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Abstract In recent years there has been an increased interest in frequent pattern
discovery in large databases of graph structured objects. While the frequent connected
subgraph mining problem for tree datasets can be solved in incremental polynomial
time, it becomes intractable for arbitrary graph databases. Existing approaches have
therefore resorted to various heuristic strategies and restrictions of the search space,
but have not identified a practically relevant tractable graph class beyond trees. In this
paper, we consider the class of outerplanar graphs, a strict generalization of trees,
develop a frequent subgraph mining algorithm for outerplanar graphs, and show that
it works in incremental polynomial time for the practically relevant subclass of well-
behaved outerplanar graphs, i.e., which have only polynomially many simple cycles.
We evaluate the algorithm empirically on chemo- and bioinformatics applications.
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1 Introduction

The discovery of frequent patterns in a database, i.e., patterns that occur in at least
a certain specified number of elements of the database, is one of the central tasks
considered in data mining. In addition to being interesting in their own right, frequent
patterns can also be used as building blocks or features for predictive data mining tasks
(see, e.g., Deshpande et al. 2005). For a long time, work on frequent pattern discovery
has concentrated on relatively simple notions of patterns and elements (transactions)
in the database as they are typically used for the discovery of association rules (simple
sets of atomic items). In recent years, however, due to the significance of applica-
tion areas such as the analysis of chemical molecules or graph structures in the World
Wide Web, there has been an increased interest in algorithms that can perform frequent
pattern discovery in databases of structured objects such as trees or arbitrary graphs.

While the frequent pattern mining problem for trees is tractable (i.e., can be solved
in incremental polynomial time; see Chi et al. 2005a for an overview on frequent sub-
tree mining), for arbitrary graphs it becomes intractable (Horvath et al. 2007) (i.e.,
cannot even be solved in output polynomial time). Existing approaches to frequent
pattern discovery for graphs have therefore resorted to various heuristic strategies and
restrictions of the search space (see, e.g., Borgelt and Berthold 2002; Chi et al. 2005a;
Cook and Holder 1994; Deshpande et al. 2005; Inokuchi et al. 2003; Kramer et al.
2001; Kuramochi and Karypis 2001; Maunz et al. 2009; Nijssen and Kok 2004; Yan
and Han 2002), but have not identified a practically relevant tractable graph class
beyond trees. The main contributions of this paper are the definition of a practically
relevant graph class that is strictly more general than trees, the introduction of a mean-
ingful non-standard embedding operator, and the development of an algorithm which
allows frequent pattern discovery to be performed efficiently for this class with respect
to this operator.

1.1 Well-behaved outerplanar graphs

Since trees, outerplanar graphs, and planar graphs form a natural hierarchy with respect
to minors (Chartrand and Harary 1967), we consider the class of outerplanar graphs
for the generalization of trees, which is the class of graphs that can be embedded in
the plane in such a way that all of their vertices lie on the outer boundary, i.e., can be
reached from the outside without crossing any edges. We develop a levelwise search
algorithm (Mannila and Toivonen 1997) for listing frequent connected outerplanar
graph patterns with respect to a constrained subgraph isomorphism discussed below.
We show that if the transaction graphs are well-behaved, i.e., their number of cycles is
bounded by some polynomial of their size, then this algorithm is guaranteed to work
in incremental polynomial time. That is, the maximum delay between any two patterns
consecutively outputted by the algorithm is bounded by a polynomial of the combined
size of the input and the output computed so far.
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In fact, for our levelwise search algorithm, the polynomial does not depend on the
size of the output computed so far, but only on the size of frequent patterns found on
the immediately preceding level of our search, and not on the number of patterns at
levels before that. Interestingly, simply by changing the position of output statements
in our algorithm, keeping its computation and total run time exactly the same, we can
show that our algorithm actually can solve the problem with polynomial delay (in the
parameters of the input problem) as well. However, when using the modified output
sequencing, outputs are not shown to the user as soon as they have been computed,
but are spread out to ensure polynomial delay between each of them. Therefore, we
believe that in practice, most users would prefer to see computed outputs as soon
as possible, and then rather wait a somewhat longer time whenever the next level of
search is computed, resulting in incremental polynomial time between outputs. Either
way, the total run time and storage requirements of the algorithms remain the same.

We also note that our listing algorithm is based on a canonical form of arbitrary
outerplanar graphs which may be of some independent interest.

1.2 BBP subgraph isomorphism

To map a pattern to graphs in the database, we define a special embedding operator,
the block and bridge preserving (BBP) subgraph isomorphism, which is motivated by
complexity and application considerations. We show that, in contrast to ordinary sub-
graph isomorphism, it is decidable in polynomial time for arbitrary outerplanar graphs.
Furthermore, the number of frequent patterns with respect to BBP subgraph isomor-
phism can be exponentially smaller than that with respect to ordinary subgraph isomor-
phism; a second advantageous property. Recent empirical studies in virtual screening
using frequent patterns as predictive features (Schietgat et al. 2008, 2009) clearly
indicate that features generated with respect to BBP subgraph isomorphism compare
favorably to features generated with respect to ordinary subgraph isomorphism.

We note that for trees, which form a special class of outerplanar graphs, BBP
subgraph isomorphism is equivalent to subtree isomorphism. Thus, BBP subgraph
isomorphism generalizes subtree isomorphism to graphs, but is at the same time
more specific than subgraph isomorphism. Since subgraph isomorphism may be a
non-adequate matching operator in some applications (e.g., when pattern matching
is required to preserve certain types of fragments in molecules), by considering BBP
subgraph isomorphism we take a first step towards studying the frequent graph mining
problem with respect to non-standard matching operators as well.

1.3 Applications

Our positive result on efficient pattern mining is not only of theoretical, but also of
practical interest. Indeed, well-behaved outerplanar graphs appear in diverse practi-
cal applications, e.g., in telecommunication, electrical circuits, computational drug
design, and bioinformatics. In telecommunication, for example, simple feeder net-
works can be represented by 3-cactus graphs (Koontz 1980) which form a further
restricted class of outerplanar graphs; a k-cactus graph is an outerplanar graph with
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blocks having at most k vertices and no diagonals. Thus, the number of simple cycles
in a cactus graph is always linearly bounded by its size implying that cactus graphs
are always well-behaved. In the theory of electrical circuits, well-behaved outerplanar
graphs are used to characterize certain desirable properties of circuits; a circuit has
a unique DC (direct current) solution if and only if it has a cactus graph representa-
tion (Nishi and Chua 1986). Next, regarding computational drug design, we observed
in various datasets consisting of pharmacological compounds that most of the mole-
cules have well-behaved outerplanar graphs. For example, in one of the popular graph
mining data sets, the NCI data set,! 94.3% of all elements are well-behaved outerplanar
graphs; with only 8.8% acyclic outerplanar graphs (i.e., trees). Finally, it is well-known
that the contact structure of DNA and RNA molecules, called secondary structures,
are always outerplanar graphs (see, e.g., Leydold and Stadler 1998). Our experiments
conducted on mRNA secondary structures indicate that they are also well-behaved.

1.4 Outline

The rest of the paper is organized as follows. In Sect. 2, we first introduce the necessary
definitions as the basis for our paper. In Sect. 3, we define the notion of subgraph iso-
morphism used in this paper, arriving at a definition of our frequent pattern mining
problem. Section 4 is devoted to related work. Section 5 is the main part of the paper,
and describes in detail our algorithm for mining outerplanar graphs. Beside complexity
results, in Sect. 6 we also present empirical results which show that the favorable theo-
retical properties of the algorithm and pattern class also translate into efficient practical
performance. We report experimental results on the standard benchmark data set from
NCT and also on the mRNA secondary structure dataset used in Horvéth et al. (2001).
Section 7 concludes and discusses some open problems.

2 Preliminaries

In this section we recall the most important definitions and notions related to graphs
(see, e.g., Diestel 2005; Harary 1971 for more details).

2.1 Graphs

An undirected graph is a pair (V, E), where V # (J is a finite set of vertices and
E C {e €V : |e] = 2}is a set of edges. If, in addition, parallel edges (i.e.,
multiple edges connecting the same pair of vertices) and loops (i.e., edges joining
a vertex to itself) are also allowed, we speak of undirected multigraphs. A sequence
{vo, v1}, {v1, v2}, ..., {vk, vo} of edges of a graph forms a simple cycle if the v;’s are
pairwise different. A labeled undirected graph is atriple (V, E, 1), where (V, E) is an
undirected graphand A : VUE — N is a labeling function.” Unless otherwise stated,

1 http://cactus.nci.nih.gov/.
2 We denote by N the set {1, 2, 3, ...} and Ng denotes N U {0}.
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in this paper by graphs we always mean labeled undirected graphs and denote the set
of vertices, the set of edges, and the labeling function of a graph G by Vi, Eg, and Ag,
respectively. Let G and G’ be graphs. G’ is a subgraph of G, if Vgr C Vg, E¢ € Eg,
and Ag/(x) = Ag(x) forevery x € V' U Egr. For avertex v € Vg, N (v) denotes the
neighbors of v (i.e., the set of vertices of G connected by an edge with v), and N[v]
is the set N (v) U {v}.

2.2 Trees

Throughout this paper, unless otherwise stated, by trees we mean labeled free trees, i.e.,
unrooted and unordered labeled trees. For a tree T and vertices r, v € Vp, T" denotes
the rooted tree obtained from T by choosing r to be its root, C7r (v) denotes the set of
children of vin 77, and f; (v) denotes the parent of vin 7" if v # r; otherwise f,(v) is
undefined. We denote by 7] , the largest subtree of 7" rooted at v, and 7,7 | denotes the
tree obtained from Tfr( .0 by removing T for every v’ € Cpr (f; (v))\{v} Clearly,
T, is defined if and only if f;(v) is deﬁned

Example 1 For an example of the above notions, consider the unlabeled free tree T
given in Fig. 1. By choosing v; to be the root, we obtain the rooted tree 7V!. For T
we have that Crv (v3) = {v4, v5} and f,, (v3) = v;. The (rooted) subtrees T 5.0 and
TUI;"] of T"! corresponding to the vertex vs are also given in the figure. O

2.3 Blocks and bridges

A graph G is connected if there is a path between any pair of its vertices; it is
biconnected if for any two vertices u and v of G, there is a simple cycle contain-
ing u and v. A block (or biconnected component) of a graph is a maximal subgraph
that is biconnected. Edges not belonging to blocks are called bridges. The definitions
imply that the blocks of a graph are pairwise edge disjoint and that the set of bridges
forms a forest. For the set of blocks and the set of trees of the forest formed by the
bridges of a graph G it holds that their cardinalities are bounded by | V| and they can
be listed in time O (|Vg| + |Eg|) (Tarjan 1972).

o0——o
Vg o U1

o—
vy U3 vz A3 V3

Vg vs V4 U5 A Vs
° Ve V7 [ U7 Ve U7

V7 6
V1 Ch V1
T T :,’175,0 TU5,1

Fig. 1 A free tree T and the subtrees TUU;_O and TUUS1 | of the rooted tree T'1
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2.4 Isomorphism and subgraph isomorphism

Let G| and G be graphs. G and G, are isomorphic, denoted G| >~ G», if there is a
bijection ¢ : Vg, — Vg, such that

(1) {u,v} € Eg, if and only if {¢(u), ¢(v)} € Eg,,
(i) Ag,(u) = Ag,(¢(u)), and
(iii) Ag,({u,v}) = Ag,({e), ¢(v)}) holds for every {u, v} € Eg,.

In this paper, two graphs are considered to be the same if they are isomorphic. G is
subgraph isomorphic to G, if G is isomorphic to a subgraph of G. Deciding whether
a graph is subgraph isomorphic to another graph is NP-complete, as it generalizes e.g.
the Hamiltonian path problem.

Analogously to list homomorphism introduced in Feder and Hell (1998), we define
the following constrained subgraph isomorphism: Let G, H be graphs and L,, C Vg
for every u € Vy. A list subgraph isomorphism from H to G satisfying {(u, L) :
u € Vy} is a subgraph isomorphism ¢ from H to G such that ¢(u) € L, for every
u € Vy. We denote by

—— G
{(u,L,):ueVy}

that there is a list subgraph isomorphism ¢ from H to G satisfying ¢(u) € L, for
every u € Vy.If L, = Vi for some particular vertex u, we will sometimes remove
the pair (u, L,) from the set below the arrow in the above notation.

Using the above notion, the list subgraph isomorphism problem can be defined
as follows: Given graphs G and H, and sets L, € Vg for every u € Vp, decide

whether H m G holds. Notice that the list subgraph isomorphism prob-
u,L,)ueVy

lem is a generalization of the ordinary subgraph isomorphism where L, = V for
every u € Vy.

2.5 Planar graphs

Informally, a graph is planar if it can be drawn in the plane in such a way that no two
edges intersect except at a vertex in common. In Fig. 2, we give two planar molecular
graphs. To give a topologically rigorous definition of planar graphs, we need some
auxiliary notions. A simple curve is the image of an injective continuous function
y [0, 1] — R?;its endpoints are y (0) and y (1). Notice that by definition, simple
curves are non self-intersecting. Let G be a graph. An embedding of G in the plane is
a function s mapping each vertex of G to a distinct point of the plane and each edge
{u, v} of G to a simple curve of the plane connecting s(u«) and s(v). If, in addition, it
holds that any two distinct curves representing edges do not intersect except possibly
at their endpoints then s is a planar embedding of G. A graph is planar if and only if
it has a planar embedding.

Let G be a planar graph and s be some planar embedding of G. Removing from the
plane all points and curves corresponding to the vertices and edges of G, respectively,
we obtain a set of connected pieces of the plane, called faces. Since the number of
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(a) Riboflavin (Vitamin Bo) (b) Lysergic Acid Diethylamide (LSD)

Fig. 2 An outerplanar (a) and a non-outerplanar (b) molecular graph

vertices of G is finite, exactly one of the faces, called the outer face, is unbounded.
For G and s, one can construct an undirected multigraph G*, called the dual graph
of G, as follows: G* has a distinct vertex for each face, and for every edge e of G
we connect the two vertices representing the faces having the boundary simple curve
s(e) in common. The weak dual graph of G is the multigraph obtained from G* by
removing the vertex representing the outer face and each edge containing this vertex.

2.6 Outerplanar graphs

An outerplanar graph is a planar graph which can be embedded in the plane in such a
way that all of its vertices lie on the boundary of the outer face.> The molecular graph
on the left-hand side of Fig. 2 is outerplanar; the graph on the right-hand side is not
outerplanar.

Throughout this work we consider connected outerplanar graphs and denote the
set of connected outerplanar graphs by O. For technical reasons we assume without
loss of generality that each graph in O is labeled by the elements of N (i.e., 0 is not
used as a label). Clearly, trees are outerplanar and hence, a graph is outerplanar if and
only if each of its blocks is outerplanar (Harary 1971). Furthermore, as the blocks of
a graph can be computed in linear time (Tarjan 1972) and outerplanarity of a block
can be decided also in linear time (Lingas 1989; Mitchell 1979),* one can decide in
linear time whether a graph is outerplanar.

3 The class of outerplanar graphs was introduced and characterized in terms of minors in Chartrand and
Harary (1967); a graph is outerplanar if and only if it contains neither K4 nor K5 3 as a minor, where K,
denotes the complete graph with n vertices and K| n, denotes the complete bipartite graph with ny vertices
on one side and with np vertices on the other one. We also note that outerplanar graphs have treewidth 2 (see,
e.g., Bodlaender 1998) implying that several NP-hard problems on general graphs can be solved efficiently
for outerplanar graphs (e.g., the Hamiltonian cycle problem).

4 We note that both outerplanarity testing algorithms in Lingas (1989) and Mitchell (1979) must be
extended by an additional step checking condition (iii) of Theorem 2 in Mitchell (1979), as otherwise a
class of non-outerplanar graphs will be misclassified by both algorithms.

@ Springer



Frequent subgraph mining in outerplanar graphs 479

A biconnected outerplanar graph G with n vertices contains at most 2n — 3 edges
and has a unique Hamiltonian cycle which bounds the outer face of a planar embed-
ding of G (Harary 1971). This unique Hamiltonian cycle can be computed efficiently
(see, e.g., Lingas 1989). Thus, G can be considered as an n-polygon with at most
n — 3 non-crossing diagonals. In the proposition below we give an upper bound on
the number of simple cycles of a biconnected outerplanar graph.

Proposition 2 Let G be a biconnected outerplanar graph with d diagonals. Then G
has at most 2¢%1 cycles.

Proof Since G is a biconnected outerplanar graph with d diagonals, the definition of
weak dual graphs implies that G* is a tree with d + 1 vertices. It also holds that there
is a bijection between the set of biconnected subgraphs of G and the set of subtrees of
G*. Hence, the number of biconnected subgraphs of G is at most 2¢+!. The statement
then follows from the fact that for every simple cycle C of G there is a biconnected
subgraph G’ of G such that the Hamiltonian cycle of G’ is C. O

Given outerplanar graphs G and H, deciding whether H is subgraph isomorphic
to G is an NP-complete problem. This follows from the fact that outerplanar graphs
generalize forests and deciding whether a forest is subgraph isomorphic to a tree is
an NP-complete problem (Garey and Johnson 1979). The following stronger negative
result is shown in Syslo (1982).

Theorem 3 Deciding whether a connected outerplanar graph H is subgraph isomor-
phic to a biconnected outerplanar graph G is NP-complete.

If, however, H is also biconnected, the following positive result holds (Lingas
1989).5

Theorem 4 The problem whether a biconnected outerplanar graph H is subgraph
isomorphic to a biconnected outerplanar graph G can be decided in time

0 (Ival-1val?).

Finally we cite another positive result from Matula (1978) on subgraph isomor-
phism for the special case of trees.

Theorem 5 The problem whether a tree H is subgraph isomorphic to a tree G can
be decided in time

0 (Ival™ - 1vsl).

The subtree isomorphism problem can be solved in fact in time

0 (V! 10g Vi) - Vo)

5 Although this positive result has been shown for unlabeled graphs, the algorithm in Lingas (1989) can be
generalized to labeled graphs without changing its complexity.
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(see Shamir and Tsur 1999). For the sake of simplicity, in Sect. 5.4 we will general-
ize the algorithm in Matula (1978) to outerplanar graphs. We note that the practical
runtime of our algorithm can also be improved using the idea for trees in Shamir
and Tsur (1999). However, this will not improve the worst case complexity of our
algorithm, as it is dominated by the complexity of deciding subgraph isomorphism
between biconnected outerplanar graphs.

3 Problem setting

In this section we define the frequent subgraph mining problem for outerplanar graphs
with respect to a constrained subgraph isomorphism that preserves the pattern graph’s
bridge and block structure. We start the problem description by introducing this embed-
ding operator between outerplanar graphs.

3.1 BBP subgraph isomorphism

Let G, H € O. A bridge and block preserving (BBP) subgraph isomorphism from H
to G, denoted H <ppp G, is a subgraph isomorphism from H to G mapping

(i) the set of bridges of H to the set of bridges of G and
(i) different blocks of H to different blocks of G.

Example 6 Consider the outerplanar graphs given in Fig. 3. The vertices of the graphs
are labeled by the elements of {1, 2, ..., 5}, and each edge by the same integer, say
1, not shown in the figure. For every i = 1, 2, 3, there is a unique ordinary subgraph
isomorphism from H; to G. It is a BBP subgraph isomorphism only for H;; for Hp, it
maps the bridge of H> to an edge belonging to a block of G, and for H3, the two blocks
of H3 to the same block of G. Since BBP subgraph isomorphism is a constrained sub-
graph isomorphism, there is no BBP subgraph isomorphism from H, and H3 to G.

O

Notice that for trees, which are special outerplanar graphs (i.e., block-free), BBP
subgraph isomorphism is equivalent to ordinary subtree isomorphism. Thus, BBP sub-
graph isomorphism can be considered as a generalization of subtree isomorphism to
outerplanar graphs which is more specific than ordinary subgraph isomorphism.

Regarding the motivation of using BBP subgraph isomorphism as embedding oper-
ator, we first note that by Theorem 3, the ordinary subgraph isomorphism problem

5 5 5 4
1 2 1 1 2 1 2 1 2 1

G H, Hy Hj
Fig. 3 BBP subgraph isomorphism: Hy <ppp G, H2ApppG, H3XpppG
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Fig.4 A graph G with 2n + 1 vertices having more than 2" connected graphs that are subgraph isomorphic
to G, but only n connected graphs that are BBP subgraph isomorphic to G if all slanted edges are labeled
by the same symbol, say 1, and all horizontal edges by another symbol, say 2 (not shown in the figure)

between outerplanar graphs is NP-complete. It follows from the reduction used to
show this negative result in Syslo (1982) that subgraph isomorphism remains NP-com-
plete even for connected well-behaved outerplanar graphs. In contrast, as we show in
Sect. 5.4, BBP subgraph isomorphism between outerplanar graphs can be decided in
polynomial time if the pattern graphs are connected. Beside this complexity reason,
the use of BBP subgraph isomorphism may result in an exponentially smaller set of
frequent patterns. As an example of such a case, consider the database consisting of the
single well-behaved outerplanar graph G with 2n 4 1 vertices given in Fig. 4 and let
the frequency threshold be 1. If all slanted edges of G are labeled by the same symbol,
say 1, and all horizontal edges by another symbol, say 2, then there are more than
2" frequent connected graphs that are subgraph isomorphic to G, but only n frequent
connected graphs that are BBP subgraph isomorphic to G. Recent empirical studies in
virtual screening (Schietgat et al. 2008, 2009) show that instead of predictive features
based on frequent patterns with respect to ordinary subgraph isomorphism one can
also use frequent patterns with respect to BBP subgraph isomorphism without drop in
the predictive performance. These empirical studies also indicate that powerful pre-
dictors might be obtained by other non-standard embedding operators, motivating the
theoretical and empirical study of such operators.

3.2 The FOSM problem

Using the above notions, we define the frequent outerplanar subgraph mining problem
(FOSM) as follows: Given

(1) afinite set D C O of transaction graphs and
(i) an integer threshold ¢ > 0,

list the set of all connected outerplanar graphs in O that match at least ¢ graphs in D
with respect to BBP subgraph isomorphism, i.e., the set

FD,t)={HeO:|{GeD:H<ggp G| >1}. (1)

Notice that by definition, F (D, t) does not contain isomorphic graphs. Furthermore, it
is closed downwards with respect to BBP subgraph isomorphism, i.e., G € F(D, t)
whenever G> € F(D,t) and G| <ppp G2. Given D and ¢, the graphs belonging to
F (D, t) are called t-frequent.

The parameters of the FOSM problem are the cardinality N of the transaction
dataset (i.e., N = |D|) and the size M of the largest graph in D (i.e., M = max{| V]| :
G € D}). Note that the cardinality of F (D, t) can be exponential in the above param-
eters of D. Clearly, in such cases it is impossible to list (D, ¢) in time polynomial

@ Springer



482 T. Horvath et al.

in the parameters of D. To overcome this problem, the following classes are usually
considered in the literature (see, e.g., Johnson et al. 1988): Let S be a set of cardinality
N. Then its elements, say s1, ..., Sy, are listed with

polynomial delay if the time until printing s, the time between printing s; and s; 41
foreveryi = 1,..., N — 1, and the termination time after printing sy is bounded
by a polynomial of the size of the input,

incremental polynomial time if the time between printing s; and s; 41 for every
i =1,...,N — 1 (resp. the termination time after printing sy) is bounded by a
polynomial of the combined sizes of the input and {s1, ..., s;} (resp. {s1, ..., Sn}),
output polynomial time (or polynomial total time) if S is printed in the combined
sizes of the input and the entire set S.

Clearly, polynomial delay implies incremental polynomial time, which, in turn, implies
output polynomial time. We also note that, in contrast to incremental polynomial time,
an output polynomial time algorithm may have in worst-case a delay time exponential
in the size of the input before printing the ith element for any i > 1.

Although several algorithms mining frequent connected subgraphs from arbitrary
graphs with respect to subgraph isomorphism have demonstrated their performance
empirically (see, also, Sect. 4 below), we note that, unless P = NP, this general prob-
lem cannot be solved in output polynomial time (Horvéath et al. 2007; i.e., in the most
liberal class in the above hierarchy). On the other hand, the frequent graph mining
problem is solvable in incremental polynomial time when the graphs in the dataset are
restricted to forests and the patterns to trees. This follows e.g. from the results given
in Chi et al. (2005a). Since outerplanar graphs form a practically relevant graph class
that naturally generalizes trees, by considering the FOSM problem we take a first step
towards going beyond trees in frequent graph mining. Notice that the FOSM problem
generalizes also the frequent itemset mining problem which is solved in incremental
polynomial time by the Apriori algorithm (Agrawal et al. 1996).

The main contribution of this work is a levelwise algorithm solving the FOSM
problem. The algorithm generates frequent patterns in incremental polynomial time
if the transaction graphs are well-behaved, that is, their number of simple cycles is
bounded by a polynomial of their size. As an example, the molecular graph of Ribo-
flavin (see Fig. 2) is a well-behaved outerplanar graph because it contains only 6
simple cycles. Our positive result on well-behaved outerplanar graphs is of both the-
oretical and practical importance. From a theoretical viewpoint, outerplanar graphs
form the first level beyond trees in the hierarchy defined in terms of minors.® Thus, to
generalize the positive complexity result on mining frequent trees, it is natural to con-
sider outerplanar graphs. From a practical viewpoint, as already discussed in Sect. 1,
well-behaved outerplanar graphs form a practically relevant graph class because they
have applications in various fields including telecommunication, electrical circuits,
computational drug design, and bioinformatics.

6 Trees, outerplanar graphs, and planar graphs form a natural hierarchy with respect to minors (Hedetniemi
etal. 1971): a graph G is a tree if neither K3 nor K3 5 is a minor of G, it is outerplanar if neither K4 nor
K> 3 is a minor of G, and it is planar if neither K5 nor K3 3 is a minor of G.
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4 Related work

In the field of frequent pattern mining from graph structured data, two main settings
can be distinguished: the single network and the transactional settings. In the single
network setting (see, e.g., Calders et al. 2008; He and Singh 2007; Tong et al. 2007
for some recent results) the input consists of a single graph, which is usually large
and does not have some special graph structure that could be exploited by the mining
algorithms (e.g., the web graph or metabolic pathways).

The frequent pattern mining problem considered in this work belongs to the trans-
actional setting where the input consists of a set of, usually small, disjoint graphs.
There is a huge literature on this problem setting; an exhaustive overview of all related
results on this problem goes beyond the scope of this paper. Since most of the related
approaches allow arbitrary transaction graphs and use ordinary subgraph isomorphism
as embedding operator, they deal with a computationally intractable task (Horvéath et al.
2007), and resort therefore to various heuristics. Below we briefly overview three types
of heuristics appearing in the algorithms.

4.1 Candidate generation heuristics

Several papers on mining frequent subgraphs devote a lot of attention to heuristics
speeding up the candidate generation phase (e.g., Inokuchi et al. 2003 describing the
AGM system). The particular challenge of these approaches is to avoid or at least
to reduce the expensive isomorphism test needed to generate non-redundant patterns.
The system FSG (Kuramochi and Karypis 2001) for example employs a canonical
form for this purpose, but also includes further optimizations such as sparse graph
representation and iterative single edge extension of the patterns. However, all the
approaches relying on canonical forms for arbitrary graphs fail to guarantee poly-
nomial delay enumeration as long as the complexity of graph isomorphism remains
an open problem; an efficiently computable canonical form would imply the graph
isomorphism problem to belong to P. For restricted graph classes, polynomial delay
generation of candidate patterns is possible; for monotone graph classes e.g. such a
polynomial delay algorithm based on automorphism group analysis has recently been
shown in Ramon and Nijssen (2009). The system gSpan (Yan and Han 2002) avoids
isomorphism tests by using a depth-first code for graphs and by constructing only
pairwise non-isomorphic candidate patterns. Gaston (Nijssen and Kok 2004), one of
the fastest frequent subgraph mining algorithms (see, also, Sect. 6), employs a similar
strategy, but searches first path and tree patterns.

4.2 Support counting heuristics

Besides candidate generation, several heuristics have been developed for counting the
support of candidate patterns. A common approach to this problem (see, e.g., again
Gaston in Nijssen and Kok 2004) is to store information about embeddings of the
frequent patterns that were found in earlier passes over the database. On the one hand,
this strategy has the clear advantage that finding embeddings of larger patterns can
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be speeded up in this way. On the other hand, however, it has the drawback that it
takes a significant amount of memory and does not therefore meet scalability require-
ments. We note that our FOG system, the implementation of our algorithm described
in Sect. 5, has a similar feature; the user can toggle whether or not to remember the
embeddings between passes over the database. The optimization speeded up FOG with
a factor up to five on small datasets, but neither FOG nor Gaston were able to store all
such information for a transaction dataset consisting of more than 200,000 graphs.

4.3 Restricted pattern and/or transaction graph classes

Another approach applied by several systems is to control the complexity by consider-
ing restricted pattern languages and/or specific applications. Examples of this approach
include MolFea (Kramer et al. 2001), which finds frequent linear fragments in dat-
abases of molecules, the recent algorithm in Maunz et al. (2009), which is restricted
to mining tree-shaped patterns, and the system described in Borgelt and Berthold
(2002), which also considers molecules and gains the speed-up by embedding frag-
ments in parallel and by applying an incomplete pruning strategy. Our algorithm is not
restricted to applications related to virtual screening because well-behaved outerplanar
graph appear in other real-world applications as well (see Sect. 1 for some examples).
Furthermore, though the pattern language in the problem setting we consider is not
restricted to linear or tree-shaped patterns, the output is guaranteed to be complete
with respect to BBP subgraph isomorphism.

5 The mining algorithm

In this section we present an Apriori-like (Agrawal et al. 1996) algorithm that solves the
FOSM problem in incremental polynomial time for well-behaved outerplanar graphs.
In Sect. 6 we report empirical results demonstrating the practical applicability of our
algorithm on large graph datasets. In Sect. 7 we show that the problem can in fact be
solved with polynomial delay.

The main steps of the algorithm are sketched in Algorithm 1. It takes as input a set
D C O of outerplanar graphs and an integer frequency threshold ¢ > 0, and computes
iteratively the set of ¢z-frequent k-patterns from the set of z-frequent (k — 1)-patterns,
where a k-pattern is a graph G € O such that the sum of the number of blocks of
G and the number of bridges of G is k. (Isolated vertices are regarded as blocks.) In
step 1 of the algorithm, we first compute the set of 7-frequent 1-patterns, that is, the
set of ¢-frequent graphs consisting of either (1) a single vertex or (2) a single block
or (3) a single edge. The first (resp. third) set, denoted F,, (resp. F.) in step 1, can be
computed in linear time. The second set, denoted F},, can be computed in incremen-
tal polynomial time if the graphs in D are in addition all well-behaved; an efficient
Apriori-based algorithm for this problem is presented in Sect. 5.2. We note that this
is the only step in the algorithm making use of well-behavedness; the complexity of
all other steps is independent of this property.

In step 2 of the algorithm, we compute the set of 7-frequent 2-patterns, i.e., the set
of graphs in O consisting of either (1) a path of length 2 or (2) two blocks having a

@ Springer



Frequent subgraph mining in outerplanar graphs 485

Algorithm 1 FREQUENTOUTERPLANARGRAPHS

Input: set D of outerplanar graphs and integer r > 0
Output: F (D, 1) defined in Eq. (1)

1: L1 = FyUFp U Fe, where

Fy={H € O:|Vy|=1and H is t-frequent}
Fp ={H € O : H is biconnected and 7-frequent}
Fe=1{H € O:|Eg|=1and H is t-frequent}

2: Lo = Fee U Fpp U Fpe, Where

Fee = {H € O : H is a t-frequent path of length 2}
Fpp ={H € G1 X G2 : G1, Gy € Fp and H is t-frequent}
Fpe ={H € G| X G : Gy € Fp and Gy € F, and H is t-frequent}

s print £ U Ly

k=2

: while £ # ¢ do

k=k+1

L} = COMPUTEFREQUENTPATTERNS(Lf 1)
: endwhile

common vertex or (3) a block and a bridge edge having a common vertex. We denote
the corresponding three sets in step 2 by Fee, Fpp, and Fp,, respectively. In the defi-
nitions of Fp;, and Fp., G1 X G2 denotes the set of graphs that can be obtained from
G1and G, by contracting7 a vertex from G| with a vertex from G, that have the same
label. Clearly, G| x G, € Oforevery G1, G2 € O.The set F,, of t-frequent paths of
length 2 can be computed in polynomial time. Since the cardinalities of both F},;, and
Fpe are polynomial in the parameters of D, and BBP subgraph isomorphism between
outerplanar graphs can be decided in polynomial time by the result of Sect. 5.4 below,
it follows that both F;, and F,, and hence, the set £, of t-frequent 2-patterns can be
computed in time polynomial in the parameters of D.

In loop 5-8, we compute the set of #-frequent k-patterns for every k > 3 in a way
similar to the Apriori algorithm (Agrawal et al. 1996). In particular, we generate the
set of frequent k-patterns from that of frequent (k — 1)-patterns (step 7). The corre-
sponding function COMPUTEFREQUENTPATTERNS is composed of (i) the generation
of candidate k-patterns from the set of #-frequent (k — 1)-patterns and (ii) the decision
of 7-frequency of the candidate patterns. We note that the set of frequent patterns will
be printed in the function called in step 7. In Sects. 5.3 and 5.4 below we describe
these steps in detail.

Putting together the results given in Theorems 14-16 stated in Sects. 5.2-5.4,
respectively, we can formulate the main result of this paper:

7' The contraction of the vertices 1 and v of a graph G is the graph obtained from G by introducing a new
vertex w, connecting w with every vertex in N(u) U N(v), and removing « and v, as well as the edges
adjacent to them.
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Theorem 7 Algorithm I is correct and solves the FOSM problem in incremental poly-
nomial time for well-behaved outerplanar graphs.

Before going into the technical details in Sects. 5.2-5.4, in the next section we first
describe a transformation and a canonical form for outerplanar graphs that will be
used in different steps of the mining algorithm.

5.1 Canonical form

One time consuming step of mining frequent outerplanar graphs is to test whether
a particular graph H € O belongs to some set S € O. To apply some advanced
data structure (e.g., hash tables, B-trees, etc.) that allows fast search in large sets of
outerplanar graphs, we define a total order on O. Similarly to many other frequent
graph mining algorithms, we solve this problem by assigning a list of integers, called
canonical form, to each element of O such that

(i) two graphs have the same canonical form if and only if they are isomorphic and
(i) forevery G € O, the canonical form of G can be computed in time polynomial
in |Vg]|.

Using some canonical form satisfying the above properties, a total order on O can
be defined by some total order (e.g. lexicographic) on the set of integer sequences
assigned to the elements of O. Furthermore, property (i) allows one to decide iso-
morphism between outerplanar graphs by comparing their canonical forms. Although
isomorphism can be decided efficiently even for planar graphs (Hopcroft and Wong
1974), the canonical form for outerplanar graphs described in this section may be of
some independent interest as well.

5.1.1 BB-trees

We first define a natural transformation on outerplanar graphs by means of contracting
the non-cut vertices® of the blocks. More precisely, for a graph G € O, let G denote
the graph derived from G by the following transformation: For every block B in G,

(i) introduce a new vertex vg and label® it by 0,
(i) remove each edge belonging to B, and
(iii) for every vertex v of B, connect v with vp by an edge labeled by 0, if v is
adjacent to a bridge or to another block of G; otherwise remove v.

For a graph G € O and v € Vg, let 7(v) denote the subgraph of G corresponding to
v, i.e., it denotes the block of G represented by v if A5 (v) = 0; other\ﬁ/ise it is the
subgraph of G consisting of the single vertex corresponding to v. Since G is a tree by
Proposition 9 below, we call it the block and bridge tree (BB-tree) of G.

8 A cut or articulation vertex of a graph G is a vertex whose removal increases the number of connected
components of G.

9 We recall that by definition, O is not used as a label in any of the graphs in the input database.
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Fig. 5 An outerplanar graph G v [1]
containing the blocks B‘; B, 5]
and B3, and its BB-tree G. 1 0
Vertex and edge labels are given v{1] 5 OUBI[ I
in brackets. Each edge of G BB\ /0]
(left-hand side) is labeled by 5 vs[2]
which is not denoted in the figure (5]
(3]
[0]
UB, [0]
[0]
V12 [4]
[0]
“v5(2] (:7) B5 0]
G G

Example 8 Consider the outerplanar graph G € O; given in Fig. 5. Each edge of G
is labeled by the same symbol 5 which is not denoted in the figure (left-hand side). G
contains three blocks: Bi, B;, and B3. To construct the BB-tree G of G, we introduce
the vertices vp,, vp,, and vp, for the blocks By, B2, and Bj, respectively, and label
them by 0. Since the vertex vz in t(vp,) = Bj belongs also to a bridge of G, we
connect it with vp, and label the new edge by 0. The other three vertices of By (i.e.,
v4, Vs, and vg) are removed, as they do not belong to any other block or bridge of G.
Applying the same transformation to B, and B3, we obtain the BB-tree of G given on
the right-hand side of the figure. O

We now state some basic properties of G that will be used many times in what
follows.

Proposition 9 Let G € O. Then

() Vgl = 1ifand only if |Vg| =1 or G is biconnected,
(ii) for every e € Eg, at most one vertex of e is labeled by 0, and
(iii) G is a free tree.

Proof The proof o£ (1) and (ii) follows directly from the construction of G. To see
(iii), suppose that G has a cycle C. Then C must contain a vertex v labeled by 0, as
otherwise C would be a cycle of G. But this implies that the biconnected subgraph
7(v) of G corresponding to v is not maximal contradicting the definition of G. O

5.1.2 The Canonical form

Using the above notions and notations, we define the canonical form of G by means
of G. By (iii) of Proposition 9, G is a free tree. We utilize this property and generalize
the depth-first canonical string representation for free trees to outerplanar graphs (see
Chi et al. 2005a for an overview on canonical string representations for trees). Given
some distinguished vertex € Vg, we assign recursively a list'% p, (v) of integers to

10" 1n the definition of canonical form, we apply the standard Prolog notation for lists. The concatenation
of two lists X and Y is denoted by X - Y.
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every vertex v of 5’, and define an encoding p,(G) of G with respect to r by the
list o, (r) associated with r. To define p, (v) for a vertex v € Vg, we distinguish two
cases:

(i) Suppose Ag(v) # 0,1.e., T(v) € Vi. Then we define p, (v) by

pr () = [lol - [l 1or (vir)] - - [l lor (vig)] - 111, ©)
where
— o is the label of v, B
— {wiy. ..., vi,} is the set of children of v in G,
— forevery g = 1,...,k,[;, is the label of the edge connecting v and v;, if

A@(v,-q) # 0; otherwise liq = —2,and
= |t lor(vi,)] = [l lor(vi,)] forevery 1 < p < g < k, where < denotes
the lexicographic order on the set of integer lists.
(ii) Suppose Ag(v) = 0. Then, by definition, T(v) is a block of G and hence, as G
is outerplanar, it has a unique Hamiltonian cycle H. Let £ denote the length of

H. Clearly, there are 2¢ sequences of vertices defining H. Lets = vy, ..., vg

be such a sequence. For s, we define the list p, s (v) of integers by

prs(W) =[=3,£1- Sy - Sg - 181~ Sp - [i1lpr (viy)] - .- - [ixl o (i) ] - T=11,
3

where

- Sy =g, ..., rc(w)],
- Sg=[c({vi,v2}), ..., Acg({ve—1, ve}), Ag({ve, v1}D],
— 4 is the number of diagonals in 7 (v),
— Sp is the unique list [iy, j1, 1, ..., is, js, 5] of integers satisfying
(1) iy <iyor(iy =irand j; < j,) foreveryl <g <r <§and
2) {viq, vjq} is a diagonal with label liq in G foreveryg =1,...,6,
- 1<ij<...<ip<¢{,and
— {wi,. ..., vi,} is the set of children of v in G’

Let S be the set of 2¢ sequences defining H, if v has no parent in G (e,v=r)
otherwise let S = {s1, 52}, where 51 and s, are the sequences defining H whose
first element is 7 ( ;- (v)). For the second case, notice that A5 ( f»(v)) # 0 by (ii)
of Proposition 9, i.e., T(f-(v)) is a vertex in G. Using the above definitions of
pr.s and S, we define p, (v) by

pr(v) = I:gg Pr,s (v). “4)

Given G and r € Vg, the lists of integers assigned to the vertices of G” can be
computed efficiently by traversing G in postorder.

Using the above definition of p,, the canonical form of an outerplanar graph can be
defined by the center-based canonical form of free trees (see, e.g., Chi et al. 2005a). A
center of a free tree is a vertex minimizing the maximum distance to any other vertex
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in the tree. Clearly, a tree has at most two centers. Consider first the case when G has
one center, say r. Then we define the canonical form of G by

p(G) = pr(G) = pr(r).

Otherwise, whel] G has two centers, say r1 and r, we consider the trees C~?1 and (~}2
obtained from G by removing the edge connecting r; and r, and define p(G) by

p(G) = min{p, (G1) - [=4. [, =4] - pr,(G2), pry, (G2) - [=4, 1, =4] - pr (G} . (5)

where / is the label of the edge connecting ry and r2, and G and G are the subgraphs
of G corresponding to G and G, respectively.

Example 10 Consider the outerplanar graph G and its BB-tree G given in Fig. 5. As
a first step, we have to compute the set C of centers of the free tree G given by

C = {v € Vg : max dist(«, v) < max dist(u, w) forevery w € Vz}
ueVg ueVg
= {v7}.

Thus, to compute the canonical form of G, we have to traverse the rooted tree (~?v7
in postorder. Applying the corresponding Eqs. from (2) and (4), we get the following
definitions for py, (v) for every v € Vg:

pv; (v1) = [1, =11,
pv; (v2) = [1]- [Slpy; (vD)] - [—1]
=[L51,-1,-1],
pv;(vp) =1[-3,41-12,2,2,2]-[5,5,5,5] - [1] - [1, 3, 5] - [—1],
pv; (v3) = [2] - [=2]pv; (vB)] - [Slpv; (v2)] - [—1]
=[2,-2,-3,4,2,2,2,2,5,5,5,5,1,1,3,5,—-1,5, 1,5, 1, -1, -1, —1],
pv;(vp;) = [—3,4]-[4,4,4,4]-[5,5,5,5] - [0] - [-1],
pv; (V12) = [4] - [=2]py; (vBy)] - [—1]
=[4,-2,-3,4,4,4,4,4,5,5,5,5,0, -1, —1],
o, (VB,) =[-3,6]-13,3,3,3,3,4]-15,5,5,5,5,5] - [1] - [2, 4, 5]
[61pv; (V12)] - [—1]
=[-3,6,3,3,3,3,3,4,5,5,5,5,5,5,1,2,4,5,6,4, =2,
—3,4,4,4,4,4,5,5,5,5,0, -1, -1, —1],
pu; (v7) = [3] - [=2]p; (vB,)] - [Slpw; (v3)] - [—1]
=[3,-2,-3,6,3,3,3,3,3,4,5,5,5,5,5,5,1,2,4,5,6,4, -2,
-3,4,4,4,4,4,5,5,5,5,0,—-1,-1,-1,5,2, =2,
-3,4,2,2,2,2,5,5,5,5,1,1,3,5,-1,5, 1,5, 1, -1, -1, =1, —1].

By definition, the canonical form p(G) of G is given by p,, (v7). O
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In Theorem 13 below we show that p is indeed a canonical form for outerplanar
graphs. To prove the theorem, we need some lemmas.

Lemma 11 For every G1, Gy € O it holds that G| >~ G, if and only if for every
r € Vg, thereisar) € Vs, such that pr (G1) = pr,(G2).

Proof The necessity is automatic because for every G € O and r € Vg, the BB-tree
G and the encoding p,(G) are unique. The sufficiency follows directly by induction

on the number of occurrences of —1 in p,, (G1). O
Lemma 12 Let G € O with |Vg| = n. Then p(G) can be computed in time
O (n?logn).

Proof Since |Eg| is bounded by 2n — 3 (Mitchell 1979) and the sets of blocks and
bridges of a graph can be listed with linear delay (Tarjan 1972), the set of blocks and
the set of bridges of G can be computed in time O (n). This implies that G can be
constructed in time O (n). The center (or centers) of G can also be determined in time
O (n). Thus, to prove the statement, it is sufficient to show that p, (v) can be computed
in time O (n*logn) for every v of G”.

For each vertex v of G”, the canonical strings computed for v’s children can be
sorted by O (ky logk,) string comparisons, where k, is the number of children of
v. Since the length of p,(v) is bounded by O (n), each string comparison can be
performed in O (n) time. Thus, the total time of computing p, (v) is bounded by

Z nkylogk, <nlogn Z ky = O(nzlogn) ,

ve Vér ve Vér

ask, <nand > k,= 0O (n). O

veVar
Combining Lemmas 11 and 12 above, we have the main result of this section:

Theorem 13 For every G € O, p(G) is an efficiently computable canonical form of
G.

5.2 Mining frequent biconnected graphs

In this section we present Algorithm 2 that computes the set F;, of t-frequent
biconnected graphs used in step 1 of Algorithm 1 and show that it runs in incremental
polynomial time for well-behaved outerplanar graphs.

In step 1 of Algorithm 2, we first compute the set Lo of z-frequent cycles as follows:
We list the cycles of G for every G € D and count their frequencies. From Read and
Tarjan (1975) and Tarjan (1972) it follows that the cycles of a graph can be listed
with linear delay. Since isomorphism between cycles can be decided efficiently, these
results together imply that £ can be computed in time polynomial in the parameters of
D if the graphs in D are all well-behaved. We note that well-behavedness is exploited
only in this step in the entire mining algorithm; the efficiency results of all other steps
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Algorithm 2 FREQUENTBICONNECTEDGRAPHS

Input: set D of outerplanar graphs and integer r > 0
Output: F, defined in step 1 of Algorithm 1

>

: let £ be the set of ¢-frequent cycles in D

k=0

: while £, # (¢ do

print £y
k=k+1
let Cy, be the set of biconnected outerplanar graphs H such that
H has exactly k diagonals and H © A € Ly _ for every diagonal A of H
Ly ={H € Cy : H is t-frequent}

: endwhile

hold (and are formulated) for arbitrary (i.e., not necessarily well-behaved) outerplanar
graphs. As a cycle may be compared to many other cycles, to decide isomorphism, we
use the canonical form described in Sect. 5.1.

In loop 3-8 of Algorithm 2, we compute the sets of ¢-frequent biconnected graphs

containing k diagonals for every k > 0 integer. In particular, in step 6 we compute the
set Cx of candidate biconnected outerplanar graphs H satisfying the following condi-
tions: H has exactly k diagonals and the removal of any diagonal from H, denoted by
© in step 6, results in a 7-frequent biconnected graph.

For k = 1in particular, C; can be computed as follows: For every cycle H € L and
for every t-frequent edge label /, we connect each pair of non-adjacent vertices of
H by an edge, label this new diagonal by /, and add the obtained graph H' to C; if
H' ¢ C,. To decide the membership in C;, here we use again the graphs’ canonical
forms.

Fork > 1, we compute C by the following algorithm: For every pair Hy, Hy € L_1
with the same Hamiltonian cycle, and for every pair d; and d» of diagonals of H;
and H», respectively, for which

Am;(di) < min{ig; (A) : j =1,2, A #d; is a diagonal of H;}

holds for i = 1,2, we consider the graphs H| and H}' obtained from H; and H,
by removing d; and d, respectively. If H{ ~ H, then for every isomorphism ¢
from H{ to Hj, we take the graph H obtained from H, by connecting the images
of the endpoints of d; by an edge labeled by the symbol assigned to d; in H;. If H
remains outerplanar, i.e., the new diagonal does not cross any other diagonal, then
for every diagonal A of H except the new one and d», we remove A from H and
check whether the graph obtained belongs to L _1. If this is the case for every A, we
add H to Ci if H & Ci. Notice that this step corresponds to the pruning technique
applied in the candidate generation step of the Apriori algorithm. We note that the
number of isomorphisms between H; and H, is at most 2 - |V, |. Furthermore, in
the selection of H;, H> and dy, d» above, H; and H», or even d; and d» can be
identical because automorphisms (i.e., isomorphisms from a graph to itself) must
also be considered.
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One can show that the method described above is complete, i.e., for every k > 0, Cx
contains the set of 7-frequent biconnected outerplanar graphs with exactly k diagonals.

Finally, in order to compute the set of z-frequent biconnected graphs from the
Cr’s (step 7), we have to decide the existence of BBP subgraph isomorphisms from
biconnected outerplanar graphs to outerplanar graphs. For this case, BBP subgraph
isomorphism is equivalent to subgraph isomorphism because the pattern graph consists
of a single block (and no bridge), and blocks are mapped to blocks by any subgraph
isomorphism. Since the blocks of a graph can be computed in linear time (Tarjan
1972), it is therefore sufficient to consider the efficiency of subgraph isomorphism
between biconnected outerplanar graphs. Theorem 17 in Sect. 5.4 below deals with a
more general case implying that this problem can be solved in cubic time. Putting the
above results together, we have the following theorem.

Theorem 14 Algorithm 2 is correct and computes the set of t-frequent biconnected
outerplanar graphs in incremental polynomial time if the input dataset D consists of
well-behaved outerplanar graphs.

Proof The proof of the correctness is similar to that of the Apriori algorithm and there-
fore we only show the statement’s second part concerning the complexity. In step 1,
we compute the set Lo of 7-frequent cycles by listing all simple cycles occurring in
the graphs in D and calculating their support counts. Since simple cycles of a graph
can be listed with delay linear in the number of edges (Tarjan 1972), the set of all
simple cycles can be computed in time O (N K M), where K is an upper bound on
the number of simple cycles of the transaction graphs. For a simple cycle C, we can
compute its canonical form in time O (M 2). Storing the canonical form of cycles in a
prefix tree, we need O (M) time either for inserting C or incrementing its frequency
counter. Thus, the total time to find and process a cycle is bounded by O (M 2). Since
the total number of cycles in D is at most O (NK), step 1 can be performed in time
o (N KM 2), which in turn is bounded by a polynomial of the size of D if it contains
only well-behaved outerplanar graphs.

Regarding the complexity of loop 3-8, we first note that |Cy| is bounded by
O (M|Lj—1]) for every k > 0 and that the conditions of step 6 for H can be decided
in time O (M?). Thus Ci can be computed in time O (M*|L¢_;]). As subgraph iso-
morphism between biconnected outerplanar graphs can be decided in cubic time by
Theorem 4, from C; we can compute Ly in time O (N M3 |Ck|) (step 7). Putting all
these together we get that for every k > 0, £; can be computed from L_; in time
0 (N M 4|£k—1 |) , 1.e., in incremental polynomial time. O

5.3 Candidate generation

In step 7 of Algorithm 1, we generate the set of frequent k-patterns. The pseudo-
code of this function is given in Algorithm 3. Using a generalization of the candidate
generation algorithm for free trees described in Chi et al. (2005b), the algorithm com-
putes the set of candidate k-patterns from the set of frequent (k — 1)-patterns. (Recall
that a k-pattern is a graph such that the sum of the number of its blocks and the
number of its bridges is k.) Applying the candidate generation principle of the Apriori
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Algorithm 3 COMPUTEFREQUENTPATTERNS

Input: set £;_ of frequent (k — 1)-patterns for some k > 2
Output: set £ of candidate k-patterns

1:Cr =Ly =9
2: forall G|, G, € Ly—1 s.t. G| and G, have the same core and G| < G, do

3: forall g € Leaf(G1) and g € Leaf(G») do

4:  ifG1 ©g1 =~ Gy S g then

5: forall g} € Leaf(G| © g1) do

6: if g, is attachable to gi consistently with G, then

7: let C be the graph obtained by attaching g5 in G| to gi consistently

with Go

8: if g1, g2 have the top two string encodings in C, C & Cy,and C© g € L
for every g € Leaf(C) then

9: add C to Cy

10: if C is t-frequent then

11: print C and add it to Ly

12: endfor

13:  endfor

14: endfor

15: return £y

algorithm (Agrawal et al. 1996), each candidate is obtained by joining two frequent
(k — 1)-patterns that have an isomorphic (k — 2)-pattern core.

In the outer loop 2—14 of the algorithm, we consider each possible pair G, G> of
frequent (k — 1)-patterns. For completeness, we have to allow G and G» to be the
same. In loop 3-13, we consider each pair g; and g» of leaf subgraphs of G and
G2, respectively. By a leaf subgraph of a k-pattern H for k > 2 we mean the graph
7 (v) for some leaf v of the BB-tree H , 1.e., a leaf subgraph is either a vertex of H not
belonging to a block and adjacent to exactly one other vertex or it is a block which
has exactly one common vertex with a bridge or with another block. If G| and G, are
the same graphs then, for completeness, we consider also the case that g; and g are
isomorphic leaf subgraphs. For an outerplanar graph G, Leaf(G) denotes the set of
nodes of G that have degree 1. From G| and G;, we remove g| and g», respectively,
denoted this operation by © in the algorithm, and check whether the obtained graphs
G'| and G/, are isomorphic (step 4). The removal of a biconnected component means
the deletion of each of its edges and vertices except the distinguished vertex which is
adjacent to a bridge or to another block.

If G| and G/, are isomorphic then we consider every leaf subgraph g} of G (loop 5—
12) and check whether g> can be attached to g; in G consistently with G, (step 6).
More precisely, let g5 be a block or a vertex not belonging to a block in G5 such that
g2 is hanging from g3, i.e., the only edge adjacent to g» is adjacent also to g5. We say
that g» can be attached to g} in G consistently with G, if g/ is isomorphic to g5.
Thus, if the condition in step 6 holds then we attach g to g} consistently with G2 and
denote the obtained graph by C (step 7).

Notice that C can be generated in many different ways, depending on the particular
choice of g1 and g». To reduce the amount of unnecessary computation, we consider
only those pairs which are among the top leaf subgraphs of C, i.e., which have the top
two string encodings with respect to a center of C. By definition, a vertex representing
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a leaf subgraph of C is always a leaf in C. If this condition holds then we add C to
the set Cx of candidates in step 9 if for every leaf subgraph g of C, the (k — 1)-pattern
obtained from C by removing g is frequent (see step 8). For every candidate pattern C
added to Cy, we check in step 10 whether or not it is frequent. If yes, we print and add it
to the set Ly of frequent k-patterns. We will discuss in the next section the algorithmic
issues of deciding frequency in step 10.

Theorem 15 The set Cy computed by Algorithm 3 is a superset of the set of t-frequent
k-patterns. Furthermore, |Cy| is polynomial in | Lyx—1| and Algorithm 3 computes Cy, in
time polynomial in the size of L1, not counting the complexity of frequency testing
in step 10.

Proof An element of L; is determined completely by a choice of Gi,G, €
Li-1,81,8] € Leaf(Gy) and g» € Leaf(G»). Clearly, this is polynomial in the
sizes of Lx—1 and M. It is straightforward to show that the time complexity is poly-
nomial in these parameters. O

5.4 BBP subgraph isomorphism

Algorithms 2 and 3 contain the steps of deciding whether a candidate pattern H € O
is t-frequent, i.e., whether it is BBP subgraph isomorphic to at least ¢ graphs in D.
While subgraph isomorphism between outerplanar graphs is NP-complete even for
very restricted cases (see Theorem 3), Theorem 16, the main result of this section,
shows that this constrained subgraph isomorphism can be decided efficiently between
outerplanar graphs if the pattern graph H is connected. This result holds for arbi-
trary outerplanar graphs, i.e., we do not assume well-behavedness. The connectivity is
necessary, as otherwise the problem would generalize the NP-complete subforest iso-
morphism problem (Garey and Johnson 1979). We note that the result of Theorem 16
generalizes the positive result on subtree isomorphism given in Theorem 5 and may
thus be of some interest in itself.

Theorem 16 For every G € O and connected graph H € O, H <ppp G can be
decided in polynomial time.

The proof of the above theorem is based on a combination of the ideas given in
Matula (1978) for unlabeled subtree isomorphism and Lingas (1989) for subgraph iso-
morphism between unlabeled biconnected outerplanar graphs. We first define some
further notations and assertions. We start with a theorem generalizing Theorem 4, the
positive result from Lingas (1989) on ordinary subgraph isomorphism between unla-
beled biconnected outerplanar graphs to list subgraph isomorphism between labeled
biconnected outerplanar graphs.

Theorem 17 Let G, H € O be biconnected outerplanar graphs and L, < Vg for
everyu € Vy. Then one can decide whether there exists a list subgraph isomorphism

é G
{(u,L,):ueVy}

in time O (|Vy| - |V |?).
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Proof sketch The proof is similar to that of Theorem 4 in Lingas (1989). It is based
on constructing first a directed graph D with a distinguished source and target vertex
s and ¢, respectively, and then determining whether there is a directed path from s to
t. The edges in D represent whether there is a subgraph isomorphism from a certain
subgraph of the pattern graph containing an edge {u;, u;41} to a certain subgraph of
the text graph containing an edge {v;, vi4+1} such that u; and u; | are mapped to v;
and v; 1, respectively (see Lingas 1989 for the details). This constraint can easily
be generalized to list subgraph isomorphism between labeled biconnected outerplanar
graphs without changing the asymptotic time complexity of the special case considered
in Theorem 4 in (Lingas 1989). O

We need some further notations. Let G € O and TGE be a subtree of G rooted

at v. Then G[TCE;] denotes the subgraph of G induced by |J Vzy. Fur-

VeV
thermore, for a graph H € O and subtree TI”? of H rooted at u, H [TI%{] CBBP

G[Té”] denotes that there is a BBP subgraph isomorphism from H [Tl“q] to G[TGE]

mapping Vz ) to V¢ (y). The proof of the following proposition is immediate from the
definitions.

Proposition 18 Let G, H € O andr € Vg. Then H <ppp G if and only if there are
u € Vg and v € Vg such that

H[H"] Sppr G[G,,]. (6)
Applying the above proposition, H <ppp G can be decided as follows: Select an
arbitrary vertex r € Vg and decide for every u € Vi and for every v € Vg, whether

(6) holds. Below we show that for given u# and v, (6) can be decided by determining
first for every w € N[u], whether

H[AYs | <perG[Gl5 | (M

uaau,w

holds, where § is the complement of the Kronecker delta function (i.e., S,,,w =0if
u = w; otherwise itis 1). For v € Vg and u € Vi, we define the set

S(v, u) = {w € N[u] : H[ﬁ;‘fgu‘w] Crpp G[ér _ ]}

U»su,w

Notice that by definition, H" = ITI;‘!O and hence, by Proposition 18 and Eq. (6) we
have that

H <ppp G <= Ju € Vg and Jv € Vg suchthatu € S(v, u).

Depending on the label of u, we distinguish two cases and characterize (7) accordingly
by one of the following two lemmas. We recall that N (v), N[v], and Crr (v) denote the
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set of neighbors of v, the set N (v) U{v}, and the set of children of v in T", respectively.
Furthermore, a vertex of a BBP tree of an outerplanar graph G is labeled by 0 if and
only if it represents a block of G. We first consider the case when u represents a block
of H.

Lemma19 Let G, H € O,r,v € Vg, u € Vg, w € N(ul, and suppose L gu) =0
(i.e., T(u) is a block in H). Then

Hl:ﬁ;’%uw] CBBP G[ér— :|

v, 8u,w
if and only if there is an injection ¢ : Cgw(u) — Cg, (v) such that
() H[HY | Spar GG | forallu’ e Cruw),

(i) 7(u) 7(v), where
{{t'),Ly):u'€N(u)}

L, — [ {tlp@)} ifu’ e Nw)\ {w}
T {t(fgr ()} otherwise (ie., u' = w # u).

Proof sketch Since A (1) = 0, (u) is biconnected. By (ii) of Proposition 9, for every
u’ € N(u) we have that 2 5(u’) # 0 and hence, t(#’) must be a vertex of the block
7(u). The proof can be shown by considering the cases u = w and u # w separately.

O

We now consider the case when u represents a vertex of H.

Lemma 20 Let the graphs G, H and the vertices r, v, u, and w be defined as in
Lemma 19, and suppose that L) # 0 (i.e., T(u) is a vertex in H). Then

H[H:jguw] gBBP G[G:)vgll,w]
if and only if there is an injection ¢ : Cgy (u) — Cg,(v) such that
@) Hl:ﬁ:’l] CgBBP G[é
(i) and if w # u then
- 1 #v(ie, fg(v) is defined),
- Aw) =2z (f5 ),

- Ag(u,w}) =Arg ({v, f(;r(v)}), and

- (w) m t(fzr ) if A g(w) =0 (i.e., T(w) is a block).

;(”,)’l]for all u’ € Cguw(u),

Proof sketch The proof can be shown by considering the following cases separately:
Du=w,2)u#wand Ag(w) =0,and 3) u # w and A 5(w) # 0. O

Proof (Proof of Theorem 16) Using the above notions and statements, we are now

ready to sketch a bottom-up algorithm deciding H <gpp G for some G, H € O in
polynomial time.
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We first note that it is sufficient to consider the case when G and H satisfy
I <|Vgl =< 1Vgl. ()

Indeed, if | V5| = 1 then, by (i) of Proposition 9, H consists of either a single vertex
or a block. Deciding BBP subgraph isomorphism is obvious for the first case; for the
second case the problem can be considered as a special instance of the list subgraph
isomorphism problem between biconnected outerplanar graphs and thus, Theorem 17
can be applied. Furthermore, if | V| > |Vg| then there is no BBP subgraph isomor-
phism from H to G.

Given G, H € O satistying (8), we select an arbitrary vertex r € Vg, traverse G
in postorder, and, for each visited vertex v € Vg,, compute the set S(v, u) for every
u € Vg in the following way:

Suppose v isaleafofé’. Then (8) implies thatr # vandthusv’ = fg, (v) is defined.
For this case we have that S(v, u) = N (u) if and only if (i) N(u) = {u’} for some
u' € H (i.e., u is also a leaf in H) and (ii) the vertices u, u’ and v, v’ satisfy the fol-
lowing condition: A5 (u) = Ag ), Az = Ag), Ag{u,u'}) = Ag{v, v'}),
andif A 7 (u) = 0 (resp. A 5 (u") = 0) then there is a list subgraph isomorphism from
7(u) to T(v) (resp. T(u') to T(v’)) mapping the vertex t(u’) to T(v') (resp. t(u) to
7(v)). Otherwise, i.e., when conditions (i) and (ii) do not hold we set S(v, u) = .

Suppose v is an internal vertex 0f(~3’. Then let N(u) and N (v) be {uy, ..., us} and
{vi,..., v}, respectively. If s > t + 1 or Az (u) # Ag(v) then S(v, u) =¥, asin
this case there is no w € N[u] satisfying (7).

Otherwise, i.e., when A5(u) = Ag(v) and s < t + 1, we distinguish two cases
depending on A5 (u). Consider first the case that Az (u) = 0, i.e., T(u) is bicon-
nected. Then, 7(v) is also biconnected, as Az (u) = Ag5(v), and hence, 7(z) is a
vertex forevery z € N (u)UN (v) by (ii) of Proposition 9. By Lemma 19 we have that

e u € S(v, u) if and only if there is a list subgraph isomorphism from t () to t(v)
mapping 7 (u;) to one of the elements of {r(vy) : 1 <k <t,u € S(vg, u;)} for
everyi =1,...,sand

e foreveryi =1,...,s,u; € S(v,u) if and only if r # v and there is a list sub-
graph isomorphism from 7 (x) to 7 (v) mapping t(u;) to r(fg, (v)) and 7 (u;)
into {r(vg) : 1 <k <t,ueS(y,uj)}forevery j,1 < j#i<s.

In both cases, the existence of the corresponding list subgraph isomorphism between
biconnected outerplanar graphs can be decided in polynomial time by Theorem 17.
For the second case, i.e., when A ;7 (u) # 0, we construct a bipartite graph By defined
as follows:

VB, = N(u) U N(v)
Ep, ={{x,y}:x e Nu),y e Nw),u € S(x, y)}.

Let B; denote the subgraph of By obtained by removing #; and the edges adjacent
to u;. Using these notations, by Lemma 20 we have that
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e u € S(v,u) if and only if By has a maximum matching of size s and
e foreveryi =1,...,s,u; € S(v, u)ifandonly if B; has a maximum matching of
sizes— 1,0 = fg (v)isdefined (i.e.,r # v), Agu;) = Ag(W"), Ag({u, u;}) =
rg({v,v'}), and if A 5 (u;) = O then there is a list subgraph isomorphism from
(u;) to r(fgr(v)) which maps the vertex t(«) to 7(v).1
Thus, S(v, u) can be computed in polynomial time for every u € V5 and v € Vg,
completing the proof of Theorem 16. O

6 Experimental evaluation

In Sect. 1 we listed some examples of real-world applications of well-behaved outer-
planar graphs to demonstrate that they form a practically relevant graph class. For the
telecommunication and electrical circuit applications mentioned in Sect. 1, the under-
lying outerplanar graphs are always cactus graphs (also known as Husimi trees). Since
cactus graphs have no diagonals, the number of their simple cycles is bounded by
the number of their vertices. Thus, cactus graphs are well-behaved. As cactus graphs
form a very restricted subclass of well-behaved outerplanar graphs, in our experiments
we consider the other two, much more challenging, applications discussed in Sect. 1
because they involve more complex well-behaved outerplanar graphs.

In particular, in Sect. 6.1 we first report experimental results with the subset of the
NCI dataset formed by the outerplanar graphs; the outerplanar graphs in this dataset
turn out to be well-behaved and dominate the dataset consisting of 250,251 chemical
compounds. One of the goals of these experiments is to compare the performance
of our algorithm with other state-of-the-art frequent pattern mining algorithms on a
relatively large graph dataset. In Sect. 6.2 we then consider another well-behaved out-
erplanar graph dataset consisting of 269 mRNA secondary structures. In contrast to the
NCI dataset, RNA secondary structures are usually larger and more complex graphs
than the molecular graphs of pharmacological compounds. Though this is a relatively
small dataset, our experiments clearly demonstrate the relative compactness of the
frequent pattern class defined by BBP subgraph isomorphism against that defined by
ordinary subgraph isomorphism.

For the purpose of these experimental studies, we implemented our algorithm in
the FOG (Frequent Outerplanar subGraphs) system.'?

6.1 The NCI dataset

Proposition 2 implies that outerplanar graphs having at most d diagonals per block,
where d > 0 is some constant, are always well-behaved. This class of outerplanar
graphs will be referred to as d-tenuous outerplanar graphs. To demonstrate the practical

1 We note that it is sufficient to compute a maximum bipartite matching M in B( because we can compute
the size of a maximum matching in By, ..., By from M in time O (st) (see Shamir and Tsur 1999 for the
details).

12 For the implementation of the FOG system and for the two datasets used in our experiments see http://
www.cs.kuleuven.be/~janr/fog/.
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applicability of our algorithm on a relatively large dataset, we used the NCI molecular
graph dataset, a popular graph database in the frequent pattern mining community,
that consists of 250,251 chemical compounds.

For our work, it was important to recognize that 236,180 (i.e., 94.3%) of these
compounds have an outerplanar molecular graph. In the experiments, we have removed
the non-outerplanar graphs from the dataset. We note that the resulting dataset is
still much larger than the other subsets of the NCI dataset usually considered for
empirical evaluations of frequent pattern mining algorithms; the largest such popular
subset is the NCI-HIV dataset consisting of only 42,689 compounds (see, e.g.,
Deshpande et al. 2005). Altogether, the outerplanar molecules contain 423,378 blocks,
with up to 11 diagonals per block. However, 236,083 (i.e., 99.99%) of the outerpla-
nar molecular graphs have only at most five diagonals per block. Thus, the dataset
obtained by removing the non-outerplanar molecules is 11-tenuous.

Our experimental results on the 236,180 outerplanar graphs are given in Table 1. It
shows the number of candidate and frequent k-patterns (columns #C and #FP, respec-
tively) discovered fork = 1, ..., 29, as well as the runtime (column T) in seconds for
the computation and evaluation of the candidates using frequency thresholds 10, 5,
and 2%. As expected, the number and the size of the discovered patterns is much larger
when the frequency threshold is lower. One of our observations is that the database
contains a wide variety of structures, as a low relative frequency threshold is needed to
mine a significant number of patterns. For example, though there are 15,426 pairwise
non-isomorphic cycles in the database, only a few of them are really frequent; the
only one above 10% is the benzene ring with a relative frequency of 66%. Another
observation is that the numbers of frequent patterns with growing k may have several
local maxima. As an example, for relative frequency 2%, after the number of frequent
k-patterns drops a bit when k gets larger than 7, this number again increases when k
exceeds 11. Furthermore, from k = 12, the number of frequent patterns gets close to
the number of candidate patterns. This is because this particular dataset contains large
subsets with molecules sharing large biconnected structures'? (such as the HIV active
substance dataset).

Regarding the runtime of our algorithm, we note that matching blocks is more
expensive than matching bridges. Since, however, the number of bridges is much
larger, roughly half of the time was used for each of the two types of matchings in
all our experiments. Even though the embeddings of (k — 1)-patterns are computed
(again) in level k, the time needed to complete one level does not necessarily increase
with k. We also note that the time needed for candidate generation is always smaller
than 1% of the total time (7"). The time needed for coverage testing per pattern depends
on how many structures these patterns share. If the number of patterns is large, the
time needed per pattern is usually lower.

13 Having several maxima when plotting the number of patterns against the size of the patterns is not
uncommon. It can even happen in a database containing only one transaction graph. Consider e.g. the graph
G with Vg = {v1, vz, v3, v4, vs}, Eg = {{v1, v2}, {v1, v3}, {v1, va}, {v1, vs}}, Ag (v1) = 1, Ag(v2) =
2, xg(v3) =2, Ag(v4) =3,Ag(v5) =3 and Ve € Eg : Ag(e) = 4. One can easily check that there are
three O-patterns, two 1-patterns, three 2-patterns, two 3-patterns and one 4-pattern.
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Table 1 Results of our algorithm on the outerplanar subset of the NCI dataset

Level (k) 10% 5% 2%

#C #FP T #C #FP T #C #FP T
1 86 7 107 144 11 169 582 25 380
2 74 16 446 216 24 570 1,332 61 1,118
3 139 41 1,133 234 74 1,393 510 170 2,123
4 133 77 1,232 266 154 2,038 642 356 4,079
5 139 91 1,071 319 222 2,268 909 644 5,603
6 107 72 754 332 252 1,847 1,212 918 6,105
7 61 41 472 295 195 1,168 1,266 990 4,964
8 37 25 354 182 137 741 1,086 893 3,384
9 20 13 205 137 116 602 956 803 2,282
10 8 5 130 131 119 594 828 700 1,635
11 0 0 0 131 117 565 697 604 1,360
12 0 0 0 115 107 536 707 665 1,483
13 0 0 0 78 64 412 1,027 1,022 2,017
14 0 0 0 27 21 250 1,702 1,700 2,858
15 0 0 0 4 3 89 2,725 2,715 3,957
16 0 0 0 0 0 0 4,079 4,072 5,578
17 0 0 0 0 0 0 5,518 5,487 6,898
18 0 0 0 0 0 0 6,729 6,711 8,175
19 0 0 0 0 0 0 7,326 7,311 8,813
20 0 0 0 0 0 0 7,114 7,079 8,703
21 0 0 0 0 0 0 6,000 5,947 7,627
22 0 0 0 0 0 0 4,435 4,407 5,954
23 0 0 0 0 0 0 2,857 2,855 4,129
24 0 0 0 0 0 0 1,633 1,633 2,609
25 0 0 0 0 0 0 787 786 1,444
26 0 0 0 0 0 0 325 310 741
27 0 0 0 0 0 0 80 73 286
28 0 0 0 0 0 0 10 9 113
29 0 0 0 0 0 0 0 0 0
Total 804 388 5,904 2,611 1,616 13,242 63,074 58,946 104,418
Number of candidate k-patterns (#C), number of frequent k-patterns (#FP), and runtime in seconds for
candidate generation and evaluation (7") are reported for k = 1, ..., 29 and for frequency thresholds 10, 5,
and 2%

One of the conclusions we can draw from Table 1 is that our algorithm can mine
an expressive class of molecular patterns from a relatively large database. Although
the presented experiments happened entirely in memory (taking about 600 Mb), our
approach does not depend on storing intermediate results in memory between the dif-
ferent passes over the database. This means that we could also perform this algorithm
with a database on disk. In our application this would bring e.g. an overhead of about
15's per pass over the database. Another conclusion is that the runtime of the coverage
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testing scales well as the pattern size grows, as indicate the complexity considerations
given in the previous section. In this application, due to the implementation exploiting
shared structure among patterns, the time needed for evaluation per pattern does not
even depend in a clear systematic way on the pattern size.

6.1.1 BBP vs. ordinary subgraph isomorphism

Using the outerplanar subset of the NCI dataset, we now report some empirical results
comparing BBP and ordinary subgraph isomorphisms. The results of this paragraph
should be interpreted carefully; the embedding operators have different complexi-
ties, result in completely different sets of frequent patterns, and the authors of the
respective algorithms may have had different implementation foci. For the compari-
son we selected some state-of-the-art systems using ordinary subgraph isomorphism
as embedding operator, namely gSpan (Yan and Han 2002), FSG (Kuramochi and
Karypis 2001), and Gaston (Nijssen and Kok 2004).'* Due to various reasons, it was
not easy to evaluate all of these algorithms on the outerplanar NCI dataset. In particu-
lar, gSpan (available only in binary form) accepts transaction graphs with at most 254
edges only. For this reason, we removed all the graphs with more than 254 edges.

Table 2 shows the number of patterns of different sizes and the cumulative runtimes
of Gaston and FSG in seconds at frequency threshold 2%. Since gSpan does not report
runtimes for individual levels, it is not included in the table. For Gaston and FSG we
report only the first 10 levels; FSG ran out of memory at level 10, Gaston and GSpan
were shut down after several days before completing the task. As can be seen, the
number of patterns increases much faster with the size than what we observed for
BBP subgraph isomorphism.

For the 5 and 10% thresholds, all subgraphs could completely be mined by each
of the systems. Table 3 shows the runtimes in seconds and the number of frequent
patterns for ordinary and BBP subgraph isomorphism for the four systems. It can be
observed that even though our algorithm on average consumes more time per pattern,
this is largely compensated by the much smaller number of patterns. One interesting
effect is that our algorithm succeeds in finding all pattern with respect to BBP sub-
graph isomorphism for frequency threshold 2%, while this is not practically feasible
in reasonable time with the other systems using ordinary subgraph isomorphism.

It is of course important to compare not only the quantity, but also the guality of the
patterns. A common technique of such comparisons is to empirically investigate the
predictive performance by regarding frequent patterns as binary features: A feature
has value 1 for an example graph if the corresponding pattern can be embedded into the
example; it is O otherwise. Some recent studies compare the predictive performance of
feature sets based on patterns with respect to ordinary subgraphs and those with respect
to BBP subgraph isomorphism. In particular, Schietgat et al. (2008) generates sets of
features exhaustively, while Schietgat et al. (2009) applies a sampling method based
on maximal common subgraphs to select the features based on patterns with respect to
BBP subgraph isomorphism. The empirical results clearly indicate for both methods

14 We have tried other systems as well, but they were not able either to read in the dataset or to produce
any output within several days even for high relative frequencies.
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Table2 Results with Gaston and FSG on the outerplanar subset of the NCI dataset using ordinary subgraph
isomorphism

Size 2%
#FP Gaston FSG

2 57 32 232

3 183 94 440

4 516 190 750

5 1,419 408 1,980

6 3,434 780 3,570

7 7,573 1,708 7,396

8 14,955 3,324 14,576

9 26,177 7,354 27,716

10 39,647 11,866 0.0.m
Number of frequent patterns consisting of k vertices and cumulative runtimes in seconds are reported for
both systems at 2% frequency thresholds and for k = 2, ..., 10 (0.0.m indicates that the system ran out of

memory before completing the level). Note the difference between k in this table and that in Table 1

Table 3 Number of patterns
and runtimes in seconds at 5 and
10% thresholds for BBP and
ordinary subgraph isomorphism

2% 5% 10%

#FP for ordinary subgraph isomorphism o.o.t. 49415 7,107

on the outerplanar subset of the Gaston’s runtime o.o.t. 28212 2,571
NCI dataset (0.0.t. indicates that ~ FSG’s runtime o.o.t. 60,821 10,464
the system. C(_)uld not complete gSpan’s runtime o.0.t. 74,136 4,649
the task within several days) ) )
#FP for BPP subgraph isomorphism 58,864 1,616 388
Runtime of our algorithm (FOG) 100,494 13,242 5,905

that frequent patterns with respect to BBP subgraph isomorphism compare favorably
to those with respect to ordinary subgraph isomorphism in predictive performance.
Thus, at least on the virtual screening problem, BBP subgraph isomorphism results in
a more compact set of frequent patterns without drop in the predictive performance.

6.2 The mRNA dataset

As another demonstrative example of the relative compactness of BBP frequent
patterns, in this section we report some experimental results comparing BBP
frequent subgraphs with ordinary ones on mRNA secondary structures. RNAs are
single-stranded chains of nucleotides. Their contact structures, called secondary struc-
tures, are formed by bindings of non-adjacent nucleotides (C—G and A-U pairs) by
hydrogen bonds, usually over longer stretches of the sequence forming stems. These
additional bonds together with those in the backbone chain always result in an out-
erplanar graph (see, e.g., Leydold and Stadler 1998); the graph can be drawn in the
plane without edges crossing in interior points such that all edges corresponding to the
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Table 4 Results with our

algorithm (FOG) on the mRNA  -evel (®) 10% 3% 2%
dataset #FP T #FP T #FP T
1 120 54 241 121 12,264 1,160
2 82 8 118 8 193 21
3 120 5 168 5 279 14
Number of frequent patterns 4 18 3 166 3 274 13
with respect to BBP subgraph 5 78 2 110 2 182 9
isomorphism (#FP) and runtimes 6 39 2 55 2 91 5
in seconds (T') .are reported for 7 0 0 0 0 0 0
10, 5, and 2% frequency
thresholds Total 557 74 858 141 13,283 1,222

backbone chain (i.e., those connecting consecutive nucleotides) lie on the outer face,
while almost all the other edges (i.e., those connecting non-consecutive nucleotides)
are diagonals. Though, in contrast to the application in the previous section, we can-
not assume some reasonable small constant on the number of diagonals, the number
of simple cycles in RNA secondary structures still remains small as the “branching”
of the stems is usually quite limited. Thus, in this application we again deal with
well-behaved outerplanar graphs.

In our experiments we have used a relatively small dataset consisting of 269 mRNA
molecules adopted from Horvéth et al. (2001), as even this small dataset clearly val-
idates the application of BBP subgraph isomorphism. Table 4 shows the results with
our algorithm. As can be seen, most frequent patterns consist of a single block, espe-
cially for the lowest frequency threshold 2% where the number of 1-patterns is very
high relative to that of k-patterns for k > 1. While our algorithm generated only 557,
885, and 13,283 frequent BBP patterns for the frequency thresholds 10, 5, and 2%,
and completed its work within about 20 min even for 2%, Gaston, as shown in Table 5,
respectively produced 864,862, 1,490,982, and 184,342,582 frequent subgraphs for
the first 20 levels with a very impressive speed. We have shut down Gaston from level
21 because these numbers clearly demonstrate the compactness of BBP subgraph iso-
morphism against the ordinary one; in particular, the exponential grow of the number
of frequent patterns for ordinary subgraph isomorphism at frequency threshold 2%.

7 Concluding remarks

We have presented an algorithm listing frequent patterns from outerplanar graphs with
respect to a constrained subgraph isomorphism, called BBP subgraph isomorphism,
and showed that it generates frequent patterns in incremental polynomial time if the
graphs are also well-behaved, i.e., have a polynomial upper bound on their number
of simple cycles. To the best of our knowledge, no efficient fragment of the frequent
subgraph mining problem beyond trees has been identified before this positive result.
The importance of positive, as well as negative theoretical results on efficient pattern
mining in graph structured data is that they contribute to a better understanding of the
border between tractable and intractable problem classes. A deeper understanding of
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Table 5 Gaston’s results on the mRNA dataset

Size (k) 10% 5% 2%
#FP T #FP T #FP T

1 13 1 13 1 13 1
2 62 1 64 1 64 1
3 253 1 344 1 361 1
4 607 1 1,241 1 1,988 1
5 917 1 2,858 1 7,389 1
6 1,223 1 4,429 1 17,953 1
7 1,928 1 5,407 1 32,323 2
8 3,627 1 6,733 1 50,984 3
9 7,014 1 10,114 2 80,411 5
10 13,320 4 18,149 3 135,728 8
11 24,220 5 33,624 6 243,553 15
12 41,151 9 59,543 10 448,801 26
13 64,400 16 97,918 19 838,610 52
14 91,630 27 146,488 33 1,586,313 104
15 117,337 42 196,618 53 3,046,462 218
16 132,905 62 231,917 80 5,936,914 480
17 130,972 83 236,355 114 11,710,025 1,105
18 110,393 104 204,703 141 23,254,130 2,569
19 78,009 116 147,858 162 46,154,499 6,676
20 44,881 124 86,606 173 90,796,061 17,013
Total 864,862 124 1,490,982 173 184,342,582 17,013

Number of patterns with respect to ordinary subgraph isomorphism (#FP) and cumulative running time
excluding the time for printing the patterns are reported in seconds for frequency thresholds 10, 5, and 2%
for the first 20 levels

In contrast to our results in Table 4, Gaston couldn’t complete the task within several days (Note again the
difference between the meaning of & in this table and that in Table 4)

the border could provide, among others, useful insights into the problem class, which
could then be exploited in the design of practical algorithms.

Our algorithm is based on a canonical form of outerplanar graphs which may be
of some independent interest in itself, and further algorithmic components for mining
frequent biconnected outerplanar graphs and candidate generation in an Apriori style
algorithm. Motivated by application and complexity considerations, we introduced a
special kind of subgraph isomorphism which generalizes subtree isomorphism but is
at the same time more specific than ordinary subgraph isomorphism, and showed that
it is decidable in polynomial time for arbitrary outerplanar graphs.

We note that our result is not only theoretical but also practical, as well-behaved
outerplanar graphs form a practically relevant graph class. As an example, the molec-
ular graphs of 236,180 molecules in the NCI dataset consisting of 250,251 compounds
are well-behaved outerplanar graphs. Our empirical results with this outerplanar sub-
set of the NCI dataset clearly show the effective performance of our algorithm in the
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Algorithm 4 COMPUTEFREQUENTPATTERNS (POLYNOMIAL DELAY)

Input: set £;_ of frequent (k — 1)-patterns for some k > 2
Output: set £y of candidate k-patterns

LG =Ly=0
2: forall G| € L;_| do

3: forall G, € L1 s.t. G1 and G have the same core and G| < G; do

4.  forall g; € Leaf(G) and gy € Leaf(G») do

5: if G1 © g1 =~ G © g then

6: forall g| € Leaf(G| © g1) do

7 if g5 is attachable to g/l consistently with G, then

8: let C be the graph obtained by attaching g5 in G| to g/1 consistently

with G

9: if g1, g2 have the top two string encodings in C, C & Cy,and C © g € Ly
for every g € Leaf(C) then

10: add C to C

11: if C is r-frequent then

12: add it to Ly,

13: endfor

14:  endfor

15:  endfor

16: print Gy ifk > 3

17: endfor

18: return Ly

practice on large graph databases. We have also conducted empirical experiments on
a dataset of mRNA secondary structures consisting of non-tenuous well-behaved out-
erplanar graphs demonstrating the relative compactness of BBP frequent subgraphs
with respect to ordinary ones.

We note that by changing the position of the print statement in Algorithm 3, we can
turn our algorithm into a polynomial delay algorithm, keeping its computation and
total run time exactly the same. Such a modified algorithm is given in Algorithm 4.
In the algorithm we make use of the fact that for each frequent k-pattern G, the set
of frequent k-patterns having the same core as G can be listed with polynomial delay
(e.g., sort the set of frequent k-patterns by the canonical string of their cores). Notice
that the number of frequent k-patterns having the same core as G is bounded by a
polynomial of the size of D. Thus, the inner loop 3—15 runs in time polynomial in the
size of D for every G| € L;_1. These together imply that the delay between printing
two consecutive frequent patterns in step 16 is bounded by a polynomial of the size
of D. Clearly, the modified algorithm works in the same total time as the original
one. Though the modified algorithm lists frequent patterns with polynomial delay, it
is obtained in an unnatural way: outputs are not shown to the user as soon as they
have been computed, but are spread out to ensure polynomial delay between each of
them. Therefore, we believe that in practice, most users would prefer to see computed
outputs as soon as possible, and then rather wait a somewhat longer time whenever the
next level of search is computed, resulting in incremental polynomial time between
outputs. We also note that applying the same technique to Algorithm 2, which also
works in incremental polynomial time, we get that the set F}, of frequent biconnected
outerplanar graphs (see step 1 of Algorithm 1) can also be listed with polynomial delay.
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Before closing the paper with an interesting problem, we recall that our algorithm
exploits well-behavedness only in the computation of the set 7}, of frequent biconnect-
ed graphs in step 1 of Algorithm 1. In fact, the positive result formulated in Theorem 7
also holds for the broader class of outerplanar graphs having at most polynomially
many pairwise non-isomorphic simple cycles. This follows from the fact that outer-
planar graphs have treewidth 2 (see, e.g., Bodlaender 1998) and from the result that
the set of pairwise non-isomorphic cycles in a (labeled) graph of bounded treewidth
can be listed in output polynomial time (Horvath 2005). Thus, 7}, can be computed in
polynomial time even for this more general case. Clearly, this class includes the class
of well-behaved outerplanar subgraphs. One can easily construct outerplanar graphs
with exponentially many simple cycles, but with only polynomially many, pairwise
non-isomorphic cycles.!?

It is natural to ask whether the positive result of this paper can be generalized to
arbitrary outerplanar graphs. This question raises the following problem: Given a finite
set D of, not necessarily well-behaved, biconnected outerplanar graphs and a non-neg-
ative integer frequency threshold 7, compute the set of ¢-frequent patterns in D with
respect to BBP subgraph isomorphism. Notice that this problem definition implicitly
requires 7-frequent patterns to be biconnected because by definition, there is no BBP
subgraph isomorphism from a non-biconnected graph to a biconnected outerplanar
graph. We do not know whether this special problem can be solved in incremental or
at least in output polynomial time.
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