Skip to main content
Log in

Verification of fixed-point digital controllers using direct and delta forms realizations

  • Published:
Design Automation for Embedded Systems Aims and scope Submit manuscript

Abstract

The extensive use of fixed-point digital controllers demands a growing effort to prevent design errors that appear in the discrete-time domain. The present article describes a novel verification methodology, which employs bounded model checking (BMC) based on satisfiability modulo theories (SMT) to verify the occurrence of the design errors, because of the finite word-length (FWL) format, in fixed-point digital controllers. Here, the performance realizations of the digital controllers realizations that use delta operators are compared to those that use traditional direct forms. The experimental results show that the delta-form realization substantially reduces the digital controllers’ fragility when compared to the direct-form realization. Additionally, the proposed methodology can be very effective and efficient to verify real-world digital controllers, where conclusive results are obtained in nearly 98 % of the benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Available at http://dsverifier.org.

  2. http://www.dsverifier.org/benchmarks.

  3. http://www.dsverifier.org/downloads

  4. Available at http://dsverifier.org/benchmarks/.

  5. Available at http://esbmc.org.

  6. Available at http://fmv.jku.at/boolector/.

References

  1. Istepanian R, Whidborne J (2001) Digital controller implementation and fragility: a modern perspective. Advances in industrial control. Springer, London

    Book  Google Scholar 

  2. Yang G, Guo X, Che W, Guan W (2013) Linear systems: non-fragile control and filtering. CRC Press, New York

    Book  Google Scholar 

  3. Masten M, Panahi I (1997) Digital signal processors for modern control systems. Control Eng Pract 5(4):449–458. doi:10.1016/S0967-0661(97)00024-5

    Article  Google Scholar 

  4. Monmasson E, Cirstea M (2007) FPGA design methodology for industrial control systems 2014: a review. IEEE Trans Ind Electron 54(4):1824–1842. doi:10.1109/TIE.2007.898281

    Article  Google Scholar 

  5. Li G (1997) On pole and zero sensitivity of linear systems. IEEE Trans Circuits-I 44(7):583–590. doi:10.1109/81.596939

    Article  MathSciNet  MATH  Google Scholar 

  6. Li G (1998) on the structure of digital controllers with finite word length consideration. IEEE Trans Autom Control 43(5):689–693. doi:10.1109/9.668838

    MathSciNet  MATH  Google Scholar 

  7. Mantey P (1968) Eigenvalue sensitivity and state-variable selection. IEEE Trans Autom Control 13(3):263–269. doi:10.1109/TAC.1968.1098902

    Article  Google Scholar 

  8. Middleton R, Goodwin G (1986) Improved finite word length characteristics in digital control using delta operators. IEEE Trans Autom Control 31(11):1015–1021. doi:10.1109/TAC.1986.1104162

    Article  MATH  Google Scholar 

  9. Wu J, Chen S, Chu J (2004) Computing a FWL stability measure for second order digital systems. In: Proceedings of control, automation, robotics and vision conference, pp 1593–1598. doi:10.1109/ICARCV.2004.1469297

  10. Harnefors L (2009) Implementation of resonant controllers and filters in fixed-point arithmetic. IEEE Trans Ind Electron 56(4):1273–1281. doi:10.1109/TIE.2008.2008341

    Article  Google Scholar 

  11. Carletta J, Veillette R, Krach F, Fang Z (2003) Determining appropriate precisions for signals in fixed-point IIR filters. In: Proceedings of design automation conference, pp 656–661. doi:10.1109/DAC.2003.1219100

  12. Istepanian R, Whidborne J (1999) Multi-objective design of finite word-length controller structures. In: Proceedings of congress on evolutionary computation, pp 61–68. doi:10.1109/CEC.1999.781908

  13. Mohta V (1998) Finite worldlength effects in fixed-point implementations of linear systems. Dissertation, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science

  14. Sung W, Kum KI (1995) Simulation-based word-length optimization method for fixed-point digital signal processing systems. IEEE Trans Signal Process 43(12):3087–3090. doi:10.1109/78.476465

    Article  Google Scholar 

  15. Istepanian RH, Chen S (1999) Stability issues of finite-precision controller structures for sampled-data systems. Int J Control 72(15):1331–1342. doi:10.1080/002071799220146

    Article  MathSciNet  MATH  Google Scholar 

  16. Wo S, Zou Y, Chen Q, Xu S (2009) Non-fragile controller design for discrete descriptor systems. J Frankl Inst 346(9):914–922. doi:10.1016/j.jfranklin.2009.07.008

    Article  MathSciNet  MATH  Google Scholar 

  17. Behrmann G, David A, Larsen KG (2004) A tutorial on uppaal. In Proceedings of formal methods for the design of real-time systems, LNCS 3185:200–236. doi:10.1007/978-3-540-30080-9_7

  18. Tripakis S, Yovine S, Bouajjani A (2005) Checking timed buechi automata emptiness efficiently. Form Methods Syst Des 26(3):267–292. doi:10.1007/s10703-005-1632-8

    Article  MATH  Google Scholar 

  19. Jensen K, Kristensen LM (2009) Coloured petri nets—modelling and validation of concurrent systems. Springer, New York. doi:10.1007/b95112

    Book  MATH  Google Scholar 

  20. Magellan (2014) Hybrid RTL formal verification. http://www.synopsys.com/tools/verification/functionalverification/pages/magellan.aspx. Accessed 12 Sept 2014

  21. Davis TA, Sigmon K (2005) MATLAB primer, 7th edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  22. Johnson GW (1997) LabVIEW graphical programming: practical applications in instrumentation and control, 2nd edn. McGraw-Hill School Education Group, New York

    Google Scholar 

  23. Luengo D, Oses D, Martino L (2014) Monte carlo limit cycle characterization. In: Proceedings of IEEE international conference on acoustics, speech and signal processing, pp 8043–8047. doi:10.1109/ICASSP.2014.6855167

  24. Cox A, Sankaranarayanan S, Chang BYE (2012) A bit too precise? Bounded verification of quantized digital filters. In: Proceedings of tools and algorithms for the construction and analysis of systems, LNCS 7214:33–47. doi:10.1007/978-3-642-28756-5_4

  25. Cox A, Sankaranarayanan S, Chang BYE (2014) A bit too precise? Verification of quantized digital filters. Int J Softw Tools Technol Transf 16(2):175–190. doi:10.1007/s10009-013-0279-9

    Article  MATH  Google Scholar 

  26. Bessa I, Abreu R, Cordeiro L, Filho JE (2014) SMT-based bounded model checking of fixed-point digital controllers). In: Proceedings of 40th annual conference of the industrial electronics society, pp 295–301. doi:10.1109/IECON.2014.7048514

  27. Bessa I, Ismail H, Cordeiro L, Filho JE (2014) Verification of delta form realization in fixed-point digital controllers using bounded model checking. In: Proceedings of Brazilian symposium on computing systems engineering, pp 49–54. doi:10.1109/SBESC.2014.14

  28. Brummayer R, Biere A (2009) Boolector: an efficient SMT solver for bit-vectors and arrays. In: Proceedings of tools and algorithms for the construction and analysis of systems, LNCS 5505:174–177. doi:10.1007/978-3-642-00768-2_16

  29. De Moura L, Bjørner N (2008) Z3: An efficient SMT solver. In: Proceedings of tools and algorithms for the construction and analysis of systems, LNCS 4963:337–340. doi:10.1007/978-3-540-78800-3_24

  30. Oppenheim A, Willsky A, Nawab S (1997) Signals and systems. Prentice-Hall signal processing series, Prentice-Hall International, Englewood Cliffs

    Google Scholar 

  31. Proakis J, Manolakis D (1996) Digital signal processing: principles, algorithms, and applications. Prentice-Hall International Editions, Prentice Hall, London

    Google Scholar 

  32. Åström K, Wittenmark B (1997) Computer-controlled systems: theory and design. Prentice Hall Information and System Sciences Series, Prentice Hall, Englewood Cliffs

    Google Scholar 

  33. Hilaire T, Chevrel P, Whidborne JF (2010) Finite wordlength controller realisations using the specialised implicit form. Int J Control 83(2):330–346. doi:10.1080/00207170903160747

    Article  MathSciNet  MATH  Google Scholar 

  34. Peretz M, Ben-Yaakov S (2010) Digital control of resonant converters: resolution effects on limit cycles. IEEE Trans Power Electron 25(6):1652–1661. doi:10.1109/TPEL.2009.2038159

    Article  Google Scholar 

  35. Granas A, Dugundji J (2003) Fixed point theory. Monographs in mathematics. Springer, New York

    Book  MATH  Google Scholar 

  36. Diniz P, da Silva E, Netto S (2010) Digital signal processing: system analysis and design. Cambridge University Press, E-Libro, Cambridge

    Book  MATH  Google Scholar 

  37. Jackson L (1996) Digital filters and signal processing. Springer, Boston

    Book  Google Scholar 

  38. Middleton RH, Goodwin GC (1990) Digital control and estimation: a unified approach. Prentice Hall Professional Technical Reference, Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  39. Gevers M, Li G (1993) Parametrizations in control, estimation, and filtering problems: accuracy aspects. Springer, Communications and control engineering series, London

    Book  MATH  Google Scholar 

  40. Keel L, Bhattacharyya S (1997) Robust, fragile, or optimal? IEEE Trans Autom Control 42(8):1098–1105. doi:10.1109/9.618239

    Article  MathSciNet  MATH  Google Scholar 

  41. Jackson L, Kaiser J, McDonald H (1968) An approach to the implementation of digital filters. IEEE Trans Acoust Speech 16(3):413–421. doi:10.1109/TAU.1968.1162002

    Google Scholar 

  42. Li G, Anderson B, Gevers M, Perkins J (1992) Optimal fwl design of state-space digital systems with weighted sensitivity minimization and sparseness consideration. IEEE Trans Circuits-I 39(5):365–377. doi:10.1109/81.139287

    Article  MATH  Google Scholar 

  43. Lopez B, Hilaire T, Didier LS (2014) Formatting bits to better implement signal processing algorithms. In: Proceedings of 4th international conference on pervasive and embedded computing and communication systems, pp 104–111. doi:10.5220/0004711201040111

  44. Menard D, et al (2012) Design of fixed-point embedded systems (defis) french anr project. In: Proceedings of conference on design and architectures for signal and image processing, pp 1–2

  45. Menard D, Rocher R, Sentieys O (2008) Analytical fixed-point accuracy evaluation in linear time-invariant systems. IEEE Trans Circuits-I 55(10):3197–3208. doi:10.1109/TCSI.2008.923279

    Article  MathSciNet  Google Scholar 

  46. Parashar K, Menard D, Sentieys O (2013) A polynomial time algorithm for solving the word-length optimization problem. In: Proceedings of IEEE/ACM international conference on computer-aided design, pp 638–645. doi:10.1109/ICCAD.2013.6691183

  47. Sarbishei O, Radecka K, Zilic Z (2012) Analytical optimization of bit-widths in fixed-point LTI systems. IEEE Trans Comput AID D 31(3):343–355. doi:10.1109/TCAD.2011.2170988

    Article  Google Scholar 

  48. Skaf J, Boyd S (2008) Filter design with low complexity coefficients. IEEE Trans Signal Process 56(7):3162–3169. doi:10.1109/TSP.2008.919386

    Article  MathSciNet  Google Scholar 

  49. Viassolo D (2003) Realizations for fixed-point implementation of controllers and filters with peak-to-peak scaling. In: Proceedings of 2003 American control conference, pp 83–88. doi:10.1109/ACC.2003.1238918

  50. Balakrishnan V, Boyd S (1992) On computing the worst-case peak gain of linear systems. In: Proceedings of 31st IEEE conference on decision and control, pp 2191–2192. doi:10.1109/CDC.1992.371407

  51. Hilaire T, Chevrel P (2011) Sensitivity-based pole and input-output errors of linear filters as indicators of the implementation deterioration in fixed-point context. EURASIP J Adv Signal Process. doi:10.1155/2011/893760

  52. Li T, Zheng WX (2012) New stability criterion for fixed-point state-space digital filters with generalized overflow arithmetic. IEEE Trans Circuits-I 59(7):443–447. doi:10.1109/TCSII.2012.2198983

    Google Scholar 

  53. Thiele L (1986) On the sensitivity of linear state-space systems. IEEE Trans Circuits Syst 33(5):502–510. doi:10.1109/TCS.1986.1085951

    Article  MathSciNet  MATH  Google Scholar 

  54. Feng Y, Chevrel P, Hilaire T (2011) Generalised modal realisation as a practical and efficient tool for fwl implementation. Int J Control 84(1):66–77

    Article  MathSciNet  MATH  Google Scholar 

  55. Hilaire T, Lopez B (2013) Reliable implementation of linear filters with fixed-point arithmetic. In: IEEE workshop on signal processing systems, pp 401–406. doi:10.1109/SiPS.2013.6674540

  56. Golnaraghi F (2010) Automatic control systems. Wiley, New York

    Google Scholar 

  57. Peterchev A, Sanders S (2003) Quantization resolution and limit cycling in digitally controlled PWM converters. IEEE Trans Power Electron 18(1):301–308. doi:10.1109/TPEL.2002.807092

    Article  Google Scholar 

  58. Vaidyanathan P, Liu V (1987) An improved sufficient condition for absence of limit cycles in digital filters. IEEE Trans Circuits-I 34(3):319–322. doi:10.1109/TCS.1987.1086118

    Article  Google Scholar 

  59. Jury E, Lee B (1964) On the absolute stability of nonlinear sample-data systems. IEEE Trans Autom Control 9(4):551–554. doi:10.1109/TAC.1964.1105734

    Article  MathSciNet  Google Scholar 

  60. Singh V (1986) An extension of jury—lee’s criterion for the stability analysis of fixed-point digital filters designed with two’s complement arithmetic. IEEE Trans Circuits-I 33(3):355–355. doi:10.1109/TCS.1986.1085907

    Article  Google Scholar 

  61. Erickson KT, Michel A (1985) Stability analysis of fixed-point digital filters using computer generated lyapunov functions—Part I: Direct form and coupled form filters. IEEE Trans Circuits-I 32(2):113–132. doi:10.1109/TCS.1985.1085676

    Article  MathSciNet  MATH  Google Scholar 

  62. Erickson KT, Michel A (1985) Stability analysis of fixed-point digital filters using computer generated lyapunov functions—Part II: wave digital filters and lattice digital filters. IEEE Trans Circuits-I 32(2):132–142. doi:10.1109/TCS.1985.1085677

    Article  MathSciNet  MATH  Google Scholar 

  63. Li G, Wan C, He X (2008) Digital filter realizations absent of self-sustained oscillations. In: Proceedings of IEEE international symposium on circuits and systems, pp 2669–2672. doi:10.1109/ISCAS.2008.4542006

  64. Mills W, Mullis C, Roberts R (1978) Digital filter realizations without overflow oscillations. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, pp 71–74. doi:10.1109/ICASSP.1978.1170524

  65. Bauer P, Leclerc LJ (1991) A computer-aided test for the absence of limit cycles in fixed-point digital filters. IEEE Trans Signal Process 39(11):2400–2410. doi:10.1109/78.97995

    Article  Google Scholar 

  66. Djebbari A, Belbachir M, Rouvaen J (1999) A fast exhaustive search algorithm for checking limit cycles in fixed-point digital filters. Signal Process 69(2):199–205

    Article  MATH  Google Scholar 

  67. Premaratne K, Kulasekere E, Bauer P, Leclerc LJ (1996) An exhaustive search algorithm for checking limit cycle behavior of digital filters. IEEE Trans Signal Process 44(10):2405–2412. doi:10.1109/78.539026

    Article  Google Scholar 

  68. Utrilla-Manso M, Lopez-Ferreras F, Oses-del Campo D, Martin-Martin P (2001) A computer-aided test for the characterization of parasitic oscillations in iir digital filters. In: Proceedings of 2nd international symposium on image and signal processing and analysis, pp 475–478. doi:10.1109/ISPA.2001.938676

  69. Green B, Turner L (1988) New limit cycle bounds for digital filters. IEEE Trans Circuits-I 35(4):365–374. doi:10.1109/31.1751

    Article  Google Scholar 

  70. Campo J, Cruz-Roldan F, Utrilla-Manso M (2006) Tighter limit cycle bounds for digital filters. IEEE Signal Process Lett 13(3):149–152. doi:10.1109/LSP.2005.862606

    Article  Google Scholar 

  71. Lee E (2008) Cyber physical systems: design challenges. In: Proceedings of 11th IEEE international symposium on object oriented real-time distributed computing, pp 363–369. doi:10.1109/ISORC.2008.25

  72. Beyer D (2014) Status report on software verification—(competition summary SV-COMP). In: Proceedings of tools and algorithms for the construction and analysis of systems, LNCS 8413:373–388. doi:10.1007/978-3-642-54862-8_25

  73. Biere A (2009) Bounded model checking. In: Biere A, Heule M, van Maaren H (eds) Handbook of satisfiability. IOS Press, Amsterdam, pp 457–481

    Google Scholar 

  74. Barrett CW, Sebastiani R, Seshia SA, Tinelli C (2009) Satisfiability modulo theories. In: Biere A, Heule M, van Maaren H (eds) Handbook of satisfiability. IOS Press, Amsterdam, pp 825–885

    Google Scholar 

  75. Cordeiro L, Fischer B (2011) Verifying multi-threaded software using smt-based context-bounded model checking. In: Proceedings of 33rd international conference on software engineering, pp 331–340. doi:10.1145/1985793.1985839

  76. Cordeiro L, Fischer B, Marques-Silva J (2012) SMT-based bounded model checking for embedded ANSI-C software. IEEE Trans Softw Eng 38(4):957–974. doi:10.1109/TSE.2011.59

    Article  Google Scholar 

  77. Falke S, Merz F, Sinz C (2013) LLBMC: improved bounded model checking of C programs using LLVM: (competition contribution). In Proceedings of tools and algorithms for the construction and analysis of systems, LNCS 7795:623–626. doi:10.1007/978-3-642-36742-7_48

  78. Kroening D, Tautschnig M (2014) CBMC—C bounded model checker (competition contribution). In: Proceedings of tools and algorithms for the construction and analysis of systems, LNCS 8413:389–391. doi:10.1007/978-3-642-54862-8_26

  79. Abreu RB, Cordeiro LC, Filho EBL (2013) Verifying fixed-point digital filters using SMT-based bounded model checking. In: XXXI Brazilian symposium on telecommunications. doi:10.14209/sbrt.2013.57

  80. Cordeiro L, Morse J, Nicole D, Fischer B (2012) Context-bounded model checking with ESBMC 1.17—(competition contribution). In: Proceedings of tools and algorithms for the construction and analysis of systems, LNCS 7214, pp 534–537. doi:10.1007/978-3-642-28756-5_42

  81. Morse J, Cordeiro L, Nicole D, Fischer B (2013) Handling unbounded loops with ESBMC 1.20—(competition contribution). In: Proceedings of tools and algorithms for the construction and analysis of systems, LNCS 7795, pp 619–622. doi:10.1007/978-3-642-36742-7_47

  82. Morse J, Ramalho M, Cordeiro L, Nicole D, Fischer B (2014) ESBMC 1.22—(competition contribution). In: Proceedings of tools and algorithms for the construction and analysis of systems, LNCS 8413, pp 405–407. doi:10.1007/978-3-642-54862-8_31

  83. Ogata K (1995) Discrete-time control systems. Prentice Hall International editions, Prentice-Hall International, Englewood Cliffs

    Google Scholar 

  84. MSP430G2231 Mixed signal controller, Texas \({{\rm Instrument}}^{{\rm TM}}\), http://www.ti.com/lit/ds/symlink/msp430g2231-ep. Accessed July 2015

  85. Barreto R, Cordeiro L, Fischer B (2011) Verifying embedded C software with timing constraints using an untimed bounded model checker. In: Brazilian symposium on computing systems engineering, pp 46–52. doi:10.1109/SBESC.2011.19

  86. Patterson D, Hennessy J (2012) Computer organization and design—the hardware/software interface (revised 4th edition). The Morgan Kaufmann Series in Computer Architecture and Design, Academic Press 2012, ISBN 978-0-12-374750-1

  87. Ismail H, Bessa I, Cordeiro L, Lima Filho E, Chaves Filho J (2015) DSVerifier: a bounded model checking tool for digital systems. In: Proceedings of 22nd international SPIN symposium on model checking of software, LNCS 9232, pp 126–131. doi:10.1007/978-3-319-23404-5_9

  88. Kim S, Patel HD, Edwards SA (2009) Using a model checker to determine worst-case execution time. Technical report, Computer Science Department Columbia University

  89. Code composer studio\(^{{\rm TM}}\) integrated development environment for MSP430, Texas Instrument\(^{{\rm TM}}\), http://www.ti.com/tool/ccstudio-msp430. Accessed July 2015

  90. Guennebaud G (2011) Eigen: a C++ Linear Algebra Lirary. http://eigen.tuxfamily.org. Accessed 22 Dec 2014

  91. Fadali S, Visioli A (2009) Digital control engineering: analysis and design. Elsevier/Academic Press, Electronics & Electrical, Amsterdam

    Google Scholar 

  92. Feuer A, Goodwin G (1996) Sampling in digital signal processing and control. Birkhauser, Boston

    Book  MATH  Google Scholar 

  93. Anta A, Majumdar R, Saha I, Tabuada P (2010) Automatic verification of control system implementations. In: Proceedings of tenth ACM international conference on embedded software, pp 9–18. doi:10.1145/1879021.1879024

  94. Brleanu A, Bitoiu V, Stan A (2011) Digital filter optimization for C language. Adv Electr Comput Eng 11(3):111–114

    Article  Google Scholar 

  95. Caffarena G, Carreras C, Lopez J, Fernandez A (2010) Fast fixed-point optimization of DSP algorithms. In: Proceedings of 18th IEEE/IFIP VLSI system on chip conference, pp 195–200. doi:10.1109/VLSISOC.2010.5642659

  96. Hilaire T, Menard D, Sentieys O (2008) Bit accurate roundoff noise analysis of fixed-point linear controllers. In: Proceedings of IEEE international conference on computer-aided control systems, pp 607–612. doi:10.1109/CACSD.2008.4627366

  97. Lopez J, Caffarena G, Carreras C, Nieto-Taladriz O (2008) Fast and accurate computation of the roundoff noise of linear time-invariant systems. IET Circuits Dev Syst 2(4):393–408. doi:10.1049/iet-cds:20070198

    Article  Google Scholar 

  98. Naud JC, Meunier Q, Ménard D, Sentieys O (2011) Fixed-point accuracy evaluation in the context of conditional structures. In: Proceedings of 19th European signal processing conference. https://hal.inria.fr/hal-00747610

  99. Patra A, Mukhopadhyay S (1996) A software tool for performance evaluation of digital control algorithms on finite wordlength processors. Comput Electr Eng 22(6):403–419. doi:10.1016/S0045-7906(96)00008-0

    Article  MathSciNet  Google Scholar 

  100. Alur R, Courcoubetis C, Dill D (1990) Model-checking for real-time systems. In: Proceedings of fifth annual IEEE symposium on logic in computer science, pp 414–425. doi:10.1109/LICS.1990.113766

  101. Alur R, Courcoubetis C, Dill D (1993) Model-checking in dense real-time. Inf Comput 104(1):2–34. doi:10.1006/inco.1993.1024

    Article  MathSciNet  MATH  Google Scholar 

  102. Dutertre B, Rushby J, Tiwari A, Munoz C, Siminiceanu R (2008) Formal verification and automated testing for diagnostic and monitoring systems. In: Proceedings of AIAA guidance, navigation and control conference and exhibit. doi:10.2514/6.2008-6802

  103. Simko G, Jackson EK (2014) A bounded model checking tool for periodic sample-hold systems. In: Proceedings of 17th international conference on hybrid systems: computation and control, pp. 157–162. doi:10.1145/2562059.2562134

  104. Prabhu S, Dasgupta P (2013) Model checking controllers with predicate inputs. In: Proceedings of international conference on VLSI design, pp 332–337. doi:10.1109/VLSID.2013.210

Download references

Acknowledgments

Part of the results presented in this paper were obtained with the project for research and human resources qualification, for under- and post-graduate levels, in the areas of industrial automation, mobile devices software, and Digital TV, sponsored by Samsung Eletrônica da Amazônia Ltda, under the terms of Brazilian Federal Law number 8.387/91. This research was also supported by CNPq 475647/2013-0 and FAPEAM 062.01722/2014 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iury V. Bessa.

Ethics declarations

Conflicts of interest

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessa, I.V., Ismail, H.I., Cordeiro, L.C. et al. Verification of fixed-point digital controllers using direct and delta forms realizations. Des Autom Embed Syst 20, 95–126 (2016). https://doi.org/10.1007/s10617-016-9173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10617-016-9173-5

Keywords

Navigation