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Abstract
Link analysis and social network analysis frequently require com-
bining attribute-based and link-based information. Relational clas-
sifiers are a simple yet effective means that use attribute and link
information for collective classification of nodes and/or links. How-
ever, in many cases, real world network classification tasks are ac-
companied by varying relational misclassification costs. We give
a number of motivating examples, and propose the relational cost-
sensitive learning problem. Our main contribution is to develop
a novel relational cost-sensitive classifier which directly optimizes
the relational misclassification costs. We compare our proposed re-
lational cost-sensitive classifier to existing relational classifiers and
show that it can help lower misclassification costs.
Keywords: Relational Classification, Link Analysis, Social Net-
works, Discriminative Models, Maximum Entropy Classifiers,
Cost-Sensitive Learning.

1 Introduction

Social Network Analysis has long been an important field of
research in the social sciences. Recent developments such
as the proliferation of the online communities and communi-
cation networks has shown the need for scalable techniques
for extracting, analyzing and mining large real-world social
networks. These networks consist of entities linked by var-
ious relations. Predictive models which exploit both the at-
tributes of entities and relations and their relational patterns
are important for identifying key actors and important (or
anomalous) links.

There has been a recent, growing interest amongst re-
searchers in the machine learning community for classifi-
cation and link prediction in relational domains. A host of
methods like Conditional Random Fields (CRFs) [3] and Re-
lational Markov Networks (RMNs) [1] have been introduced
which are designed to enable users to build accurate classi-
fiers for diverse graph datasets with a minimum of effort. In
this paper, we develop extensions of relational classifiers to
perform various tasks involving social networks and high-
light their advantages over other methods.

Research in areas such as link analysis, social network
analysis and text analysis frequently need to combine infor-
mation from the attributes of entities and the information rep-
resented by relations to solve various problems such as iden-
tifying a set of nodes with some given common properties
(e.g., identifying the terrorists in a given affiliation network).
Discriminative relational classifiers are very well suited for
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such tasks. Moreover, the output of such classifiers usually
leads us to take certain actions (e.g., classifying the entities
into terrorists and non-terrorists may lead to arresting the ter-
rorists). Incorrect classifications lead to undesirable actions
with different consequences. If we are to build accurate clas-
sifiers that are to be applied to real-world networks then we
need to take care of the varying misclassification costs. Most
relational classifiers implicitly assume that all misclassifica-
tions are equally costly.

Within the machine learning community, there is a
rich tradition of cost-sensitive learning [8, 7] applied to
independent identically distributed data (non-relational data)
which can handle varying misclassification costs. Our main
contribution is to develop cost-sensitive relational classifiers
which can handle varying misclassification costs.

We motivate the use of relational classifiers and the
need for cost-sensitive relational classifiers using a series of
examples. Our examples are modeled upon a specific type
of social network known as a communication network ([4])
because they offer the appropriate amount of complexity that
allows us to highlight the various aspects of cost-sensitive
relational classification. However, none of the methods we
discuss are specific to communication networks; they are
equally applicable to any type of network data.

2 Link-based Classification

In the following subsections, we introduce three link-based
classification problems, using communication networks to
motivate each task.

2.1 Link-based Object Classification Communication
networks are networks where nodes represent entities and
edges between nodes represent some form of communica-
tion between entities ([4]). Different modes of communica-
tion (eg: email, phone call etc.) can be represented as differ-
ent types of relations in the communication network but for
simplicity we will consider networks with a single type of re-
lation. We emphasize however that the approaches described
in this paper can easily be applied in the case of multiple re-
lation types in the network.

Traditionally, in machine learning, classification is the
problem of predicting some unobserved, discrete valued at-
tribute (referred to as the classification, class label or simply,
label) given all the other attributes of the data. Consider the



problem of classifying entities in a communication network.
Each entity may have some observed attributes associated
with it describing characteristics of the entity. For example,
in a corporate dataset network such as the Enron email cor-
pus where the entities are the employees in the corporation,
some examples of attributes could be the age, education and
position of the employee which can be used to classify the
employees as management or support.

Link-based object classification is the problem of pre-
dicting entity classifications based on both entity attributes
and the classification of related entities. The relationships
can represent possible correlations between classifications of
connected entities and these correlations may be exploited to
obtain correct classifications. As an example, suppose our
task is to predict the roles of the entities in a communica-
tion network. It might be the case that entities with a certain
role usually communicate with a restricted subset of entities
having specific roles. For example, dentists usually commu-
nicate with patients and hygenists ([5]). Traditional machine
learning has focussed on classifying independent and identi-
cally distributed (IID) entities solely on the basis of its ob-
served attribute values. This completely ignores the relations
in the network. Exploiting correlations among entity labels
according to their relations has been shown to improve clas-
sification accuracies [26, 17, 1, 29].

In addition, the communications between entities can
contain various attributes such as the words in an email.
A good classifier should be able to exploit all three forms
of evidence: 1) entity attribute values, 2) relations in the
network and 3) the attribute values of the relations to achieve
the correct classification. Relational classifiers are a simple
yet powerful means to this end.

Link-based classification is an active area of machine
learning research and many types of relational classifiers
have been proposed. Here we provide a high-level intro-
duction to relational classifiers based on Markov networks
[1]; we provide a formal treatment and all the required def-
initions in Section 3. A Markov network consists of two
parts: a qualitative part and a quantitative part. The quali-
tative part consists of a graph formed by nodes representing
random variables each associated with a domain from which
it can be assigned values. When classifying entities, the
Markov network should contain a random variable for each
entity that needs to be classified. These random variables are
unobserved or target random variables and our problem is
to determine the correct value that needs to be assigned to
them from their respective domains. The Markov network
represents attributes and their values by using observed ran-
dom variables whose values are known and connecting them
to the random variables corresponding to the entities. Be-
sides the random variables, the Markov network also con-
tains edges connecting the target random variables. These
edges represent correlations and two random variables con-

nected via an edge obey the correlation represented by the
edge. If we believe that the links representing communica-
tions in communication networks represent correlations be-
tween the labels of the corresponding entities then we can
connect the random variables of those entities with an edge
in the Markov network. The quantitative part of the Markov
network describes the correlations in the network and are
stored in the form of clique potentials which we define in
Section 3. A Markov network defines a joint probability
distribution and the optimum joint labeling for all the tar-
get random variables in the graph is obtained by maximizing
the distribution.

2.2 Link-based Edge Classification Link-based classifi-
cation has been used in various domains to classify various
types of entities. The importance of relations is raised to an-
other level when one is interested in classifying, not the en-
tities but, the relations themselves. For example, consider
classifying communication links in a communication net-
work into links which require surveillance and links which
do not. We next describe how the problem of link-based
edge classification can be described in terms of a Markov
network.

As part of the ongoing efforts to reduce terrorism, a
considerable amount of communication (e.g., email, phone
calls etc.) is analyzed. Given a communication network, one
needs to determine the key links in the network which require
monitoring since it might be infeasible to monitor all com-
munication links for a sustained period of time. For exam-
ple, after the London bombings ([6]) a considerable amount
of security was dedicated to prevent any such occurrence in
major cities of the USA. In such situations, one way to im-
prove surveillance would be to identify the communication
links which had been discussing the relevant topics (“sub-
way”, “suicide”, “bombs” etc.) and devote more resources to
keep tabs on them. Note that even though we are still dealing
with a communication network, we are no longer interested
in classifying the entities themselves. We are more inter-
ested in classifying the links in the communication networks
to determine whether they are suspicious or unsuspicious.

To classify links in a communication network we need
to construct a Markov network which contains target random
variables corresponding to each communication link. Just
like the problem of classifying entities in a communication
network, we have all three forms of evidence which require
combining:

• Every communication link may have certain observed
attributes (eg: words in a telephone conversation etc.)
and these can be represented by observed random vari-
ables and connecting them to the target random variable
representing the communication link they belong to.

• Each entity in the communication network may have



one or more communication link emanating from it
and the labels on communication links which emanate
from the same entity might be correlated. For example,
a terrorist who is discussing how to make a bomb
with terrorist A is probably going to discuss where
to plant the bomb with some other terrorist B and
thus both these communication links are suspicious.
One way to represent such correlations is to introduce
an edge between two target random variables if and
only if the corresponding communication links share
an entity in common. Figure 1 shows an example of a
communication network and its corresponding Markov
network to facilitate communication link classification.

• The third form of evidence is the attribute values be-
longing to the entities themselves and these attribute
values may help us classify each and every communi-
cation link emanating from the entity. Once again we
can represent these attribute values using observed ran-
dom variables and connecting them to each and every
target random variable representing all the communica-
tion links which emanate from the entity.

2.3 Cost-sensitive link-based classification As men-
tioned in the introduction, in many cases, the output of classi-
fication is used to take certain actions. Incorrect outputs will
lead to suboptimal actions which may lead to undesirable
consequences. To build an accurate classifier which can be
applied to real-world social networks one needs to take into
account the varying costs associated with each misclassifi-
cation. Unfortunately, most relational classifiers assume that
all misclassifications are equally costly and are thus referred
to as 0/1 loss relational classifiers. Traditional cost-sensitive
learning [8, 7] has worked on the problem of classifying
IID data with different misclassification costs for various do-
mains like targeted marketing, fraud and intrusion detection
etc. Next we motivate the need for cost-sensitive relational
classifiers which can handle varying misclassification costs
in the context of classification in social networks.

Consider the earlier problem of classifying communica-
tion links in a communication network comprising of terror-
ists. Suppose we want to classify each link into one of “sus-
picious” (links which may be discussing terrorist activities
associated with the bombing of a subway station) and “un-
suspicious” (links which discuss harmless topics). Consider
a particular communication link l in the communication net-
work. l can be misclassified in two ways: first labeling l as
“suspicious” when it is not and second, labeling l as being
“unsuspicious” when it actually is. The first type of misclas-
sification will cause us to devote resources like manpower,
wire-taps etc. to monitor l even though this surveillance is
uncalled for. The second type of misclassification is more
serious and might cause the terrorist activity (like the bomb-
ing of a subway station) to succeed resulting in high costs

like damage to life and property. Note that the two misclas-
sification costs can be measured in common units (eg: mon-
etory units) and may differ considerably. Such varied costs
associated with different misclassifications is the hallmark of
cost-sensitive learning.

A novel aspect of relational cost-sensitive learning is
the presence of relational misclassification costs. In other
words, besides the misclassification costs associated with
each misclassification, we now have misclassification costs
associated with misclassifying groups of related target ran-
dom variables. Consider an entity e in the communication
network. The result of misclassifying any of the communi-
cation links emanating from e as being “suspicious” when in
fact it is not might prompt e to move to court for invasion
of privacy and claim compensation resulting in a misclassi-
fication cost. This misclassification cost is associated with
all of the target random variables representing the commu-
nication links emanating from e and is in fact an instance
of a relational misclassification cost associated with a group
of related random variables. Relational costs can be mod-
eled as a cost matrix Costc(yc, ỹc) which specifies the cost
incurred when a set of related random variables denoted by
clique c whose correct set of labels is ỹc is labeled with the
set yc. In the above case c denotes a set of random variables
corresponding to the communication links emanating from a
single entity in the communication network, ỹc denotes the
set of correct labels corresponding to those communication
links and yc denotes the set of labels predicted by our classi-
fier.

In this paper we consider the problem of link-based clas-
sification in the presence of unequal misclassification costs.
In fact, we are not aware of any other work which considers
cost-sensitive classification of relational data. Note that 0/1
loss relational classifiers are a special case of cost-sensitive
classifiers obtained by setting all misclassifications to be
equally costly. We devote the rest of the paper to the devel-
opment of the more general cost-sensitive relational classi-
fier. In Section 3 we begin with some preliminary definitions
and notation. In Section 4 we describe how traditional 0/1
loss relational classifiers based on Markov networks can be
used to perform relational cost-sensitive classification. The
drawback of using a 0/1 loss relational classifier to perform
cost-sensitive classification is the requirement to estimate ac-
curate class conditional probabilities. In Section 5 we pro-
pose a cost-sensitive relational classifier which does not need
to estimate class conditional probabilities. In Section 6 we
compare the performance of various cost-sensitive classifiers
on synthetic data. In Section 7 we describe some of the re-
lated work in this area and finally, conclude with a discussion
in Section 8.
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Figure 1: An example showing the conversion from a communication network on the left ([9]) to a Markov network on
the right where each random variable represents a communication link (blue circles represent entities in the communication
network and green squares represent random variables).

3 Preliminaries

We review the definitions of conditional Markov networks
from Taskar et al [1]. Let V be a set of discrete random
variables, and let v be an assignment of values to the random
variables. A Markov network is described by a graph G =
(V, E) and a set of parameters Ψ. Let C(G) denote a set of
(not necessarily maximal) cliques in G. For each c ∈ C(G),
let Vc denote the nodes in the clique. Each clique c has a
clique potential ψc(Vc) which is a non-negative function on
the joint domain of Vc and let Ψ = {ψc(Vc)}c∈C(G). For
classification problems we are often interested in conditional
models. Let X be the set of observed random variables
we condition on, let x denote the observed values of X

and let Xc denote the observed random variables in clique
c ∈ C(G). Let Y be the set of target random variables we
want to assign labels to, let y denote an assignment to Y

and let Yc denote the set of target random variables in clique
c ∈ C(G). A conditional Markov network is a Markov
network (G,Ψ) which defines the distribution P (y | x) =

1
Z(x)

∏

c∈C(G) ψc(x, yc) where Z(x) =
∑

y′

∏

c ψc(x, y
′

c).
For the cost sensitive version of this problem, in addition

to (G,Ψ) as in ordinary Markov Networks, we also have a
cost graph H = (V, E′) which is defined over the same set
of random variables V but has a different edge set E ′. Let
C(H) denote the set of (not necessarily maximal) cliques
in H . Let Yh denote the set of target random variables
present in clique h ∈ C(H) and let yh denote an assignment
to Yh. For each clique h ∈ C(H) there is a clique loss
function lh(yh, ỹh). lh is determined by the cost matrices
{Costh(yh, ỹh)}h∈C(H) involved in the problem and it is not
necessary that they be the same. Costh(yh, ỹh) is a measure
of how severe the misclassification is if Yh is labeled with yh

when its correct labels are ỹh.
The misclassification cost of a complete assignment y

relative to the correct assignment ỹ is:

Cost(y, ỹ) =
∑

h∈C(H)

Cost(yh, ỹh).

Our aim is to determine y which corresponds to the mini-
mum misclassification cost. In this paper, we consider the
special case where C(G) = C(H).

4 Cost Sensitive classification with Conditional Markov
Networks

One approach to perform cost-sensitive classification is to
use a classifier which can output conditional probabilities as-
sociated with each possible complete assignment to Y. We
can use these probabilities to compute the complete assign-
ment y which minimizes the expected cost of misclassifica-
tion:

argmin
y

∑

y′

P (y′ | x)Cost(y,y′)

Note that the set of conditional probabilities required in the
above equation can be quite large, so large that no classifier
might want to list them out. It is more useful to express the
problem in terms of the marginals:

argmin
y

∑

h∈C(H),y′

h

Cost(yh, y
′

h)µh(y′h | x)

where µh(y′h | x) =
∑

y′∼y′

h

P (y′ | x) and y′ ∼ y′h denotes
a full assignment y′ consistent with partial assignment y′h.
Any energy minimization technique can be used to perform
this optimization.

5 Cost Sensitive Markov Networks

In this section we outline the design of a classifier function
which computes the complete assignment y given the graph
G = (V, E), the nodes we condition on X and the clique
loss matrices {lc(y′c, yc)}c∈C(G). We first derive the form
of the classifier function from maximum entropy principles.
The basic idea is to modify the constraints of the maximum
entropy framework so that an assignment with higher loss
is assigned a correspondingly lower probability. The tradi-
tional maximum entropy constraints can be expressed as:



∑

y

fk(x,y)P (y | x) = Ak, ∀k = 1, . . . ,K

where fk is the kth feature and we employ K such features.
We assume that the features distribute over the cliques

and thus fk(x,y) =
∑

c fk(x, yc). Also we assume that
the constants {Ak}1,...,K come from counting the features
of the fully labeled training data set labeled ỹ and so, Ak =
∑

c fk(x, ỹc). With these assumptions the above equation
can be rewritten as:

∑

y

P (y | x)
∑

c

(fk(x, yc)− fk(x, ỹc))
︸ ︷︷ ︸

clique specific penalty term

= 0,

∀k = 1, . . . ,K

Our basic idea is to modify the clique specific penalty term
by scaling it with the loss incurred by the misclassification
of the clique.

∑

y

P (y | x)
∑

c

lc(yc, ỹc) (fk(x, yc)− fk(x, ỹc))
︸ ︷︷ ︸

scaled clique specific penalty term

= 0,

∀k = 1, . . . ,K

The new maximum entropy formulation can now be ex-
pressed as:

max
∑

y

−P (y) logP (y)

subject to:
∑

y

P (y) = 1

∑

y

P (y | x)
∑

c

lc(yc, ỹc) (fk(x, yc)− fk(x, ỹc)) = 0,

∀k = 1, . . . ,K

The lagrangian formulation is thus:

L = −
∑

y

P (y) logP (y)− µ

(
∑

y

P (y)− 1

)

−
∑

k

wk

(
∑

y

P (y | x)

∑

c

lc(yc, ỹc)[fk(x, yc)− fk(x, ỹc)]

)

where µ and wk ∀k = 1 . . . K are lagrangian multipliers.

Differentiating with respect to P (y):

∂L

∂P (y)
=

− logP (y)− 1− µ

−
∑

k

wk

∑

c

lc(yc, ỹc)[fk(x, yc)− fk(x, ỹc)]

Setting the derivative to 0 we obtain:

P (y) =

1

Z
exp

[

−
∑

k

wk

∑

c

lc(yc, ỹc)(fk(x, yc)− fk(x, ỹc))

]

where

Z =
∑

y′

exp

[

−
∑

k

wk

∑

c

lc(y
′

c, ỹc)(fk(x, y′c)− fk(x, ỹc))

]

Substituting the expression for P (y) back in the lagrangian
L gives us:

L = logZ

Thus the dual of our maximum entropy formulation is:

(5.1)

min
∑

y′

exp

(
∑

k

wk

∑

c

lc(y
′

c, ỹc)(fk(x, y′c)− fk(x, ỹc))

)

where {wk}
K
1 are the parameters of the classifier. Eq. (5.1)

is the basic form of our classifier. Note that this classifier
is not a log-linear classifier. Thus the standard methods
of inference and learning don’t apply. We next describe
learning and inference algorithms for our classifier.

5.1 Learning. Given fully labeled training data we can
learn the model by solving the following optimization prob-
lem:

argminw

∑

y′

exp

(
∑

k

wk

∑

c

lc(y
′

c, ỹc)(fk(x, y′c)− fk(x, ỹc))

)

where ỹ is the complete assignment of the labeled training
data. Note that this problem is convex for fully labeled
training data.
Differentiating with respect to wk:



l =

log




∑

y′

exp

(
∑

k

wk

∑

c

lc(y
′

c, ỹc)(fk(x, y′c)− fk(x, ỹc))

)]

∂l

∂wk

=

∑

y′

[

1

Z
exp

(
∑

k

wk

∑

c

lc(y
′

c, ỹc)(fk(x, y′c)− fk(x, ỹc))

)

∑

c

lc(y
′

c, ỹc)(fk(x, y′c)− fk(x, ỹc))

]

Let us now define the following probability distribution
(which is, of course, normalized):

q(y′) ∝

exp

(
∑

k

wk

∑

c

lc(y
′

c, ỹc)(fk(x, y′c)− fk(x, ỹc))

)

∂l
∂wk

can be expressed in terms of q(y′) as:

∂l

∂wk

=
∑

y′

q(y′)
∑

c

lc(y
′

c, ỹc)[fk(x, y′c)− fk(x, ỹc)]

=
∑

c,y′

c

µq
c(y

′

c)lc(y
′

c, ỹc)[fk(x, y′c)− fk(x, ỹc)]

where µq
c(y

′

c) is the marginal probability of labeling clique c
with y′c under the q distribution. So if we can compute the
marginals then we can compute the gradient without having
to sum up for each possible complete assignment y′.

One way to compute the marginals is to run loopy
belief propagation [2] (for pairwise markov networks) or its
extensions (for markov networks with larger cliques) for the
q distribution by defining the following clique potentials:

ψq
c (y′c) = exp

[
∑

k

wklc(y
′

c, ỹc)(fk(x, y′c)− fk(x, ỹc))

]

Having computed the gradient with respect to the weights
{wk}1,...K we can use any gradient based optimization
method (like conjugate gradient descent) to perform the
learning.

5.2 Inference. The inference problem is to compute:

argmin
y

∑

y′

exp

(
∑

k

wk

∑

c

lc(y
′

c, yc)(fk(x, y′c)− fk(x, yc))

)
(5.2)

Unless the underlying Markov network has special proper-
ties (e.g., being a tree, a sequence or a network with a low
treewidth) exact inference may be infeasible. For the do-
mains described in Section 1, the Markov network might
consist not only of thousands of nodes but may also be
densely connected. In such cases we resort to approximate
inference.

In order to obtain a lower bound approximation we take
log of Eq. (5.2) and apply Jensen’s inequality to get:

(5.3)

log




∑

y′

exp

(
∑

k

wk

∑

c

l(y′c, yc)(fk(x, y′c)− fk(x, yc))

)



≥
∑

y′

q(y′)
∑

k

wk

∑

c

l(y′c, yc)(fk(x, y′c)− fk(x, yc))

−
∑

y′

q(y′) log q(y′)

where q(y′) is a distribution over all y′ (
∑

y′ q(y′) = 1,
q(y′) ≥ 0).

To find the optimal complete assignment y we will
employ a 2-step iterative procedure. In each iteration, first,
we will obtain the best approximation by maximizing the
right hand side in Eq. (5.3) w.r.t q(y′) and, second, we will
minimize w.r.t. y. We will keep iterating between these two
steps until our objective function stabilizes.

The Lagrangian of the RHS in Eq. (5.3) is:

l =
∑

y′

q(y′)
∑

k

wk

∑

c

l(y′c, yc)(fk(x, y′c)− fk(x, yc))

−
∑

y′

q(y′) log q(y′)− µ




∑

y′

q(y′)− 1





Differentiating with respect to q(y′):

∂l

∂q(y′)
=

∑

k

wk

∑

c

l(y′c, yc)(fk(x, y′c)− fk(x, yc))

−1− log q(y′)− µ



Setting the derivative to 0:

q(y′) ∝ exp

[
∑

k

wk

∑

c

l(y′c, yc)(fk(x, y′c)− fk(x, yc))

]

where
∑

y′ q(y′) = 1.
Let

Z ′(y) =

∑

y′′

exp

[
∑

k

wk

∑

c

l(y′′c , yc)(fk(x, y′′c )− fk(x, yc))

]

Thus:

q(y′) =
1

Z′(y) exp [
∑

k wk

∑

c l(y
′

c, yc)(fk(x, y′c)− fk(x, yc))]

Note that computing q(y′) for every complete assignment y′

is not feasible because the set of all complete assignments
could be very large. We need to see if we can compute the
optimal complete assignment without explicitly computing
all q(y′).

The second stage of the optimization requires minimiz-
ing with respect to y. Thus we only need to look at the first
term in the lagrangian (since this is the only term which in-
volves y):

∑

y′

q(y′)
∑

k

wk

∑

c

l(y′c, yc)(fk(x, y′c)− fk(x, yc)) =

∑

y′

c
,c

∑

k

wkl(y
′

c, yc)(fk(x, y′c)− fk(x, yc))µ
q
c(y

′

c)(5.4)

where µq
c(y

′

c) is the marginal probability of labeling clique
c with y′c under the q distribution. Thus we only need
the marginal probabilities to perform the second stage of
the optimization. We can perform the second stage of the
optimization by using the marginals of the q(y′) distribution
and determining the y which maximizes Eq. (5.4). This
becomes our new best guess of the solution. We can
iterate between the two steps until our guess for the optimal
complete assignment stabilizes.

One way to compute the marginal probabilities under
the q(y′) distribution is to run loopy belief propagation [2]
(for pairwise markov networks) or one of its extensions (for
markov networks with larger cliques) with the following
clique potential:

ψq
c (y′c) = exp

[
∑

k

wklc(y
′

c, yc)(fk(x, y′c)− fk(x, yc))

]

where y is the current guess of the optimal complete assign-
ment.

One way to maximize Eq. (5.4) is to define the following
distribution for y:

r(y) ∝

exp




∑

y′

c
,c

∑

k

wkl(y
′

c, yc)(fk(x, y′c)− fk(x, yc))µ
q
c(y

′

c)





where
∑

y
r(y) = 1. Thus the y which maximizes Eq. (5.4)

corresponds to the most optimal y under the r(y) distribu-
tion. To compute the optimal y under the r(y) distribution
we can run loopy belief propagation [2] or or one of its ex-
tensions with the following clique potentials:

ψr
c (yc) =

∑

y′

c

∑

k

wkl(y
′

c, yc)(fk(x, y′c)− fk(x, yc))µ
q
c(y

′

c)

and choose the y with the highest marginal probabilities.

6 Experiments

We performed experiments on synthetic random graph data
with misclassification costs. Commonly available real world
networks exhibit properties like preferential attachment and
correlations amongst the labels across links. Since our
aim is to find out how relational classifiers will perform
on such networks we chose to model our synthetic data
generating algorithm according to the evolutionary network
model described in Bollobas et al [27] which can give rise
to power-law graphs. Further, we were also interested
in varying graph characteristics like the strength of the
correlation amongst labels across links and link density in
the network to find out how these variations affect classifier
performance.

In all our experiments we compare misclassification
costs achieved by different classifiers. The first model we
considered is a non-relational model which only looks at the
attribute values in the data and builds many one-against-the-
rest logistic regression classifiers ([28]) to predict the prob-
ability of the node belonging to each class choosing the one
with the highest probability (LOGREG). The second model
we report results for is a discriminative relational classifier
based on conditional markov networks which minimizes the
expected cost of misclassification as described in Section 4
(MN). The third and final model we report results for is the
model described in Section 5 (CSMN).

For simplicity we consider cliques of maximum size
2 in all our experiments. For each classifier, we assumed
a ”shrinkage” prior and compute the MAP estimate of the
parameters. More precisely, for LOGREG we assumed that
different parameters are a priori independent and define
p(wi) = λw2

i . After trying out a range of regularization
constants we found that λ = 0.03 gave the best result.
For MN, we assumed that different parameters are a priori



independent and define p(wi) = λw2
i . After trying a range

of regularization constants we found that λ = 10 returned
the best results. For CSMN, we assumed that different
parameters are a priori independent and define p(wi) = λw2

i .
We tried regularization constant in the range [1,200] and
found that λ = 20 returned the best results.

For all runs of CSMN, we set the clique loss matrices
equal to the cost matrices:

lc(yc, ỹc) = Costc(yc, ỹc)

6.1 Synthetic data generation. Our algorithm for gener-
ating synthetic datasets closely follows the algorithm de-
scribed in Bollobas et al [27]. For all our experiments
we generated binary class random graph data since this is
what is commonly encountered in most cost-sensitive appli-
cations (terrorist/non-terrorist, good-customer/bad-customer
etc.). The algorithm is outlined in Algorithm 6.1.

ALGORITHM 6.1. (SYNTHETIC GRAPH DATA GENERATION)
SynthGraph(numNodes, α, ρ, vocabSize, numObs,
attrNoise)

1: Set i=0
2: G = ∅
3: while i < numNodes do
4: Sample r ∈ [0, 1] uniformly at random
5: if r <= α then
6: connectNode(G, ρ)
7: else
8: addNode(G, ρ)
9: i← i+ 1

10: end if
11: end while
12: for i = 1 to numNodes do
13: v ← ith node in G
14: genAttributes(v, vocabSize, numObs, attrNoise)
15: genNodeCostMatrix(v)
16: end for
17: for each edge e in G do
18: genEdgeCostMatrix(e)
19: end for
20: return G

ALGORITHM 6.2. (ADDING AN EDGE TO THE GRAPH)
connectNodes(G, ρ)

1: v ← select any existing node uniformly at random from
G

2: sample r uniformly at random from [0, 1]
3: if r ≤ ρ then
4: cn ← v.label
5: else
6: cn ← (v.label + 1) mod 2
7: end if

8: w ← select a node from G with w.label = cn and
probability of selection proportional to its out-degree

9: introduce an edge from v to w

ALGORITHM 6.3. (ADDING A NODE TO THE GRAPH)
addNode(G, ρ)

1: add a new node v to G
2: choose v.label from {0, 1} uniformly at random
3: sample r uniformly at random from [0, 1]
4: if r ≤ ρ then
5: cn ← v.label
6: else
7: cn ← (v.label + 1) mod 2
8: end if
9: w ← select a node from G with w.label = cn and

probability of selection proportional to its out-degree
10: introduce an edge from v to w

The algorithm “grows” a graph from an empty set of
nodes. The number of nodes in the final graph is controlled
by the parameter numNodes. α is a parameter which
controls the number of links in the graph. Roughly, the final
graph should contain 1

1−α
numNodes number of links. As

mentioned before, we experimented with binary class data.
We used a uniform set of class priors.

The algorithm implements a rudimentary form of pref-
erential attachment where a node can choose the label of the
node it wants to link to. This introduces correlations amongst
the labels across links. The degree of these correlations is
controlled by the parameter ρ. Each node can link to nodes
of its own class with probability ρ. With probability 1 − ρ
a node can choose a node of the other class to link to. If
ρ is close to 1 then the generated dataset will primarily fea-
ture links between nodes with the same class labels, whereas,
if ρ is close to 0.5 then the generator will produce datasets
where nodes have equal chance of linking to nodes of their
own class or nodes of the other class. A further aspect of
our synthetic data generator’s preferential attachment is that
nodes with higher out-degree have a a higher chance of get-
ting linked to. This introduces the power-law degree distri-
bution commonly observed in most real world networks. We
refer the interested reader to Bollobas et al [27] for more de-
tails regarding this aspect of our synthetic data generation
algorithm.

After generating the graph, we generate attributes for
each node (genAttributes). For every node, an attribute
can either be present or absent. The total number of attributes
is controlled by the parameter vocabSize. For each node
we sample the ids of the attributes which are present from a
noisy class-specific binomial distribution. The noise in the
attributes is controlled by the parameter attrNoise. With
probability attrNoise we sample an attribute id uniformly
from the set {0, . . . , vocabSize − 1}. With probability 1 −
attrNoise, we sample an attribute id from the distribution



name value

numNodes for training set 300
numNodes for test set 300
numLabels 2
vocabSize 5
attrNoise 0.3
numObs 4

Table 1: Parameter settings for our synthetic data generator

Binomial(p = 1/3, vocabSize) if the node belongs to
class 0 and Binomial(p = 2/3, vocabSize) if the node
belongs to class 1. For each node we sample numObs such
attribute ids. For our experiments we set vocabSize =
5, attrNoise = 0.3 and numObs = 4. Intuitively,
nodes with class label 0 will have present attributes with ids
between 0 and 3 whereas nodes with class label 1 will have
present attributes with ids between 1 and 4 with some noise
introduced in the process.

Finally, we generate the cost matrices for the data
(genNodeCostMatrix and genEdgeCostMatrix) .
For simplicity, we considered cliques only upto size 2 (nodes
and edges) and thus we needed to generate only two types of
cost matrices: one for the nodes and one for the edges. For
the node cost matrices Cost(y, ỹ) we set the diagonal entries
to 0 and we sampled the off-diagonal entries uniformly from
[0, 2]. For the edge cost matrices Cost(yc, ỹc), we set the
diagonal entries to 0 and sampled the off-diagonal elements
uniformly from [0, ham(yc,ỹc)

2 ] where ham(yc, ỹc) denotes the
hamming distance between yc and ỹc.

Table 1 describes our parameter settings. For each of
our experiments we produced one training and three testing
datasets. Each number we report is the misclassification cost
averaged over three test sets. All graph datasets were disjoint
from each other.

6.2 Performance Comparisons. For our first experiment
we varied the correlation amongst labels across links to find
out if relational classifiers actually help decrease misclassifi-
cation costs. We varied the value of ρ from 0.5 to 1.0 while
keeping α constant at 0.3. Recall that ρ controls the chance
of a node with label c linking to another node with label c.
Setting ρ = 1 will cause nodes with label c to exclusively
link with other nodes of label c whereas setting ρ = 0.5 will
cause nodes with label c to randomly choose nodes to link to
irrespective of their class labels.

Figure 2 shows that when ρ = 0.5 (no correlations) all
three classifiers tend to perform equally, once we begin to
introduce correlations in the link structure the two relational
classifiers begin to show some savings in misclassification
costs over the non-relational method but this doesn’t happen
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Figure 2: Avg. misclassification costs attained by varying ρ
(X-axis). α was kept constant at 0.3.

LOGREG MN CSMN
Training 0.27 48.41 10.81
Testing 0.066 0.126 0.11

Table 2: Average run times (seconds) for the various classi-
fiers with α kept constant at 0.3 and ρ kept constant at 0.7.
All runs were done on a 2.4 GHz Xeon.

until ρ reaches a value of 0.7. The plot shows that CSMN
manages to produce lower misclassification costs that MN
on all settings of ρ. CSMN achieves 10.6% reduction in
costs over LOGREG at ρ = 0.8 which increases to 24.6%
at ρ = 1.0. Note that the 0/1 loss MN classifier achieves
an avg. classification accuracy of 79.76% at ρ = 0.5 and
this improves to 80.83% at ρ = 0.7 which shows that 0/1
loss relational classifiers can exploit correlations in the link
structure to improve classification accuracy. Moreover at
ρ = 0.8, CSMN achieves an avg. accuracy of 81.1% whereas
the 0/1 loss MN achieves an avg. accuracy of 82.65%
indicating that a higher avg. accuracy does not imply a lower
avg. misclassification cost.

We also report training and test times required by the
various classifiers in Table 2. Training time for MN and
CSMN are greater than LOGREG which is not surprising due
to the additional complexity introduced by learning from the
link structure. Interestingly, CSMN tends to train faster than
MN. Test times are roughly the same for all three classifiers.

In Figure 2, at ρ = 0.9 and above, MN shows very
high misclassification costs. This has more to do with the
inference algorithms used in our implementation of MN. We
used loopy belief propagation (LBP) [2] for inference in our
implementation which is the same inference algorithm that
was used in Taskar et al [1]. LBP is a message passing
algorithm which suffers (returns very poor estimates of class



conditional probabilities) when the graph has a number loops
with small clusters of nodes [30]. To observe this more
carefully, we looked at the degree distributions of two test
sets one generated with ρ = 0.8 (when MN does well)
and another generated with ρ = 1.0 (when MN performs
poorly). The test set generated with ρ = 1.0 contained
more nodes with degrees> 1 than the test set generated with
ρ = 0.8. Specifically, the test set generated with ρ = 1.0
contained a higher fraction of nodes with degrees 2,3,4,6,7
than the test set generated with ρ = 0.8 respectively. Note
that both test sets have roughly the same number of links
(411 and 414) due to the same setting of α. A lower value
of ρ tends to distribute links around a bit while the graph
is evolving and thus manages to avoid a few loops while
a higher value of ρ causes new edges to form using the
same nodes with the highest out-degree. These loops cause
MN (which uses LBP) to return extremely poor estimates
of class conditional probabilities thus returning a very high
misclassification cost. CSMN avoids this pitfall because it
does not rely on estimating probabilities and is more robust
to loops. Inference in graphical models with loops is still an
active field of reseach which aims to develop more accurate
inference algorithms.

Another way to produce tightly linked clusters in the
generated data is to simply increase the number of links in
the graph. In our second experiment we varied α from 0
to 0.8 and kept ρ constant at 0.8. Recall that α is directly
proportional to the frequency with which connectNode is
called and that the number of links in the graph is roughly

1
1−α

times the number of nodes. Figure 3 shows that at low
link densities (α = 0, 0.1, 0.2), all three classifiers produce
comparable results. With an increase in the number of links
comes an increase in the number of edge cost matrices thus
increasing the total misclassification costs as shown in the
plot for LOGREG. At α = 0.2 the relational classifiers
exploit these correlations to produce results slightly better
than LOGREG (MN’s 91.6 and CSMN’s 94.5 compared to
LOGREG’s 94.8). But at α = 0.4 and higher, MN begins
to show signs of poor estimation of probabilities due to
an excess of links (and loops) in the data. CSMN, on the
other hand, shows more resilience to the increase in links
and exploits the correlations in the link structure to produce
results better than the other two classifiers until α = 0.6.
Beyond α = 0.6, however, even CSMN falters due to an
excess in link density.

In the final set of experiments we explored the effects
of correlations present in the cost matrices themselves. Con-
sider the earlier problem of classifying communication links
into one of “suspicious” and “unsuspicious”. Recall that we
have three types of costs: the cost associated with resources
for surveillance incurred when an unsuspicious link was mis-
classified, the cost associated with damage to life and prop-
erty incurred when a suspicious communication link was la-

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

A
vg

. m
is

cl
as

si
fic

at
io

n 
co

st
s

α

LOGREG
MN
CSMN

Figure 3: Avg. misclassification costs attained by varying α
(X-axis). ρ was kept constant at 0.8.

beled otherwise and the relational cost incurred when any
one of a non-terrorist’s communication link was classified
as “suspicious”. An honest, non-terrorist entity in the com-
munication network is going to be more confident and more
protective of his rights to privacy than a terrorist who does
not want to attract attention by moving to court if anyone of
her/his communication links is being monitored. Thus the
relational misclassification cost associated with a communi-
cation link belonging to a non-terrorist is going to be higher
than the relational misclassification cost of a terrorist’s com-
munication link. This points to the fact that in some cases
correlations present in the cost matrices might provide us in-
formation about the class labels and we need to exploit these
correlations also. In our last set of experiments we tried to
mimic this scenario and observed the performance of the dif-
ferent classifiers.

We introduced another parameter γ in our synthetic
data generator which controlled the generation of the re-
lational (edge) cost matrices. For every edge cost ma-
trix Cost(yc, ỹc), if the labels at both ends of the edge
are 0 (“unsuspicious”) then with probability γ we sample
the off-diagonal elements uniformly from [0, ham(yc, ỹc)]
whereas with probability 1 − γ we sample uniformly from
[0, ham(yc,ỹc)

10 ], where ham(yc, ỹc) denotes the hamming
distance between yc and ỹc; otherwise we sample from
[0, ham(yc,ỹc)

10 ]. The diagonal elements are still set to 0.
In the first experiment we kept α constant at 0.3, γ

constant at 1.0 and varied ρ from 0.5 to 1.0, in other words,
we varied the correlations in the link structure in the presence
of strong correlations in the cost matrices. Figure 4 shows
that CSMN thrives on such correlations in the cost matrices
while MN improves slightly when the correlations in the
links are pronounced (ρ = 0.8) but falters when there are
too many loops in the graph (ρ = 0.9, 1.0).
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Figure 5: Avg. misclassification costs attained by varying γ
(X-axis). α and ρ were kept constant at 0.3 and 0.8 resp.

In our last experiment we varied γ from 0 to 1.0 while
keeping α constant at 0.3 and ρ constant at 0.8. Figure 5
shows the results. Note that there are two things happening
here. As we increase γ, we increase the chances of larger
costs appearing in the edge cost matrices and thus the mis-
classification cost results go higher as shown in the plot for
LOGREG. As we increase γ we also increase the correlations
in the cost matrices which can be exploited. MN neither takes
advantage nor is adversely affected by the change in γ and
shows roughly the same misclassification cost throughout the
plot. CSMN shows a slight increase in misclassification costs
initially (γ = 0.1) but quickly recovers and shows progres-
sive improvements in results returning lower and lower mis-
classification costs with increasing correlations in the cost
matrices.

7 Related Work

Link-based classification has been a topic of interest in
many research communities at different points in time. Re-
searchers in computer vision, natural language processing
and machine learning have looked at this problem at length
and developed a variety of methods. Chakrabarti et al [26]
was one of the first to notice that exploiting correlations
present amongst the labels of related entities significantly
improves classification accuracy. Lafferty et al [3] followed
up by proposing Conditional Random Fields (CRFs) for clas-
sifying entities which form linear chains which is a problem
frequently encountered in the field of natural language pro-
cessing. Taskar et al [1] extended Lafferty et al’s work to
handle irregular graphs.

Much of the research on link-based classification in the
machine learning community has concentrated on classify-
ing text corpora with links like hypertext corpora with hyper-
links or scientific publications with citations. One reason for
this is the ease of availability of text classification datasets.
Other application domains include classifying email text cor-
pora ([16]), classifying datasets with information regarding
various corporations ([17]), classification of links in hyper-
text datasets ([18]), predicting links in friendship networks
([18]), predicting links in text corpora ([19]), optical charac-
ter recognition ([20]) etc.

The cost-sensitive learning community has yet to em-
brace link-based classification. Much of the research in
cost-sensitive learning concentrates IID data. One approach
to perform cost-sensitive learning is to use a standard 0/1
loss classifier to predict class conditional probabilities us-
ing which one attempts to find the labels which minimize
the expected cost of misclassification ([7], [21]). Another
approach is to make particular classifiers cost sensitive.
Specific methods have been developed for decision trees
([23, 22]), support vector machines ([25]), neural networks
([24]) etc. None of these approaches consider relational data.

Social network analysts mainly use network connectiv-
ity information to acquire knowledge. Link analysis has ac-
knowledged the need to combine text and link information
([13]). Yet most of the work either exploits only content
information ([15, 10]) or only link information ([14, 11]).
One exception is McCallum et al [12] which combines both
content and link information to generate topic mixtures of
emails and determine roles. McCallum et al uses a proba-
bilistic graphical model which requires considerable efforts
to design and involves making a number of independence
assumptions that rarely hold in the real world. In contrast,
the methods discussed in this paper involve discriminative
models which are a much easier way to design classifiers in-
volving both link and content information for relational data
and make none of the independence assumptions. Moreover,
to the best of our knowledge, none of the previous work in
link analysis considers varied misclassification costs.



8 Conclusion

In this paper, we proposed the use of relational classifiers as a
method to combine different types of information (e.g., link
and attribute) to solve various classification tasks in social
networks. We showed that classification can be used to for-
mulate a number of problems in social networks like iden-
tifying terrorists in a terrorist network and identifying com-
munication links which need monitoring in communication
networks. Most of these problems come with various costs
of misclassification which need to be kept in mind if we are
to solve these problems correctly. To this end, we devel-
oped relational classifiers to perform cost-sensitive classifi-
cation. We demonstrated the performance of relational clas-
sifiers and our proposed cost-sensitive relational classifier on
synthetic data. Our main observations were that the pres-
ence of correlations in labels across links can be exploited
by relational classifiers to achieve results better than stan-
dard non-relational classifiers. We showed that increasing
correlations in the link structure of the data improves the re-
sults of relational classifiers. We also showed that when the
number of links is high or when there are too many loops in
the graph, standard relational classifiers falter due to their re-
liance on class conditional probabilities while our proposed
cost-sensitive classifier is more robust to these problems. Fi-
nally, we showed that the proposed cost-sensitive relational
classifier can exploit correlations in the cost matrices, some-
thing the other two classifiers (non-relational classifiers and
standard relational classifiers) showed no evidence of being
able to do.
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