, the Scheduling/Synchronization/and Order unit (SSO). Works have many attributes
that determine how the SSO dispatches them to the cores. As an example, the programmer
can specify different QoS levels associated with different kinds of traffic: the unit receiving
incoming packets will parse the packet header and provide a preliminary classification. The
most important attribute is the group: in fact cores subscribe to groups and the SSO sched-
ules works to the cores according to the subscribed groups. When a core terminates its job, it
can submit the work to another group, (this, ultimately, to another core), or send the packet
out to a network interface.

Besides MIPS cores, the chip also contains supporting units and coprocessors for of-
floading certain specific tasks. Some of these deal with the reception and the transmission
of packets, some are devoted to the management of pools of memory buffers, and others
implement cryptographic and string matching functionalities in hardware.

5.2.2 The Compiler Backend for the Cavium Octeon

The NetVM framework generates the code for the Octeon using the Ahead-Of-Time model
and its output consists in several assembly files, C listings and configuration files that must
be further processed by the Octeon SDK. The result is a native application running on the
bare hardware with a minimal runtime environment. As shown in Fig. 6(b), the code gener-
ation process is not different from the x86 backend (i.e. it implements the BURS instruction
selection and global register allocation), while the mapping of native hardware functionali-
ties deserves some more discussion. More in detail, this consists in mapping the Exchange
Buffer on native hardware structures and natively supporting the string matching coproces-
sor of the NetVM model.

With respect to the former, the Exchange Buffer can be mapped on the work structure
of the SSO unit. This enables NetPEs to be distributed on different cores that communicate
through the native mechanism, in a way that is completely transparent to the programmer.
The general mechanism, however, is already in place and can be used in future work aiming
at fully exploiting the potentialities of multi-core processing.

With respect to the second item, the NetVM model has a general string matching copro-
cessor that enables searching for groups of patterns in the packet payload. Patterns, initial-
ized before the program starts, are divided into groups identified with an integer ID, so that
the coprocessor can search all the patterns belonging to a group at once and return multiple
matching results to the caller. While the x86 back-end provides a software implementation

21

based on the Aho-Corasik algorithm [1], the Octeon includes a hardware unit that is able to
traverse graph-based structures representing Deterministic Finite Automata (DFA) in mem-
ory, which can be used to perform both string and regular expression matching. With respect
to the Octeon processor, the DFA graph must be translated into a binary image, then loaded
in a special external memory, the Low Latency Memory (LLM). During execution the cores
can submit a command to the DFA engine specifying the address of the packet payload and
the address of a graph in the LLM: the hardware unit automatically loads data from the
packet memory and uses it to traverse the graph in the LLM to look for a match.

Finally, we note that the runtime environment for this backend is very simple and it
consists of an initialization routine (automatically emitted by the compiler) to initialize pro-
cessor units and instantiate the memory structure needed by the NetVM instance. The only
task of the runtime environment is then to receive packets from physical interfaces and to
pass them to the native functions generated by the NetVM compiler.

5.3 X11 Backend

The X11 architecture is a radical departure from general-purpose CPU designs: we will
present it in a brief introduction before showing how it can be exploited to support many
NetVM capabilities.

5.3.1 The X11 Architecture

The Xelerated X11 network processor is based on a systolic pipeline with a synchronous
dataflow architecture, a concept shared with its predecessor X10q [7]. Figure 9 shows an
overview of the X11 internal architecture. Most pipeline stages are Packet Instruction Set
Computers (PISCs), simple VLIW processing units that in a single clock cycle are able to
perform in parallel ALU operations, accesses to packet memory and branches. Programmers
can access on-board coprocessors through multiple Engine Access Points (EAPs), special-
ized I/O stages located at regular intervals in the pipeline. Among the EAP-attached devices
there are TCAMs, various kinds of RAMs, hashing coprocessors and more.

The whole X11 architecture is fully synchronous: packets enter the pipeline at the first
stage one at a time, and each clock cycle each PISC performs a single instruction on its
current data unit before forwarding it downstream and getting a new packet to operate upon
from the previous pipeline stage. EAPs respect the same paradigm, accepting and complet-
ing a new operation each machine cycle. If required to absorb the latency of an external
device, EAPs can be internally pipelined. As a packet traverses the pipeline, it carries an
individual execution context containing packet memory, a register file, status registers, and
in general all the information that constitute the complete state of a program.

Thanks to its pipelined architecture, the X11 NPU is an intrinsically parallel machine:
in line of principle, at any given time a packet can be under processing in each different
pipeline stage. From a programming perspective this happens automatically without explic-
itly parallelizing the application. Among the downsides, while the X11 architecture and its
parallelism allow very fast processing rates with the hardware running at low frequency, it
offers few ways to be be disabled or controlled by the programmer, and makes it hard to
support applications that do not fit its design paradigm.

First, the execution contexts of different packets are totally isolated from one another;
when this is undesirable, e.g., because shared tables need to be updated, the limitation can
be circumvented only by using an EAP-attached device. A single device can be connected

22

Look Aside
Engine

NSE
Engine

Look Aside
Engine

Look Aside
Engine

Meter
Engine

Hash
Engine

Counter
Engine

TCAM
Engine

E
A
P

PISC
BLOCK

E
A
P

PISC
BLOCK

E
A
P

PISC
BLOCK

E
A
P

PISC
BLOCK

E
A
P

RX
MAC

RX
MAC

RX
MAC

Optional TCAM Optional RLDRAM, FCRAM, SRAM or LA 1 co-processor

Programmable Pipeline

TX
MAC

TX
MAC

TX
MAC

(a) X11 Architecture

P
IS
C
 0

Packet Buffer

Execution Context

PISC BLOCK

Packet Buffer

Execution Context

Packet Buffer

Execution Context

P
IS
C
 1

P
IS
C
 2
3

DATA FLOW

(b) PISC Block Detail

Fig. 9 X11 Internal Architecture Overview

to multiple EAPs at different depths in the processor pipeline: since the processor is fully
synchronous and execution cannot be stalled at any stage (in order to avoid the introduction
of bubbles), concurrent accesses from multiple EAPs to shared data might be subjected
to pipeline hazards such as Read-After-Write, Write-After-Write, etc. [15]. Second, the
upstream-to-downstream data flow architecture makes it impossible to execute loops, and
poses a hard limit on the amount of instructions that can be executed on a single packet, cor-
responding to the length of the pipeline6. As a consequence, any program containing loops
must be unrolled on the X11 processor. Fortunately, many packet processing applications do
not require loops (for instance, we were able to implement a complete Intrusion Detection
System, presented in Sec. 6.2, without loops) and in case these are required (e.g., to handle
some protocols like MPLS or IPv6 [22]) it is still possible to limit the maximum number of
loop iterations in the source program to a fixed value. Therefore we expect that this issue
might turn out to be not so relevant in practice at least in our target data-plane applications.

As a final, general observation, the X11 platform architecture is by design aimed at layer
2 to layer 4 processing; as such it is difficult to translate applications requiring large amounts
of shared data, such as those using the NetVM data memory or stateful coprocessors. We
will show how to handle simple cases (e.g., counters and read-only lookup tables) by ap-
propriately using the external devices but others, such as dynamic TCP session tracking, are
more difficult to map. On a case-to-case basis it might still possible to emulate some of these
if slight modifications in application semantics are allowed: possible choices range from
performing shared data updates in the control-plane context, where it can be ensured that
no concurrent conflicting operations happen, to introducing more elaborate special-purpose
external engines. Such solutions are beyond the scope of this paper.

5.3.2 The Compiler Backend for the X11 Architecture

The general structure of the X11 compiler backend reflects rather closely the x86 and the
Octeon ones, as shown in Fig. 6(c): MIR instructions are lowered to LIR through the BURS
module, then are further optimized and finally emitted ahead of time in assembly form to
be processed with target-specific tools. However, given the properties of the target platform,
there are some aspects and requirements that differentiate the X11 backend from the others.

6 A packet can be made to loop transparently along the pipeline a small and predefined amount of times
to emulate a larger number of stages at the expense of the throughput.

23

A first difference is in control flow handling. The X11 NPU lacks the primitives required
to execute function calls; therefore, a NetVM application composed of multiple NetPEs must
be transformed into a single compilation unit by performing an inlining step, a procedure
that is always possible thanks to the acyclic NetPE interconnection graph imposed by the
NetVM model. Moreover, as already noted, loops must be completely unrolled before being
executed on the X11 NPU. A second critical point is the availability of different memory
areas to hold the state of a NetVM application. While it is straightforward to map NetVM
packet memory to the X11 packet buffer and the Info Memory and the Locals to the NPU’s
registers (the register file can be directly and indirectly addressed), it is much more compli-
cated to find a persistent storage area for the NetVM data memory. The X11 NPU provides
a suitable memory zone only in the external EAP-accessible RAM; however the possible
kinds of operations supported are limited, mainly because the same memory area is shared
across different packets that can update it concurrently, with no locking control possible.
The compiler, however, having full visibility on the whole program and being in control of
external unit allocation to EAPs, is able to recognize uses of the data memory that might
lead to pipeline hazards and generate a warning when their absence cannot be proved. In
some cases the compiler is able to avoid concurrency issues by recognizing specific access
patterns and emitting atomic instructions that transparently perform complex computation
directly in hardware. A case is presented later in this Section.

The X11 backend has been engineered to effectively exploit the hardware coprocessors
available, both for mapping NetVM coprocessors on hardware devices, and to speed up the
computation of specific NetIL instructions patterns. In the first case, NetVM coprocessor
accesses are compiled into an equivalent mix of X11 instructions and EAP operations; as
an example, the NetVM lookup coprocessor is efficiently mapped to the integrated TCAM
module. In the second case, there might be no ad-hoc instruction to tell the compiler that
a known functionality or algorithm is to be used: the BURS module is used to recognize
specific patterns of instructions that can be executed with the support of specific hardware
units.

We present two examples of BURS-supported pattern recognition under the form of the
switch-case instruction and the aforementioned atomic memory accesses. With regard
to the former, the NetIL switch opcode implements a traditional multi-way branch deci-
sion which is not directly supported by the X11 NPU. Although a naı̈ve mapping through
repeated comparisons is still possible, a large number of case labels would require a cor-
respondingly large number of pipeline stages to be wasted in computing the correct desti-
nation. In order to avoid this waste of resources our backend translates a switch instruc-
tion into a single TCAM lookup operation: the current value (the argument of the switch
instruction) is asked to the TCAM, which basically returns the address of the next instruc-
tion to be executed. This requires a single EAP access independently from the number of
different case labels, making the switch operation extremely fast to execute and cheap in
terms of pipeline resources. With respect to the second example, atomic memory accesses
are the demonstration of more general capabilities. In many packet processing applications
read-modify-update cycles are performed on data memory locations, e.g., to update statistic
counters. NetVM does not provide a single instruction for this operation: within its sequen-
tial execution model, the programmer can simply read the value from memory, update it and
write it back in discrete steps. A naı̈ve translation of this procedure to X11 EAP memory ac-
cesses can cause the traditional concurrency faults in which some updates are lost because
they are still not committed to memory when a subsequent packet causes the machine to
read again the same memory. The hardware provides support for this case as it is possible
to instruct an EAP to perform an atomic read-modify-update operations; the X11 backend

24

recognizes the relevant NetIL instruction pattern and translates it into an atomic operation,
avoiding all concurrency hazards.

A further X11-specific backend module performs VLIW instruction merging. The hard-
ware allows up to four independent operations to be executed at the same time, in order to
exploit instruction-level parallelism. These can be (1) an ALU operation, (2) a move opera-
tion for copying words of up to 32 bits, (3) a load offset operation for indirectly accessing the
register file or packet data, and (4) a branch instruction. Since source programs are strictly
sequential, the compiler is tasked with scheduling different instructions to be executed at
the same time while keeping track of data and control dependencies. Several algorithms are
described in the literature for handling this task in an optimized fashion, e.g., trace schedul-
ing [12]. The compiler currently implements a basic algorithm that works on straight-line
code fragments without performing any reordering before merging. This is effective at re-
ducing code size, even though it is a widely known result that the amount of instruction-level
parallelism present in a program is greater when instruction reordering within or across ba-
sic blocks is allowed: resorting to one of the well-known, more aggressive strategies is likely
to improve the emitted code quality significantly.

Finally, the NetVM model provides registers and memory locations that hold 32-bit
words. This is a problem for the X11 processor that works natively on 16-bit words: 32-
bit operations are possible but incur in large overheads, and sometimes it is possible to
compute correct results using 8 or 16 bits only. Although this is clearly a limitation of the
current NetVM model that does not explicitly support different data sizes, the X11 backend
implements an heuristic algorithm that assigns the optimal, minimum size to each NetVM
storage location while conservatively preserving the program semantics.

5.4 Going parallel

Although the NetVM model is intrinsically sequential, an effective implementation has to
take the parallelization of the NetIL code into great consideration. Parallelization strategies
may differ from one backend to another as they depend on the capabilities of the underlying
hardware. For instance, the X11 processor is natively parallel and all the programs that are
executed on that platform are intrinsically parallel: the compiler is aware of the hardware
architecture and takes specific precautions to ensure correctly compile applications.

For the other environments, multiple parallelization strategies are possible. As a start,
parallel implementations can be based either on the pipeline model (e.g., each NetPE is
mapped on a physical core) or on the run to completion model, where the entire application
is first inlined, then executed in multiple instances over multiple cores. Obviously, mixed
modes or other more advanced strategies can be available as well.

The first strategy enables a relatively easy parallelization out of the NetVM model as
long as the parallelization treats the code of each NetPE as an elementary block that must
be executed on the same core. The advantage of this strategy can be found in the limited
necessity of synchronization primitives due to the data-isolation properties of NetPEs and to
the inter-core communication facilities provided by the exchange buffers. More care has to
be used with respect to coprocessors, whose accesses have to be serialized (a simple strategy
could consists in mapping those components, when not available in hardware, to a dedicated
core). This model can be promising on platforms that have efficient communication primi-
tives to send data (exchange buffers) from a core to another and to wake up the following
stages in the pipeline. Those primitives are usually available in network processors (e.g., the
SSO unit of the Cavium), but are currently unavailable in general-purpose processors such

25

as the Intel x86/x64 architecture. Although the pipeline model can be implemented also on
the x86/x64 platform through proper emulation of those primitives, their lack may lead to
an unacceptable overhead when executing network programs.

The second strategy requires to protect shared data from concurrent accesses. This can
be easily done by the compiler thanks to the properties of the NetVM model, which man-
dates that all the data in shared memory is persistent and the same (potentially) applies for
coprocessors data. Accesses to those resources have to be serialized through the proper syn-
chronization methods, whose overhead may not be negligible and depend on the availability
of proper primitives on the target hardware platform.

Finally, in both parallelization strategies a special care has to be taken not to violate
the NetVM sequential model, since we have to guarantee that no out-of-order processing
can occur (or, if this is allowed, that produces results equivalent to the ones achievable
by the model). Also in this case, the potential sources of out-of-order problems are easily
identifiable thanks to the properties of the NetVM model: apart from packets sent out of
the NetVM, which must be delivered in the same order as they are received, we need to
control the order of the accesses to shared resources (i.e., persistent data and coprocessors).
In-order processing is easy to achieve on the Octeon platform, since usage of the SSO unit
automatically provides this guarantee; vice versa, it must be implemented by the compiler
on the x86/x64 platforms. In that case, a possible strategy consists in associating a sequence
identifier to each incoming packet and by generating the proper code that enforces proper
ordering when accessing shared resources and when sending packets out of the NetVM.

Parallelization capabilities in the current backends are a work-in-progress; the X11 is
the most advanced due to the intrinsic capabilities of the hardware; the Cavium backend
currently supports the pipeline model, while on the x86/x64 platform we implemented the
run-to-completion model. In all cases the problem of dynamic core allocation and, in gen-
eral, more advanced features are being considered for future developments.

6 Experimental Evaluation

The experimental evaluation of the NetVM model involves all the aforementioned major
design goals (generality, portability and efficiency), which depend both on the model itself
and on the quality of the implementation (i.e., the NetVM framework).

While efficiency can be evaluated objectively, it is harder to establish scientific criteria
for generality and portability. This consideration withstanding, this section presents the test
suite we defined to evaluate the above objectives and summarizes the obtained results.

6.1 Portability

Besides enabling efficient portability of programs that make use of the set of capabilities
common across all the supported hardware platforms, a full-fledged virtual machine should
also compensate for operations not provided natively. One solution to this issue consists in
introducing an adequate run-time support layer, as it is done by some virtual machines such
as the Java VM and Microsoft CLR.

General-purpose VMs however face an easier task compared to the NetVM because
of the similarities in the architecture of different general-purpose CPUs, compared to the
heterogeneity of network processors. Moreover they usually have no hard requirements
concerning application performance, memory occupation or system throughput. In packet

26

processing, however, the ultimate requirement is getting the best possible processing speed
out of the available hardware, so the advantages that derive from achieving full interoper-
ability must be balanced against the loss of performance that this may imply. The current
NetVM approach is to provide support for its model to the fullest extent the hardware allows;
when this is not possible or we might suffer an extensive loss of performance, compilation
is aborted. Among the possible causes of abortion there are programs requiring an amount
of memory that is not available on the hardware platform, string patterns originating a DFA
that exceeds the capability of the DFA coprocessor on the Octeon platform, number of the
accesses to the EAPs in the X11 processor exceeding the possibilities of the pipeline, and
code requiring backward jumps again on the X11 platform. Additionally, the compiler can
abort in case some security checks fail, e.g., when the compiler detects some accesses to
non-existing memory ranges, or the program does not terminate with instructions that either
drop or forward exchange buffers, etc., as specified in Sec. 3.3.

This said, the most relevant criterion that can be used to evaluate the portability of the
NetVM model consists in the number of different hardware platforms supported, currently
Intel x86/x64, Cavium Octeon and Xelerated X11 processors. These platforms have been
selected for being representative of different processing models and in fact they widely dif-
fer under several aspects: number and organization of processing elements, computational
capabilities, availability of external coprocessors, and, at a lower level, instruction sets and
memory architectures. Apart from the NetVM, there are no other development tools able to
target simultaneously such a variety of platforms. Next Sections will confirm if this porta-
bility comes at the expense of other objectives such as generality of performance.

6.2 Generality

Generality can be demonstrated by showing that multiple classes of data-plane packet pro-
cessing application can be effectively mapped to the NetVM architecture. We have currently
implemented three major applications: a packet filter, an intrusion detection system and a
layer-2 forwarder. While certainly not exhaustive, we believe that our set of test software is
representative of the entire class of packet processing applications and that the capabilities
and primitives exercised in our tests constitute the core of most other programs.

Packet filters are simple and well-understood; nevertheless, it is difficult to scale software-
based implementations to high packet rates without giving up other features such as flexi-
bility. Our approach is based on NetPFL compiler [23] that dynamically generates a NetVM
application starting from a high-level filter statement and an external protocol database.

Intrusion detection systems (IDS) play a vital role in protecting networks from secu-
rity attacks or misbehaving nodes and users. We use NetVMSnort, a tool reengineered for
the NetVM from the well-known Snort IDS [22]. NetVMSnort supports many features of
the original implementation and its intrinsic complexity can stress the modelling capabili-
ties of the NetVM by employing multiple interconnected NetPEs; at the same time it also
presents many implementation challenges by using advanced operations, such as string pat-
tern matching, that benefit from proper mapping over the target hardware devices. This
application works only on the Octeon and the x86/x64 backends, mostly because of mem-
ory constraints (i.e., the amount of available memory and the impossibility to access to
non-aligned memory locations) of the X11 NPU. This limitation derives directly from X11
hardware design goals; in any case, it is possible to execute at least the initial classifica-
tion module of NetVMSnort on the X11 NPU. This reflects a reasonable scenario where the

27

X11 performs the initial inspection at very high rates and downstream modules complete
the computation.

Finally, our last test case is layer-2 forwarding, a keystone operation in packet switching
networks. It can be divided into the a data-plane portion that operates on every single packet
by inspecting and forwarding it, and a control-plane portion that periodically cleans the
Forwarding Information Base (FIB) table up. The complexity of the data-plane portion is
somewhat in between an IDS and packet filters because each packet must be examined
to extract the relevant fields (as in packet filtering), then lookups are performed against
persistent memory tables (the FIB) to decide the correct destination; sometimes these tables
also need to be updated. As in the IDS case, this data-plane application is fully supported
by both the x86/x64 and the Cavium platforms; the case for the X11 NPU deserves more
attention. Particularly, we detected the (remote) possibility to generate inconsistencies when
inserting a value in the X11 TCAM due to unavailability of synchronization primitives on
the target platform.

In fact, the L2 forwarder application needs to insert a new MAC address in the TCAM
only if the lookup for that address fails (during the bridging process), in order to avoid
duplicate entries. Given this logical dependency between lookup and insertion, the X11
compiler has no chance but to implement it with 2 different EAP-operated TCAM accesses,
the first one to perform the lookup and the second one to perform the insertion, if required.
These 2 operations must be scheduled in 2 subsequent EAPs so there exists a small but non-
negligible time interval where multiple packets with the same, yet-unknown source MAC
can trigger multiple insertions, as their FIB lookup will be processed before any update can
be performed. It is important to note that X11 behavior and Ethernet switching semantics
ensure that the switching application behaves correctly in all cases by reverting to flooding
for the small delay where no FIB entry is present even though a source MAC has been
seen on the wire, then correctly sending incoming packets to the right destination. The only
remaining side effect is the presence of multiple entries with the same key in the TCAM-
implemented lookup table: the window of opportunity is estimated so small (3-4 packets)
that in most cases no duplicates are expected at all; even when repeated insertions happen
they can be pruned as appropriate by ad-hoc control-plane jobs (that are required anyway to
evict expired entries).

Even though the event previously described is rare and can be solved by the control
plane by cleaning up duplicate entries (Sec. 5.3.2), it is important to note these issues are
detected at compile-time by the X11 backend that generates a warning message and leaves to
the programmer the responsibility to evaluate their possible implications. In conclusion, it is
possible in general that certain programs need specific hardware support missing from some
of otherwise-supported platforms, thus preventing the compiler from translating semanti-
cally correct programs; the only thing we can do in this case is to raise a warning. These
issues, however, are not due to the NetVM and cannot be avoided even when programming
the target hardware platform with its native tools.

We claim that the experience resulting from our tests shows how the NetVM model can
support most data-plane packet processing applications, both at the architectural level (by
appropriately interconnecting NetPEs) and at the implementation level (by providing the
required primitives, memory areas and control structures to write the required algorithms).
Failures to do so are mostly due to unavoidable hardware limitations; in any case the com-
piler is able to handle them by emitting warnings or aborting the compilation in critical
cases.

28

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5

NetVM no-opt
NetVM opt
BPF

23 26
30

52

35

7
12 15

39

21

36 39 39

76

43

8

26

13

61

34

Native

(a) Intel x86

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5

NetVM

9
14 17

51

29

8
15

20

62

32

Native

(b) Cavium Octeon

Fig. 10 Filtering time for filters (ticks)

6.3 Performance

Objective run-time performance measurements can be made by running the programs on
the target platforms and measuring the execution times taken to process selected inputs.
While this approach is relevant for both the x86 and the Octeon NPUs, run-time tests on the
X11 NPU are less significant as throughput is related to the number of instructions to be
executed and not their nature, making code compactness a major factor in order to translate
larger programs to fewer pipeline passes: the relevant metric for this platform is then the
number of instructions emitted.

While absolute performance measurements are relevant to calculate the expected device
throughput, it is also important to compare NetVM results with those from other compilation
techniques. When applicable, we have written equivalent C test program compiled with
Microsoft Visual Studio and GCC, for the x86 and Octeon platforms respectively; these are
commercial-quality compilers that can be regarded as the state of the art. Unfortunately, no
compiler exists for the X11 NPU, so in order to get a baseline for comparison we resorted
to hand-optimizing assembly code following Xelerated code optimization guidelines. While
obviously imperfect and error-prone, this solution nevertheless provides what we believe to
be an interesting insight.

Our x86 tests were run on an 3 GHz hyper-threaded Pentium 4 processor with 2 GB
of RAM; single-core experiments for the Octeon platform were conducted on a cycle-exact
emulator configured to simulate a CN3080 platform, with 16 cores running at 500 MHz and
384 MB of memory. All of our test use only one core of each machine, except Sec. 6.3.5.
Both platforms provide performance registers that were read using the appropriate soft-
ware instructions (e.g., RDTSC for the x86 CPU); X11 data comes directly from manual
assembly-level code inspection.

The rest of this Section presents an evaluation of the efficiency of NetVM-generated
code, based on the performance obtained with the aforementioned packet processing ap-
plications. Some additional Sections are dedicated to some platform-specific results, which
better demonstrate the flexibility and effectiveness of the NetVM compiler.

6.3.1 Packet filtering

The first test conducted consists in measuring packet filtering performance by running five
packet filters7 of different complexity. In order to get comparison baselines, the same packet

7 Filters, according to the well-known libpcap/WinPcap syntax are ip (filter1), ip src 10.1.1.1
(filter2), ip and tcp (filter3), ip src 10.1.1.1 and ip dst == 10.2.2.2 and tcp src

29

Table 1 Snort string matching performance on Octeon and x86

Platform Time spent in string matching

Octeon 3.79%
x86 13.44%

filters were also created by two other generators. We chose to use the Just-in-Time ver-
sion of the widely diffused BPF virtual machine; while very simple when compared to the
NetVM infrastructure, it is nevertheless capable of emitting x86 machine code on the fly.
Unfortunately we were unable to find an equivalent implementation on the X11 and Octeon
processors, so no comparison with BPF filters is available for those platforms. A second set
of test programs consists in native filters directly in the C language. Where relevant, these
filters use a custom macro to speed up byte-ordering operations such as ntoh(), instead of
relying on standard C libraries.

Results are presented in Fig. 10(a), Fig. 10(b) and Fig. 11(a). Where comparisons are
available, it can be seen how the NetVM compiler is capable of generating code that is as
fast as or faster than what produced by the other technologies under testing on both the x86
and the Octeon processors. As for the X11, the instruction counts are rather small, and filters
fill up a reasonable portion of the pipeline, as expected.

The main sources of efficiency are the intrinsic properties of the NetVM model, which
exports useful information to the compiling infrastructure thus enabling very effective, albeit
simple, optimizations (such as compile-time constant swapping on x86 CPUs). As it can
be noted by comparing the second and third columns of Fig. 10(a), the implemented set
of optimizations, although smaller than what is available in commercial compilers, is very
effective at reducing execution times.

For both the Octeon and X11 NPUs, test results are good even in spite of the lack of
an instruction scheduling algorithm (left to future improvements) that would prevent the
processor pipeline from stalling and would improve VLIW merging, respectively.

6.3.2 NetVMSnort

We were able to successfully run the NetVMSnort application [22] on both the x86 and the
Octeon platforms. Unfortunately a direct comparison with the original Snort IDS is unfeasi-
ble because our implementation uses different algorithms to process packets. Nevertheless,
it is important to note that the NetVM model enables the efficient exploitation of native
hardware features on platforms in which these are available. As an example, the hardware
DFA unit of the Octeon NPU is used in NetVMSnort to perform string matching; as reported
in the second column of Tab. 1, this greatly reduces the amount of time spent in this module
when compared to platforms that must execute the whole application in software. Tests were
performed on both the x86 and Octeon platforms, by configuring the NetVMSnort applica-
tion with a ruleset containing 1389 rules, 1282 of which needing deep packet inspection
functionalities (i.e. string and regular expression matching), and by measuring the total time
needed for processing a trace containing about 10M packets captured on a real network, as
well as the time spent only in the string-matching module.

port 20 and tcp dst port 30 (filter4) and ip src 10.4.4.4 or ip src 10.3.3.3
or ip src 10.2.2.2 or ipsrc 10.1.1.1 (filter5). The test packet was created so that filtering
code was executed entirely before returning to the caller.

30

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5

NetVM

5
12 14

41

32

5
11 12

33

23

Manual

(a) Filters

 0

 20

 40

 60

 80

 100

 120

None Automatic Manual

Total instructions111

86
76

111

68

48

Resulting VLIWS

(b) IDS

Fig. 11 Instruction counts for the X11 processor

Although the X11 processor is unable to run the full application (Sec. 6.2), we extrapo-
lated the initial packet classification module from NetVMSnort and run it on the X11 proces-
sor, simulating the deployment of the X11 as a inline traffic pre-processor. Results, reported
in Fig. 11(b) are encouraging: even with a prototype compiler the performance obtained
with automatic optimizations are within 20% from what can be obtained by manually op-
timizing the code. Moreover, even the simple VLIW merging strategy implemented proved
to be rather effective in this case, as it can be seen by comparing the generated instructions
with the number of resulting VLIW words; a more robust algorithm is likely to provide even
better results. The differences between manual and automatic optimizations can be mainly
ascribed to the simplistic VLIW merging algorithm employed and to some missed copy fold-
ing opportunities. Both these issues can be addressed with standard techniques described in
literature that do not require a redesign of the compiler framework to be implemented.

6.3.3 Layer 2 forwarding

The last test conducted is a layer-2 forwarding application, which consists in a single NetPE
that implements data-plane Ethernet switching in addition to the backward learning algo-
rithm. The implementation mainly revolves around the NetVM exact lookup coprocessor,
used as an associative memory to retrieve the output port set associated with packet MAC
addresses. The coprocessor is used multiple times per program invocation, making its effi-
cient implementation a must.

The application can be successfully executed on every supported platform, although
with some potential issues (as previously reported) on the X11 NPU. Experimental results,
reported in Fig. 12, clearly show that the code emitted by the NetVM compiler for the x86
and Octeon platforms is of comparable performance to the native implementation of the test
program. Tests were conducted by processing a real-world packet capture containing about
2M packets (captured on a switch of our campus network) and measuring the time spent in
executing the code of the processing element.

While on the x86 and the Octeon platforms the coprocessor implementation is entirely
software, on the X11 the coprocessor implementation uses the integrated TCAM device.
Further experimental results confirm that almost the 60% of time is spent performing lookup
operations, that in software implementations require also the computation of an hashing
function. This fact also helps explaining the very low instruction count reported in Tab. 2 for
the X11 platform, where most work is offloaded to the hardware coprocessor; the resulting

31

Table 2 X11 instruction counts for the layer 2 forwarding application

NetVM Manual optimizations

48 39

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

x86 Octeon

NetVM

310

1960

334

1949

Native

Fig. 12 L2 forwarding performance on x86 and Octeon (ticks per packet)

 0

 20

 40

 60

 80

 100

 120

None Automatic Manual

Total instructions

62

23 19

62

22
17

Resulting VLIWS

Fig. 13 X11 TCP filter (instruction count)

program is very efficient, being able to run at full wire-speed (the current generation of the
X11 processor supports 4x10Gbps Ethernet links).

6.3.4 X11-specific considerations

While the previously described tests provide a good coverage of the capabilities required by
the NetVM compiler, in the case of the X11 processor it is also required to test the ability of
recognizing instruction patterns as described in Sec. 5. In order to do so we have modified
a packet filter that recognizes TCP packets directed towards port 80 to count the number of
matches, a task performed by a separated PE that is inlined at compile time.

In this example we use data memory to permanently store the total number of matches
and the resulting code, if naı̈vely compiled, is prone to a race condition where the update
from one of two subsequent matching packets is lost. The NetVM compiler is able to detect
the instruction pattern related to the memory access and compile it properly into a single
atomic memory operation, thus proving that the compiler infrastructure together with the
combined effects of optimizations can handle at least simple cases. The test results are shown
in Fig. 13.

32

6.3.5 Exploiting processor parallelism

All the results presented so far were obtained using only a single core on the target platform.
In a more realistic scenario multiple cores of the same processor are assigned to the NetVM
to speed up execution times by processing multiple packets in parallel; performance tests
have been repeated using multiple cores on both the x86 and the Octeon platforms in order to
have a first insight about the feasibility and scalability of parallel NetVM implementations.

It must be noted that while the NetVM model is designed to simplify concurrent im-
plementations, the problem of optimally allocating processing resources to different sub-
tasks (in the NetVM case, NetPEs) is much harder to solve and is likely to be platform-
dependent. At the time of this writing our NetVM implementation is limited to statically
allocating or replicating NetPEs across concurrent execution units using a platform-specific
strategy, as explained in section Sec. 5.4. For instance, while the X11 implementation is
intrinsically parallel, the x86 version adopts the run-to-completion model and the Octeon
arranges the multiple execution stages in a pipeline. The two different execution models,
run-to-completion vs. pipelined, offer different performance: while the former depends on
the effectiveness of its load balancer and the efficiency of the synchronization primitives
required to access data shared by multiple NetVM replicas, the latter is constrained by the
latency of the slowest stage.

Fig. 14 reports some preliminary results on multicore implementation of the NetVM.
Experiments on the x86 platform were carried out on a 32-bit, 4 core Xeon system with 4
GB of memory when processing a 10M packets trace, while Octeon experiments were based
on the same platform already used in previous tests. The relative performance shown in the
graphs is the ratio between the time required to process our trace when N cores are used
and the one required with a single core on the x86 platform, while it refer to the relative
throughput between the pipeline and the run-to-completion models on the Octeon. This
number is representative of the scalability of the approach, as we expect that in the ideal
case the relative throughput is directly proportional to the number of cores allocated.

Fig. 14(a) and (b) give an insight of the run-to-completion model implemented on the
x86 platform. Fig. 14(a) refers to a stateless packet filtering program and shows that, as
expected, performance scale almost linearly with the number of cores dedicated to the pro-
cessing. This is due to the stateless nature of packet filters that do not use any shared re-
source; only a small overhead is required to perform load balancing and packet dispatching.
Vice versa, the Fig. 14(b) shows the results obtained when running NetVMSnort that, being
stateful, requires a synchronized access to shared resources. Results demonstrate that this
impairs the scalability with respect to the number of cores: four cores achieve a throughput
that is only 1.8 times higher than one core and, perhaps even most important, the throughput
tend to saturate even with such a small number of cores. However, we are confident that
those numbers could be improved in the future when a better implementation will be avail-
able. In fact, we noticed that the synchronization primitives we use are very expensive, as
shown by the the bar labeled (1*) in Fig. 14(b) that refers to a NetVM instance with the
synchronization primitives turned off, which performs 1.43 times faster than the same im-
plementation with synchronization enabled. We speculate that this is due to the necessity
to launch concurrent NetVM instances in different processes due to some limitations in our
current code, thus requiring synchronization primitives that operate at the process level that
are sensibly more expensive than the ones that operate at the thread level.

Fig. 14(c) reports also the speedup of a parallel implementation on the Octeon, using the
pipeline model. Results are in line with our expectations, although the advantage of using
9 cores (equal to the number of NetPEs defined in that application) seems limited as the

33

 0

 100

 200

 300

 400

1 2 3 4

R
el

at
iv

e
sp

ee
d
 (

%
)

Core count (#)

(a) Stateless filters on x86

 0

 100

 200

1 2 3 4 1*

R
el

at
iv

e
sp

ee
d
 (

%
)

Core count (#)

(b) NetVMSnort on x86

 0

 100

 200

run-to-completion pipeline

R
el

at
iv

e
sp

ee
d
 (

%
)

(c) NetVMSnort on Octeon

Fig. 14 Multicore scalability

throughput increases only 1.55 times compared to the single core case. The reason is due to
the limits of out current implementation of the pipeline model, whose theoretical speedup is
capped the performance of the “fattest” NetPE. In our case this is represented by a module
that accounts for about 60% of the total time of the application, hence representing a severe
bottleneck in our application. A clever implementation of the pipeline model is left for future
work.

7 Conclusions

The NetVM model has been proposed as a way to achieve generality, portability and effi-
ciency in packet processing applications. This paper aims at validating these claims and our
results demonstrate that the virtual machine paradigm is applicable also to packet processing
applications without affecting their performance, and greatly improves their portability. Our
compiler enables the execution of NetIL code on different architectures (four of them have
been tested); it can support different classes of applications and the resulting performance
may be even better than those achieved by other competing development platforms or by
handwritten code.

These results can be achieved thanks to the characteristics of the NetVM model and to
the quality of the NetVM framework, whose main components, an optimizing multi-target
compiler and a run-time system implementing the NetVM model, allow the exploitation of
the hardware features available on real network processors without affecting the portability
of the generated code.

Result are encouraging, although we recognize that the implementation can still be fur-
ther improved. Relevant topics include studies on possible medium-level optimizations for
packet processing applications, and the possibility to fully exploit multiprocessor capabili-
ties of NPUs with more advanced parallelization strategies.

Acknowledgements The authors wish to thank all the people who were involved in this project, particu-
larly the many students who contributed to the development of the NetVM framework, and all the (former)
colleagues who participated in the early days of this project, particularly Mario Baldi, Loris Degioanni and
Gianluca Varenni who were part of the group of people who started the NetVM project back in 2002.

References

1. A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search. Commun. ACM,
18(6):333–340, 1975.

34

2. M. Baldi and F. Risso. A framework for rapid development and portable execution of packet-handling
applications. In Proceedings of the 5th IEEE International Symposium on Signal Processing and Infor-
mation Technology, 2005, pages 233–238, December 2005.

3. M. Baldi and F. Risso. Towards effective portability of packet handling applications across heterogeneous
hardware platforms. In Proceedings of the 7th Annual International Working Conference on Active and
Programmable Networks, November 2005.

4. D. Bernstein, M. Golumbic, y. Mansour, R. Pinter, D. Goldin, H. Krawczyk, and I. Nahshon. Spill code
minimization techniques for optimizing compliers. In PLDI ’89: Proceedings of the ACM SIGPLAN
1989 Conference on Programming language design and implementation, pages 258–263, New York,
NY, USA, 1989. ACM.

5. P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph coloring register allocation. ACM
Trans. Program. Lang. Syst., 16(3):428–455, 1994.

6. Z. Budimlic, K. D. Cooper, T. J. Harvey, K. Kennedy, T. S. Oberg, and S. W. Reeves. Fast copy coalescing
and live-range identification. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, pages 25–32, New York, NY, USA, 2002. ACM
Press.

7. J. Carlstrom and T. Boden. Synchronous dataflow architecture for network processors. IEEE Micro,
24(5):10–18, 2004.

8. M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, , and R. Ju. Shangri-la: achieving high perfor-
mance from compiled network applications while enabling ease of programming. In In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation, 2005.

9. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490,
1991.

10. R. Ennals, R. Sharp, and A. Mycroft. Task partitioning for multi-core network processors. In In Pro-
ceedings of the International Conference on Compiler Construction (CC) 2005, 2005.

11. European Computer Manufacturers Association. Common Language Infrastructure (CLI) - Partitions I
to VI. International standard; ECMA-335 ISO 9660: 1988 (E), ECMA International, Geneva, June 2006.

12. J. A. Fisher. Trace scheduling: a technique for global microcode compaction, pages 186–198. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1995.

13. C. W. Fraser, R. R. Henry, and T. A. Proebsting. Burg: fast optimal instruction selection and tree parsing.
SIGPLAN Not., 27(4):68–76, 1992.

14. L. George and A. W. Appel. Iterated register coalescing. ACM Trans. Program. Lang. Syst., 18(3):300–
324, 1996.

15. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann, San Francisco, CA, USA, 2006.

16. E. J. Johnson and A. R. Kunze. Ixp2400-2800 Programming: The Complete Microengine Coding Guide.
Intel Press, 2003.

17. A. Korobeynikov. Improving Switch Lowering for The LLVM Compiler System. In Proceedings of
the 2007 Spring Young Researchers Colloquium on Software Engineering (SYRCoSE’2007), Moscow,
Russia, May 2007.

18. E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.
19. T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1999.
20. G. Memik and W. H. Mangione-Smith. Nepal: A framework for efficiently structuring applications for

network processors. In Proc. of the Second Workshop on Network Processors (NP), Anaheim, CA, Feb.
2003.

21. B. Microsystems. Chesapeake network processor. Mar. 2007.
22. O. Morandi, G. Moscardi, and F. Risso. An intrusion detection sensor for the netvm virtual processor. In

Information Networking, 2009. ICOIN 2009. International Conference on, pages 1–5, Jan. 2009.
23. O. Morandi, F. Risso, M. Baldi, and A. Baldini. Enabling flexible packet filtering through dynamic code

generation. In Communications, 2008. ICC ’08. IEEE International Conference on, pages 5849–5856,
May 2008.

24. L. Ciminiera, M. Leogrande, J. Liu, O. Morandi, and F. Risso. A Tunnel-aware Language for Network
Packet Filtering. In IEEE Globecom 2010 - Next Generation Networking Symposium, Miami, Flo (USA),
December 2010.

25. R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The click modular router. SIGOPS Oper. Syst.
Rev., 33(5):217–231, 1999.

26. S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

27. G. Myers. Overview of ip fabrics’ ppl language and virtual machine, white paper.

35

28. C. Networks. Octeon network processors. Sep. 2004.
29. N. Shah, W. Plishker, K. Ravindran, and K. Keutzer. Np-click: A productive software development

approach for network processors. IEEE Micro, 24(5):45–54, 2004.
30. Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. Virtual machine showdown: Stack versus

registers. In ACM Trans. Archit. Code Optim., Volume 4, Issue 4, January 2008.
31. J. Wagner and R. Leupers. C compiler design for an industrial network processor. In LCTES ’01:

Proceedings of the ACM SIGPLAN workshop on Languages, compilers and tools for embedded systems,
pages 155–164, New York, NY, USA, 2001. ACM.

32. B. Wun, P. Crowley, and A. Raghunath. Design of a scalable network programming framework. In ANCS
’08: Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking and Communica-
tions Systems, pages 10–18, New York, NY, USA, 2008. ACM.

33. Xelerated. Xelerator X11 network processor. Oct. 2003.
34. The Netgroup at Politecnico di Torino. The NetBee library. Available online at http://www.nbee.org.

Aug. 2004.

