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Abstract Today, although intellectual properties (IP) and their reuse are common, their use

is causing design security issues: illegal copying, counterfeiting, and reverse engineering.

IP watermarking is an efficient way to detect an unauthorized IP copy or a counterfeit.

In this context, many interesting solutions have been proposed. However, few combine the

watermarking process with synthesis. This article presents a new solution, i.e. automatic low

cost IP watermarking included in the high-level synthesis process. The proposed method

differs from those cited in the literature as the marking is not material, but is based on

mathematical relationships between numeric values as inputs and outputs at specified times.

Some implementation results with Xilinx Virtex-5 FPGA that the proposed solution required

a lower area and timing overhead than existing solutions.

Keywords IP protection · IP watermarking · War against illegal copying · Design

automation · High level synthesis

1 Introduction

To cope with increasing system complexity, companies reuse more and more IP cores. As a

consequence of the increase in the IP core business, IP theft is also on the rise [1]. The trade

group founded by Cisco, HP, Nortel and 3COM (“alliance for gray market and counter-

feit abatement” (AGMA) [2]) estimates that legitimate electronic companies loose almost

$100 billion in revenues every year due to counterfeiting. The prevention of counterfeit-

ing requires a technological solution in addition to the legal process i.e. patents and trade

agreements.

B. Le Gal (�)
IMS Laboratory—UMR CNRS 5218, ENSEIRB-MATMECA, University of Bordeaux, Talence Cedex,
France
e-mail: bertrand.legal@ims-bordeaux.fr

L. Bossuet
Laboratoire Hubert Curien, UMR CNRS 5516, Telecom Saint Etienne, University of Lyon, Lyon,
France
e-mail: lilian.bossuet@univ-st-etienne.fr

mailto:bertrand.legal@ims-bordeaux.fr
mailto:lilian.bossuet@univ-st-etienne.fr


B. Le Gal, L. Bossuet

A novel IP watermarking technique to identify IP theft (i.e. an illegal copy of IP), is pre-

sented in this article. To reduce the watermarking overhead (area, delay, power consumption

and design time), a watermark is automatically inserted in the design. The watermark is

inserted during the behavioral synthesis process by using a automatic high level synthesis

(HLS) tool.

HLS [3, 4] resembles the software compilation transposed to the hardware domain. The

HLS tool automates the design process of generating the register transfer level (RTL) archi-

tectures from the behavior specifications for the system algorithm. These computer aided

design (CAD) tools are necessary to tackle the actual area/throughput tradeoffs. Otherwise,

it is impossible to solve this issue with common hand-coded designs that are based on mas-

sive pipeline hardware architectures. HLS tools that target ASIC and/or FPGA, have already

been developed by companies like Mentor Graphics, Catapult-C, Hewlett-Packard PICO-

NPA [5] and Forte Design Systems Cynthesizer [6]. Moreover, HLS tools developed by

academic laboratories such as SPARK (University of Irvine, CA, USA) [7], GraphLab (Uni-

versity of Bordeaux, France) [8] and GAUT (University of South Brittany, France) [9] also

contribute. HLS tools generate RTL-IPs described by VHDL or Verilog language. The IP

designer uses generated RTL-IPs as inputs for place and route tools to generate an ASIC

netlist or a FPGA bitstream.

This paper presents a design method that fulfils IP security requirements by design reuse,

but in an original way. The paper is organized as follows. Section 2 describes state-of-the-

art IP watermarking solutions. Section 3 presents the HLS concepts. Section 4 details the

new proposal for IP watermarking illustrated in Sect. 5 by a didactic example. Section 6

describes the main parts of the modified HLS automatic flow. Section 7 gives experimental

results with signal processing benchmarks on a Xilinx Virtex-5 SRAM-based FPGA target.

Finally, Sect. 8 discusses the watermarking chain from the point of view of security.

2 State of the art

2.1 IP protection by watermarking

According to [10] the goals of IP protection are:

1. To enable IP providers to protect their IPs against unauthorized use;

2. To protect all types of design data used to produce and deliver IPs;

3. To detect unauthorized use of IPs;

4. To trace unauthorized use of IPs.

Detecting the unauthorized use of IPs involves the ability to determine that an unau-

thorized use has occurred and then to trace the source of the theft. To solve the problem

of detection, IP providers use an embedded digital signature. This is a finite sequence of

symbols drawn from a finite alphabet. An IP digital signature system can use normal cryp-

tographic services such as provider authentication (by using public key cryptography [11])

and signature integrity (by using hash function [12]). Nevertheless, for an embedded IP digi-

tal signature, cryptographic services are performed by pre-processing and they do not ensure

the security of the signature itself.

Fingerprinting (passive watermarking) and watermarking are currently the best known

digital signature solutions. Digital IP watermarking is an indirect protection scheme that

proves the ownership of an IP. The concept of active watermarking consists of inserting a

digital signature into an IP. This watermark makes use of the intrinsic features and architec-

ture of the IP [10].
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Fig. 1 Published watermarking schemes for IP protection with a synthesis process

Figure 1 shows published watermarking schemes according to the level of abstraction of

the application or circuit. First, pre-synthesis IP watermarking leads to algorithmic modifi-

cations of the application to hide the signature (Fig. 1a). However, pre-synthesis IP water-

marking is too algorithm dependent; it may be suitable for some digital signal processing

(DSP) applications but it is not at all practical for rapid marketing. In-synthesis IP water-

marking benefits from an automatic synthesis (behavioral or logic synthesis) tool to add a

digital signature to the IP without significant overhead (Fig. 1b). Finally, post-processing

IP watermarking uses the designer’s knowledge of the circuit to change (by hand) the IP

hardware architecture and add a digital signature (Fig. 1c). The following paragraph gives

more details on the different published solutions.

2.2 Existing solutions

This section reviews some existing watermarking solutions. It is not exhaustive, and inter-

ested readers will find more information in [10] and [13].

Examples of pre-synthesis IP watermarking can be found in [14–17]. DSP IP watermark-

ing is described in [14]. In [15], the authors target algorithm level IP watermarking in the

design flow. Both approaches [14] and [15] are based on slightly changing the digital filters

parameters, without affecting system behavior. Two different pre-synthesis IP watermarking

techniques at the behavioral level are described in [16] and [17]. Both techniques are based

on adding new input/output sequences to the IP finite state machine (FSM).

In-synthesis IP watermarking can be found in [18, 19]. In [18], Hong presents IP wa-

termarking combinational logic synthesis solutions. IP watermarking behavioral synthesis

techniques are described in [19].

Post-synthesis IP watermarking in [20] and [21] mostly describes constraints. One exam-

ple is the addition of extra hardware, like a buffer [22] or a dedicated embedded tester [23].

Clearly, for the solutions listed above, extraction of the IP watermark is not described in

detail. Watermark extraction and testing can be difficult, especially when the IP is embed-

ded in a larger system on chip (SoC). Watermark extraction concerns only a small number of

suspicious IPs in a court of law [13]. In this case, enough time is available to prove the legal-
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ity of the IP (respect of copyright). Like extraction time, the cost of extracting a watermark

is not prohibitive in the case of law.

2.3 Conclusion

Pre-synthesis IP watermarking techniques are application dependent, and over costs are

hard to measure. Post-synthesis IP watermarking techniques are time consuming, hand-

made, and design/device dependent. In-synthesis IP watermarking techniques introduce a

power/area/timing overhead. Generalizing watermarking usage for IP identification is im-

portant. However, it requires sufficient generic IP watermarking techniques with very low

area and timing overheads. Such techniques must be implemented in automatic design flows

for rapid component tagging in a designer friendly process. For these reasons, a new in-

synthesis IP watermarking technique is presented in the following section.

3 Architectural synthesis concepts

The proposed methodology targets custom hardware IPs dedicated to computationally in-

tensive applications (i.e. signal and video processing, digital communications, etc.). These

IPs are composed of three units:

1. The processing unit contains the data path and a controller to perform the required com-

putations.

2. The memory unit manages pipeline access to memories.

3. The communication unit sends and receives data to/from the input/output ports. It also

manages internal communications.

This kind of architectural descriptions could be automatically generated in hardware de-

scription language (i.e. VHDL) from a high-level language (i.e. C language) by using a HLS

tool. The objective of HLS tool is to exploit the application parallelism and to schedule com-

putation and data storage. The HLS tool has to respect design constraints, including power

consumption, area, and throughput. Usually, there is a trade-off between low area sequen-

tial hardware architecture and high-speed parallel (full pipeline) hardware architecture. The

HLS tool uses a centric trade-off design flow, as illustrated in Fig. 2.

For example, in the case of customary video and signal processing applications, full

pipeline hardware architecture is often inefficient. Actually, full pipeline hardware architec-

ture is too area and power consuming.

Fig. 2 High-level synthesis in a
centric area-throughput trade-off
design methodology
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Fig. 3 Example of the
input/output behavior of a digital
FIT filter IP

The trade-off is between high performance and low cost (area, power consumption) hard-

ware architectures [9] and [24]. An efficient architecture shares hardware resources (oper-

ators and registers) during the execution of an application. Sharing resources temporarily

frees some input and output slots that are then ready to tag.

The inputs and outputs allow IP to receive and send data from/to the system. Figure 3

presents the input/output behavior of a digital FIR filter. It receives input data (Xn), per-

forms computations and then provides output data (Yn). The output time slots between two

successive active states (high levels) of “data valid” signal are not used. Out of active states

of “data valid”, the “temporally free” output slots are colored gray in Fig. 3.

The proposed IP watermarking technique is to use the “temporally free” output slots to

give watermarking computation results. The proposed IP watermark is a set of mathematical

relations between the IP input data, the initial values of the internal computation and the IP

output. Each mathematical relation is called a sub-mark.

The sub-marks are read like output data from some “temporally free” output slots. With

the proposed technique, the IP watermark is invisible for the IP buyer, the IP integrator and

the IP user. This is because the sub-marks results look like dynamic transient output data and

the watermark area and timing overhead are very low (as will be shown in the experimental

results in Sect. 7). Consequently, the IP watermark remains invisible during static analysis.

The proposed IP watermarking technique is suitable for general purpose applications like

digital signal, image or video processing. This technique is not suitable for data-security

applications such as data encryption, data integrity or data authentication. In such cases, the

IP watermark can cause a dramatic data security failure by outputting internal computation

data. The next section details the IP watermarking technique.

4 New IPP proposal by watermarking

4.1 Presentation of the IP watermarking technique

The IP watermarking technique is based on the “temporally free” IP output slot behaviors.

During the “temporally free” output slots, output data are modified by introducing custom-

design singularities (which are IP internal computation values).

The proposed technique uses the following assertion: the hardware IP has “temporally

free” output slots. According to the presentation of HLS centric trade-off design methodol-

ogy (cf. Sect. 3), this assertion is true with HLS tools.

Depending on the level of protection required and the watermark cost allowed, two IP

watermarking algorithms (with different area and timing overheads) are proposed: a low-

cost watermark and a costless watermark.

A low-cost watermark is characterized by a set of randomly chosen internal computa-

tion values of the IP. A special data path generates each sub-mark by transferring the selected
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Fig. 4 Multiplexer area (number
of LUTs, y-axis) on the Xilinx
Spartan-3E device (90 nm
SRAM FPGA) as a function of
the number of input ports
(x-axis)

Fig. 5 Multiplexer area (number
of LUTs, y-axis) on the Xilinx
Virtex-5 device (65 nm SRAM
FPGA) as a function of the
number of input ports (x-axis)

Fig. 6 Multiplexer area (2-input
NAND gate equivalents, y-axis)
on 65 nm low-power ASIC
technology as a function of the
number of input ports (x-axis)

internal values to a “temporally free” output slot. The IP watermarking area overhead is due

to the cost of the data path area and output multiplexer resizing, but such area overhead is

very low. This is particularly true for FPGA implementations, because, when an FPGA is

used, the reconfigurable data paths do not cost area. Instead, the set of data paths is directly

available in the FPGA. However, increasing input multiplexer size costs area. Figures 4 and

5 show that for a FPGA implementation, the multiplexer area (in the number of look-up

tables (LUT)) depends on the number of inputs. These results were obtained using the Xil-

inx ISE 10.1 synthesis tool. Using the latest FPGA generations with larger LUT reduces

the multiplexer cost and provides larger steps (see Figs. 4 and 5). Actually, the latest FPGA

generations, such as Xilinx Virtex-5 65 nm FPGA and Virtex-6 40 nm FPGA, use 6-input

LUTs. Whereas 90 nm FPGAs (such as Xilinx Spartan-3E) and other older FPGAs use 4-

input LUTs. For ASIC implementation, Fig. 6 gives the multiplexer area (in the number of

NAND gates), which increases linearly with respect to the number of inputs to the multi-

plexer. These results were obtained using the Synopsis Design Compiler synthesis tool.

According to these results, FPGAs are more suited than ASICs to using the proposed IP

watermarking technique with low area overhead. FPGAs are more suitable because of their
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Fig. 7 Example of low-cost IP watermarked architecture reusing existing resources, including new dedicated
data path allocations (dotted line)

multiplexer area-cost function: adding an input to an existing multiplexer does not always

increase its area (number of LUT elements). This characteristic (shown in Figs. 4 and 5 for

Xilinx Spartan-3E and Virtex-5, respectively) is due to the internal structure of the FPGA

LUT.

A costless watermark is a low-cost watermark with a reduced set of internal values.

A costless watermark uses dynamic transient outputs when the slots are temporarily free. To

introduce this watermark, the only change required is modifying the IP control unit to drive

selected data to output ports. HLS tools design the IP control unit with a FSM. The costless

watermark only impacts the FSM. The concept will be illustrated in Sect. 6, with exper-

imental results on the FPGA target. The results ensure that the modifications are costless

and may even reduce the area occupied by the IP. Actually, the area increases or decreases

depending on the FSM modification and the logical-synthesis process. Hence, it is hard to

predict.

Using a didactic example, Figs. 7 and 8 show the main distinction between low-cost and

the costless IP watermarked architecture. In both figures, the necessary modifications to the

IP architecture are represented by dotted lines. Figure 7 shows the low-cost IP watermark-

ing technique, which allows the HLS process to allocate new data paths (multiplexers and

wires). The new data path drives the internal computation data to selected outputs. Figure 8

presents the costless IP watermarking technique, which only affects the IP design controller

(FSM).

4.2 Proposed IP watermarking technique terminology

To formalize the proposed IP watermarking technique, this subsection defines the terminol-

ogy used.

Sub-mark, Mi(n), defined in (1), is a mathematical relation Fi , for the nth sample,

between the IP inputs in(i) and the IP internal computation initial values InitialValues. The

sub-marks result is an internal data (low-cost IP watermark) or an output value (costless IP
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Fig. 8 Example of costless IP watermarked architecture reusing the existing path controller by modifying
the multiplexer controller (dotted line)

watermark). This sub-mark is used like an IP implementation singularity.

Mi(n) = Fi(in(n), InitialValues) (1)

IP watermark defined in (2) is a set of two-data elements:

– The sub-mark Mi(n),

– The clock cycle number Ci , during which the sub-mark is sent to a “temporally free” IP

output port.

The IP watermark is composed of 1 to p sub-marks, p range is 1 to k, where k is the

number of IP “temporally free” output slots during execution of an application.

Watermark =
{(

M1(n),C1

)

, . . . ,
(

Mp(n),Cp

)}

with p ∈ [1, k] (2)

Watermark results are the IP outputs values generated on IP “temporally free” output

slots. Watermark results depend on IP input data and on the IP initial internal computation

conditions. In addition, watermark results depend on the sub-mark. Without specific knowl-

edge, nothing differentiates the watermark results from normal non-marked IP output data

during “temporally free” output slots, as these output data evolve “freely”. The watermark

results are the data used to prove IP ownership.

Watermark length, Wlength, is characterized by the maximum number of sub-marks used

for the IP watermarking.

Number of possible watermarks, Wcount, depends on the number of possible usable

data (internal computation data) at each clock cycle; var(m), where m is the clock cycle

number. Wcount also depends on the number of output ports, out(m). With h clock cycles

(h ≥ Wlength), Wcount is defined by (3).

Wcount =

h−1
∏

m=0

varout(m) (3)
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To further illustrate the proposed approach, a didactic IP watermarking example is given

in the next section.

5 Didactic example of IP watermarking

To illustrate the proposed IP watermarking technique an 8-tap digital FIR filter is used.

Figure 9 shows the filter i.e., CDFG model and input-output behavior. The four dotted edges

represent the data links between the internal selected computation data and the output slots.

Each data link is a sub-mark, and Wlength is equal to four. Information Cn on the left-hand

side of the graph model provides the control step in which operation nodes are scheduled.

For the example given (an 8-tap FIR filter), the four mathematical relations corresponding

to the four sub-marks are given below:

M1(n) = x2 × h5

M2(n) = (xn × h7) + (x1 × h6)

M3(n) = (x6 × h1) + (x7 × h0)

M4(n) = (x2 × h5)

Fig. 9 Illustration of data links (dotted edges) between the computation internal data and the IP “temporally
free” output slots used to watermark the IP, for an 8-tap digital FIR filter
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Fig. 10 Register usages and
internal data availabilities
depending on the clock cycle

For a given set of inputs (xn, x1, x2, x6, x7),Oi is the output of sub-mark Mi(n), as shown

in Fig. 9.

According to (2), the IP watermark is defined by the following set of two-data elements:

IP watermark =
{(

M1(n),C1

)

,
(

M2(n),C2

)

,
(

M3(n),C3

)

,
(

M4(n),C4

)}

The example in Fig. 9 is quite simple and the number of possible watermarks is low.

The number of useful computation internal data for the IP watermarking process is 23

(Xn, x1, . . . , x7, T1, . . . , T7, S1, . . . , S4,U1,U2, Y ). Constant coefficients (h0, . . . , h7) are in-

tentionally discarded. The number of output ports is equal to 1 and the number of clock

cycles that are usable for watermarking is equal to 4 (4 “temporally free” output slots are

available when data-valid is inactive). Nevertheless, as shown in Fig. 10, the overall internal

values are not available at each clock cycle. Due to register sharing, internal data remain in

registers until a new memorization is performed. Figure 10 models such phenomena i.e. T1

is available at only one clock cycle due to T5 memorization, though T5-which is used only

once- is stored for 4 clock cycles (until the next T1 computation, which produces T ′
1).

Following (3), the number of possible low-cost watermarks is computed for the 8-tap

digital FIR filter example. This results in Wcount = 50625 i.e. Wcount ≥ 215. However, more

a complex application would produce a higher number of possible distinct watermarks.

For the 8-tap digital FIR filter example, the number of possible cost-less watermarks is 4

(1 usable output, Y , for 4 clock cycles) and so is not sufficient.

The number of possible low-cost and costless watermarks for the implementations of

some larger DSP applications was evaluated and is listed in Table 1. Synthesis results were

obtained using an HLS tool named GraphLab [25], which includes the watermarking tech-

nique. The costless columns in Table 1 correspond to the maximum number of watermarks

that can be obtained without modifying the IP data path (multiplexer allocation). Conversely,

the low-cost columns in Table 1 give results with multiplexer allocation (creation of one

path) for each IP output. The results in Table 1 show that (i) the proposed IP watermarking

technique may provide enough different watermarks for design implementation to avoid IP

watermark collisions (ii) the number of watermarks depends on the IP architecture.

The results in Table 1 are for a known HLS tool. Such a tool accepts various synthesis

constraints and options in order to respect system integration constraints. Each constraint

may produce distinct IP hardware architecture. The architectural variation results from the

use of a timing constraint vs. an area constraint [3], scheduling and binding algorithms [26],

transformation of word length [25], power optimization [27], graph transformations [28],

multi-mode design [29], etc. Each synthesis constraint produces a new set of watermarks.

For example, changing the timing constraint for a digital FIR filter modifies the number of
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Table 1 Evaluation of possible costless and low-cost watermarks for several DSP applications

Application # of FSM
states

# of I/O
ports

Maximum
mark
length

Watermark length = 50 % Watermark length = 100 %

# of
cost-less
watermarks

# of low-cost
watermarks

# of
cost-less
watermarks

# of low-cost
watermarks

FIR 64-taps 26 1/1 25 2̂ 13 2̂ 46 2̂ 13 2̂ 50

38 1/1 37 2̂ 34 2̂ 70 2̂ 21 2̂ 74

LWT 16-taps 25 2/2 34 2̂ 63 2̂ 72 2̂ 68 2̂ 87

64 2/2 114 2̂ 278 2̂ 317 2̂ 342 2̂ 421

SSD 16 × 16 35 8/1 34 2̂ 31 2̂ 65 2̂ 25 2̂ 68

81 1/1 80 2̂ 76 2̂ 156 2̂ 37 2̂ 160

1d DCT 8 taps 15 4/4 56 2̂ 80 2̂ 125 2̂ 56 2̂ 144

20 1/1 13 2̂ 22 2̂ 26 2̂ 26 2̂ 33
2d DCT 8 × 8
taps

80 8/8 584 2̂ 866 2̂ 1323 2̂ 584 2̂ 1509

160 1/1 97 2̂ 362 2̂ 346 2̂ 544 2̂ 547
Matrix
product 8 × 8

86 8/4 280 2̂ 275 2̂ 880 2̂ 1120 2̂ 1210

141 1/1 77 2̂ 292 2̂ 443 2̂ 293 2̂ 445

FFT 64 taps 90 8/8 600 2̂ 1400 2̂ 1634 2̂ 1632 2̂ 2106

180 2/2 234 2̂ 796 2̂ 814 2̂ 1142 2̂ 1180

“temporally free” output slots. Thus, the possible number of watermarks is changed by the

design exploration.

6 IP watermarking automation flow

6.1 Specifying the mathematical watermark parameters

The proposed technique is a part of an HLS tool. This tool allows the designer to automat-

ically include the IP watermark. To do this, the IP designer has to provide the following

watermarking constraints:

– The mathematical watermark length (Wlength),

– The number of clock cycles to mark (h in (3), h ≥ Wlength),

– The watermarking technique algorithms; costless or low-cost.

After the automatic IP watermarking step, the tool provides the IP designer with a file

containing the IP watermark characteristics. This file contains the output time slots that

match the time the sub-mark results produced. This file also contains the mathematical rela-

tions that describe the sub-marks. The IP watermark characteristics may be kept secret from

a consumer, as they are only used to prove circuit ownership. As proposed in [11] and [12],

the IP designer can securely store the IP watermark characteristics by using cryptographic

services.

Note that the IP watermarking is possible only if enough “temporally free” IP output

slots are available. As a consequence, if the IP watermarking constraints (Wlength, h) pro-

vided by the IP designer do no match the IP hardware architecture (i.e., a limited number of

“temporally free” IP output slots), a watermarking process error will appear.
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Fig. 11 HLS flow including the
proposed watermarking
technique (in gray). In the figure,

it should be optimization

6.2 HLS flow modifications

Figure 11 presents the HLS flow modifications (original HLS flow can be found in [30]).

The IP watermarking process includes four steps:

– graph analysis, to find the usable internal data,

– watermark enumeration, to determine Wcount,

– selection of internal values,

– IP architecture modifications: addition of data paths, multiplexer sizing and changing the

FSM.

In the experiments presented in Sect. 7, the watermarking process takes less than 1 % of

the total HLS runtime.

6.3 Selecting the watermarks and modifying the design

By using the IP designer parameters provided, an automatic process analyzes the number

of possible watermarks. Depending on this result, it computes the average number of wa-

termarks to introduce per clock cycle. The watermarks are then distributed randomly to tag

the required number of clock cycles. Once these computations are performed, a mapping

algorithm is applied to detect remarkable internal data from the design (all internal data are

considered by the low-cost algorithm, only transient output data are considered by the cost-

less algorithm). The mapping algorithm is applied (i) to select internal data for sub-mark

usage (ii) to drive the selected internal data to one of the output ports.

For each internal data mapping to output, the tool analyzes the required logical glue over-

cost in order to find the best pair (sub-mark, clock cycle) to reduce the area overhead. An

overview of the IP watermarking algorithm is provided in Fig. 12 for both low-cost and

costless solutions.

This process is repeated for each sub-mark that the tool must insert in the design to

respect the Wlength constraint given by the IP designer.
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Fig. 12 Generic costless and low-cost IP watermarking algorithm

6.4 Authorized detection of the IP watermark

Once an IP watermark has been inserted, it must enable a check to be made for an illegal IP
copy. A suspicious IP can be embedded in a larger system and glue logic can be added to it.

Thus, it may seem hard to isolate the IP and to check the IP watermark to check if the IP is
an illegal copy. However, it is shown that with the RTL IP it is always possible to find and

test the IP original output. Moreover, a watermark is used to prove the copy is illegal in a

court of law. So, the IP provider only tests a small number of suspicious IPs. Consequently,
the watermark extraction time and cost are not considered to be serious drawbacks to the

method.

Random inputs and the IP watermark characteristics (given in the IP watermark file pro-
vided by the HLS tool) allow the IP provider to check the input-output relations. This process

is described in Fig. 13. The equality-checking tests the “temporally free” IP output slots to
validate the desired mathematic relations that the HLS tool has created to watermark the IP.

7 Results

7.1 Experimental results

To evaluate the area and timing overhead of the proposed IP watermarking technique, ex-

periments were conducted with signal and image processing benchmark FPGA. Results of
costless IP watermarking implementation are presented in Table 2. Table 3 presents results

of low-cost IP watermarking implementation.

For each IP, the following parameters are provided: the number of FSM states, the num-
ber of I/O ports, the number of “temporally free” output slots, the length of the introduced

watermark (0 % for the reference design, 50 % or 100 % for watermarked ones). In both

Table 2 and Table 3, the right-hand columns list the area and timing overhead. Penalties for
watermarked IP are obtained from a comparison with the unprotected IP. Logical synthesis

results were obtained using the Xilinx ISE 10.1 tool.
Area and timing overhead depend on the type of watermark (low-cost or costless). As

shown in Sect. 3, area and timing overheads result from changes to the data path (some mul-

tiplexers are allocated) and from changes to the control unit (the FSM instruction decoder is
modified to drive data and control new multiplexers).
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Fig. 13 Checking an IP watermarking using known or random values to extract its input-output behavior
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Table 2 Proposed costless IP watermarking area and timing overhead with a XILINX Virtex-5 SRAM FPGA

Application # of FSM
states

# of I/O
ports

# of free
slots

Without watermark Watermark length = 50 % Watermark length = 100 %

Area (#
slices)

Critical
Path (ns)

Area
overhead

C. Path
overhead

Area
overhead

C. Path
overhead

FIR 64-taps 26 1/1 25 12351 15.499 0.05 % 0.01 % 0.02 % −0.01 %

38 1/1 37 6612 14.613 −0.02 % 0.00 % 0.05 % 0.01 %

LWT 16-taps 25 2/2 34 14079 16.312 0.04 % −0.27 % −0.18 % −1.31 %

64 2/2 114 12028 16.346 −0.36 % 1.05 % 0.17 % −0.61 %

SSD 16 × 16 35 8/1 34 11078 16.103 0.09 % 0.00 % −0.01 % 0.00 %

81 1/1 80 3193 15.689 −0.06 % 0.00 % 0.09 % 0.00 %

1d DCT 8 taps 15 4/4 56 8818 15.185 0.10 % −0.05 % 0.15 % −0.02 %

20 1/1 13 6384 14.991 0.03 % −0.03 % 0.03 % −0.03 %
2d DCT 8 × 8
taps

80 8/8 584 31428 17.259 −0.32 % 0.41 % 0.02 % −0.24 %

160 1/1 97 25469 17.355 −0.30 % −0.06 % 0.08 % −0.59 %
Matrix product
8 × 8

86 8/4 280 62784 16.104 −0.24 % 0.63 % −0.11 % 0.71 %

141 1/1 77 31117 17.201 −0.01 % 0.34 % 0.05 % 0.13 %

FFT 64 taps 90 8/8 600 51086 17.255 0.02 % −0.01 % 0.04 % 0.05 %

180 2/2 234 31589 17.181 0.04 % 0.02 % 0.17 % −0.84 %
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Table 3 Proposed low-cost IP watermarking area and timing overhead with a XILINX Virtex-5 SRAM FPGA

Application # of FSM
states

# of I/O
ports

# of free
slots

Without watermark Watermark length = 50 % Watermark length = 100 %

Area
overhead

Critical
Path (ns)

Area
overhead

C. Path
overhead

Area
overhead

C. Path
overhead

FIR 64-taps 26 1/1 25 12351 15.499 0.08 % −0.30 % 0.17 % −1.24 %

38 1/1 37 6612 14.613 0.35 % 0.46 % 0.83 % 0.53 %

LWT 16-taps 25 2/2 34 14079 16.312 0.57 % −1.29 % 0.77 % 0.69 %

64 2/2 114 12028 16.346 0.59 % −0.32 % 0.64 % −0.18 %

SSD 16 × 16 35 8/1 34 11078 16.103 0.15 % 0.98 % 0.55 % −0.44 %

81 1/1 80 3193 15.689 0.13 % 1.45 % 0.91 % 0.25 %

1d DCT 8 taps 15 4/4 56 8818 15.185 0.68 % −0.97 % 1.00 % 1.13 %

20 1/1 13 6384 14.991 0.22 % −0.07 % 0.34 % −0.03 %
2d DCT 8 × 8
taps

80 8/8 584 31428 17.259 0.71 % −0.61 % 1.02 % 0.75 %

160 1/1 97 25469 17.355 0.13 % −0.14 % 0.37 % −0.82 %

Matrix product 8 × 8 86 8/4 280 62784 16.104 0.07 % 0.29 % 0.13 % 0.71 %

141 1/1 77 31117 17.201 0.07 % 0.66 % 0.08 % 0.13 %

FFT 64 taps 90 8/8 600 51086 17.255 0.10 % −0.12 % 0.24 % 0.01 %

180 2/2 234 31589 17.181 0.17 % 0.13 % 0.62 % −0.33 %
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Table 2 shows that costless IP watermarking has a very low impact on global IP char-

acteristics. IP area ranges from −0.36 % up to 0.17 % when the IP critical path progresses

from −1.31 % to 1.05 %. However, Table 1 (Sect. 5) shows that the watermark length is

much shorter (not appropriate for high-level IP security).

For some designs, such as SSD 16 × 16, IP watermarking reduces area and timing costs.

This results from FSM signal command modifications which may unintentionally bring

about a better logical function simplification during logical synthesis.

With low-cost IP watermarking, the increase in the area and timing overheads depends on

the watermark length as presented in Table 3. The design area overhead ranged from 0.07 %

to 1.02 % while the timing overhead ranged from −1.29 % to 1.45 %. In these experiments,

in the watermarking process, maximum area overhead was limited to one multiplexer cost

for each design output. However, the IP area overhead was larger than allocated multiplexer

area costs due to new controller signals in the FSM. Unlike costless IP watermarking, ac-

cording to Table 1, the watermark length is suitable for the use of low-cost IP watermarking

with high level IP security.

The power consumption overhead, which is not detailed in Table 2 and Table 3, is very

close to the area overhead (but always lower). Actually, in the worst case, IP watermarking

uses a few multiplexers, and requires a limited number of new control signals in the FSM.

Moreover, the static and dynamic power consumption of multiplexers is low compared to

arithmetic resources i.e. multipliers.

These experimental results confirm the interest and the low cost of the two proposed IP

watermarking algorithms.

7.2 Comparison with previously published automatic IP watermarking schemes

As explained in Sect. 2.2, pre-synthesis and post-synthesis hand-made IP watermarking

techniques are not suitable for efficient IP protection. Pre-synthesis solutions are strongly

dependent on the algorithm and the watermark is hard to detect during legal checking. Post-

synthesis solutions are difficult to implement at the layout level. The IP designer needs to

have a good technical knowledge. As a result, targeting an automatic watermarking scheme

embedded in a high-level synthesis tool seems to be the best solution. Consequently, this sec-

tion compares the proposed IP watermarking techniques with the most appropriate automatic

in-synthesis IP watermarking (in-logical-synthesis [18] and in-behavioral-synthesis [19]).

In [18], Kirovski et al. suggest embedding specific information in a logic network while

performing multi-level logic minimization and technological mapping. The copyright infor-

mation is hashed using hash function to create an initial vector used to seed a pseudo-random

number generator. The resulting stream of pseudo-random bits is used to generate a unique

set of design constraints. Some logic gate outputs are pseudo-randomly chosen to be as-

signed to an additional dummy logic network. In a small IP, this dummy logic network can

be easily detected by an attacker. But, if the IP is embedded in a larger system, by the au-

thors’ own admission, the detection of the forensic watermark is very hard. Moreover, added

synthesis pseudo-random constraints can be simplified by the synthesis process. As a result,

some of the watermark information can be deleted by the logic optimizations. Nevertheless,

these added synthesis constraints could decrease the IP performances. Kirovski et al., do not

provide performance results in terms of throughput overhead to confirm this assumption.

Finally hash function and a pseudo-random generator usage, contrary to what these authors

say, do not secure the watermarking scheme at all (see Sect. 8 for a security analysis).

In [19], Koushanfar et al. suggest adding edges to the colored interval graph for scheduled

application CDFG. These added edges make it possible to embed a signature in the regis-

ter allocation solution. The signature number of bits can be high for a 2000-node graph,
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Table 4 Comparison of the performances of automatic IP watermarking techniques during the synthesis
process for a significant application such as a DCT 2D

Watermark scheme Graph modification Watemark length
(# bits)

Area overhead Timing
overhead

# possible
marks

[18] 273 added logic edges 256 4.40 % – 21E637

[19] 18 170 added edges 2047 – – 21E25

Our work (costless) None 584 0.02 % −0.24 % 2584

Our work (low-cost) Datapath 584 1.02 % 0.75 % 21.5E3

Koushanfar et al. showed that they can embed between of the graph 2047 and 16383 bits.

Nevertheless, this method seriously increases the complexity. For a DCT 2D, this water-

marking scheme adds more than 24 thousand edges in the primary colored graph. The in-

crease in number of edges impacts the synthesis results due to synthesis optimization and

register allocation. As a result, such graph modification lead to significant area and timing

overheads. Unfortunately, the authors do not provide any information about hardware over-

heads. Unlike their work, the watermarking technique proposed in this article does not alter

the application graph (CDFG or colored graph). To make the best synthesis optimization, the

proposed technique acts only after a preliminary CDFG scheduling and register allocation.

Comparing the proposed IP watermarking technique with the two works presented above

is hard. First, each published work gives results focused on different aspects of performance:

modifications to the application graph, watermark length, number of possible watermarks,

area and timing overheads. Second, the benchmarks and synthesis tools used are too differ-

ent to allow accurate comparison. Nevertheless, we tried to collect some information on each

watermark technique with a significant benchmark. We chose a complex algorithm such as

DCT 2D to make the comparison. Concerning the previous works, more information on the

experimental results and benchmark can be found in the literature [18, 19]. Table 4 presents

the result of the previously presented watermarking techniques and the proposed technique

(with costless and low-cost solutions). The proposed technique has less impact on IP area

and does not generate significant timing overheads. This is mainly due to the fact that the

proposed IP watermarking technique drives any application graph modification before the

first synthesis optimization. Whereas the watermarking schemes proposed in [18] and [19]

increase graph complexity. As a result, these two watermarking schemes alter synthesis op-

timization. Nevertheless, using the two watermarking schemes in the literature, the number

of possible watermarks is larger than with the method proposed here. As a result, an inter-

esting tradeoff between the number of possible watermarks and the area/timing overhead is

possible with these four techniques.

8 Security analysis

8.1 Analysis—typical attacks

There are several general ways to attack the proposed IP watermarking. Here, we discuss the

most serious ways: overwriting output, tampering, reverse engineering. We analyze these

attacks using the following scenario: Eve legally purchased an IP from Alice. Alice protected

the IP using the proposed watermarking technique. This IP is provided as a placed and

routed netlist. Eve wants to sell an unauthorized copy of the IP to Bob. Without an attack,
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the unauthorized copied IP embeds Alice’s watermark. To hide her dishonesty from Bob

and Alice, Eve tries to attack the embedded watermark. The aim of Eve’s attack is to mask

or to (partially or completely) remove Alice’s IP watermark. Depending on her technical

knowledge, she can use three kinds of attack (the first is knowing that the IP has embedded

a watermark and the type of watermark used by Alice), her technical facilities, her time

to perform the attack, and the money she has to spend. Possible attacks by Eve are the

following:

(1) Overwriting output attack: It is relatively simple for Eve to overwrite IP outputs by using

additional logic to replace the “temporally free” output slot values by fixed or random

values. Eve has to re-design an IP. It is made up of Alice’s IP and the additional logic

to hide/overwrite the watermark results. This simple attack does not threaten Alice’s IP

watermark. Actually, Eve has not destroyed the embedded watermark (remember wa-

termarks are mathematical relationships between numeric value as inputs and outputs)

but only overwritten the watermark results. As long as the watermark is not destroyed

(or removed), in a court of law it is easy to bypass the additional logic used by Eve

and find Alice’s IP watermark. The main legal difference between Eve’s attack and wa-

termarking checking performed by Alice, is that in the second situation Alice can use

all her knowledge such as knowledge of the original IP layout And the IP watermark

characteristics.

(2) Tampering with watermarking: Ideally, such tampering would completely remove Al-

ice’s IP watermark and add Eve’s own watermark. Removing an embedded watermark

requires working on the back-routed circuit description. Nevertheless, watermarking

is not located in an easily erasable element. The proposed watermarking scheme dis-

tributes the watermark everywhere in the IP. Actually, the watermark is located in the

control unit (by changing FSM state and output register) and in the data path. As a re-

sult, it is unlikely that Eve can easily tamper with the watermark. In order to perform

this kind of attack, Eve has to first perform reverse engineering. Such an attack is more

difficult and is described in the 3) below.

(3) Reverse engineering attack: Here we consider that Eve has sufficient knowledge, facili-

ties, time, and money to make it possible for her to reverse Alice’s IP design. First, Eve

hopes to earn more money through sales of the illegal IP copy than the cost of the attack.

Second, in order to remove Alice’s IP watermark, Eve has to completely re-design Al-

ice’s IP. As a result, the removal of the watermark results in a task that is as difficult as

completely designing the specified functionality. Reverse engineering is a strong attack;

nevertheless Eve’s profit is reduced by the cost of and time required for the attack. We

do not say that the attack is impossible, but it is unlikely to occur in normal circuits. It is

a serious threat for complex expensive circuits and specific circuits (dedicated to cryp-

tographic applications, for example). In the latter case, all published IP watermarking

solutions do not work everywhere and more robust security solutions have to be used

(such as ciphering the FPGA bitstream [31]). It is important to grasp that watermarking

is a solution only against illegal copying and not against IP reverse engineering.

8.2 Analysis—security properties

To be validated from a security point of view, the watermark must have a number of security

properties. Those used for applications such as multimedia [32] can easily be adapted to the

field of IP protection:

(1) Security does not reside in the secrecy of the algorithm. As long as an attacker does

not know the mathematical relationships that form the sub-marks, he cannot know the
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sub-marks. The watermarking design algorithm does not fit the watermark secret. It is

the watermark itself that contains the secret as an encryption key.

(2) The level of trust in the watermark and its detection is high. The watermark inserted in

the IP with the proposed method is independent of the target technology. The watermark

is independent of the environment in the normal operation of the device. The watermark

is very reliable and can be checked very quickly. Thus, with a large number of tests, the

IP provider can be sure of the watermark value and hence of the evidence it provides.

(3) The watermark does not affect the functionality of the IP. The watermark inserted in

the IP does not affect its operation. Internal processing is not affected. This is fully

transparent during the use of the IP.

(4) It is not possible to change or remove the watermark. Modifying the watermark requires

acting on the back-routed IP. In the event that an attacker detects a watermark inserted

in an IP following the proposed process, he cannot remove the routed-&-placed IP since

the watermark is diffuse. Indeed, watermark inclusion in the IP is not located in an easily

erasable element. The only option for the attacker would be to put a shield between the

outputs of the illegal IP copy before selling it. In this case, the detection of the watermark

is more difficult. However, in a court of law, during an expertise on the detection of the

mark, the technical knowledge and the time devoted to this task are not limited.

(5) The amount of information contained in the watermark is sufficient. As we have shown,

the quantity of information in the watermark depends on the application. Once imple-

mentation is a little complex, the number of available watermarks and their sizes are

very important. Practically speaking, there is no significant obstacle to establishing wa-

termarks of sufficient size.

(6) The cost of watermarking is low. The results of implantations clearly demonstrate that

the proposed technique is very cheap and has a limited impact on IP performance (no

change of latency).

(7) Detection and tracing of the watermark is easy. With the file containing the watermark-

ing characteristics (provided by the HLS tool at the end of the watermarking process),

legal detection of the watermark is very simple. Some combination of input data from

an initial state leads to some changes in outputs. During some “temporally free” output

slots, these changes depend directly on the sub-marks. It is not necessary to undertake

a physical action on the component (unless a shield has been positioned to mask the

watermark results). The detection of the watermark is simple: it only requires fast, in-

expensive equipment.

(8) During the design of the brand, the security level is high. The design of the watermark

lies in the GraphLab tool, since it is this tool that automatically computes and inserts

the watermark. The IP designer is subsequently responsible for secure storage of the

watermark by using cryptographic services.

In conclusion, the proposed solution meets the essential security criteria for a secure

watermarking system able to protect an IP against the sale of unauthorized copies.

9 Conclusion

In this paper, a new IP watermarking technique to embed in a HLS flow has been pre-

sented. The proposed technique is designed for automatic IP protection using HLS tools.

The essence of this new approach is the set of mathematical sub-marks on the design output

ports that encode the IP watermark. The mathematical sub-marks are selected and inserted

automatically during the synthesis process. This is done in such a way that they result in
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the minimal hardware overhead while embedding the watermark. Finally, the watermark is

difficult to detect and to remove. IP protection is a hot issue and is taking up more and more

room in the industry. In this context, the proposed method promises to be a very attractive

low-cost solution.
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