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Abstract One of the aims of process mining is to retrieve a process model
from an event log. The discovered models can be used as objective starting
points during the deployment of process-aware information systems (Dumas
et al., eds., Process-Aware Information Systems: Bridging People and Software
Through Process Technology. Wiley, New York, 2005) and/or as a feedback
mechanism to check prescribed models against enacted ones. However, cur-
rent techniques have problems when mining processes that contain non-trivial
constructs and/or when dealing with the presence of noise in the logs. Most
of the problems happen because many current techniques are based on local
information in the event log. To overcome these problems, we try to use genetic
algorithms to mine process models. The main motivation is to benefit from the
global search performed by this kind of algorithms. The non-trivial constructs
are tackled by choosing an internal representation that supports them. The
problem of noise is naturally tackled by the genetic algorithm because, per
definition, these algorithms are robust to noise. The main challenge in a genetic
approach is the definition of a good fitness measure because it guides the global
search performed by the genetic algorithm. This paper explains how the genetic
algorithm works. Experiments with synthetic and real-life logs show that the
fitness measure indeed leads to the mining of process models that are complete
(can reproduce all the behavior in the log) and precise (do not allow for extra
behavior that cannot be derived from the event log). The genetic algorithm is
implemented as a plug-in in the ProM framework.
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1 Introduction

Today’s organizations are supported by a wide variety of information systems.
Some systems only support a single task (e.g., a text editor). However, most
organizations are using systems that support processes, i.e., not a single task
but the glue between tasks. Examples are WorkFlow Management (WFM) sys-
tems and Enterprise Resource Planning (ERP) systems. Typically, these systems
record events that can be linked to the execution of some task in the process.
Therefore, it makes sense to analyze these events to get feedback about enacted
processes. Buzzwords such as Business Process Intelligence (BPI) and Business
Activity Monitoring (BAM) indicate the interest of organizations and software
developers in solutions able to extract knowledge from so-called event logs.
However, most of the commercial systems (e.g., Cognos and Business Objects)
focus on exclusively performance issues such as flow time and utilization. These
systems abstract from the process itself and can only be applied if the process is
well-defined and fixed. ARIS PPM is one of the few commercial systems actually
trying to discover more information by monitoring events. One of the reasons
for this limited support is that it is very difficult to extract process knowledge
without having some a-priori process model. This triggered the development of
process mining techniques that aim at automatically discovering process models
based on event logs.

Figure 1 shows the concept of process mining. Some operational process is
supported by some information system that records events in some event log.
This event log is used to extract process models that describe the observed
behavior. This information is valuable to better understand processes and to
improve them. In our experience, real processes tend to deviate from the ideal-
istic processes people have in mind. The practical relevance of process mining
is obvious. Unfortunately, existing techniques have severe limitations.1 There-
fore, we present a new approach using a genetic algorithm. However, before
we introduce our approach, we first need to clarify the concept of process
mining.

1.1 Process mining

One of the aims of process mining is to automatically build a process model that
describes the behavior contained in an event log. The models mined by process
mining tools can be used as an objective starting point during the deployment
of systems that support the execution of processes and/or as a feedback mech-
anism to check the prescribed process model against the enacted one. We use

1 In Sect. 1.2, we elaborate more on these limitations.
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Fig. 1 Overview of process mining

Table 1 Example of an event log with four process instances

Identifier Process instance

1 Start, Apply for License, Attend Classes Drive Cars,
Do Theoretical Exam, Do Practical Exam Drive Cars,
Get Result, End

2 Start, Apply for License, Attend Classes Ride Motorbikes,
Do Theoretical Exam, Do Practical Exam Ride Motorbikes,
Get Result, Receive License, End

3 Start, Apply for License, Attend Classes Drive Cars,
Do Theoretical Exam, Do Practical Exam Drive Cars,
Get Result, Receive License, End

4 Start, Apply for License, Attend Classes Ride Motorbikes,
Do Theoretical Exam, Do Practical Exam Ride Motorbikes,
Get Result, End

an example to illustrate how process mining techniques work. Consider the
event log shown in Table 1. This log shows the event traces (process instances)
for four different applications to get a license to ride motorbikes or drive
cars. Note that applicants for different types of licenses do the same theoret-
ical exam (task “Do Theoretical Exam”) but different practical ones (tasks
“Do Practical Exam Drive Cars” or “Do Practical Exam Ride Motobikes”). In
other words, whenever the task “Attend classes Drive Cars” is executed, the
task “Do practical Exam Drive Cars” is the only one that can be executed after
the applicant has done the theoretical exam. This shows that there is a non-local
dependency between the tasks “Attend Classes Drive Cars” and “Do Practical
Exam Drive Cars,” and also between the tasks “Attend Classes Ride Motor-
bikes” and “Do Practical Exam Ride Motorbikes.” The dependency is non-local
because it cannot be detected by simply looking at the direct predecessor and
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Fig. 2 Mined net for the log in Table 1

successor of those tasks in the log in Table 1, e.g., “Attend Classes Drive Cars”
is never followed directly by “Do Practical Exam Drive Cars”. Moreover, note
that only in some process instances (two and three) the task “Receive License”
was executed. These process instances point to the cases in which the candidate
passed the exams. Based on this log and these observations, process mining
tools could be used to retrieve the model in Fig. 2. In this case, we are using
Petri nets (Desel and Esparza 1995; Murata 1989) to depict this model. We
do so because Petri nets will be used to explain the semantics of our internal
representation. Moreover, we use Petri net-based analysis techniques to ana-
lyze the resulting models. Using the Petri net representation, our tools allow
for the automatic translation of the discovered model to a variety of modelling
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notations including Event-Driven Process Chains (used by ARIS, ARIS PPM,
SAP) and YAWL (an open source workflow system).

Petri nets are a formalism to model concurrent processes. Graphically, Petri
nets are bipartite directed graphs with two node types: places and transitions.
Places represent conditions in the process. Transitions represent actions. Tasks
in the event logs correspond to transitions in Petri nets. The state of a Petri
net (or process for us) is described by adding tokens (black dots) to places.
The dynamics of the Petri net is determined by the firing rule. A transition can
be executed (i.e., an action can take place in the process) when all of its input
places (i.e., pre-conditions) have at least a number of tokens that is equal to
the number of directed arcs from the place to the transition. After execution,
the transition removes tokens from the input places (one token is removed for
every input arc from the place to the transition) and produces tokens for the
output places (again, one token is produced for every output arc). Besides, the
Petri nets that we consider have a single start place and a single end place. This
means that the processes we describe have a single start point and a single end
point. For the Petri net in Fig. 2, in the initial state there is only one token in
place “p1.” This implies that “Start” is the only transition that can be executed
in the initial state. When “Start” executes (or fires), one token is removed from
the place “p1” and one token is added to the place “p2.” In a similar way, the
firing of “Apply for License” marks place “p3.” In this marking, “Attend Classes
Drive Cars” or “Attend Classes Ride Motorbikes” can fire. If “Attend Classes
Drive Cars” fires, it consumes the token in “p3” and produces one token for
“p4” and another for “p5.” Note that, although the place “p5” has now one
token, the transition “Do Practical Exam Drive Cars” cannot fire yet because
the place “p7” is not marked. The enabling and firing of transitions proceeds in
a similar way until the place “p11” is marked.

1.2 Limitations of current approaches

Current research in process mining (van der Aalst et al. 2003, 2004; Agrawal
et al. 1998; Greco et al. 2005; Herbst and Karagiannis 2004; Cook et al. 2004;
Alves de Medeiros et al. 2003, 2004a; Schimm 2004; Wen et al. 2006) still has
problems to discover process models with certain structural constructs and/or
to deal with the presence of noise in the logs (cf. Sect. 9). The main problem-
atic constructs are: non-free-choice, invisible tasks and duplicate tasks (Alves
de Medeiros et al. 2003). Non-free-choice constructs combine synchronization
and choice. The example in Fig. 2 shows a non-free-choice construct involv-
ing the tasks “Do Practical Exam Drive Cars” and “Do Practical Exam Ride
Motorbikes.” The current techniques do not capture the dependency between
(1) the tasks “Attend Classes Drive Cars” and “Do Practical Exam Drive Cars,”
and (2) the tasks “Attend Classes Ride Motorbikes” and “Do Practical Exam
Ride Motorbikes.” Invisible tasks are only used for routing purposes and do
not appear in the log. For instance, the process in Fig. 2 has an invisible task
to skip the execution of the task “Receive License.” Current techniques have
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Fig. 3 Another model that correctly portraits the behavior in the log in Table 1. Note that this
model uses duplicate tasks instead of the non-free-choice construct in Fig. 2

difficulties discovering these routing tasks because they do not appear in the
log. Duplicate tasks means that multiple transitions have the same label in the
original process model. The problem here is that most of the mining techniques
treat these duplicate tasks as a single one. For instance, Fig. 3 shows a model
that also captures the behavior in the log in Table 1 by duplicating the task
“Do Theoretical Exam.” Noise characterizes low-frequent behavior in the log.
It can appear in two situations: event traces were somehow incorrectly logged
(for instance, due to temporary system misconfiguration) or event traces reflect
exceptional situations. Either way, most of the techniques will try to find a
process model that can parse all the traces in the log. However, the presence of
noise may hinder the correct mining of the most common behavior.
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One of the reasons why the current techniques typically cannot cope with
the above mentioned problematic constructs and/or with noisy logs is because
their search is based on local information in the log. For instance, the α-algo-
rithm (see van der Aalst et al. 2004 for details) uses only information about
which tasks directly succeed or precede one another in the process instances.
As a result, this algorithm does not capture the dependency in non-free-choice
constructs. For example, the α-algorithm will never discover the Petri net in Fig.
2, for the log in Table 1, because none of the process instances has the sub-trace
“Attend Classes Drive Cars, Do Practical Exam Drive Cars” or “Attend Clas-
ses Ride Motorbikes, Do Practical Exam Ride Motorbikes.” Consequently, the
α-algorithm will not link these tasks.

1.3 Genetic process mining

To overcome the limitations of the current process mining techniques, our
research uses genetic algorithms (Eiben and Smith 2003) to mine process mod-
els. The main motivation is to benefit from the global search that is performed
by this kind of algorithms.

Genetic algorithms are adaptive search methods that try to mimic the process
of evolution. These algorithms start with an initial population of individuals.
Every individual is assigned a fitness measure to indicate its quality. In our
case, an individual is a possible process model and the fitness is a function that
evaluates how well the individual is able to reproduce the behavior in the log.
Populations evolve by selecting the fittest individuals and generating new indi-
viduals using genetic operators such as crossover (combining parts of two or
more individuals) and mutation (random modification of an individual).

When using genetic algorithms to mine process models, there are three main
concerns. The first is to define the internal representation. The internal repre-
sentation defines the search space of a genetic algorithm. The internal repre-
sentation that we define and explain in this paper supports all the problematic
constructs, except for duplicate tasks. The second concern is to define the fitness
measure. In our case, the fitness measure evaluates the quality of a point (indi-
vidual or process model) in the search space against the event log. A genetic
algorithm searches for individuals whose fitness is maximal. Thus, our fitness
measure makes sure that individuals with a maximal fitness can parse all the
process instances (traces) in the log and, ideally, not more than those traces.
The reason for this is that we aim at discovering a process model that reflects
as close as possible the behavior expressed in the event log. If the mined model
allows for lots of extra behavior that cannot be derived from the log, it does
not give a precise description of what is actually happening. The third concern
relates to the genetic operators (crossover and mutation) because they should
ensure that all points in the search space defined by the internal representation
may be reached when the genetic algorithm runs. This paper presents a genetic
algorithm that addresses these three concerns.
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1.4 Road map

The remainder of the paper is organized as follows. Section 2 introduces the
main definitions of Petri nets that are used in this paper. Section 3 explains
the internal representation that we use and defines its semantics by mapping
it onto Petri nets. Section 4 presents the genetic algorithm to mine processes
that may have arbitrary mixtures of choice and synchronization (i.e., non-free-
choice constructs) and invisible tasks. The genetic algorithm is also robust to
noisy logs. Section 5 explains the metrics that we have developed to assess the
quality of mined models while conducting the experiments. Section 6 discusses
the experiments and results. The experiments include synthetic logs. Section 7
shows the results of applying the genetic algorithm to logs from a municipality
in The Netherlands. Section 8 compares the results of the genetic algorithm with
the results obtained by two other related process mining techniques. Section 9
discusses the related work. Section 10 contains the conclusions and future work.

2 Preliminaries

This section introduces standard Petri-net notations that are used to explain the
semantics of the internal representation of our genetic algorithm.

2.1 Petri nets

We use a variant of the classic Petri-net model, namely Place/Transition nets.
For an elaborate introduction to Petri nets, the reader is referred to Desel and
Esparza (1995), Murata (1989), and Reisig and Rozenberg (1998).

Definition 1 (P/T-nets)2 A Place/Transition net, or simply P/T-net, is a tuple
(P, T, F) where:

(1) P is a finite set of places,
(2) T is a finite set of transitions such that P ∩ T = ∅, and
(3) F ⊆ (P× T) ∪ (T × P) is a set of directed arcs, called the flow relation.

A marked P/T-net is a pair (N, s), where N = (P, T, F) is a P/T-net and where s
is a bag over P denoting the marking of the net, i.e., s ∈ P→ IN. The set of all
marked P/T-nets is denoted N .

A marking is a bag over the set of places P, i.e., it is a function from P to
the natural numbers. We use square brackets for the enumeration of a bag, e.g.,
[a2, b, c3] denotes the bag with two as, one b, and three cs. The sum of two bags
(X + Y), the difference (X − Y), the presence of an element in a bag (a ∈ X),

2 In the literature, the class of Petri nets introduced in Definition 1 is sometimes referred to as the
class of (unlabeled) ordinary P/T-nets to distinguish it from the class of Petri nets that allows more
than one arc between a place and a transition, and the class of Petri nets that allows for transition
labels.
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Fig. 4 An example of a
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the intersection of two bags (X ∩ Y) and the notion of subbags (X ≤ Y) are
defined in a straightforward way and they can handle a mixture of sets and bags.

Let N = (P, T, F) be a P/T-net. Elements of P ∪ T are called nodes. A node
x is an input node of another node y iff there is a directed arc from x to y (i.e.,
(x, y) ∈ F or xFy for short). Node x is an output node of y iff yFx. For any
x ∈ P ∪ T, N• x = {y | yFx} and xN•= {y | xFy}; the superscript N may be omitted
if clear from the context.

Figure 4 shows a P/T-net consisting of seven places and six transitions. Transi-
tion A has one input place and two output places. Transition A is an AND-split.
Transition D has two input places and one output place. Transition D is an
AND-join. The black dot in the input place of A and E represents a token.
This token denotes the initial marking. The dynamic behavior of such a marked
P/T-net is defined by a firing rule.

Definition 2 (Firing rule) Let N = ((P, T, F), s) be a marked P/T-net. Transition
t ∈ T is enabled, denoted (N, s)[t〉, iff •t ≤ s. The firing rule−[−〉− ⊆ N×T×N
is the smallest relation satisfying for any (N = (P, T, F), s) ∈ N and any t ∈ T,
(N, s)[t〉 ⇒ (N, s) [t〉 (N, s− •t + t•).

In the marking shown in Fig. 4 (i.e., one token in the source place), transitions
A and E are enabled. Although both are enabled only one can fire. If transition
A fires, a token is removed from its input place and tokens are put in its output
places. In the resulting marking, two transitions are enabled: B and C. Note
that B and C can be fired concurrently and we assume interleaving semantics.
In other words, parallel tasks are assumed to be executed in some order.

Definition 3 (Reachable markings) Let (N, s0) be a marked P/T-net in N . A
marking s is reachable from the initial marking s0 iff there exists a sequence
of enabled transitions whose firing leads from s0 to s. The set of reachable
markings of (N, s0) is denoted [N, s0〉.

The marked P/T-net shown in Fig. 4 has six reachable markings. Sometimes it
is convenient to know the sequence of transitions that are fired in order to reach
some given marking. This paper uses the following notations for sequences. Let
A be some alphabet of identifiers. A sequence of length n, for some natural
number n ∈ IN, over alphabet A is a function σ : {0, . . . , n − 1} → A. The
sequence of length zero is called the empty sequence and written ε. For the
sake of readability, a sequence of positive length is usually written by juxta-
posing the function values. For example, a sequence σ = {(0, a), (1, a), (2, b)},
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for a, b ∈ A, is written aab. The set of all sequences of arbitrary length over
alphabet A is written A∗.

Definition 4 (Firing sequence) Let (N, s0) with N = (P, T, F) be a marked P/T
net. A sequence σ ∈ T∗ is called a firing sequence of (N, s0) if and only if, for
some natural number n ∈ IN, there exist markings s1, . . . , sn and transitions
t1, . . . , tn ∈ T such that σ = t1 . . . tn and, for all i with 0 ≤ i < n, (N, si)[ti+1〉
and si+1 = si − •ti+1 + ti+1•. (Note that n = 0 implies that σ = ε and that ε

is a firing sequence of (N, s0).) Sequence σ is said to be enabled in marking
s0, denoted (N, s0)[σ 〉. Firing the sequence σ results in a marking sn, denoted
(N, s0) [σ 〉 (N, sn).

For the marked Petri net shown in Fig. 4, some possible firing sequences
are ABCD, ACBD, and AE. Note that, for these firing sequences, the resulting
marking has a single token and this token is in the output place of transitions
D and F.

3 Internal representation and semantics

When defining the internal representation to be used by our genetic algorithm,
the main requirement was that this representation should express the depen-
dencies between the tasks in the log. In other words, the model should clearly
express which tasks would enable the execution of other tasks. Additionally, it
would be nice if the internal representation would be compatible with a for-
malism to which analysis techniques and tools exist. This way, these techniques
could also be applied to the discovered models. Thus, one option would be to
directly represent the individual (or process model) as a Petri net (Desel and
Esparza 1995; Murata 1989). However, such a representation would require
determining the number of places in every individual and this is not the core
concern. It is more important to show the dependencies between the tasks and
the semantics of the split/join tasks. Therefore, we defined an internal represen-
tation, that is, as expressive as Petri nets (from the task dependency perspective)
but that only focuses on the tasks. This representation is called causal matrix.
Figure 5 shows in (1) the causal matrix that expresses the same task dependen-
cies that are in the “original Petri net.” The causal matrix shows which tasks
enable the execution of other tasks via the matching of input (I) and output
(O) condition functions. The sets returned by the condition functions I and O
have subsets that contain the tasks in the model. Tasks in a same subset have
an XOR-split/join relation. Sets in different subsets have an AND-split/join
relation. Thus, every I and O set expresses a conjunction of exclusive disjunc-
tions. Additionally, a task may appear in more than one subset in a same set.
As an example, for task D in the original Petri net in Fig. 5 the causal matrix
states that I(D) = {{F, B, E}, {E, C}, {G}} because D is enabled by an AND-join
construct that has three places. From top to bottom, the first place has a token
whenever F or B or E fires. The second place, whenever E or C fires. The third
place, whenever G fires. Similarly, the causal matrix has O(D) = {} because D
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Compact representation of the causal matrix

ACTIVITY   I(ACTIVITY)   O(ACTIVITY)   
A   {}   {{F,B,E},{E,C},{G}}   
B   {{A}}   {{D}}   
C   {{A}}   {{D}}   
D   {{F,B,E},{E,C},{G}}   {}   
E   {{A}}   {{D}}   
F   {{A}}   {{D}}   
G   {{A}}   {{D}}   

Fig. 5 Mapping of a PN with more than one place between two tasks (or transitions)

is executed last in the model. The following definition formally defines these
notions.

Definition 5 (Causal matrix) A Causal Matrix is a tuple CM = (A, C, I, O),
where

• A is a finite set of activities,
• C ⊆ A×A is the causality relation,
• I : A → P(P(A)) is the input condition function,3

• O : A → P(P(A)) is the output condition function,

such that

• C = {(a1, a2) ∈ A×A | a1 ∈
⋃

I(a2)},4
• C = {(a1, a2) ∈ A×A | a2 ∈⋃

O(a1)},
• C ∪ {(ao, ai) ∈ A×A | ao

C•= ∅ ∧ C• ai = ∅} is a strongly connected graph.

The set of all causal matrices is denoted by CM, and a bag of causal matrices is
denoted by CM[].

Any Petri net without duplicate tasks and without more than one place with
the same input tasks and the same output tasks can be mapped to a causal
matrix. Definition 6 formalizes such a mapping. The main idea is that there is
a causal relation C between any two tasks t and t′ whenever at least one of the
output places of t is an input place of t′. Additionally, the I and O condition
functions are based on the input and output places of the tasks. This is a natural
way of mapping because the input and output places of Petri nets actually reflect
the conjunction of disjunctions that these sets express.

3 P(A) denotes the powerset of some set A.
4 ⋃

I(a2) is the union of the sets in set I(a2).
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Definition 6 (�PN→CM) Let PN = (P, T, F) be a Petri net. The mapping of PN
is a tuple �PN→CM(PN) = (A, C, I, O), where

• A = T,
• C = {(t1, t2) ∈ T × T | t1 • ∩ • t2 = ∅},
• I ∈ T → P(P(T)) such that ∀t∈T I(t) = {•p | p ∈ •t},
• O ∈ T → P(P(T)) such that ∀t∈T O(t) = {p • | p ∈ t•}.

The semantics of the causal matrix can be easily understood by mapping them
back to Petri nets. This mapping is formalized in Definition 7. Conceptually,
the causal matrix behaves as a Petri net that contains visible and invisible tasks.
For instance, see Fig. 5. This figure shows (1) the mapping of a Petri net to a
causal matrix and (2) the mapping from the causal matrix to a Petri net. The
firing rule for the mapped Petri net is very similar to the firing rule of Petri
nets in general (cf. Definition 2). The only difference concerns the invisible
tasks. Enabled invisible tasks can only fire if their firing enables a visible task.
Similarly, a visible task is enabled if all of its input places have tokens or if
there exits a set of invisible tasks that are enabled and whose firing will lead
to the enabling of the visible task. Conceptually, the causal matrix keeps track
of the distribution of tokens at a marking in the output places of the visible
tasks. The invisible tasks can be seen as “channels” or “pipes” that are only
used when a visible task needs to fire. Every causal matrix starts with a token at
the start place. Finally, we point out that, in Fig. 5, although the mapped Petri
net does not have the same structure of the original Petri net, these two nets are
behaviorally equivalent. In other words, given that these two nets initially have
a single token and this token is at the start place (i.e., the input place of A), the
set of traces the two nets can generate is the same.

Definition 7 (�N
CM→PN) Let CM = (A, C, I, O) be a causal matrix. The naive

Petri net mapping of CM is a tuple �N
CM→PN = (P, T, F), where

• P = {i, o} ∪ {it,s | t ∈ A ∧ s ∈ I(t)} ∪ {ot,s | t ∈ A ∧ s ∈ O(t)},
• T = A ∪ {mt1,t2 | (t1, t2) ∈ C},
• F = {(i, t) | t ∈ A ∧ C• t = ∅} ∪ {(t, o) | t ∈ A ∧ t C•= ∅} ∪ {(it,s, t) | t
∈ A ∧ s ∈ I(t)} ∪ {(t, ot,s) | t ∈ A ∧ s ∈ O(t)} ∪ {(ot1,s, mt1,t2) | (t1, t2)
∈ C ∧ s ∈ O(t1) ∧ t2 ∈ s} ∪ {(mt1,t2 , it2,s) | (t1, t2) ∈ C ∧ s ∈ I(t2) ∧ t1 ∈ s}.

Definition 7 shows a rather naive approach to generate the mapped Petri net
shown in Fig. 5. However, as shown in (Alves de Medeiros et al. 2004b), there
are special situations in which more sophisticated mappings are possible.

4 Genetic algorithm

In this section, we describe the main steps of our genetic algorithm. Figure 6
shows how they are related.
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start I II III

V

IV end
yes

no

Step   Description   
I   Read event log   
II   Build the initial population   
III   Calculate fitness of the  

individuals in the population   
IV   Stop and return the fittest  

individuals?   
V   Create next population  –  use  

elitism and  genetic operators   

Fig. 6 Main steps of our genetic algorithm

4.1 Initial population

The initial population is randomly built by the genetic algorithm. As explained
in Sect. 3, individuals are causal matrices. When building the initial population,
we ensure that the individuals comply with Definition 5. Given a log, all individ-
uals in any population of the genetic algorithm have the same set of activities
(or tasks) A. This set contains the tasks that appear in the log. The setting of
the causality relation C can be done via a completely random approach or a
heuristic one. The random approach uses 50% probability for establishing (or
not) a causality relation between two task in A. The heuristic approach uses the
information in the log to determine the probability that two tasks are going to
have a causality relation set. In a nutshell, the heuristics works as follows: the
more often a task t1 is directly followed by a task t2 (i.e., the subtrace “t1, t2”
appears in traces in the log), the higher the probability that individuals are built
with a causality relation from t1 to t2 (i.e., (t1, t2) ∈ C). This heuristic way of
building an individual is based on the work presented in Weijters and van der
Aalst (2003). Section 4.1.1 has more details about the heuristic approach. Once
the causality relations of an individual are determined, the condition functions
I and O are randomly built. This is done by setting a maximum size n for any
input or output condition function set of a task t in the initial population.5 Every
task t1 that causally precedes a task t2, i.e., (t1, t2) ∈ C, is randomly inserted in
one or more subsets of the input condition function of t2. A similar process is
done to set the output condition function of a task.6 In our case, we set the
number of distinct tasks in the log as the maximum size for any input/output
condition function set in the initial population.7 As a result, the initial popula-
tion can have any individual in the search space defined by a set of activities
A, and that satisfy the constraints for the size of the input/output condition
function sets. Note that the higher the amount of tasks that a log contains, the
bigger this search space. Finally, we emphasize that no further limitations to the
input/output condition functions sets are made in the other steps of the genetic
algorithm. Therefore, during the “Step V” in Fig. 6, these sets can increase or
shrink as the population evolves.

5 Formally: ∀t∈A[|I(t)| ≤ n ∧ |O(t)| ≤ n].
6 Formally: ∀t1,t2∈A,(t1,t2)∈C[∃i ∈ I(t2) : t1 ∈ i] and ∀t1,t2∈A,(t1,t2)∈C[∃o ∈ O(t1) : t2 ∈ o].
7 Formally: ∀t∈A[|I(t)| ≤ |A| ∧ |O(t)| ≤ |A|].
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4.1.1 Heuristics to build the causality relation of a causal matrix

When applying a genetic algorithm to a domain, it is common practice to “give
a hand” to the genetic algorithm by using well-know heuristics (in this domain)
to build the initial population (Eiben and Smith 2003). Studies show that the
use of heuristics often does not alter the end result (if the genetic algorithm runs
for infinite amount of time), but it may speed the early stages of the evolution.
The GAs that use heuristics are called hybrid genetic algorithms.

In our specific domain—process mining—some heuristics have proven to
give reasonable solutions when used to mine event logs. These heuristics are
mostly based on local information in the event-log. Due to its similarities to
other related work, we use the heuristics in Weijters and van der Aalst (2003)
to guide the setting of the causality relations in the individuals of the initial
population. These heuristics are based on the dependency measure. To define
this measure, we first need to formalize the notion of an event log.

Definition 8 (Event trace, event log) Let T be a set of tasks. σ ∈ T∗ is an event
trace and L: T∗ → IN is an event log. For any σ ∈ dom(L), L(σ ) is the number
of occurrences of σ . The set of all event logs is denotes by L.

Note that we use dom(f ) and rng(f ) to, respectively, denote the domain
and range of a function f . Furthermore, we use the notation σ ∈ L to denote
σ ∈ dom(L) ∧ L(σ ) ≥ 1. For example, assume a log L = [abcd, acbd, abcd] for
the net in Fig. 4. Then, we have that L(abcd) = 2, L(acbd) = 1, and L(ab) = 0.

The dependency measure basically indicates how strongly a task depends (or
is caused) by another task. The more often a task t1 directly precedes another
task t2 in the log, and the less often t2 directly precedes t1, the stronger is the
dependency between t1 and t2. In other words, the more likely it is that t1 is a
cause to t2. The dependency measure is given in Definition 9. The notation used
in this definition is as follows. l2l: T × T × L → IN is a function that detects
length-two loops. l2l gives the number of times that the substring “t1t2t1” occurs
in the log L. follows: T × T × L → IN is a function that returns the number
of times that a task is directly followed by another one. That is, how often the
substring “t1t2” occurs in the log L.

Definition 9 (Dependency measure—D) Let L be an event log. Let T be the
set of tasks in L. Let t1 and t2 be two tasks in T. The dependency measure
D: T × T × L → IR is a function defined as:

D(t1, t2, L) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

l2l(t1,t2,L)+l2l(t2,t1,L)
l2l(t1,t2,L)+l2l(t2,t1,L)+1 , if t1 = t2 and l2l(t1, t2, L) > 0,

follows(t1,t2,L)−follows(t2,t1,L)

follows(t1,t2,L)+follows(t2,t1,L)+1
, if t1 = t2 and l2l(t1, t2, L) = 0,

follows(t1,t2,L)

follows(t1,t2,L)+1
, if t1 = t2.
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Observe that the dependency relation distinguishes between tasks in short
loops (length-one and length-two loops) and tasks in parallel. Moreover, the
“+1” in the denominator is used to benefit more frequent observations over less
frequent ones. For instance, if a length-one-loop “tt” happens only once in the
log L, the dependency measure D(t, t, L) = 0.5. However, if this same length-
one-loop would occur a 100 times in the log, D(t, t, L) = 0.99. Thus, the more
often a substring (or pattern) happens in the log, the stronger the dependency
measure.

Once the dependency relations are set for the input event log, the genetic
algorithm uses it to randomly build the causality relations for every individual
in the initial population. The pseudo-code for this procedure is the following:
Pseudo-code:
input: An event-log L, a power value p, the dependency function D.
output: A causality relation C.

(1) T ←− set of tasks in L.
(2) C←− ∅.
(3) FOR every tuple (t1, t2) in T × T do:

(a) Randomly select a number r between 0 (inclusive) and 1.0 (exclusive).
(b) IF r < D(t1, t2, L)p then:

(i) C←− C ∪ {(t1, t2)}.
(4) Return the causality relation C.

Note that we use a power value p to control the “influence” of the depen-
dency measure in the probability of setting a causality relation. Higher values
for p lead to the inference of fewer causality relations among the tasks in the
event log, and vice-versa.

4.2 Fitness calculation

As discussed in Sect. 1, process mining aims at discovering a process model
from an event log. This mined process model should give a good insight about
what the behavior in the log is. In other words, the mined process model should
be complete and precise from a behavioral perspective. A process model is com-
plete when it can parse (or reproduce) all the event traces in the log. A process
model is precise when it cannot parse more than the traces in the log. The
requirement that the mined model should also be precise is important because
different models are able to parse all event traces and these models may allow
for extra behavior that does not belong to the log. To illustrate this we consider
the nets shown in Fig. 7. These models can also parse the traces in Table 1, but
they allow for extra behavior. For instance, both models allow for the appli-
cant to take the exam before attending to classes. The fitness function guides
the search process of the genetic algorithm. Thus, the fitness of an individual is
assessed by benefiting the individuals that can parse more event traces in the log
(the “completeness” requirement) and by punishing the individuals that allow
for more extra behavior than the one expressed in the log (the “preciseness”
requirement).
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Fig. 7 Example of nets that can also reproduce the behavior for the log in Table 1. The problem
here is that these nets allow for extra behavior that is not in the log

To facilitate the explanation of our fitness measure, we divide it into three
parts. First, we discuss in Sect. 4.2.1, how we defined the part of the fitness
measure that guides the genetic algorithm toward individuals that are more
complete. Second, we show in Sect. 4.2.2, how we defined the part of the fitness
measure that benefits individuals that are more precise. Finally, we show in
Sect. 4.2.3 the fitness measure that our genetic algorithm is using. This fitness
measure combines the partial fitness measures that are presented in Sects. 4.2.1
and 4.2.2.

4.2.1 The “completeness” requirement

The “completeness” requirement of our fitness measure is based on the parsing
of event traces by individuals. For a noise-free log, the perfect individual should
have fitness 1. This means that this individual could parse all the traces in the
log. Therefore, a natural fitness for an individual to a given log seems to be
the number of properly parsed event traces8 divided by the total number of
event traces. However, this fitness measure is too coarse because it does not
give an indication about (1) how many parts of an individual are correct when
the individual does not properly parse an event trace and (2) the semantics of

8 An event trace is properly parsed by an individual if, for an initial marking that contains a single
token and this token is at the start place of the mapped Petri net for this individual, after firing the
visible tasks in the order in which they appear in the event trace, the end place is the only one to
be marked and it has a single token.
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the split/join tasks. For instance, if a net has an AND-split instead of an XOR-
split, it may happen that all tasks in a trace can be replayed by this net, but
this net does not proper complete for this trace because tokens remain at some
of the output places of the AND-split task. So, we defined a more elaborate
fitness function: when the task to be parsed is not enabled, the problems (e.g.,
number of missing tokens to enable this task) are registered and the parsing
proceeds as if this task would be enabled. This continuous parsing semantics is
more robust because it gives a better indication of how many tasks do or do
not have problems during the parsing of a trace. The partial fitness function
that tackles the “completeness” requirement is in Definition 10. The notation
used in this definition is as follows. allParsedActivities(L, CM) gives the total
number of tasks in the event log L that could be parsed without problems by
the causal matrix (or individual) CM. numActivitiesLog(L) gives the number
of tasks in L. allMissingTokens(L, CM) indicates the number of missing tokens
in all event traces. allExtraTokensLeftBehind(L, CM) indicates the number of
tokens that were not consumed after the parsing has stopped plus the number
of tokens of the end place minus 1 (because of proper completion). numTrace-
sLog(L) indicates the number of traces in L. numTracesMissingTokens(L,CM)
and numTracesExtraTokensLeftBehind(L,CM), respectively, indicate the num-
ber of traces in which tokens were missing and tokens were left behind during
the parsing.

Definition 10 (Partial fitness—PFcomplete) Let L be a non-empty event log. Let
CM be a causal matrix. Then the partial fitness PFcomplete: L× CM → (−∞, 1]
is a function defined as:

PFcomplete(L, CM) = allParsedActivities(L, CM)− punishment
numActivitiesLog(L)

where

punishment =
allMissingTokens(L, CM)

numTracesLog(L)− numTracesMissingTokens(L, CM)+ 1

+ allExtraTokensLeftBehind(L, CM)

numTracesLog(L)− numTracesExtraTokensLeftBehind(L, CM)+ 1
.

The partial fitness PFcomplete gives a more detailed indication about how fit an
individual is to a given log. The function allMissingTokens penalizes (1) nets
with XOR-split where it should be an AND-split and (2) nets with an AND-join
where it should be an XOR-join. Similarly, the function allExtraTokensLeftBe-
hind penalizes (1) nets with AND-split where it should be an XOR-split and (2)
nets with an XOR-join where it should be an AND-join. Note that we weigh
the impact of the allMissingTokens and allExtraTokensLeftBehind functions by,
respectively, dividing them by the number of event traces minus the number of
event traces with missing and left-behind tokens. The main idea is to promote
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individuals that correctly parse the more frequent behavior in the log. Addi-
tionally, if two individuals have the same punishment value, the one that can
parse more tasks has a better fitness because its missing and left-behind tokens
impact fewer tasks. This may indicate that this individual has more correct I
and O condition functions than incorrect ones. In other words, this individ-
ual is a better candidate to produce offsprings for the next population (see
Sect. 4.4).

4.2.2 The “preciseness” requirement

The “preciseness” requirement is based on discovering how much extra behav-
ior an individual allows for. To define a fitness measure to punish models that
express more than it is in the log is especially difficult because we do not
have negative examples to guide our search. Note that the event logs show the
allowed (positive) behavior, but they do not express the forbidden (negative)
one.

One possible solution to punish an individual that allows for undesirable
behavior could be to build the coverability graph (Murata 1989) of the mapped
Petri net for this individual and check the fraction of event traces this indi-
vidual can generate that are not in the log. The traces that express different
paths of execution for parallelism are not considered as extra behavior. The
main idea in this approach is to punish the individual for every extra event
trace it generates. Unfortunately, building the coverability graph is not very
practical and it is unrealistic to assume that all possible behavior is present in
the log.

Because proving that a certain individual is precise is not practical, we use
a simpler solution to guide our genetic algorithm toward solutions that have
“less extra behavior.” We check, for every marking, the number of visible tasks
that are enabled. Individuals that allow for extra behavior tend to have more
enabled tasks than individuals that do not. For instance, the nets in Fig. 7 have
more enabled tasks in most reachable markings than the net in Fig. 2. The main
idea in this approach is to benefit individuals that have a smaller amount of
enabled tasks during the parsing of the log. This is the measure we use to define
our second partial fitness function PFprecise, that is, presented in Definition 11.
The notation used in this definition is as follows. allEnabledActivities (L,CM)
indicates the number of activities that were enabled during the parsing of the
log L by the causal matrix (or individual) CM. allEnabledActivities (L,CM[])
apply allEnabledActivities (L,CM) (see notation for Definition 10) to every
element in the bag of causal matrices (or population) CM[]. The function max
(allEnabledActivities (L,CM[])) returns the maximum value of the amount of
enabled tasks that individuals in the given population (CM[]) had while parsing
the log (L).

Definition 11 (Partial fitness—PFprecise) Let L be a non-empty event log. Let
CM be a causal matrix. Let CM[] be a bag of causal matrices that contains CM.
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The partial fitness PFprecise: L× CM× CM[] → [0, 1] is a function defined as

PFprecise(L, CM,CM[]) = allEnabledActivities(L, CM)

max (allEnabledActivities (L,CM[]))
.

The partial fitness PFprecise gives an indication of how much extra behavior an
individual allows for in comparison to other individuals in the same popula-
tion. The smaller the PFprecise of an individual is, the better. This way we avoid
over-generalizations.

4.2.3 Fitness—combining the “completeness” and “preciseness” requirements

While defining the fitness measure, we decided that the “completeness” require-
ment should be more relevant than the “preciseness” one. The reason is that
we are only interested in precise models that are also complete. The resulting
fitness is defined as follows.

Definition 12 (Fitness—F) Let L be a non-empty event log. Let CM be a causal
matrix. Let CM[] be a bag of causal matrices that contains CM. Let PFcomplete
and PFprecise be the respective partial fitness functions given in Definitions 10
and 11. Let κ be a real number greater than 0 and smaller or equal to 1 (i.e.,
κ ∈ (0, 1]). Then the fitness F : L× CM× CM[] → (−∞, 1) is a function
defined as

F(L, CM, CM[]) = PFcomplete(L, CM)− κ ∗ PFprecise(L, CM, CM[]).

The fitness F weighs (by κ) the punishment for extra behavior. Thus, if a set of
individuals can parse all the traces in the log, the one that allows for less extra
behavior will have a higher fitness value. For instance, assume a population
with the corresponding individual for the net in Fig. 2 and the corresponding
individuals for the nets in Fig. 7. If we calculate the fitness F of these three
individuals with respect to the log in Table 1, the individual in Fig. 2 will have
the highest fitness value among the three and the individual in Fig. 7(b), the
lowest fitness value.

4.3 Stop criteria

The mining algorithm stops when (1) it computes n generations, where n is the
maximum number of generations that is allowed; or (2) the fittest individual
has not changed for n/2 generations in a row.

4.4 Genetic operators

We use elitism, crossover and mutation to build the individuals of the next
generation. A percentage of the best individuals (the elite) is directly copied
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to the next population. The other individuals in the population are generated
via crossover and mutation. Two parents produce two offsprings. To select one
parent, a tournament is played in which five individuals in the population are
randomly drawn and the fittest one always wins. The crossover and mutation
operator are explained, respectively, in Sects. 4.4.1 and 4.4.2.

4.4.1 Crossover

Crossover is a genetic operator that aims at recombining existing material in the
current population. In our case, this material is the current causality relations
(cf. Definition 5) in the population. Thus, the crossover operator used by our
genetic algorithm should allow for the complete search of the space defined
by the existing causality relation in a population. Given a set of causality rela-
tions, the search space contains all the individuals that can be created by any
combination of a subset of the causality relations in the population. Thus, our
crossover operator allows an individual to: lose tasks from the subsets in its I/O
condition functions (but not necessarily causality relations because a same task
may be in more than one subset of an I/O condition function), add tasks to
the subsets in its I/O condition functions (again, not necessarily causality rela-
tions), exchange causality relations with other individuals, incorporate causality
relations that are in the population but are not in the individual, lose causality
relations, decrease the number of subsets in its I/O condition functions, and/or
increase the number of subsets in its I/O condition functions. The crossover
rate determines the probability that two parents undergo crossover. The cross-
over point of two parents is a randomly chosen task. The pseudo-code for the
crossover operator is as follows:

Pseudo-code:
input: Two parents (parent1 and parent2), crossover rate.
output: Two possibly recombined offsprings (offspring1 and offspring2).

(1) offspring1 ←− parent1 and offspring2 ←− parent2.
(2) With probability “crossover rate” do:

(a) Randomly select a task t to be the crossover point of the offsprings.
(b) Randomly select a swap point sp1 for I1(t).9 The swap point goes from

position 0 to n − 1, where n is the number of subsets in the condition
function I1(t).

(c) Randomly select a swap point sp2 for I2(t).
(d) remainingSet1(t) equals subsets in I1(t) that are between position 0 and

sp1 (exclusive).
(e) swapSet1(t) equals subsets in I1(t) whose position equals or bigger than

sp1.

9 We use the notation Ij(t) to get the subset returned by the input condition function I of task t in
individual j. In this pseudo-code, the individuals are the offsprings (offspring1 and offspring2) and
j ∈ {1, 2}.
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(f) Repeat steps 2d and e but, respectively, use remainingSet2(t), I2(t), sp2
and swapSet2(t) instead of remainingSet1(t), I1(t), sp1 and swapSet1(t).

(g) FOR every subset S2 in swapSet2(t) do:
(1) With equal probability perform one of the following steps:

(A) Add S2 as a new subset in remainingSet1(t).
(B) Join S2 with an existing subset X1 in remainingSet1(t).
(C) Select a subset X1 in remainingSet1(t), remove the elements

of X1 that are also in S2 and add S2 to remaining-Set1(t).
(h) Repeat step 2g but, respectively, use S1, swapSet1(t), X2 and remain-

ingSet2(t) instead of S2, swapSet2(t), X1 and remainingSet1(t).
(i) I1(t)←− remainingSet1(t) and I2(t)←− remainingSet2(t).
(j) Repeat steps 2b–h but use O(t) instead of the I(t).

(k) Update the related tasks to t.
(3) Return offspring1 and offspring2.

Note that, after crossover, the number of causality relations for the whole
population remains constant, but how these relations appear in the offsprings
may be different from the parents. Moreover, the offsprings may be different
even when both parents are equal. For instance, consider the situation in which
the crossover operator receives as input two parents that are equal to the causal
matrix in Fig. 5. Assume that (1) the crossover point is the task D, (2) we are do-
ing crossover over the input condition function I(D) = {{F, B, E}, {E, C}, {G}},
and (3) the swap points are sp1 = 1 and sp2 = 2. Then, we have that the
remainingSet1(D) = {{F, B, E}}, the swapSet1(D) = {{E, C}, {G}}, the remain-
ingSet2(D) = {{F, B, E}, {E, C}}, the swapSet2(D) = {{G}}. Let us first crossover
the subsets in the swapSet2(D) with the remainingSet1(D). During the cross-
over, the genetic algorithm randomly chooses to merge the subset S2 = {G}
in the swapSet2(D) with the existing subset X1 = {F, B, E}. In a similar way,
while swapping the subsets in swapSet1(D) with the remainingSet2(D), the algo-
rithm randomly chooses (1) to insert the subset S1 = {E, C} and remove task
E from the subset X2 = {F, B, E}, and (2) to insert the subset S1 = {G} as a
new subset in the remainingSet2(D). The result is that I1(D) = {{F, B, E, G}}
and I2(D) = {{F, B}, {E, C}, {G}}. The output condition functions O1(D) and
O2(D) do not change after the crossover operator because the task D does
not have any output task. After the crossover, the mutation operator takes
place.

4.4.2 Mutation

The mutation operator aims at inserting new material in the current popula-
tion. In our case, this means that the mutation operator may change the existing
causality relations of a population. Thus, our mutation operator performs one
of the following actions to the I/O condition functions of a task in an individual:
(1) randomly choose a subset and add a task (in A) to this subset, (2) randomly
choose a subset and remove a task out of this subset, or (3) randomly redistrib-
ute the elements in the subsets of I/O into new subsets. For example, consider
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the input condition function of task D in Fig. 5. I(D) = {{F, B, E}, {E, C}, {G}}
can be mutated to (1) {{F, B, E}, {E, C}, {G, D}} if task D is added to the subset
{G}, (2) {{F, B, E}, {C}, {G}} if task E is removed from the subset {E, C}, or (3)
{{F}, {E, C, B}, {G}, {E}} if the elements in the original I(D) are randomly redis-
tributed in a randomly chosen number of new subsets. Every task in an offspring
may undergo mutation with the probability determined by the mutation rate.
The pseudo-code for the mutation operator is as follows:

Pseudo-code:
input: An individual, mutation rate.
output: A possibly mutated individual.

(1) For every task t in the individual do:
(a) With probability mutation rate do one of the following operations for

the condition function I(t):
(1) Select a subset X in I(t) and add a task t′ to X, where t′ belongs to

the set of tasks in the individual.
(2) Select a subset X in I(t) and remove a task t′ from X, where t′

belongs to X. If X is empty after t′ removal, exclude X from I(t).
(3) Redistribute the elements in I(t).10

(b) Repeat step 1a, but use the condition function O(t) instead of I(t).
(c) Update the related tasks to t.

As the reader may already have noticed, both the crossover and the muta-
tion operators perform a repairing operation at the end of their executions.
The “update the related tasks” operation makes sure that the individual is still
compliant with Definition 5 after undergoing crossover and/or mutation.

5 Analysis metrics

The genetic algorithm searches for models that are complete and precise (see
Sect. 4.2). Therefore, when evaluating the results of our experiments, we should
check if the mined models are indeed complete and precise. At first sight, the
natural way to check for this seemed to be to compare the causal matrix of
the original model (the one that was simulated to created the synthetic event
logs) with the causal matrix of the individual that was mined by the genetic
algorithm. However, this is not a good evaluation criterion because there are
different ways to model the exact behavior expressed in a log. For instance,
consider the net in Fig. 8. This net produces exactly the same behavior as the
one in Fig. 2. However, their causal matrices are different. Furthermore, even
when the mined models are not complete and/or precise, we should be able to
assess how much correct material they contain. This is important because we do
not let the genetic algorithm run for an “infinite” amount of time. Thus, even

10 Details about this step: (1) Get a list with the elements of I(t); (2) Create n sets (n is the number
of elements in I(t)) and randomly distribute them in the n sets; and (3) Filter out the non-empty
sets. These non-empty sets are now the subsets of I(t).
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Fig. 8 Other mined net for the log in Table 1. Note that this net is behaviorally equivalent to the
net in Fig. 2, although they are structurally different. Note that the place “p6” has different input
and output tasks in the two nets

when the mined model is not complete and precise, it is important to know if
the genetic algorithm is going in the right direction.

In our experiments, we have three elements: (1) the original model that is
used to build the synthetic event log, (2) the synthetic event log itself, and (3)
the mined model (or individual). Thus, to analyze our results, we have defined
metrics that are based on two or more of these elements.
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5.1 Checking for completeness

To check for completeness, we only need the event log and the mined model.
Recall that a model is complete when it can parse all the traces in the log without
having missing tokens or tokens left behind. So, completeness can be verified
by calculating the partial fitness PFcomplete (see Definition 10) for the event log
and the mined model. Whenever PFcomplete = 1, the mined model is complete.
Moreover, even when the mined model has PFcomplete < 1, this measure gives
an indication of the quality of the mined model with respect to completeness.

5.2 Checking for preciseness

To check for preciseness, we need the original model, the event log and the
mined model.11 The main reason why we could not define metrics only based
on the event log and the mined model, or the original model and the mined
model, is because it is unrealistic to assume that the event log has all the possible
traces that the original model can generate. In other words, it is unrealistic to
assume that the log contains all possible event traces. Recall that a model is
precise when it does not allow for more behavior than the one expressed in
the log. Thus, if the log would be exhaustive, a possible metric to check for this
preciseness could be to divide the number of traces that are in the log and that
the mined model can generate by the amount of traces that the mined model
can generate. Clearly, a precise mined model could not generate more traces
than the ones in the log. Note that this metric would be based on the event log
and the mined model. Furthermore, metrics based on the mined and original
models would also be possible if the log would be entire. For instance, we could
compare the coverability graphs (Murata 1989) of mapped Petri nets of the
mined and the original models. In this case, the mined model would be pre-
cise whenever the coverability graphs would be equal. Note that sophisticated
notions such as bisimulation (Milner et al. 1992) and branching bisimulation
(van Glabbeek and Weijland 1996) could also be used. However, none of these
metrics are suitable because in real-life applications the log does not hold all
possible traces.

For instance, consider the situation shown in Fig. 9. This figure shows the
original model (“OriginalModel”), two synthetic logs (“Log1” and “Log2”)
and their respective mined models (“MinedModel1” and “MinedModel2”).
“Log1” shows that the tasks A, B, C, and D are (1) always executed after the
task X and before the task Y and (2) independent of each other. Thus, we can
say that the “MinedModel1” is precise with respect to the behavior observed
in the “Log1.” However, note that the “MinedModel1,” although precise, can
generate more traces than the ones in the “Log1.” A similar reasoning can

11 Note that in reality we do not know the original (or initial) model. However, the only way
to evaluate our results is to assume an initial model. Without an initial model, it is impossible to
judge preciseness. In other words, there could be over-fitting or over-generalization, but it would
be impossible to judge this.
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Fig. 9 Example of two mined models that are complete and precise with respect to the logs, but
both mined models can generate more traces than the ones in the log. Additionally, the coverability
graph of the “MinedModel2” is different from the one of the “OriginalModel”

be done for the “Log2” and the “MinedModel2.” Moreover, the coverability
graph of the “MinedModel2” is different from the one of the “OriginalModel.”
Actually, based on “Log2,” the “MinedModel2” is more precise than the “Orig-
inalModel.” This illustrates that, when assessing how close the behavior of the
mined and original models are, we have to consider the event log that was used
by the genetic algorithm. Therefore, we have defined two metrics to quantify
how similar the behavior of the original model and the mined model are based
on the event log used during the mining process.

The two metrics are the behavioral precision (BP) and the behavioral recall
(BR). Both metrics are based on the parsing of an event log by the mined model
and by the original model. The BP and BR metrics are, respectively, formalized
in Definitions 13 and 14. These metrics basically work by checking, for the con-
tinuous semantics parsing of every task in every process instance of the event
log, how many tasks are enabled in the mined model and how many are enabled
in the original model. The more enabled tasks the models have in common, the
more similar their behaviors are with respect to the event log. The behavioral
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precision BP checks how much behavior is allowed by the mined model that
is not by the original model. The behavioral recall BR checks for the opposite.
Additionally, both metrics take into account how often a trace occurs in the
log. This is especially important when dealing with logs in which some paths are
more likely than others, because deviations corresponding the infrequent paths
are less important than deviations corresponding to frequent behavior. Note
that, assuming a log generated from an original model and a mined model for
this log, we can say that the closer their BP and BR are to 1, the more similar
their behaviors. More specifically, we can say that:

• The mined model is as precise as the original model whenever BP and BR are
equal to 1. This is exactly the situation shown in Fig. 9 for the “OriginalMod-
el,” the “Log1” and the “MinedModel1.”
• The mined model is more precise than the original model whenever BP = 1

and BR < 1. For instance, see the situation shown in Fig. 9 for the “Original-
Model,” the “Log2” and the “MinedModel2.”
• The mined model is less precise than the original model whenever BP < 1

and BR = 1. For instance, see the situation illustrated for the original model
in Fig. 2, the log in Fig. 1, and the mined models in Fig. 7.

Definition 13 (Behavioral precision—BP)12 Let L be an event log. Let CMo
and CMm be the respective causal matrices for the original (or base) model and
for the mined one. Then the behavioral precision BP: L× CM ×CM → [0, 1]
is a function defined as:

BP(L, CMo, CMm)

=

∑

σ∈L

⎛

⎝L(σ )

|σ | ×
|σ |∑

i=1

|Enabled(CMo, σ , i)
⋂

Enabled(CMm, σ , i)|
|Enabled(CMm, σ , i)|

⎞

⎠

∑

σ∈L

L(σ )

where Enabled(CM, σ , i) gives the enabled activities at the causal matrix CM
just before the parsing of the element at position i in the trace σ . During the
parsing a continuous semantics is used (see Sect. 4.2.1).

Definition 14 (Behavioral recall—BR) Let L be an event log. Let CMo and
CMm be the respective causal matrices for the original (or base) model and for
the mined one. Then the behavioral recall BR: L× CM× CM → [0, 1] is a

12 For both Definitions 13 and 14, whenever the denominator “|Enabled(CM, σ , i)|” is equal to 0,
the whole division is equal to 0. For simplicity reasons, we have omitted this condition from the
formulae.
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function defined as:

BR(L, CMo, CMm)

=

∑

σ∈L

⎛

⎝L(σ )

|σ | ×
|σ |∑

i=1

|Enabled(CMo, σ , i)
⋂

Enabled(CMm, σ , i)|
|Enabled(CMo, σ , i)|

⎞

⎠

∑

σ∈L

L(σ )
.

5.3 Reasoning about the quality of the mined models

When evaluating the quality of a data mining approach (genetic or not), it is
common to check if the approach tends to find over-general or over-specific
solutions. In our case, the over-general solution is the one that can parse any
trace that can be formed from the tasks in a log. This solution has a self-loop
for every task in the log. The over-specific solution is the one that has a branch
for every unique trace in the log. Figure 10 shows an over-general and an over-
specific solution for the log in Table 1.

The over-general solution does belong to the search space considered in this
paper. However, this kind of solution can be easily detected by the metrics we
have defined so far. Note that, for a given original model CMo, a log L generated
by simulating CMo, and the mined over-general model CMm, it always holds
that: (1) the over-general model is complete (i.e., PFcomplete(L, CMm) = 1); (2)
while parsing the traces, all the tasks that are enabled in the original model
are also enabled in the over-general model (i.e., BR(L, CMo, CMm) = 1); and
(3) while parsing the traces, all the tasks of the over-general model are always
enabled, i.e., the formula of the behavioral precision (see Definition 13) can
be simplified to the formula in Eq. 1. These three remarks are used to detect
over-general mined models during the experiments analysis.

BP(L, CMo, CMm) =

∑

σ∈L

⎛

⎝L(σ )

|σ | ×
|σ |∑

i=1

|Enabled(CMo, σ , i)|
|Am|

⎞

⎠

∑

σ∈L

L(σ )
. (1)

Contrary to the over-general solution, the over-specific one does not belong to
our search space because our internal representation (the causal matrix) does
not support duplicate tasks. However, because our fitness only looks for the
complete and precise behavior [not the minimal representation, like the works
on Minimal Description Length (MDL), Grunwald et al. 2005], it is still impor-
tant to check how similar the structures of the mined model and the original
one are. Differences in the structure may point out another good solution or an
overly complex solution. For instance, have a look at the model in Fig. 11. This
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Fig. 10 Example of nets that are (a) over-general and (b) over-specific for the log in the Table 1

net is complete and precise from a behavioral point of view, but it contains extra
unnecessary places. Note that the places “p12” and “p13” could be removed
from the net without changing its behavior. In other words, “p12” and “p13”
are implicit places van der Aalst et al. (2004). Actually, because the places do
not affect the net behavior, all the nets in Figs. 2, 8, and 11 have the same fitness.
However, a metric that checks the structure of a net would, for instance, point
out that the net in Fig. 11 is a “superstructure” of the net in Fig. 2, and has
many elements in common with the net in Fig. 8. So, even when we know that
the over-specific solution is out of the search space defined in this paper, it is
interesting to get a feeling about the structure of the mined models. That is why
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Fig. 11 Example of a net that that is behavioral precise and complete w.r.t. the log in Table 1, but
that contains extra unnecessary (implicit) places (p12 and p13)

we developed two metrics to assess how much the mined and original model
have in common from a structural point of view.

The two metrics are the structural precision (SP) and the structural recall
(SR). Both metrics are based on the causality relations of the mined and original
models, and were adapted from the precision and recall metrics presented in
Pinter and Golani (2004). The SP and SR metrics are, respectively, formalized in
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Definitions 15 and 16. These metrics basically work by checking how many cau-
sality relations the mined and the original models have in common. The more
causality relations the two models have in common, the more similar their
structures are. The structural precision assess how many causality relations the
mined model has that are not in the original model. The structural recall works
the other way around. Note that the structural similarity performed by these
metrics does not consider the semantics of the split/join points. We have done
so because the causality relations are the core of our genetic material (see Sect.
4.4). The semantics of the split/join tasks can only be correctly captured if the
right dependencies (or causality relations) between the tasks in the log are also
in place.

Definition 15 (Structural precision—SP) 13Let CMo and CMm be the respective
causal matrices for the original and the mined models. The structural precision
SP: CM× CM → [0, 1] is a function defined as:

SP(CMo, CMm) = |Co ∩ Cm|
|Cm| .

Definition 16 (Structural recall—SR) Let CMo and CMm be the respective
causal matrices for the original and the mined model. The structural recall
SR: CM× CM → [0, 1] is a function defined as:

SR(CMo, CMm) = |Co ∩ Cm|
|Co| .

When the original and mined models have behavioral metrics BR and BP that
are equal to 1, the SR and SP show how similar the structure of these models
are. For instance, for the original model in Fig. 2, the structural metrics would
indicate that a mined model like the one in Fig. 8 differs from the original one
by the same amount of causality relations (SR = SP), and a mined model like
the one in Fig. 11 has extra causality relations (SR = 1 and SP < 1).

5.4 Recapitulation of the analysis metrics

This section has presented the five metrics that are used to analyze the exper-
iments in this paper: the partial fitness for the completeness requirement
(PFcomplete), the behavioral precision (BP), the behavioral recall (BR), the struc-
tural precision (SP), and the structural recall (SR). The PFcomplete quantifies how
complete a mined model is. The BP and BR measure how precise the mined
model is. The SP and SR express if the mined model has an overly complex
structure or not. These metrics are complementary and should be considered
together during the experiments analysis. For instance, for our experiments,

13 For both Definitions 15 and 16, whenever the denominator “|C|” is equal to 0, the whole division
is equal to 0. For simplicity reasons, we have omitted this condition from the formulae.
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the mined model is as complete and precise as the original model whenever
the metrics PFcomplete, BP, and BR are equal to 1. More specifically, the mined
model is exactly like the original model when all the five metrics are equal to 1.
As a general rule, the closer the values of the five metrics are to 1, the better.

6 Experiments and results

This section explains how we conducted the experiments and, most important of
all, how we analyzed the quality of the models that the genetic algorithm mined.
To conduct the experiments we needed (1) to implement our genetic algorithm
and (2) a set of event logs. The genetic algorithm described in this paper is imple-
mented as the “Genetic algorithm plug-in” in the ProM framework (see Fig. 12).
The ProM framework is available at www.processmining.org and supports the
development of plug-ins to mine event logs. Although in this paper we focus
on the “Genetic algorithm plug-in,” the ProM framework offers other plug-ins
like, for instance, the “Social network miner plug-in” (van der Aalst and Song

Fig. 12 Screenshot of the “Genetic algorithm plug-in” in the ProM framework. This screenshot
shows the result of mining an event log like the one in Table 1. This log has 300 process instances in
total. On the left-side window shows the configuration parameters (see Sect. 6.1). On the right-side
window shows the best mined individual (or causal matrix). Additionally, in the menu bar we show
how to convert this individual (called “Heuristics Net” in the ProM framework) to a Petri net
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2004) and “Conformance checker plug-in” (Rozinat and van der Aalst 2005).
The logs used in our experiments are synthetic. In brief, we built the model (or
copied it from some related work) and simulated it to create a synthetic event
log. We then run the genetic algorithm over these sets of logs. Once the genetic
algorithm finished the mining process, we analyzed the results.

When conducting the experiments we were interested in getting an indica-
tion of two main points: (1) how the heuristics and genetic operators influence
the quality of mined models, and (2) if the fitness measure indeed guides the
search toward individuals that reflect the most frequent behavior in the log. The
first point was investigated by executing the genetic algorithm over synthetic
noise-free log. Details about these experiments are explained in Sect. 6.1. The
second point was investigated by running the genetic algorithm over synthetic
noisy logs. Details about the experiments with noisy logs are reported in Sect.
6.2.

6.1 Experiments with noise-free logs

6.1.1 Setup

The genetic algorithm was tested over noise-free event logs from 25 different
process models. These models contain constructs like sequence, choice, paral-
lelism, loops, non-free-choice, and invisible tasks. From the 25 models, six were
copied from the models in (Herbst 2001). The other models were created by
the authors. The models had between 6 and 42 tasks.14 Every event log was
randomly generated and contained 300 process instances. To speed up the com-
putational time of the genetic algorithm, the similar traces were grouped into
a single one and a counter was associated to inform how often the trace occurs.
The similarity criterion was the local information in the trace. Traces with the
same direct left and right neighbors for every element were grouped together.
Besides, to test how strong the use of the genetic operators and the heuristics influ-
ence the results, we set up four scenarios while running the genetic algorithm:
(“Scenario I”) without heuristics to build the initial population and without
genetic operators;15 (“Scenario II”) with heuristics, but without the genetic
operators; (“Scenario III”) without heuristics, but with genetic operators; and
(“Scenario IV”) with heuristics and genetic operators. For every log, 50 runs
were executed for every scenario. Every run had a population size of 100 indi-
viduals, at most 1,000 generations, an elite of two individuals and a κ of 0.025
(see Definition 12). The experiments with heuristics used a power value of 1
while building the initial population (see Sect. 4.1.1). The experiments with the
genetic operators have a respective crossover and mutation probabilities of 0.8

14 Table 5 (cf. Appendix A) provides more details about the characteristics of these models.
15 This scenario is a random generation of individuals. The aim of experimenting with this scenario
is to assess if the use of genetic operators and/or heuristics is better than the pure random generation
of individuals, given the same limited amount of computational time.
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Averages for Precision and Recall for Scenario I (-H-GO)
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Fig. 13 Average precision and recall values of the results for Scenario I (without heuristics to build
the initial population and without using genetic operators to build the following populations)

and 0.2 (see the respective Sects. 4.4.1 and 4.4.2). All the experiments were run
using the ProM framework, our tool set that can be obtained via www.process-
mining.org. We implemented the genetic algorithm and the metrics (cf. Sect. 5)
described in this paper as plug-ins for this framework.

6.1.2 Results

The results are reported in Figs.16 13–23. Figures 13–19 show the average values
of the analysis metrics (cf. Sect. 5) for the mined models. Figures 20 and 21 indi-
cate how the fitness of the best mined model evolved over generations. Figures
22 and 23 show how much computational time was required, on average, per
run of the genetic algorithm.17 Overall, the results indicate that the scenario for
the hybrid genetic algorithm (Scenario IV) is superior to the other scenarios in
all aspects. More specifically, the results show that:

• Any approach (scenarios II–IV) is better than the pure random generation
of individuals (Scenario I) (cf. Figs. 13–19).
• Scenarios II and IV mined more complete and precise models than the other

scenarios (cf. Figure 19).
• The hybrid genetic algorithm (Scenario IV) works the best. This approach

combines the strong ability of the heuristics to correctly capture the local
causality relations with the benefits of using the genetic operators (especially

16 The unmarked points in these figures correspond to experiments that were interrupted because
they were taking more than 6 hours to process one seed.
17 The experiments were run in a Intel� Pentium� 4 CPU 3.40 GHz 3.39 GHz, 1.99 GB RAM,
with Microsoft Windows XP 2002.
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Averages for Precision and Recall for Scenario II (+H-GO)
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Fig. 14 Average precision and recall values of the results for Scenario II (with heuristics to build
the initial population, but without using genetic operators to build the following populations)

Averages for Precision and Recall for Scenario III (-H+GO)
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Fig. 15 Average precision and recall values of the results for Scenario III (without heuristics to
build the initial population, but using genetic operators to build the following populations)

mutation) to introduce the non-local causality relations. For instance,
consider the results for the nets a6nfc, driversLicense and herbst-
Fig6p36. All these nets have non-local non-free-choice constructs. Note
that, for these three nets, the results for Scenario II (cf. Fig. 14) have a much
lower behavioral precision than for Scenario IV (cf. Fig. 16). This illustrates
the importance of the genetic operators to insert the non-local causality rela-
tions.
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Averages for Precision and Recall for Scenario IV (+H+GO)
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Fig. 16 Average precision and recall values of the results for Scenario IV (with heuristics to build
the initial population and using genetic operators to build the following populations)

Average Fitness (PFcomplete) over 50 Runs
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Fig. 17 Average fitness (PFcomplete) values of the mined models for 50 runs

• In general, the hybrid genetic algorithm (Scenario IV) mines more complete
models that are also precise than the other scenarios (see Fig. 19). In fact,
except for net a7, Scenario IV is the only configuration that mined a com-
plete and precise model for at least one of the runs (cf. Fig. 19). This shows
that this scenario finds mined models that are complete and precise faster
than the other scenarios.
• Nets with short parallel branches (like parallel5, a7 and a5) are more

difficult to mine. This is due to the probabilistic nature of the genetic algo-
rithm. Recall that the fitness measure always benefits the individuals that
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% of Complete Models over 50 Runs
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Fig. 18 Percentage of the mined models that proper complete (PFcomplete = 1) over 50 runs

% of Complete Mined Models that are also Precise over 50 Runs
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Fig. 19 Percentage of the complete mined models (PFcomplete = 1) that are also precise (BP = 1)
over 50 runs

can parse the most frequent behavior in the log. So, in parallel situations, it
is often the case that the algorithm goes for individuals that show the most
frequent interleaving patterns in the log.
• Although Scenario II led to better results than Scenario III, it is not fair to

compare them. The reason is that Scenario III starts from scratch, in the sense
that its initial population is randomly built, while Scenario II is strongly helped
by good heuristics to detect local dependencies. In our experiments, Scenario
III is used to show that (1) the use of the genetic operators improves the
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Average Values of the Best Fitness per Run of Scenario I (-H-GO)
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Average Values of the Best Fitness per Run of Scenario II (+H-GO)
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Fig. 20 Average values of the best fitness per run of scenarios I (top graph) and II (bottom graph)

results (and this is indeed the case, since Scenario III gave better results than
Scenario I), and (2) the genetic operators help in mining non-local dependen-
cies (again, note that the results for the nets with non-local non-free-choice
constructs—a6nfc and driversLicense—are better in Scenario III than
in Scenario II). Thus, in short, Scenario III shows that the GA was going on
the right track, but it would need more iterations to reach or outperform the
results of Scenario II for all nets.
• The use of genetic operators makes the population converge to better mod-

els in a faster pace, as shown in Figs. 20 and 21. Note that for scenarios III
and IV, in many situations the best individuals have a fitness superior to 0.90
already at generation 100. Furthermore, the results in these figures show that
the heuristics used to build the initial population indeed capture many of
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Average Values of the Best Fitness per Run of Scenario III (-H+GO)
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Average Values of the Best Fitness per Run of Scenario IV (+H+GO)
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Fig. 21 Average values of the best fitness per run of scenarios III (top graph) and IV (bottom
graph)

the correct causality relations. Note that the best fitness for individuals at
generation 0 is already bigger than 0.0 for all nets in scenarios II and IV, and
this is not the case for scenarios I and III.
• Many of the runs took on average less than 15 min (cf. Figs. 22 and 23). How-

ever, logs from nets with loops and/or parallel constructs tend to take more
time. These nets usually allow for more interleaving situations and, therefore,
have bigger logs. Since the fitness is calculated by replaying the logs in the
individuals of a population, the genetic algorithm takes longer for these mod-
els. As a general remark, the more different traces and tasks a log contains,
the higher will be the computational time of the genetic algorithm.

The next section shows the results for the experiments with noisy logs.
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Average Values of the Time per Run of Scenario I (-H-GO)
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Average Values of the Time per Run of Scenario II (+H-GO)
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Fig. 22 Average values of the time per run of scenarios I (top graph) and II (bottom graph)

6.2 Experiments with noisy logs

Before reporting on the experiments with noisy logs, we explain the approach
we chose to handle mined models from these logs. Noise can be defined as
low-frequent incorrect behavior in the log. A log may contain noise because
some of its traces are incomplete (e.g., they correspond to running cases in
the system that have not been completed yet), or the traces reflect incorrect
behavior (e.g., due to some temporal system misconfiguration). Either way, the
presence of noise may hinder the correct discovery of a process model. Noisy
behavior is typically difficult to detect because it cannot be easily distinguished
from other low-frequent correct behavior in the log (for instance, the execution
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Average Values of the Time per Run of Scenario IV (+H+GO)
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Average Values of the Time per Run of Scenario III (-H+GO)
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Fig. 23 Average values of the time per run of scenarios III (top graph) and IV (bottom graph)

of exceptional paths in the process). For this reason, and because the genetic
algorithm is designed to always benefit individuals that can correctly parse the
most frequent behavior in the log, we have opted for a post-processing step to
“clean” mined models from the effects of noise. In short, this post-processing
step works by pruning the arcs of a (mined) model that are used fewer times than
a certain threshold.

The main advantage of a post-pruning step is that, because it works inde-
pendently of the process mining algorithm, it does not avoid the discovery of
low-frequent behavior. Thus, if the mined low-frequent behavior is a correct
one, it can remain in the model. If the mined low-frequent behavior corre-
sponds to noisy behavior, the end user has the possibility to clean the mined
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model. Furthermore, arc post-pruning can also be used over any model to get
a more concise view (in terms of the number of arcs in the model) of the most
frequent behavior. As a final remark, we point out that arc post-pruning is
also the approach adopted by the other related process mining techniques in
Agrawal et al. (1998), Cook et al. (2004), Greco et al. (2004), and Herbst and
Karagiannis (2004) to clean mined models. The remainder of this section pro-
vides more details about this arc post-pruning approach, the experiments setup
and results. The aim of the experiments is to get an indication of how sensitive
te genetic algorithm is to different noise types.

6.2.1 Post pruning

The post-pruning step removes the arcs that are used fewer times than a given
threshold from a (mined) model. The threshold refers to the arc usage percent-
age. The arc usage indicates the number of times that an arc (or dependency) is
used when a log is replayed by an individual. The arc usage percentage defined
by the threshold is relative to the most frequently used arc. As an illustration,
assume that the most frequent arc usage of a mined model to a given log is 300.
If the threshold is set for 5%, all arcs of this model that are used 15 or fewer
times are removed during the post-pruning step. This situation is depicted in
Fig. 24. The mined model is in Fig. 24a. The pruned model is in Fig. 24b. Notice
that the arcs of the mined model that were used (from left to right) 7, 5, 3, and
6 times are not shown in the pruned model. When the removal of arcs leads
to dangling activities (i.e., activities without ingoing and outgoing arcs), these
activities are also omitted in the post-pruned model.

6.2.2 Setup

The genetic algorithm was tested over noisy logs from five different process
models: a12, bn1, herbstFig3p4, herbstFig6p36 and herbstFig6p37. These
models18 contain constructs like sequences, choices, parallelism, structured
loops, and non-local non-free-choice constructs, and have between 12 and 42
tasks. The noise-free log of every net has 300 traces (actually, these are the same
noise-free logs used during the experiments reported in Sect. 6.1). For every
noise-free log, 12 noisy logs were generated: six logs with 5% noise and six
logs with 10% noise. The six noise types used are: missing head, missing body,
missing tail, swap tasks, remove task, and mix all. These noise types are the ones
described in Maruster (2003). If we assume a trace σ = t1...tn−1tn, these noise
types behave as follows. Missing head, body, and tail, respectively, randomly
remove sub-traces of tasks in the head, body and tail of σ . The head goes from

18 The main motivation to select only five models is that, as shown in Sect. 6.1, a run of the genetic
algorithm is time consuming and, as we explain further in the text, 12 noisy logs were generated
per net. Thus, the choice for five models is a pragmatic one.
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Fig. 24 Illustration of applying post-pruning to arcs of a mined model. The mined model is in (a),
and the resulting post-pruned model is in (b). The numbers next to the arcs in these models inform
how often these arcs have been used while replaying the log for the models. The post-pruning
illustrated here has a threshold of 5%. Thus, since the highest arc usage of the mined model in (a)
is 300, all of its arcs that are used 15 or fewer times are not shown in the resulting pruned model in
(b)

t1 to tn/3.19 The body goes from t(n/3)+1 to t(2n/3). The tail goes from t(2n/3)+1 to
tn. The removed sub-traces contain at least one task and at most all the tasks
in the head, body or tail. Swap task exchanges two tasks in σ . Remove task
randomly removes one task from σ . Mix all randomly performs (with the same
probability) one of the other five noise types to a traces in a log. Real life logs
will typically contain mixed noise. However, the separation between the noise

19 The division n/3 is rounded to the largest double value that is not greater than n/3 and is equal
to a mathematical integer.
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types allows us to better assess how the different noise types affect the genetic
algorithm.

To speed up the computational time of the genetic algorithm, the similar
traces were grouped into a single one and a weight was added to indicate how
often the trace occurs. Traces with the same sequence of tasks were grouped
together. For every noisy log, 50 runs were executed. The configuration of every
run is the same used for the noise-free experiments of the scenario IV (see Sect.
6.1). After a run was complete, the mined model was used as input for a post-
processing step to prune its arcs. Every mined model went two post-pruning
steps: one to prune with a threshold of 5% and another to prune with a thresh-
old of 10%. So, when analyzing the results, we look at (1) the mined model
returned by the genetic algorithm, (2) the model after applying 5% pruning,
and (3) the model after 10% pruning. The post-processing step is implemented
as the Prune Arcs analysis plug-in in the ProM framework.

6.2.3 Results

The results for the experiments with logs of the net a12 are in Figs. 25 –28.
We only show the results for the net a12 because the obtained results for the
other nets lead to the same conclusions that can be drawn based on the analysis
of the results for a12. Every figure plots the results before and after pruning.
However, we have omitted the results for 10% arc-pruning because the results
are just like the results for 5% arc-pruning. Furthermore, for every graph, the
x-axis shows, for a given net (or original model), the noise type and the per-
centage of noise in the log. For instance, a12All10pcNoise is a short for “Noisy
log for the net a12 (a12). The noise type is mix all (All) and this log contains
at most 10% (10pc) of noise (Noise).” The y-axis contains the values for the
analysis metrics.

Additionally, we have plotted the metric values for the mined model and
original model with respect to the noisy log and the noise-free one. The reason
is that the analysis with the noisy logs allow us to check if the mined mod-
els over-fit the data (since these noisy logs were given as input to the genetic
algorithms). For instance, if some mined model can proper complete the noisy
log (can parse all the traces without missing tokens or tokens left-behind), this
mined model has over-fitted the data. On the other hand, when the model does
not over-fit the data, the analysis with the noise-free logs can check if the mined
model correctly captures the most frequent noise-free behavior (since the noisy
logs used for the experiments were created by inserting noisy behavior into
these noise-free logs).

In a nutshell, we can conclude that (1) the genetic algorithm is more sensi-
tive to the noise type swap tasks (and, consequently, mix all) and (2) the mined
models do not tend to over-fit the noisy logs. More specifically, the results point
out that:

• The genetic algorithm is more robust to 5% noise than to 10% noise. But the
5% arc post-pruning gave the same results as the 10% one.
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GA - Net a12 - Results for the Preciseness Requirement - Noise Free Log - No Pruning
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GA - Net a12 - Results for the Preciseness Requirement - Noise Free Log - After Pruning 5%
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Fig. 25 Average values for the behavioral and structural precision/recall metrics of the models
mined by the genetic algorithm (GA) for noisy logs of the net a12. The top (bottom) graph shows
the results for the mined models before (after) arc post-pruning. The results show that (1) the mined
models have a behavior that is quite similar to the original models (since behavioral precision > 0.8
and behavioral recall > 0.95), and (2) the arc post-pruning is more effective for the noise types
missing head/body/tail, and remove task (since all the values plotted in the bottom graph are better
than the ones in the top graph)

• The pruning is more effective for the noise types missing head, missing body,
missing tail, and remove task. This makes sense because these noise types
usually can be incorporated to the net by adding causality dependencies to
skip the “removed” or “missing” tasks. In other words, the main net structure
(the one also contained in the original model) does not change, only extra
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GA - Net a12 - Results for the Completeness Requirement - Noisy Logs - No Pruning
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GA - Net a12 - Results for the Completeness Requirement - Noisy Logs - After Pruning 5%
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Fig. 26 Results of the GA for the noisy logs of the net a12: completeness metrics. The metrics
were calculated based on the noisy logs used during the mining. The top graph shows the results for
the mined models. The bottom graph shows the results after the mined models have undergone 5%
arc post-pruning. Note that the top graph indicates that only two models for the noise type missing
head (10% noise) over-fit the data. However, overall the mined models did not over-fit the data,
since the average proper completion < 0.95 and the percentage of complete models is 0 for almost
all logs

causality dependencies need to be added to it. This explains why the arc
post-pruning works quite fine for these noise types.
• Related to the previous item, the noise type swap tasks affects the quality

of the mined results the most. By looking at Figs. 25 and 27, one can see
that the behavioral/structural precision and recall of the mined models for
logs with swapped tasks (a12Swap5pcNoise and a12Swap-10pcNoise)
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GA - Net a12 - Results for the Preciseness Requirement - Noise Free Log - No Pruning
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GA - Net a12 - Results for the Preciseness Requirement - Noise Free Log - After Pruning 5%
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Fig. 27 The results show the same metrics as explained for Fig. 25, but these metrics are calculated
base on a noise-free log of a12. Note that, contrary to the results in Fig. 25, all mined models
(before and after pruning) have an average behavioral recall that is equal to 1. This means that,
with respect to the noise-free log, all the behavior allowed by the original model is also captured
by the mined models.

did not change dramatically after the pruning. This is probably because the
over-fitting of the mined models to the logs involves more than the simple
addition of causality dependencies. I.e., the main structure of mined models
is more affected by the swap tasks noise type.

The next section shows the results of applying the hybrid version of the
genetic algorithm (scenario IV) to event logs from a municipality in The Neth-
erlands.
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GA - Net a12 - Results for the Completeness Requirement - Noise Free Log - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

GA - Net a12 - Results for the Completeness Requirement - Noise Free Log - After Pruning 5%
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Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

Fig. 28 Same metrics as in Fig. 26, but this time the values are calculated based on a noise-free log
of a12. The values for the average proper completion fitness point out that the models correctly
captured at least 50% (see a12Body10pcNoise) of the behavior in the log. This indicates that the
fitness indeed benefits the individuals that correctly model the most frequent behavior in the log.
Besides, note that many more mined models are complete and precise after they have undergone
arc post-pruning

7 Mining real-life logs

This section shows the results of applying the genetic algorithm for event logs
from a municipality in The Netherlands. The four selected process models deal
with the handling of complaints (Bezwaar, BezwaarWOZ, Afschriften) and the
process to get a building permit (Bouwvergunning). As shown in Table 2, not all
traces in the event logs given to us are compliant with the prescribed (original)
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Table 2 Percentage of traces that could be correctly parsed by the original process models

Process model Number of traces Correctly parsed traces (%)

Bezwaar 35 51
BezwaarWOZ 100 47
Afschriften 358 100
Bouwvergunning 407 80

A trace is correctly parsed when no tokens are missing or left behind during the parsing.

Table 3 Percentage of traces that could be correctly parsed by the mined process models before
and after the arc pruning

% Correctly Parsed Traces Mined Model
Process Model No pruning (%) 1% pruning (%) 5% pruning (%) 10% pruning (%)

Bezwaar 100 100 62 51
BezwaarWOZ 100 95 82 82
Afschriften 100 99 99 88
Bouwvergunning 70 70 64 64

Note that process Bouwvergunning has the only log to which the mined model cannot correctly
parse all the traces. This process has a construct with four tasks in parallel. As the results for the
experiments in Sect. 6 indicated, the genetic algorithm goes for the most frequent behavior in these
situations

process model.20 So, these logs are a nice setting to test how robust the genetic
algorithm is to noise.

The experiments consisted in running the algorithm for every log. The con-
figuration used is just like the one in Sect. 6.1, but with ten individuals, at most
5,000 generations and for ten seeds only. For every log, the best mined model
over all seeds was selected to undergo the arc post-pruning step (cf. Sect. 6.2).
The arc pruning is a post-processing step that eliminates from a mined model
the arcs that are used up to a percentage of the most frequently used arc, during
the parsing of the event log by the mined model. The percentage is set by the
user. The choice for a post-pruning step is based on the fact that we do not
typically know how much noise an event log contains. Thus, we let the genetic
algorithm mine the most frequent behavior in the log and use the post-prun-
ing to “clean” this model even further. The results of the experiments are in
Table 3. As can be seen, the algorithm indeed goes for the parsing of the most
frequent behavior in the log. Note that even after pruning the arcs that are used
10 or fewer times less than the most frequently used arc, the resulting process
model can still correctly parse more than half of the traces in the log. As an
example, Fig. 29 shows the original and (pruned) mined models for the process
BezwaarWOZ (cf. Table 3).

20 All modes contain sequences, choices, length-two loops and invisible tasks. Additionally, Bouw-
vergunning has four tasks in parallel. The amount of tasks per process is: Afschriften (11 tasks),
Bezwaar (14), BezwaarWOZ (17), and Bouwvergunning (19).
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Fig. 29 Original and mined models for the process BezwaarWOZ. The original model is in (a).
The unpruned mined model is in (b). c and d, respectively, show the models after applying 1 and
5% arc pruning to the mined model in (b)

8 Comparison to some related approaches

The genetic algorithm is the only mining algorithm so far (cf. Sect. 9) that
can mine sequence, choice, parallelism, (arbitrary) loops, invisible tasks, and
non-free-choice constructs at once, while being robust to noise. Therefore, it
is interesting to compare it with other existing approaches. In this section, we
compare the genetic algorithm with two other mining algorithms: α++ and
HeuristicsMiner.

The aim of the comparison is to assess if these approaches outperform or
not the genetic algorithm when mining logs. The reasons to select these two
algorithms are: (1) both algorithms are implemented in the ProM framework
(what facilitates the comparison); (2) the α++ (Wen et al. 2006) is an exten-
sion of the α algorithm in (Alves de Medeiros et al. 2004a) to also explicitly
capture non-free-choice constructs in the mined model; and (3) the Heuristics-
Miner21 is robust to noise, can tackle invisible tasks and uses heuristics that are
based on the Dependency measure explained in Sect. 4.1.1. Furthermore, both

21 The HeuristicsMiner is the ProM version of the Little Thumb tool (Weijters and van der Aalst
2003).
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algorithms can mine the basic structural constructs (sequence, choice, parallel-
ism and loops).

The α++ and HeuristicsMiner algorithms were applied22 over the three sets
of logs (noise-free, noisy and real-life) to which we executed the genetic algo-
rithm. The results show that:

Experiments with noise-free logs: As the values for the analysis metrics (cf.
Sect. 5) in Figs. 30 and 31 show, both algorithms could find a complete and
precise model for many of the logs. However, as expected, the α++ could not
correctly mine models with invisible tasks (cf. Fig. 30) and the HeuristicsMin-
er was unable to capture non-free-choice constructs (cf. Fig. 31).

Experiments with noisy logs: As the α++ is not robust to noise, none of its
mined models could proper complete any of the traces in the noisy logs in
Sect. 6.2. Actually, the resulting mined models were very spaghetti. However,
the HeuristicsMiner outperformed the genetic algorithm for the noisy logs
in Sect. 6.2. In fact, except for the model with non-free-choice (herbst-
Fig6p36), the HeuristicMiner mined models with the same structure of the
original models for all six noise types.

Experiments with real-life logs: Given the results reported in the previous
two items, one would expect the HeuristicMiner to outperform the genetic
algorithm when running over te real-life logs (cf. Sect. 7). Especially because
all the structural constructs in the the prescribed models of the Dutch munic-
ipality can be tackled by the HeuristicsMiner. However, as the results in
Table 4 indicate, both the α++ and the HeuristicsMiner underperformed the
genetic algorithm when correctly capturing the most frequent behavior in the
log.

As a final remark, we emphasize that both the α++ and the HeuristicsMin-
er are extremely fast (models were mined within 30 s on the same computer
used for the experiments with the genetic algorithm). However, when looking
at the quality of the mined models, the genetic algorithm is better than these
other two related algorithms because, for the set of logs discussed above, it
mined models that correctly depict the most frequent behavior in more situa-
tions.

9 Related work

The idea of process mining is not new (van der Aalst et al. 2003; van der
Aalst and Weijters 2004; Agrawal et al. 1998; Cook and Wolf 1998a,1998b,
1999; Herbst 2000, 2001; Herbst and Karagiannis 2000, 2004; Cook et al. 2004;
Maruster et al. 2002; Maxeiner et al. 2001; Schimm 2002, 2004; Pinter and Golani
2004; Weijters and van der Aalst 2003). Cook and Wolf have investigated sim-

22 The default configuration provided by ProM was used when running these algorithms.
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Results for the Preciseness Requirement - Alpha ++
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Results for the Completeness Requirement - Alpha ++
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Fig. 30 Results for the models mined by the α++ algorithm. Note that the non-free-choice con-
structs are indeed correctly captured (cf. results for a6nfc, driversLicense and herbst-
Fig6p36), but the algorithm cannot correctly mine the models with invisible tasks (cf. l1lSkip,
a10skip, herbstFig6p18, bn3, bn2 and l2lSkip)

ilar issues in the context of software engineering processes. In Cook and Wolf
(1998a) they describe three methods for process discovery: one using neural net-
works, one using a purely algorithmic approach, and one Markovian approach.
The authors consider the latter two the most promising approaches. The purely
algorithmic approach builds a finite state machine where states are fused if
their futures (in terms of possible behavior in the next k-steps) are identical.
The Markovian approach uses a mixture of algorithmic and statistical methods
and is able to deal with noise. Note that the results presented in Cook and Wolf
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Results for the Metrics related to Completeness - HeuristicsMiner
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Results for the Precision and Recall Metrics - HeuristicsMiner
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Fig. 31 Results for the models mined by the HeuristicsMiner. Note that the invisible tasks are
correctly captured, but the non-free-choice constructs are not. Furthermore, the algorithm seems
to have problems with mining length-one loops (cf. l1lSkip and l1l)

(1998a) are limited to sequential behavior. Cook and Wolf extend their work
to concurrent processes Cook and Wolf (1998b) and Cook et al. (2004). They
propose specific metrics (entropy, event type counts, periodicity, and causality)
and use these metrics to discover models out of event streams. However, they
do not provide an approach to generate explicit process models. Recall that the
final goal of the approach presented in this paper is to find explicit representa-
tions for a broad range of process models, i.e., we want to be able to generate
a concrete model rather than a set of dependency relations between events.
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Table 4 Percentage of traces that could be correctly parsed by the models mined by the α++ and
the HeuristicsMiner

Correctly parsed traces mined model (%)
Process model α++ (%) HeuristicsMiner (%)

Bezwaar 0 48
BezwaarWOZ 0 86
Afschriften 100 100
Bouwver gunning 0 0

Note that both algorithm underperformed the genetic algorithm (cf. Table 3) when correctly por-
traying the most frequent behavior in the logs

In Cook and Wolf (1999) provide a measure to quantify discrepancies between
a process model and the actual behavior as registered using event-based data.
The idea of applying process mining in the context of workflow management
was first introduced in Agrawal et al. (1998). This work is based on work-
flow graphs, which are inspired by workflow products such as IBM MQSeries
workflow (formerly known as Flowmark) and InConcert. In this paper, two
problems are defined. The first problem is to find a workflow graph generating
events appearing in a given workflow log. The second problem is to find the
definitions of edge conditions. A concrete algorithm is given for tackling the
first problem. The approach is quite different from other approaches: Because
the nature of workflow graphs there is no need to identify the nature (AND
or XOR) of joins and splits. As shown in Maruster et al. (2002, Submitted)
workflow graphs use true and false tokens which do not allow for cyclic graphs.
Nevertheless, Agrawal et al. (1998) partially deals with iteration by enumer-
ating all occurrences of a given activity and then folding the graph. However,
the resulting conformal graph is not a complete model. In Maxeiner et al.
(2001), a tool based on these algorithms is presented. Pinter and Golani (2004)
extends the work in Agrawal et al. (1998) to also consider the time informa-
tion in the logs and, consequently, better detect concurrent behavior. Schimm
2002, 2004 has developed a mining tool suitable for discovering hierarchically
structured workflow processes. This requires all splits and joins to be balanced.
Herbst (2000, 2001) and Herbst and Karagiannis (2000, 2004) also address
the issue of process mining in the context of workflow management using an
inductive approach. The work presented in Herbst and Karagiannis (2000) is
limited to sequential models. The approach described in Herbst (2001, 2000)
and Herbst and Karagiannis (2004) also allows for concurrency. It uses sto-
chastic activity graphs as an intermediate representation and it generates a
workflow model described in the ADONIS modelling language. In the induc-
tion step activity nodes are merged and split in order to discover the underlying
process. A notable difference with other approaches is that the same activity
can appear multiple times in the workflow model, i.e., the approach allows for
duplicate activities. The graph generation technique is similar to the approach
of Agrawal et al. (1998) and Maxeiner et al. (2001). The nature of splits and
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joins (i.e., AND or XOR) is discovered in the transformation step, where the
stochastic activity graph is transformed into an ADONIS workflow model with
block-structured splits and joins. In contrast to the previous papers, the work
(Maruster et al. 2002; Weijters and van der Aalst 2003) is characterized by
the focus on workflow processes with concurrent behavior (rather than add-
ing ad-hoc mechanisms to capture parallelism). In Weijters and van der Aalst
(2003), a heuristic approach using rather simple metrics is used to construct
so-called “dependency/frequency tables” and “dependency/frequency graphs.”
The preliminary results presented in Weijters and van der Aalst (2003) only
provide heuristics and focus on issues such as noise. In van der Aalst and van
Dongen (2002) the EMiT tool is presented which uses an extended version
of the α-algorithm to incorporate timing information. For a detailed descrip-
tion of the α-algorithm and a proof of its correctness we refer to van der
Aalst et al. (2005). For a detailed explanation of the constructs the α-algo-
rithm does not correctly mine and an extension to mine short-loops, (see Alves
de Medeiros et al. 2003, 2004a). The main differences from our work to the
above mentioned ones are that (1) our search is not primarily based on local
(direct neighborhood) information in the log, (2) we can capture non-free-
choice constructs, and (3) we try to discover the dependencies (causality rela-
tions) and the semantics of the split/join points all together. With respect to
non-free-choice constructs, as already explained in Sect. 8, Wen et al. (2006)
have extended the α algorithm in Alves de Medeiros et al. (2004a) to also
discover this kind of construct. The extension is called the α++ algorithm.
However, unlike the genetic algorithm, the α++ is unable to capture invisible
tasks and is also not robust to noise. The approach by Greco et al. (2006) handles
non-free-choice situations by clustering the traces that follow different paths in
the mined model. The difference to our approach is that the non-free-choice
constructs are not explicitly captured in the control-flow structure of the mined
model.

Process mining can be seen as a tool in the context of BPI. In Grigori et al.
(2001) a BPI toolset on top of HP’s Process Manager is described. The BPI
tools set includes a so-called “BPI Process Mining Engine.” However, this
engine does not provide any techniques as discussed before. Instead it uses
generic mining tools such as SAS Enterprise Miner for the generation of deci-
sion trees relating attributes of cases to information about execution paths
(e.g., duration). In order to do workflow mining it is convenient to have a
so-called “process data warehouse” to store audit trails. Such as data ware-
house simplifies and speeds up the queries needed to derive causal relations. In
Eder et al. (2002), zur Mühlen (2001) and zur Mühlen and Rosemann (2000),
the design of such warehouse and related issues are discussed in the con-
text of workflow logs. Moreover, zur Mühlen and Rosemann (2000) describes
the PISA tool which can be used to extract performance metrics from work-
flow logs. Similar diagnostics are provided by the ARIS Process Performance
Manager (PPM) (IDS Scheer 2002). The later tool is commercially available
and a customized version of PPM is the Staffware Process Monitor (SPM)
(Staffware 2002) which is tailored towards mining Staffware logs. Note that
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none of the latter tools is extracting the process model. The main focus is on
clustering and performance analysis rather than causal relations as in (Agrawal
et al. 1998; Cook and Wolf 1998a,b,1999; Herbst 2000, 2001; Herbst and Kara-
giannis 2000; Maruster et al. 2002; Schimm 2002; Weijters and van der Aalst
2003).

More from a theoretical point of view, the rediscovery problem discussed
in this paper is related to the work discussed in Angluin and Smith (1983),
Gold (1978) and Pitt (1889). In these papers the limits of inductive inference
are explored. For example, in Gold (1978) it is shown that the computational
problem of finding a minimum finite-state acceptor compatible with given data
is NP-hard. Several of the more generic concepts discussed in these papers
could be translated to the domain of process mining. It is possible to interpret
the problem described in this paper as an inductive inference problem specified
in terms of rules, a hypothesis space, examples, and criteria for successful infer-
ence. The comparison with literature in this domain raises interesting questions
for process mining, e.g., how to deal with negative examples (i.e., suppose that
besides log W there is a log V of traces that are not possible, e.g., added by a
domain expert). However, despite the many relations with the work described
in Angluin and Smith (1983), Gold (1978) and Pitt (1889) there are also many
differences, e.g., we are mining at the net level rather than sequential or lower
level representations (e.g., Markov chains, finite state machines, or regular
expressions). For a survey of existing research, we also refer to van der Aalst
et al. (2003).

There have been some papers combining Petri nets and genetic algorithms,
(cf. Bourdeaud’huy and Yim 2002; Malpathak et al. 2002; Mauch 2003; Moore
and Hahn 2003a,b, 2004; Nummela and Julstrom 2005; Reddy et al. 2001; Tohme
et al. 1999). However, these papers do not try to discover a process model based
on some event log. The approach in this paper is the first approach using genetic
algorithms for process discovery. The goal of using genetic algorithms is to
tackle problems such as duplicate activities, hidden activities, non-free-choice
constructs, noise, and incompleteness, i.e., overcome the problems of some of
the traditional approaches. Actually, we have also previous papers on genetic
process mining (Alves de Medeiros et al. 2006, van der Aalst et al. 2005). How-
ever, the work presented in this paper differs from our previous papers for the
following reasons. In van der Aalst et al. (2005), the causal matrix representa-
tion (cf. Definition 5) was more restrictive because the subsets in the input and
output condition functions (i.e., I and O) were partition sets of A. Thus, nets like
the one in Figure 5 could not be supported. The work in Alves de Medeiros et al.
(2006) removed these restrictions and improved the fitness measure. However,
neither the fitness measure in van der Aalst et al. (2005) nor the one in Alves
de Medeiros et al. (2006) have the preciseness requirement (cf. Sect. 4.2.2) to
punish over-general models. Additionally, the works in Alves de Medeiros et al.
(2006) and van der Aalst et al. (2005) (1) do not include the analysis metrics
(cf. Sect. 5) to assess the quality of the mined models, (2) have experiments with
a smaller set of synthetic logs, and (3) do not include experiments with real-life
logs.
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With respect to the analysis metrics, some notions related to the behavioral
precision metric (cf. Definition 13) have been used in Greco et al. (2006) and
Rozinat and van der Aalst (2005). In Greco et al. (2006), the notion of sound-
ness is used to check for how much extra behavior a mined model allows for.
However, the metric assumes that the target model does not contain loops.
In Rozinat and van der Aalst (2005), the notion of behavioral appropriateness
is defined to also check if a model can generate more behavior than the one
expressed in the log. The problem here is that the metric cannot state when a
model is precise enough. Because the analysis metrics defined in Sect. 5 make
use of the original model as well, they can precisely quantify how complete and
precise a mined model is.

10 Conclusions and future work

In this paper, we have presented a hybrid genetic algorithm to mine process
models from event logs. The internal representation (the causal matrix) sup-
ports more complex routing constructs like non-free choice and invisible task.
The fitness measure benefits the individuals that are complete (can parse most
of the behavior in the log) and precise (cannot parse more behavior than the
one that can be derived from the log). The genetic operators (crossover and
mutation) manipulate the basic genetic material in the algorithm: the causality
relations. The experiments with synthetic logs show that (1) the use of heuristics
is indeed beneficial to speed the search performed by the genetic algorithm and
(2) the genetic operators are playing their role in finding the non-local causal-
ity relations that can never be introduced by the heuristics. Furthermore, the
experiments with synthetic noisy logs and real-life logs show that the genetic
algorithm is capturing the most frequent behavior in the log even in the presence
of noise. However, although the GA is able to mine models with all structural
constructs but duplicates tasks and is robust to noise, it has a drawback that
cannot be neglected: the computational time. For this reason, future work will
focus on developing better strategies to perform this search. Additionally, we
want to develop a genetic algorithm that can also mine process models with
duplicate tasks. As a final remark, the genetic algorithm, analysis metrics and
arc post-pruning step are all implemented as plug-ins in the ProM framework
(www.processminining.org).
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