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Abstract. Intrinsically disordered regions in proteins are relatively frequent and important for
our understanding of molecular recognition and assembly, and protein structure and function.
From an algorithmic standpoint, flagging large disordered regions is also imortant for ab inito

protein structure prediction methods. Here we first extract a curated, non-redundant, data set
of protein disordered regions from the Protein Data Bank and compute relevant statistics on the
length and location of these regions. We then develop an ab initio predictor of disordered regions
called DISpro which uses evolutionary information in the form of profiles, predicted secondary
structure and relative solvent accessibility, and ensembles of 1D-recursive neural networks.
DISpro is trained and cross validated using the curated data set. The experimental results
show DISpro improves the prediction accuracy of disordered regions over previous methods.
DISpro is a member of the SCRATCH suite of protein data mining tools available through
http://www.igb.uci.edu/servers/psss.html
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1. Introduction

Intrinsically disordered proteins (IDPs) play important roles in many vital cell
functions including molecular recognition, molecular assembly, protein modifica-
tion, and entropic chain activities (Dunker et al., 2002). One of the evolutionary
advantages of proteins with disordered regions may be their ability to have multi-
ple binding partners and potentially partake in multiple reactions and pathways.
Since the disordered regions may be determined only when the IDPs are in a
bound state, IDPs have prompted scientists to revaluate the structure-implies-
function paradigm (Wright and Dyson, 1999). Disordered regions have also been
associated with low sequence complexity and an early survey of protein sequences
based on sequence complexity predicted that a substantial fraction of proteins
contain disordered regions (Wootton, 1994). This prediction has been confirmed
to some extent in recent years by the growth of IDPs in the Protein Data Bank
(PDB) (Berman et al., 2000), which currently contains about 26,000 proteins
and 16,300,000 residues . Thus the relatively frequent occurrence of IDPs and
their importance for understanding protein structure/function relationships and
cellular processes makes it worthwhile to develop predictors of protein disordered
regions. In addition, flagging large disordered regions may also be important for
ab inito protein structure prediction methods.

Comparing disorder predictors can be difficult due to the lack of a pre-
cise definition of disorder. Several definitions exist in the literature including
loop/coil regions where the carbon alpha (Cα) on the protein backbone has a
high temperature factor and residues in the PDB where coordinates are missing
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as noted in a REMARK465 PDB record (Linding et al., 2003). Here, consistently
with Ward et al. (2004), we define a disordered residue as any residue for which
no coordinates exist in the corresponding PDB file.

Previous attempts at predicting disordered regions have used sequence com-
plexity, support vector machines, and neural networks (Wootton, 1994; Dunker
et al., 2002; Linding et al., 2003; Ward et al., 2004). Our method for predicting
disordered regions, called DISpro, involves the use of evolutionary information
in the form of profiles, predicted secondary structure and relative solvent ac-
cessibility, and 1D-recursive neural networks (1D-RNN). These networks are
well suited for predicting protein properties and have been previously used
in our SCRATCH suite of predictors, including our secondary structure and
relative solvent accessibility predictions (Pollastri et al., 2001a; Pollastri et al.,
2001b; Baldi and Pollastri, 2003).

2. Methods

2.1. Data

The proteins used for the training and testing of DISpro were obtained from
the PDB in May 2004. At that time, 7.6% (3,587) of the protein chains in
the PDB obtained by X-ray crystallography contained at least one region of
disorder at least three residues in length. Most of these disordered regions were
short segments near the two ends of protein chains (N- and C- termini).

We first filtered out any proteins that were not solved by X-ray diffraction
methods, were less than 30 amino acids in length, or had resolution coarser than
2.5Å. Next, the proteins were broken down into their individual chains. For the
creation of our training and testing sets, we selected only protein chains that
had sections of disordered regions strictly greater than three residues in length.
The determination of residues as being ordered or disordered is based on the
existence of an ATOM field (coordinate) for Cα atom of a given residue in the
PDB file. If no ATOM records exist for a residue listed in the SEQRES record,
the residue is classified as disordered.

We then filtered out homologous protein chains using UniqueProt (Mika and
Rost, 2003) with a threshold HSSP value of 10. The HSSP value between two
sequences is a measure of their similarity taking into account both sequence
identity and sequence length. An HSSP value of 10 corresponds roughly to 30%
sequence identity for a a global alignment of length 250 amino acids.

Secondary structure and relative solvent accessibility were then predicted for
all the remaining chains by SSpro and ACCpro (Pollastri et al., 2001a; Pollas-
tri et al., 2001b; Baldi and Pollastri, 2003). Using predicted, rather than true
secondary structure and solvent accessibility which are easily-obtainable by the
DSSP program (Kabsch and Sander, 1983), introduces additional robustness
in the predictor, especially when it is applied to sequences with little or no
homology to sequences in the PDB. The filtering procedures resulted in a set
of 723 non-redundant disordered chains. To leverage evolutionary information,
PSI-BLAST (Altschul et al., 1997) is used to generate profiles by aligning all
chains against the Non-Redundant (NR) database, as in (Jones, 1999; Przybylski
and Rost, 2002; Pollastri et al., 2001b). Finally, these chains were randomly split
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into ten subsets of approximately equal size for ten-fold cross-validated training
and testing.
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Figure 1. Frequency of Lengths of Disordered Regions.

The final dataset has 215,612 residues, 6.4% (13,909) of which are classified
as disordered. Of the 13,909 disordered residues, 13.8% (1,924) are part of long
regions of disorder (≥ 30 AA). Figure 1 shows a histogram of the frequency of
disordered region lengths in our dataset.

2.2. Input and Output of Neural Networks

The problem of predicting disordered regions can be viewed as a binary classifi-
cation problem for each residue along one dimensional (1D) protein chain. The
residue at position i is labelled as ordered or disordered. A variety of machine
learning methods can be applied to this problem, such as probabilistic graphical
models, kernel methods, and neural networks. DISpro employs 1D recursive
neural networks (1D-RNN)(Baldi and Pollastri, 2003). For each chain, our input
is 1D array I, where the size of I is equal to the number of residues in the chain
and each entry Ii is a vector of dimension 25 encoding the profile as well as
secondary structure and relative solvent accessibility at position i. Specifically,
twenty of the values are real numbers which correspond to the amino acid profile.
The other five values are binary. Three of the values correspond to the predicted
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secondary structure class (Helix, Strand, or Coil) of the residue and the other
two correspond to the predicted relative solvent accessibility of the residue (i.e.,
under or over 25% exposed).

The training target for each chain is a 1D binary array T , whereby each Ti

equals 0 or 1 depending on whether residue at position i is ordered or disordered.
Neural networks or other machine learning methods can be trained on the data
set to learn a mapping from the input array I onto an output array O, whereby
Oi is the predicted probability that residue at position i is disordered. The goal
is to make the output O as close as possible to the target T .

2.3. The Architecture of 1D-Recursive Neural Networks
(1D-RNNs)

The architecture of 1D-RNNs used in this study is derived from the theory
of probabilistic graphical models, but use a neural network parameterization
to speed up belief propagation and learning (Baldi and Pollastri, 2003). 1D-
RNNs combine the flexibility of Bayesian networks with the fast, convenient,
parameterization of artificial neural networks without the drawbacks of standard
feedforward neural networks with fixed input size. Under this architecture, the
output Oi depends on the entire input I instead of a local fixed-width window
centered at position i. Thus, 1D-RNNs can handle inputs with variable length
and allow classification decisions to be made based on contextual long-ranged
information outside of the traditional local input window.

The architecture of the 1D-RNN is described in figures 2 and 3 and is asso-
ciated with a set of input variables Ii, a forward HF

i
and backward HB

i
chain

of hidden variables, and a set Oi of output variables. In terms of probabilistic
graphical models (Bayesian networks), this architecture has the connectivity
pattern of an input-output HMM (Bengio and Frasconi, 1996), augmented with
a backward chain of hidden states. The backward chain is of course optional and
used here to capture the spatial, rather than temporal, properties of biological
sequences.
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Figure 2. 1D-RNN associated with input variables, output variables, and both forward and
backward chains of hidden variables.
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The relationship between the variables can be modeled using three separate
neural networks to compute the output, forward, and backward variables re-
spectively. These neural networks are replicated at each position i;(i.e., weight
sharing). One fairly general form of weight sharing is to assume stationarity
for the output, forward, and backward networks, which finally leads to a 1D-
RNN architectures, previously named bidirectional RNN architecture (BRNN),
implemented using three neural networks NO, NF , and NB in the form

Oi = NO(Ii,H
F
i

,HB
i

)
HF

i
= NF (Ii,H

F
i−1)

HB
i

= NB(Ii,H
B
i+1)

(1)

as depicted in Figure 3. In this form, the output depends on the local input Ii at
position i, the forward (upstream) hidden context HF

i
∈ IRn and the backward

(downstream) hidden context HB
i

∈ IRm, with usually m = n. The boundary
conditions for HF

i
and HB

i
can be set to 0, i.e. HF

0 = HB
N+1

= 0 where N is the
length of the sequence being processed. Alternatively these boundaries can also
be treated as a learnable parameter. Intuitively, we can think of NF and NB in
terms of two “wheels” that can be rolled along the sequence. For the prediction
at position i, we roll the wheels in opposite directions starting from the N- and
C- terminus and up to position i. Then we combine the wheel outputs at position
i together with the input Ii to compute the output prediction Oi using NO.
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Figure 3. A 1D-RNN architecture with a left (forward) and right (backward) context associated
with two recurrent networks (wheels).

The output Oi for each residue position i is computed by two normalized-
exponential units, equivalent to one logistic output unit. The error function is
the relative entropy between the true distribution and the predicted distribution.

All the weights of the 1D-RNN architecture, including the weights in the
recurrent wheels, are trained in supervised fashion using a generalized form of
gradient descent on the error function, derived by unfolding the wheels in space.
To improve the statistical accuracy, we average over an ensemble of five trained
models to make prediction.
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3. Results

We evaluate DISpro using ten-fold cross validation on the curated dataset of 723
non-redundant protein chains. The resulting statistics for DISpro are given in
Table I, including a separate report for the special subgroup of long disordered
regions(> 30 AA), which have been shown to have different sequence patterns
than N- and C- termini disordered regions (Li et al., 1999). Performance is
assessed using a variety of standard measures including correlation coefficients,
area under the ROC curves, Accuracy at 5% FPR (False Positive Rate), Pre-
cision [TP/(TP+FP)], and Recall [TP/(TP+FN)]. The accuracy at 5% FPR is
defined as [(TP+TN)/(TP+FP+TN+FN)] when the decision threshold is set
so that 5% of the negative cases are above the decision threshold. Here, TP, FP,
TN, and FN refer to the number of true positives, false positives, true negatives,
and false negatives respectively.
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Figure 4. ROC curve for DISpro on set of 723 protein chains

The area under the ROC curve of DISpro computed on all regions is .878. An
ROC area of .90 is generally considered a very accurate predictor. An area of
1.00 would correspond to a perfect predictor and an area of .50 would correspond
to a random predictor. At 5% FRP, the TPR is 92.8% for all disordered regions.
DISpro achieves a precision and recall rate of 75.4% and 38.8% respectively, when
the decision threshold is set at .5. Figure 4 shows the ROC curves of DISpro
corresponding to all disordered regions and to disordered regions 30 residues or
more in length. It shows that the long disordered regions are harder to predict
than the shorter disordered regions.

We have also compared our results to those of other predictors from CASP5
(Ward et al., 2004) (Critical Assessment of Structure Prediction). The set of
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Table I. Results for DISpro on 723 non-homologous protein chains

Dataset Corr. Coef. ROC area Accuracy Precision Recall

(5% FPR)

All disorder 0.589 0.878 92.8% 75.4% 38.8%

Long disorder 0.255 0.789 94.5% 22.1% 25.9%

(≥ 30 AA)

Table II. Summary of comparison results for six predictors
using the proteins from CASP5. Results for predictors other
than DISpro were reported by Ward et al., 2004.

Predictor Corr. Coef. ROC area Accuracy

(5% FPR)

DISpro 0.51 0.935 93.2%

DISOPRED2 0.52 0.900 93.1%

Dunker VLXT 0.31 0.809 91.4%

Dunker VL2 0.36 0.786 91.8%

Obradovic VL3 0.38 0.801 92.1%

FoldIndex 0.26 0.738 91.0%

proteins from CASP5 should be considered a fair test since each chain had a
low HSSP score (< 7) in comparison to our training set. Table II shows our
results in comparison to other predictors. DISpro achieves an ROC area of
0.935, better than all the other predictors. The correlation coefficient of DISpro
is 0.51, roughly the same as DISOPRED2. The accuracy of DISpro at a 5%
FPR is 93.2% on the CASP5 protein set. Thus, on the CASP5 protein set,
DISpro is roughly equal or slightly better than all the other predictors on all
three performance measures. DISOPRE2 and DISpro performance appear to be
similar and significantly above all other predictors.

4. Conclusion

DISpro is a predictor of protein disordered regions which relies on machine
learning methods and leverages evolutionary information as well as predicted
secondary structure and relative solvent accessibility. Our results show that
DISpro achieves an accuracy of 92.8% with a false positive rate of 5% on large
cross-validated tests. Likewise, DISpro achieves the improved performance on
the CASP5 dataset over previous methods.

There are several directions for possible improvement of DISpro and dis-
rodered region predictors in general that are currently under investigation. On
the training side, larger training set can be extracted from the PDB period-
ically and sequences containing no disordered regions can also be included in
the training set. In addition, it is also possible to train a separate predictor to
detect whether a give protein chain contains any disordered regions or not using,
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for instance, kernel methods for classification, as is done for proteins with or
without disulphide bridges (Frasconi et al., 2002). Results derived from contact
map predictors (Baldi and Pollastri, 2003) may also be used to try to further
boost the prediction performance. It is reasonable to hypothesize that disordered
regions ought to have poorly defined contacts. We are also in the process of
adding to DISpro the ability to directly incorporate disorder information from
homologous proteins. Currently, such information is only used indirectly by the
1D-RNNs. Prediction of disordered regions in proteins that have a high degree
of homology to proteins in the PDB should not proceed entirely from scratch
but leverage the readily available information about disordered regions in the
homologous proteins. Finally, large disordered regions may be flagged and be
removed or treated differently in ab initio tertiary structure prediction methods.
Thus it might be useful to incoporate disordered region predictons into the full
pipeline of protein tertiary structure prediction.
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