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Abstract

In recent years, mixture models have found widespread usage in discovering latent cluster
structure from data. A popular special case of finite mixture models are naive Bayes models,
where the probability of a feature vector factorizes over the features for any given component of
the mixture. Despite their popularity, naive Bayes models suffer from two important restrictions:
first, they do not have a natural mechanism for handling sparsity, where each data point may
have only a few observed features; and second, they do not allow objects to be generated from
different latent clusters with varying degrees (i.e., mixed-memberships) in the generative process.
In this paper, we first introduce marginal naive Bayes (MNB) models, which generalize naive
Bayes models to handle sparsity by marginalizing over all missing features. More importantly,
we propose mixed-membership naive Bayes (MMNB) models, which generalizes (marginal) naive
Bayes models to allow for mixed memberships in the generative process. MMNB models can
be viewed as a natural generalization of latent Dirichlet allocation (LDA) with the ability to
handle heterogenous and possibly sparse feature vectors. We propose two variational inference
algorithms to learn MMNB models from data. While the first exactly follows the corresponding
ideas for LDA, the second uses much fewer variational parameters leading to a much faster
algorithm with smaller time and space requirements. An application of the same idea in the
context of topic modeling leads to a new Fast LDA algorithm. The efficacy of the proposed
mixed-membership models and the fast variational inference algorithms are demonstrated by
extensive experiments on a wide variety of different datasets.

1 Introduction

Probabilistic mixture models are arguably one of the most popular approaches to latent cluster
structure discovery from observed data [33, 25, 5]. Naive Bayes (NB) models are a special case
of such generative mixture models which have found successful applications in a wide variety of
problem domains [31, 12, 30]. In NB models, the probability of a feature vector conditioned on
a particular mixture component is assumed to fully factorize over individual features. In spite of
their vast popularity, mixture models in general, and NB models in particular have two important
restrictions that limit their modeling capabilities: first, they do not have a natural mechanism to
handle sparse observations; and second, they do not allow for mixed-memberships of data points
in the generative process.

Sparsity is an increasingly common property of modern large scale datasets, where data points
have only a few observed features [32, 34]. For example, in a recommendation system, any user
typically rates only a small fraction of all the available movies; in market-basket data, any customer
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typically buys only a small fraction of all available products in a store, etc. An attempt to use
standard NB models to discover user clusters based on movie ratings or customer purchase histories
typically leads to unsatisfactory results, as missing entries dominate the data matrix. Since the
size of modern datasets as well as their sparsity is expected to increase over the years, there is an
urgent need for systematic methods for clustering of large-scale sparse datasets.

Mixture models, including NB models, assume that a data point is generated from only one
of the mixture components [33, 5]. In a recommendation system scenario, such an assumption
is equivalent to assuming that any user can only belong to one user cluster. If one user cluster
prefers one type/genre of movies, it means that any user only likes one type/genre of movies. In
reality, the assumption is clearly not true, and serves as a restriction to the modeling capability
of mixture models in general, and NB models in particular. There are a few existing approaches
to relax this assumption, most prominently including multi-cause models [35, 18, 37], overlapping
mixture models [4, 36, 15], and aspect models [21] as well as its generalization—latent Dirichlet
allocation (LDA) [7, 19]. LDA is currently a popular approach to topic modeling, where each word
of a document is allowed to potentially come from a different topic, while having a fixed topic
mixing proportion for each document. The topic proportions for a document is a latent variable in
the model, typically with a Dirichlet prior, and serves as the mixed-membership of the document
to different topics. Such mixed-membership models have advanced the state-of-the-art in topic
modeling, as well as served as a basis for advanced analysis of text and relational data [7, 1].
However, such models have not been generalized to work with data which have real, categorical, or
heterogenous feature vectors, and where NB models are still the method of choice [27, 41].

In this paper, we introduce a family of generative models which can handle heterogenous and
sparse data observations, and allows mixed-membership clusterings, while almost maintaining the
simplicity of NB models. In particular, we first introduce marginal naive Bayes (MNB) models,
which generalize NB models to naturally handle sparsity in observed data by marginalizing the
probability distribution over all missing features, which may be different for different data objects.
Due to the conditional independence assumption over features, the marginal model is effectively
a naive Bayes model over the non-missing features. For example, for the recommendation system
scenario, the MNB models are defined over only the existing movie ratings, and, once learnt, can
meaningfully compute probabilities of ratings which are currently unknown. More importantly,
we introduce a family of mixed-membership naive Bayes (MMNB) models, effectively by taking
the best of both (marginal) NB models and mixed-membership topic models such as LDA. MMNB
models are significantly more flexible than (marginal) NB models, and can naturally handle sparsity.
While MMNB models allow mixed-memberships of data points to all clusters, inferring the mixed-
membership from observations by using expectation maximization (EM) directly is intractable.
We propose two variational inference algorithms for MMNB, as well as corresponding variational
EM algorithms for parameter learning for any regular exponential family distributions. The first
inference algorithm is based on ideas originally proposed in the context of LDA [7]; the second
algorithm uses substantially less number of variational parameters, with no dependency on the
dimensionality of the dataset. An application of the same idea in the context of topic modeling
gives a new Fast LDA algorithm for variational inference in LDA. By design, the new algorithm is
expected to be much faster and have much smaller memory requirements.

The effectiveness of the models and ideas proposed in the paper are established through extensive
experiments of various types on several datasets. A key highlight of our results is that MMNB
models outperform (marginal) NB models in most settings, and the performance of MMNB is
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found to be very stable across a wide range of input parameter choices, especially on held out test
sets. Further, unlike (marginal) NB, MMNB generates real “soft” clusterings, demonstrating that
the mixed-membership model generates qualitatively different results from simply computing the
component posterior in an NB model, which tends to be close to 0 or 1. Interestingly, through
properly designed experiments, we show that predictive perplexities of data points are better (lower)
when the entropy of the mixed-membership is low, i.e., when the model is more sure about the
data points clustering assignment. Finally, the new inference algorithm is shown to be much faster,
especially for high-dimensional datasets, with no noticeable loss in accuracy. In the context of topic
modeling, Fast LDA performs comparably with LDA both quantitatively and qualitatively, while
being about an order of magnitude faster.

The rest of the paper is organized as follows: Section 2 gives a brief overview on generative
mixture models as a background knowledge. Section 3 proposes mixed-membership naive Bayes
models. We present the algorithms of variational inference in Section 4 and 5, with Section 4
giving the variational inference as a direct generalization of that in LDA, and Section 5 giving a
fast variational inference. Extensive experimental results are presented in Section 6. We review
the related literature in Section 7 and conclude in Section 8.

2 Generative Mixture Models

In this section, we give a brief review of the existing literature on mixture models as a background
for mixture membership naive-Bayes (MMNB) models.

2.1 Finite Mixture Models

Finite mixture (FM) models are arguably the most widely studied and used form of mixture models
[33, 5]. An FM model is a convex combination of a finite number of latent component distributions,
each of which generates a set of observed data points. To generate each data point x, an FM
model first picks a component z = c and then generates the data point following the component
distribution corresponding to c. If π denotes a discrete distribution, which serves as a prior over
the components, and θc denotes the parameters for the distribution of the cth component, an FM
model with k components has a density function of the following form:

p(x|π,Θ) =

k
∑

c=1

p(z = c|πc)p(x|θc) , (1)

where Θ = {θc, [c]
k
1} ([c]k1 ≡ c = 1, . . . , k) are the group of parameters for the component distribu-

tions {p(x|θc), [c]
k
1}.

In theory, the component distributions can be from any parametric family of distributions. In
practice, most of the existing literature has focussed on the case where the component distributions
belong to a regular exponential family [5, 6]. Under some regularity conditions [5, 6], a regular
exponential family distribution has a density function of the form

pψ(x|θ) = exp(〈x, θ〉 − ψ(θ))p0(x) , (2)

where θ is the natural parameter, ψ(·) is the cumulant or the log-partition function, and p0(x) is a
non-negative base measure. Several distributions widely used for data modeling, such as Gaussian,
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Figure 1: Graphical model representation of naive Bayes models and latent Dirichlet allocation.

Bernoulli, Poisson, multinomial, gamma, beta, Dirichlet, etc., are all examples of exponential fam-
ilies. The choice of ψ determines a particular family, and θ determines a particular distribution in
that family.

Given a set of data points X = {x1, . . . ,xn}, the key unsupervised learning task in an FM
model is to find the “best fit” model (π∗,Θ∗). The notion of best fit is usually defined in terms
of the maximum-likelihood estimate (π∗,Θ∗) = argmax(π,Θ) p(X|π,Θ) [13, 16]. EM-style alter-
nating maximization algorithms [33, 5] are widely used for learning such mixture models. Such
algorithms alternate between computing the expectation of the likelihood (E-step) and maximizing
the likelihood to obtain the parameters (M-step).

2.2 Naive Bayes Models

As a special case of FM models, naive Bayes (NB) models (Figure 1(a)) assume that features of
a data point are conditionally independent given the latent component. In particular, with an
appropriate univariate exponential family on feature j and component c given by

pψj
(xj |θjc) = exp(xjθjc − ψj(θjc))pj(xj) ,

the probability of a d-dimensional feature vector x given the component z = c is

p(x|θc) =

d
∏

j=1

pψj
(xj |θjc) =

d
∏

j=1

exp(xjθjc − ψj(θjc))pj(xj) ,

where ψj determines the exponential family model appropriate for feature j, e.g., Gaussian, Poisson,
etc., and θjc is the parameter corresponding to feature j and component c . Then, given the discrete
distribution π over the component, the marginal probability of x according to the naive Bayes
mixture model is given by

p(x|π,Θ) =
k
∑

c=1

p(z = c|π)
d
∏

j=1

pψj
(xj |θjc) . (3)
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2.3 Latent Dirichlet Allocation

One key assumption of NB models, or FM models in general, is that the latent component z is fixed
across all features of a data point x. While such an assumption is reasonable in certain domains, it
puts a major restriction on the expressibility of mixture models. Latent Dirichlet allocation (LDA)
[7, 19] is an elegant extension of standard mixture models by relaxing this assumption in the context
of topic modeling, where each data point is a sequence of tokens, e.g., a document with a sequence
of words. LDA assumes that each word in a document potentially comes from a separate topic
z, which is generated from a discrete distribution π of this document, and all documents share a
Dirichlet prior α. The generative process for each document w is as follows (Figure 1(b)):

1. Choose π ∼ Dirichlet(α).

2. For each of m words (tokens) (wj, [j]
m
1 ) in w:

(a) Choose a topic (component) zj ∼ discrete(π).

(b) Choose wj from p(wj |β, zj).

β is a collection of parameters for k component distributions, each of which is a V dimensional
discrete distribution where V is the total number of words in the dictionary.

LDA assumes that words are generated from topics, and the topics are exchangeable within a
document. Recall that according to de Finetti’s representation theorem [9], if the joint distribution
of a set of random variables is invariant to permutation, then these random variables could be
considered as independent and identically distributed conditioned on a latent parameter, which
is drawn from a certain distribution. In LDA, the random variables in question are the topics
corresponding to the words, and the latent parameter is the discrete distribution π, which is drawn
from the Dirichlet distribution α. Then, the joint distribution of a sequence of words and their
corresponding topics in a document is given by

p(w, z|α, β) =

∫

π
p(π|α)





m
∏

j=1

p(zj = c|π)p(wj |βc)



 dπ ,

where βc is the parameter for the cth component distribution. Marginalizing over z results in

p(w|α, β) =

∫

π
p(π|α)





m
∏

j=1

k
∑

c=1

p(zj = c|π)p(wj |βc)



 dπ , (4)

Computing the probability of a collection of documents is intractable, and several approximate
inference techniques have been proposed to address the problem. The two most popular approaches
include variational approximation [22, 7] and Gibbs sampling [17, 19].

3 Mixed-Membership Naive Bayes Models

In this section, we first take a careful look at the strengths and limitations of naive Bayes (NB)
models and latent Dirichlet allocation (LDA), and then propose mixed-membership naive Bayes
models (MMNB) by taking the best of both worlds.
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A “data point” for LDA [7] is a sequence of tokens, each of which is assumed to be generated
from one of the discrete component distributions. The tokens are semantically identical, e.g., in
case of LDA, all tokens are words. The set of distributions remains the same across all tokens. In
several applications, there are two important deviations from the above set-up:

1. Each feature may have a measured value, e.g., real, categorical, etc. LDA is not designed to
deal with such data since it only works with tokens.

2. Different features of a data point are semantically different. Using a homogeneous component
distribution, LDA is not directly applicable to heterogenous feature vectors. By “heteroge-
nous” feature vectors, we mean the feature vector with features of different semantics (e.g.
height, weight), different data types (e.g. real, integral), different ranges of values (e.g. [-1,0],
[10,100]), etc..

As for NB models, while they have been widely used due to their simplicity, and can handle
heterogenous feature types with values, they also suffer from two important limitations:

1. Most large-scale datasets are sparse, so most feature values will be unknown. For example,
in a movie recommendation setting, each user would have rated only a very small fraction of
all available movies. NB models have no explicit mechanism to handle sparsity.

2. Unlike LDA, NB models are not mixed-membership models because they assume that all the
features corresponding to a feature vector come from the same mixture component. Such
a mixture of unigrams approach [7] yields simplicity, but puts a severe restriction on the
modeling power of NB.

To address the first drawback of NB models, we introduce marginal naive Bayes (MNB) models
by taking into consideration the sparsity structure of the data points. For a d-dimensional feature
vector x = (x1, . . . , xd) which has only a subset of m (m ≤ d) non-missing features, following NB
models, we have

p(x|π,Θ) =
k
∑

c=1

p(z = c|π)
d
∏

j=1

pψj
(xj |θjc) , (5)

where z is the latent component, π is the prior distribution over k components, θj = {θjc, [c]
k
1}

are the parameters for exponential family distributions of k components for feature j, and ψj
determines the exponential family model appropriate for feature j. On the other hand, MNB only
works with the marginal probability of the observed features. Let x̄ = (xj1 , . . . , xjm) be the set
of m non-missing features, where {jv , [v]

m
1 } is a subset of {1, ..., d}. Following MNB, the marginal

probability of the observed feature subset x̄ is given by

p(x̄|π,Θ) =

∫

xjv

v 6=1,··· ,m

p(x|π,Θ)dxjv =
k
∑

c=1

p(z = c|π)
m
∏

v=1

pψjv
(xjv |θjvc) .

Operationally, the model is only over the features whose values are observed, e.g., the movies that
have been rated by a certain user. By abusing notation, we use x to denote x̄ in the sequel. Note
that the observed feature sets will be potentially different for different users, and for notational
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Figure 2: Graphical model representation of mixed-membership naive Bayes (MMNB) models.

convenience, we denote an observed feature j in x with the indicator ∃xj, so that

p(x|π,Θ) =

k
∑

c=1

p(z = c|π)

d
∏

j=1
∃xj

pψj
(xj |θjc) . (6)

We use (6) to calculate p(x|π,Θ) throughout this paper. Finally, note that marginalizing over
missing features results in a different probability space as compared to the original NB models, so
care must be taken when comparing probabilities or perplexities—we elaborate more on this issue
in the context of empirical evaluations in Section 6.

By focusing only on the observed features, MNB can naturally handle sparsity, but it inherits
the second problem of NB models, i.e., all features are assumed to be generated from the same
component z. Meanwhile, as a mixed-membership model, LDA allows tokens in a data point to be
generated from different components. We adopt the same idea in the context of MNB, and propose
the mixed-membership naive Bayes (MMNB) models. In particular, we allow each observed feature
xj of a data point in MNB to potentially come from a separate component zj , which is putatively
generated from a latent discrete distribution π, i.e., the mixed-membership vector for that data
point, with a Dirichlet prior on it. Like (marginal) naive Bayes models, the component distribution
pψj

(xj|θjc) for MMNB could be any exponential family distribution suitable for xj, which allows
MMNB to handle features with various types of measured value, so that the first limitation of
LDA is conveniently addressed. In addition, as opposed to using a same β for all features in LDA,
pψj

(xj|θjc) is potentially different for different features xj , which addresses the second limitation of
LDA. Overall, as a combination of LDA and MNB, MMNB takes the best of these two to overcome
the limitations of each other. However, unlike LDA, MMNB does not have the exchangeability
property since if features have different semantics, permutations of features will not lead to a
meaningful feature vector in that probability space.

The graphical model for MMNB is given in Figure 2. We can see that there is a Dirichlet
prior α over the mixed-membership vector π for each of the n data points, and there are d sets of
parameters Θ = {θj , [j]

d
1} for d features respectively, each θj = {θjc, [c]

k
1} containing the parameters

for k components. The generative process for x following MMNB given α and Θ can be described
as follows:

1. Choose π ∼ Dirichlet(α).

2. For each non-missing feature xj of x:
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(a) Choose a component zj = c ∼ discrete(π) .

(b) Choose a feature value xj ∼ pψj
(xj|θjc) , where ψj and θjc jointly decide an exponential

family distribution for feature j and component c.

To make the model fully generative, we also need to generate the sparsity structure of the dataset.
We can assume for the entire dataset a fixed Bernoulli distribution Bernoulli(λ), draws from which
determine which features of each data point are missing. Since estimation of λ can be done from
the observed sparsity structure, and, in general, it does not affect the rest of the model, we will
ignore this aspect in the sequel.

From the generative model, the joint distribution of (π, z,x) is given by

p(π, z,x|α,Θ) = p(π|α)
d
∏

j=1
∃xj

p(zj = c|π)pψj
(xj|θjc) . (7)

The marginal distribution for a data point x is obtained by integrating over π and summing over
z. The density function for x with k components is given by:

p(x|α,Θ) =

∫

π
p(π|α)









d
∏

j=1
∃xj

k
∑

c=1

p(zj = c|π)pψj
(xj |θjc)









dπ . (8)

The probability of the entire dataset X with n data points X = {xi, [i]
n
1} is given by

p(X|α,Θ) =

n
∏

i=1

∫

π
p(π|α)









d
∏

j=1
∃xij

k
∑

c=1

p(zij = c|π)pψj
(xij |θjc)









dπ . (9)

In LDA, an atomic event is the generation of a token (word) wj from a discrete component
distribution over all words in the dictionary, determined by zj . If there are k components, then
there are k such discrete distributions, which are fixed for generating all words in the document.
In MMNB, an atomic event is the generation of a value xj for the jth feature from an exponential
family distribution pψj

(xj|zj , θj). If there are k components and d features, the total number of
component distributions would be k × d, with k distributions for each feature respectively. Unlike
LDA, the distribution for generating xj not only depends on zj , but also depends on which feature
is being considered. Therefore, by choosing an appropriate exponential family distribution for each
feature, MMNB is able to deal with heterogenous feature vectors. For a concrete exposition to
MMNB models, we will focus on two specific instantiations of such models based on univariate
Gaussian and discrete distributions for each feature in each component. Note that although the
two examples we give have a same family of distributions on each of the features, MMNB allows
different features to have different distributions and parameters.

MMNB-Gaussian: For each feature, MMNB-Gaussian has the same family of distributions for all
features—the univariate Gaussian distribution. Note that only the distribution family is the same,
but the specific distributions are still different across the features. Such models are appropriate
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for the data with real-valued features. Instead of using natural parameters, we use the more
common representation for Gaussian distributions parameterized by the mean µ and standard
deviation σ. Assuming k latent components and d dimensional data, the model parameters are α
and Ω = {(µjc, σ

2
jc), [j]

d
1, [c]

k
1}.

1 The probability of generating a feature vector x from the MMNB-
Gaussian model is given by

p(x|α,Ω) =

∫

π
p(π|α)









d
∏

j=1
∃xj

k
∑

c=1

p(zj = c|π)p(xj |µjc, σ
2
jc)









dπ . (10)

MMNB-Discrete: Such models are appropriate for categorical features. In general, each feature
is allowed to be of a different type, e.g., race, sex, etc., each potentially having a different finite
number of possible values. We use the expectation parameter, i.e., the probabilities of each value’s
occurrence, instead of natural parameters. For each feature, the probabilities sum up to 1. In
particular, assuming k latent components, d features with rj possible values for the jth feature,
the model parameters are Ω = {pjc(r), [r]

rj
1 , [j]

d
1, [c]

k
1} such that for latent component z = c and

feature j, pjc is a discrete probability distribution over rj possible values, i.e., pjc(r) ≥ 0, [r]
rj
1

and
∑rj

r=1 pjc(r) = 1.2 Then, the probability of generating a categorical feature vector x from
MMNB-Discrete is given by

p(x|α,Ω) =

∫

π
p(π|α)









d
∏

j=1
∃xj

k
∑

c=1

p(zj = c|π)pjc(xj)









dπ (11)

4 Inference and Estimation

For a given dataset X = {x1, . . . ,xn}, the learning task in MMNB is to estimate the model param-
eters (α∗,Θ∗) such that the likelihood of observing the whole data set p(X|α∗,Θ∗) is maximized. A
general approach for such a task is to use expectation maximization (EM) algorithms. However, the
likelihood calculation in (9) is intractable, implying that a direct application of EM is not feasible.
In this section, we propose a variational inference method, which alternates between obtaining a
tractable lower bound to the true log-likelihood and choosing the model parameters to maximize
the lower bound. To obtain a tractable lower bound, we consider an entire family of parameterized
lower bounds with a set of free variational parameters, and pick the best lower bound by optimiz-
ing the lower bound with respect to the free variational parameters. For the details of derivations,
please refer to Appendix A.1.

4.1 Variational Inference

In most applications of the EM algorithm for mixture modeling, in the E-step, one can directly
compute the latent variable distribution [29, 3], which is used to calculate the expectation of

1Note that a naive Bayes model for Gaussians has the exact same set Ω of parameters.
2The representation is over-complete [40], and, one can use kd less parameters by using the fact that p(jc) is a

discrete probability distribution, implying that the components will sum up to 1.
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Figure 3: Variational distributions for MMNB/LDA and Fast MMNB/LDA.

the likelihood; in the M-step, parameter estimation is done by maximizing the expectation of
the complete likelihood, where the expectation is with respect to the latent variable distribution.
However, a direct computation of latent variable distribution p(π, z|α,Θ,x) is not possible for
MMNB models. In particular, the latent variable distribution, given by

p(π, z|α,Θ,x) =
p(π|α)

∏d
j=1,∃xj

p(zj = c|π)pψj
(xj |θjc)

∫

π p(π|α)
(

∏d
j=1,∃xj

∑k
c=1 p(zj = c|π)pψj

(xj|θjc)
)

dπ
(12)

has an intractable partition, which cannot be computed in a closed form. Hence, we introduce a
tractable family of parameterized distributions q(π, z|γ, φ) as an approximation to p(π, z|α,Θ,x),
where (γ, φ) are free variational parameters. In particular, following [7], we focus on the family
(Figure 3(a))

q(π, z|γ, φ) = q(π|γ)

d
∏

j=1
∃xj

q(zj |φj) , (13)

where for each data point, γ is a Dirichlet parameter over π and φ = {φj , [j]
d
1,∃xj} are discrete

distributions over the latent components z for all non-missing features. Following Jensen’s inequal-
ity [29, 7] we have

log p(x|α,Θ) ≥ Eq[log p(π, z,x|α,Θ)] +H(q(π, z|γ, φ)) , (14)

where H(·) denotes the Shannon entropy. Note that (14) gives a family of lower bounds, parame-
terized by (γ, φ), to the true likelihood log p(x|α,Θ). If we denote the corresponding lower bound
for data point xi by L(γi, φi;α,Θ), following (14), we have

L(γi, φi;α,Θ) = Eq[log p(πi|α)] +Eq[log p(zi|πi)] +Eq[log p(xi|zi,Θ)] +H(q(πi|γi)) +H(q(zi|φi)) .
(15)

The lower bound of the log-likelihood on the whole dataset X is simply the summation of L(γi, φi;α,Θ)
over all data points xi. The best lower bound can be computed by maximizing each L(γi, φi;α,Θ)
over the free parameters (γi, φi). A direct calculation gives the following set of update equations
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that iteratively maximize the lower bound:

γic = αc +
d
∑

j=1
∃xij

φijc (16)

φijc ∝ exp

(

Ψ(γic) − Ψ

(

k
∑

l=1

γil

))

pψj
(xij |θjc) , [i]n1 , [j]d1 , [c]k1 , ∃xij , (17)

where γic is the cth component of the variational Dirichlet distribution for the ith data point, φijc
is the cth component of the variational discrete distribution of the jth feature in the ith data point,
and Ψ is the digamma function, i.e., the first derivative of the log Gamma function. From [5],
we know that any regular exponential family distribution pψ(x|θ) = exp(〈x, θ〉 − ψ(θ))p0(x) can
be expressed in terms of the Bregman divergence between x and the expectation parameter τ as
pψ(x|θ) = pf (x|τ) = exp(−df (x, τ))bf (x), where bf = exp(f(x))p0(x), and df (·, ·) is the Bregman
divergence determined by the function f , which is the conjugate of the cumulant function ψ of the
family. Therefore, (17) could be written as

φijc ∝ exp

(

Ψ(γic) − Ψ

(

k
∑

l=1

γil

)

− dfj
(xij , τjc)

)

, (18)

where τjc is the mean of the jth feature of the cth component. The above equation shows that φijc
is inversely proportional to the exponential of Bregman divergence between the jth feature and its
expectation of the cth component, i.e., if xij is far from the mean τjc, its membership in component
c will be small. In fact, φij = {φijc, [c]

k
1} gives the mixed-membership of the jth feature belonging to

k components respectively. For a specific model, such as MMNB-Gaussian, the updating equation
for φijc could be obtained by replacing the corresponding distributions in place of pψj

(xij |θjc) in
(17). The form of the updates for γic is independent of the exponential family being used.

4.2 Parameter Estimation

The goal of parameter estimation is to obtain (α,Θ) such that log p(X|α,Θ) is maximized. Since
the log-likelihood is intractable, we use the lower bound as a surrogate objective to be maximized.
Note that for a fixed value of the variational parameters (γ∗i , φ

∗
i ) obtained by variational inference

for each xi, the lower bound of log p(X|α,Θ),
∑n

i=1 L(γ∗i , φ
∗
i ;α,Θ), is a function of the parameters

(α,Θ). Following [33, 5], the parameters Θ can be estimated in a closed form for all exponential
family distributions.

From the Bregman divergence perspective, let τjc be the expectation parameter for the jth

feature of the cth component, the estimation for τjc is given by

τjc =

∑n
i=1,∃xij

φijcsij
∑n

i=1,∃xij
φijc

, [j]d1 , [c]k1 , (19)

where sij is the sufficient statistic and the natural parameter θjc is given by conjugacy as

θjc = ∇fj(τjc) , [j]d1 , [c]k1 ,

11



where fj(·) is the conjugate of cumulant function ψj for each feature. We now give the parameter
estimation for two special cases—MMNB-Gaussian and MMNB-Discrete.

MMNB-Gaussian: For Gaussians, by maximizing the lower bound, the exact update equations
for µjc and σjc can be obtained as

µjc =

∑n
i=1,∃xij

φijcxij
∑n

i=1,∃xij
φijc

(20)

σ2
jc =

∑n
i=1,∃xij

φijc(xij − µjc)
2

∑n
i=1,∃xij

φijc
, [j]d1 , [c]k1 . (21)

MMNB-Discrete: For a discrete distribution pjc over r = 1, . . . , rj values for feature j, the
estimate of pjc(r) is given by

pjc(r) =
n
∑

i=1

φijc1(xij = r) , [c]k1 , [j]d1 , [r]
rj
1 , (22)

where 1(xij = r) is the indicator of observing value r for feature j in observation xi. While such a
maximum likelihood (ML) estimate will give the maximizing parameters on an observed training
set, there is a possibility of some probability estimates being zero. Such an eventuality does not pose
a problem on the training set, but inference on unseen or testing data may become problematic.
If a feature in the test set takes a value that it has not taken in the entire training set, the model
will assign a zero probability to the entire set of testing observations. The standard approach to
address the problem is to use smoothing, so that none of the estimated parameters is zero. In
particular, we use Laplace smoothing, which results from a maximum a posteriori (MAP) estimate
[10] assuming a Dirichlet prior over each discrete distribution, so that

pjc(r) =

n
∑

i=1

φijc1(xij = r) + ǫ , [c]k1 , [j]d1 , [r]
rj
1 , (23)

for some ǫ > 0.
The update of α is independent of the choice of exponential family distribution. Using Newton-

Raphson algorithm [7, 26] with line search, the updating equation is given by:

α′
c = αc − η

gc − u

hc
, [c]k1 , (24)

where

gc = n

(

Ψ

(

k
∑

l=1

αl

)

− Ψ(αc)

)

+
n
∑

i=1

(

Ψ(γic) − Ψ

(

k
∑

c=1

γic

))

hc = −nΨ′(αc)

u =

∑k
c=1 gc/hc

w−1 +
∑k

c=1 h
−1
c

w = nΨ′(

k
∑

c=1

αc) .
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Since α has the constraint of αc > 0, by multiplying the second term of (24) by η, we are performing
a line search to prevent αc to go out of the feasible range. At the beginning of each iteration, we
set η to be 1. If the updated αc falls into the feasible range, the algorithm goes on to the next
iteration, otherwise, it reduces α by a factor of 0.5 until the updated αc becomes valid.

4.3 EM for MMNB

Based on the variational inference and parameter estimation updates, it is straightforward to con-
struct an EM algorithm to estimate (α,Θ). Starting with an initial guess (α0,Θ0), the EM algorithm
alternates between two steps:

1. E-Step: Given (α(t−1),Θ(t−1)), for each data point xi, find the optimal variational parameters

(γ
(t)
i , φ

(t)
i ) = argmax

(γi,φi)
L(γi, φi;α

(t−1),Θ(t−1)) .

L(γ
(t)
i , φ

(t)
i ;α,Θ) gives a lower bound to log p(xi|α,Θ).

2. M-Step: An improved estimate of model parameters (α,Θ) are obtained by maximizing the
aggregate lower bound:

(α(t),Θ(t)) = argmax
(α,Θ)

n
∑

i=1

L(γ
(t)
i , φ

(t)
i ;α,Θ) .

After t iterations, the objective function becomes L(γ
(t)
i , φ

(t)
i ;α(t),Θ(t)). In the (t+1)th iteration,

we have

n
∑

i=1

L(γ
(t)
i , φ

(t)
i ;α(t),Θ(t)) ≤

n
∑

i=1

L(γ
(t+1)
i , φ

(t+1)
i ;α(t),Θ(t)) ≤

n
∑

i=1

L(γ
(t+1)
i , φ

(t+1)
i ;α(t+1),Θ(t+1)) .

The first inequality holds because in the E-step, (γ
(t+1)
i , φ

(t+1)
i ) maximizes L(γi, φi;α

(t),Θ(t)). The

second inequality holds because in the M-step, (α(t+1),Θ(t+1)) maximizes (γ
(t+1)
i , φ

(t+1)
i ;α,Θ).

Therefore, the objective function is non-decreasing until convergence.

5 Fast Variational Inference

The variational distribution we have introduced in Section 4 exactly follows the idea proposed for
latent Dirichlet allocation (LDA) [7], where every feature j of the data point xi has a corresponding
variational parameter φij for the discrete distribution. In this section, we introduce a different
variational distribution with a smaller number of parameters, yielding a much faster variational
inference, which we call Fast MMNB. We also extend the idea to LDA and come up with the Fast
LDA algorithm. The details of derivation are presented in Appendix A.2.
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5.1 Variational Approximation

Given the lower bound for log-likelihood of each data point as (14) in Section 3, the variational
distribution we have used is (13), where each non-missing feature j of each data point xi has a
separate discrete distribution φij. In a full data matrix with n d-dimensional data points, the total
number of φij would be n × d, which is a huge number for high-dimensional data. Meanwhile,
since in the E-step of EM algorithm, the optimization is done over each variational parameter, a
large number of variational parameters will lead to a large number of optimizations, significantly
slowing the algorithm down. To make the algorithm more efficient, we introduce a new family of
variational distributions (Figure 3(b)):

q′(π, z|φ, γ) = q′(π|γ)

d
∏

j=1
∃xj

q′(zj |φ) . (25)

Compared with q(π, z|φ, γ) in (13), q′(π, z|φ, γ) only has one discrete distribution parameter φ
over all latent components z for features of each data point, making q′(π, z|φ, γ) closer to the
original model, which also has only one discrete distribution π for each data point. In comparison,
q(π, z|φ, γ) is substantially over parameterized having a φj for each feature j. If there are totally
n data points, the total number of φs decreases from n × d in (13) to n in (25), accordingly, the
number of optimizations over φ also decreases from n× d to n. Such a reduction would imply a big
saving on both time and space, especially for high dimensional data with a large d.

Assuming there are mi non-missing features for each data point xi. Given the variational
distribution in (25), we have a set of new lower bounds L(γi, φi;α,Θ) for p(xi|α,Θ), and the best
lower bound is obtained by maximizing L(γi, φi;α,Θ) with respect to the variational parameters.
The update equations for variational parameters become

γic = αc +miφic (26)

φic ∝ exp

(

Ψ(γic) − Ψ

(

k
∑

l=1

γil

))









d
∏

j=1
∃xij

pψj
(xij|θjc)









1/mi

, [i]k1 , [c]k1 , (27)

where γic and φic are the variational Dirichlet distribution and discrete distribution for the cth

component of xi respectively. Comparing (27) to (17), we can see that instead of having the term
pψj

(xij|θjc) in φijc for each feature j of xi, since there is only one φi for all features of xi, (27) takes
the geometric mean of pψj

(xij |θjc) over all non-missing features of xi. γic is again independent of
the exponential family being used.

5.2 Parameter Estimation

After obtaining the variational parameters, we can obtain a tractable lower bound of the log-
likelihood as a function of the model parameters (α,Θ). The estimation for α is the same as in
Section 4 using Newton-Raphson algorithm with line search, and the estimation for Θ has a closed
form for exponential family distributions. We show the expressions for Gaussian and discrete cases.
From the Bregman divergence perspective, assuming the expectation parameter for the jth feature

14



of component c is τjc, the estimation for τjc is given by

τjc =

∑n
i=1,∃xij

φicsij
∑n

i=1,∃xij
φic

, [j]d1 , [c]k1 , (28)

where sij is the sufficient statistic and the natural parameter θjc = ∇fj(τjc) by conjugacy, where
fj(·) is the conjugate of cumulant function ψj for each feature. For two special cases—MMNB-
Gaussian and MMNB-Discrete, the closed form parameter estimates are given below. Note that
(28)-(31) are mild variants of (19)-(22) as φic does not depend on feature j.

MMNB-Gaussian: For Gaussians, the update equations for µjc and σ2
jc are given by

µjc =

∑n
i=1,∃xij

φicxij
∑n

i=1,∃xij
φic

(29)

σ2
jc =

∑n
i=1,∃xij

φic(xij − µjc)
2

∑n
i=1,∃xij

φic
, [c]k1 , [j]d1 . (30)

MMNB-Discrete: For a discrete distribution pjc over r = 1, . . . , rj values for feature j, the
update equation for pjc(r) is given by

pjc(r) =
n
∑

i=1

φjc1(xij = r) + ǫ , [c]k1 , [j]d1 , [r]
rj
1 (31)

where 1(xij = r) is the indicator of observing value r for feature j in observation xi.
Given the updates for variational and model parameters, an EM algorithm could be constructed

to estimate (α,Θ) as in Section 4.3.

5.3 Fast LDA

We apply the same idea to variational inference in LDA [7] to obtain Fast LDA. As in Figure 1(b),
LDA has two model parameters α and β: α is the parameter of the Dirichlet distribution over π,
and β is the set of the discrete distribution parameters for each of k components over V words,
where V is the size of the dictionary. Following the notation in LDA [7], the vth word in the
dictionary is represented by a V -dimensional vector w such that wv = 1 and wu = 0 for u 6= v, and
each document w is represented by m words w = {w1, w2, ..., wm}.

We introduce the same variational distribution as in Figure 3(b), i.e., for each document w, we
introduce one Dirichlet distribution parameterized by γ and one discrete distribution parameterized
by φ. In particular, the variational distribution is given by:

q(π, z|φ, γ) = q(π|γ)

m
∏

j=1

q(zj |φ) . (32)

The lower bound of the log-likelihood in (4) is again obtained from Jensen’s inequality as in (14).
By taking derivative of the lower bound with respect to φ and γ respectively and setting them to
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zero, the update equations for variational parameters of wi is as follows:

γic = αc +miφic (33)

φic ∝ exp



Ψ(γic) − Ψ

(

k
∑

l=1

γil

)

+
1

mi

mi
∑

j=1

V
∑

v=1

wvij log βcv



 , [i]n1 , [c]k1 , (34)

(35)

where mi is the number of words in document wi.
For fixed values of variational parameters γ and φ, maximizing the aggregate lower bound with

respect to the model parameters yields the solution for α and β. In particular, the solution for α
is the same as (24), and the update equation for β is given by:

βcv ∝

n
∑

i=1



φic

mi
∑

j=1

wvij



 , [c]k1 , [v]V1 . (36)

6 Experimental Results

In this section, we present three sets of experimental results to assess the performance achieved
by MMNB: (1) comparing MMNB with MNB in terms of clustering accuracy and modeling per-
formance, (2) comparing MMNB with LDA in terms of modeling and prediction performance, and
(3) comparing Fast LDA with LDA in terms of topic modeling performance and processing speed.

6.1 Datasets

Various datasets with different data types (real, integral, discrete, etc.) and different sparsity struc-
tures (full, sparse) are used in our experiments to show the versatility of the proposed family of
algorithms.

UCI Datasets: Nine datasets from UCI machine learning repository are used for our experiments.
These datasets are represented as real-valued full matrices without missing entries. The numbers
of instances, features and classes in each dataset are listed in Table 1.

Movielens: Movielens is a movie recommendation dataset created by the Grouplens Research
Project.3 It contains 100,000 ratings for 1682 movies by 943 users represented as a sparse matrix,
i.e., there are only 6.30% non-missing entries in the matrix. The ratings range from 1 to 5 with 5
being the best. We binarize the dataset such that entries with rating 4 or 5 become 1 and other
non-missing entries become 0. We use both the original data as well as the binarized data in the
experiments.

Foodmart: Foodmart data comes with Microsoft SQL server. It contains transaction data for a
fictitious retailer. In particular, there are 164,558 sales records for 7803 customers and 1559 prod-
ucts, i.e., there are only 1.35% non-missing entries in the matrix. Each customer record contains
the number of each product bought by the customer. We binarize the dataset such that entries

3http://www.grouplens.org/node/73
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Dataset Instances Features Classes

Ecoli 336 7 8

Glass 214 9 6

Ionosphere 351 32 2

Statlog-seg 2310 19 7

Segmentation 210 19 7

Sonar 208 60 2

Vowel 990 11 11

Wdbc 569 30 2

Wine 178 13 3

Table 1: The number of instances, features and classes in each UCI dataset.

above the median of all valid entries become 1 and other non-missing entries become 0. Further,
we remove rows and columns with less than 10 non-missing entries. We use both the original data
as well as the binarized data in the experiments.

Jester: Jester is a joke rating dataset.4 The original dataset contains 4.1 million continuous rat-
ings of 100 jokes from 73,421 users. The ratings are ranged from -10 to 10 with 10 the best. We
pick 1000 users who rate all 100 jokes and use this dense data matrix in our experiment. We again
binarize the dataset such that the non-negative entries become 1 and the negative entries become
0. We use both the original data as well as the binarized data in the experiments.

For comparing Fast LDA with LDA, we use 3 text datasets:

NASA: NASA is a text dataset downloaded from Aviation Safety Reporting System (ASRS) on-
line database.5 This database contains narratives submitted by pilots to report problems in flights.
The dataset used is a subset of the whole database. It contains 4226 documents originated by three
sources: flight crew, maintenance, and passengers. Each document is represented as a word vector
of length 604, where each entry is the number of times a word appears in the document.

Classic3: Classic3 [11] is a well known text dataset. It contains 3893 documents from three differ-
ent classes including aeronautics, medicine and information retrieval. Each document is represented
as a word vector of length 5923, where each entry is the number of times a word appears in the
document.

CMU Newsgroup: The CMU Newsgroup is also a benchmark text dataset [24]. The standard
dataset of CMU Newsgroup contains 19,997 messages, collected from 20 different USENET news-
groups. We use two subsets in our experiments: (1) CMU-Diff is a collection of 3000 messages
from 3 different newsgroups with 1000 messages each topic: alt.atheism, rec.sport.baseball and
sci.space. The dimension for the vector of each document is 7666. (2) CMU-Sim is a collection
of 3000 messages from 3 different newsgroups with 1000 messages each topic: talk.politics.guns,
talk.politics.mideast, talk.politics.misc. The dimension of each document is 10083. Each entry is

4http://goldberg.berkeley.edu/jester-data/
5http://akama.arc.nasa.gov/ASRSDBOnline/QueryWizard Begin.aspx
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the number of times a word appears in the document.

6.2 Methodology

We use three criteria for evaluation: perplexity, micro-precision, and mutual information with a
train-test split and 10-fold cross validation as described below. Among the three criteria, micro-
precision and mutual-information need class labels, but perplexity does not.

Perplexity: Both MMNB and MNB are capable of assigning a log-likelihood log p(xi) to each
observed data point xi. Based on the log-likelihood scores, we compute the perplexity [21, 7] of
the entire dataset X as

Perplexity(X ) = exp
{

−

∑n
i=1 log p(xi)
∑n

i=1mi

}

, (37)

where mi is the number of observed features for xi and n is the number of data points. In the case
of a full matrix such as the UCI data, mi is the number of features, which is the same for all data
points. In the case of a sparse matrix such as Movielens, mi may be different for different data
points. As shown in (37), the perplexity is a monotonically decreasing function of the log-likelihood,
implying that lower perplexity is better (especially on the test set) since the model can explain the
data better.

Micro-precision: We use micro-precision [28] to evaluate the accuracy of clustering. MMNB
and MNB generate the posterior probability of each data point belonging to k latent clusters
(soft clustering). We pick the cluster with the highest probability as the predicted cluster (hard
clustering). Each predicted cluster is then mapped to the true class which has the most overlapping
data points with the cluster among all true classes. Therefore the mapping between the predicted
cluster and the true class is “many to one”, i.e., more than one predicted clusters could be mapped
to a same true class, but each predicted cluster could only be mapped to one true class. For
each predicted cluster c, we define “correctly clustered” data points as the overlapping data points
with the corresponding true class. Denoting the number of correctly clustered data points for each
cluster c with nc, the micro-precision could be defined as [28]:

MP =

∑k
c=1 nc
n

, (38)

where k is the total number of clusters, and n is the total number of data points.

Mutual Information: Given the hard clusterings, we also calculate mutual information [8, 39]
which evaluates the amount of statistical similarity between the clusters and true classes. If Z is a
random variable for the cluster assignments and Y is a random variable for the true classes on the
same data, then their mutual information is given by

I(Z;Y ) =
∑

Z

∑

Y

p(Z, Y ) log
p(Z, Y )

p(Z)p(Y )
, (39)

where p(Z, Y ) is the joint distribution of Z and Y ; p(Z) and p(Y ) are marginal distributions for Z
and Y respectively.
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Training Set Test set
MMNB NB MMNB NB

Ecoli 0.0120±0.00037 0.0105±0.0002 0.0134±0.0018 0.0115±0.0001

Glass 0.0649±0.0062 0.1800±0.0316 0.0783±0.0232 0.2383±0.1415

Ionosphere 1.4241±0.0948 1.6558±0.0228 1.5035±0.1878 1.7093±0.1863

Statlog-seg 1.3013±0.0681 2.1654±0.2250 1.3032±0.0517 2.2422±0.2536

Segmentation 1.1991±0.1062 1.8365±0.1649 1.4215±0.1770 2.6365±1.3470

Sonar 0.2934±0.0044 0.3060±0.0024 0.3043±0.0147 0.3161±0.0146

Vowel 0.7190±0.0226 0.6063±0.0105 0.7709±0.0220 0.6416±0.0209

Wdbc 0.7797±0.0151 0.7862±0.0107 0.7974±0.0784 0.8090±0.0874

Wine 4.2216±0.2329 4.5212±0.1415 4.5722±0.6454 5.0251±0.4230

Table 2: Perplexity for MMNB and NB on UCI datasets. MMNB has a lower perplexity on most of the

datasets.

Training Set Test set
MMNB NB MMNB NB

Ecoli 0.7468±0.0147 0.7764±0.0205 0.8334±0.1127 0.7656±0.1009

Glass 0.5450±0.0501 0.5095±0.0399 0.6389±0.0744 0.5976±0.0748

Ionosphere 0.6422±0.0069 0.7057±0.0174 0.6514±0.0500 0.6886±0.0767

Statlog-seg 0.5675±0.0516 0.5383±0.0465 0.5874±0.0544 0.5619±0.0675

Segmentation 0.5783±0.0396 0.5037±0.0530 0.6476±0.0930 0.6333±0.1100

Sonar 0.5706±0.0265 0.5661±0.0100 0.6051±0.0550 0.6050±0.0438

Vowel 0.3249±0.0273 0.2470±0.0368 0.3990±0.0258 0.3222±0.0450)

Wdbc 0.9214±0.0109 0.9131±0.0046 0.9161±0.0253 0.9089±0.0351

Wine 0.9235±0.0795 0.6823±0.0213 0.9294±0.0668 0.6882±0.0834

Table 3: Micro-precision for MMNB and NB on UCI datasets. MMNB has a higher micro-precision on

most of the datasets.

Unless otherwise specified, we use 10-fold cross-validation with random initializations. In a
10-fold cross-validation, we divide the dataset evenly into 10 parts, one of which is picked as the
test set, and the remaining 9 parts are used as the training set. The process is repeated for 10
times, with each part used exactly once as the test set. We then take the average of results over 10
folds on training set and test set respectively. For results on the training set, we train the model on
training data by running EM as in Section 4.3 until convergence to obtain the model parameters
and variational parameters, which are used to calculate the perplexity, micro-precision and mutual
information. For results on test sets, given the model parameters from the training process, we run
E-step (inference) on test data to obtain the variational parameters, then perplexity, micro-precision
and mutual information are calculated.

6.3 MMNB vs. MNB

In this section, we demonstrate the efficacy of MMNB through the comparison with MNB (or NB
for the datasets without missing entries, such as UCI data) on several datasets with different data
types. For each dataset, we choose an appropriate distribution depending on the feature type as
the generative model. The results show that MMNB is applicable to different types of data and it
achieves a much better performance than MNB or NB.
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Training Set Test set
MMNB NB MMNB NB

Ecoli 0.8811±0.0210 0.9684±0.0342 0.8157±0.3124 0.7887±0.2370

Glass 0.4931±0.0772 0.4896±0.0965 0.5999±0.2538 0.5655±0.2446

Ionosphere 0.0762±0.0231 0.1524±0.0159 0.0785±0.0459 0.1569±0.0790

Statlog-seg 1.0133±0.1082 0.9878±0.1042 1.0373±0.1018 1.0254±0.1351

Segmentation 1.0383±0.0847 0.8669±0.1517 1.1159±0.2078 0.9892±0.2653

Sonar 0.0166±0.0127 0.0100±0.0038 0.0306±0.0327 0.0239±0.0204

Vowel 0.7386±0.0736 0.5636±0.1389 0.8970±0.0677 0.6507±0.1600

Wdbc 0.3856±0.0288 0.3731±0.0128 0.3813±0.0901 0.3734±0.0880

Wine 0.8680±0.1070 0.4990±0.0220 0.8727±0.1139 0.4563±0.1234

Table 4: Mutual information for MMNB and NB on UCI datasets. MMNB has a higher mutual information

on most of the datasets.

6.3.1 Methodology

We run experiments on UCI datasets, as well as on Jester, Foodmart and Movielens using MNB
and MMNB respectively. Note that for the matrix without missng entries such as UCI data, MNB
is equivalent to NB, so we may use “MNB” and “NB” interchangeably in the sequel. For UCI and
Jester, we use Gaussian distribution as the generative model; for Foodmart, we use Poisson6; and
for Movielens, we use discrete distribution. The number of clusters we use for UCI data is the
actual number of classes given in the dataset, and we try different number of classes for Jester,
Movielens and Foodmart respectively.

Before we make the comparison between MMNB and NB, we must note that NB effectively has
one less of freedom in parameter than MMNB. In particular, the Dirichlet distribution α in MMNB
can be any non-negative vector, whereas the discrete distribution π in NB has to be a probability
distribution summing up to one. In other words, if there are k scalers to determine parameter α,
there will be only k − 1 scalers to determine the parameter π. For a generative model, a larger
number of parameters may yield a better performance on the training set, such as a lower perplexity
or a higher accuracy, since the model could be as complicated as necessary to fit the training data
perfectly well. However, such complicated models typically loses the ability for generalization and
leads to over-fitting on test set. In our experiments, however, we consider the comparison to be
fair due to the following two reasons: First, MMNB and NB essentially have the same number
of parameters, with NB having one less degree of freedom on the prior parameter. Second, we
compare the performance on both training and test sets. If the over-fitting does occur to MMNB,
it will result in a bad performance on test set. Thus the results on test sets are more interesting
and crucial.

6.3.2 Results

In this section, we present two parts of results. The first part is the comparison between MMNB
and NB in terms of perplexity, micro-precision and mutual information. The second part is some
interesting result demonstrating the property of MMNB’s behavior.

6For Foodmart data, there is one unit right shift of Poisson distribution since the value of non-missing entries
starts from 1 instead of 0, so we subtract 1 from all non-missing entries to shift the distribution back.
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Figure 4: Perplexities of MMNB and MNB with various number of clusters on Jester.
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Figure 5: Perplexities of MMNB and MNB with various number of clusters on Foodmart.

MMNB-NB Comparison

The average perplexity, micro-precision, and mutual information of MMNB and NB on UCI data
after a 10-fold cross-validation are listed in Table 2-Table 4 respectively. It is clear that MMNB has
a lower perplexity than NB on most datasets, indicating that MMNB fits the data better than NB.
In terms of micro-precision and mutual information, MMNB also wins most of the times, especially
on test sets, which is a convincing evidence for MMNB’s higher performance in clustering.

We also compare the perplexity of MMNB and MNB on Jester, Movielens, and Foodmart.
Compared to the UCI data, these three datasets are closer to data in real applications because of
the larger number of data points and higher dimensions of feature vectors. Note that since these
three datasets do not have true class labels, we cannot compare the micro-precision and mutual
information on them. The perplexities on Jester and Foodmart are presented in Figure 4 and 5.
The number of clusters for Jester is varied from 5 to 25 in steps of 5 and that for Foodmart
is varied from 4 to 20 in steps of 4. On Jester, MMNB mostly outperforms MNB with varying
number of classes on both training and test sets. On Foodmart, although MNB achieves a lower
perplexity on training set, it indicates over-fitting, especially with larger number of clusters, since
its corresponding perplexity on test set is very high. In comparison, MMNB is more robust.

We perform more detailed experiments on Movielens. Given a fixed number of classes (k=20),
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Figure 6: Perplexities of MNB and MMNB with k = 20 and varying ǫ on Movielens. Perplexity decreases

with larger smoothing parameter on training set, and increases on test set.
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Figure 7: Perplexity surfaces of MNB and MMNB over a range of k and ǫ on Movielens. MMNB mostly

has a lower perplexity than MNB, and a more stable performance on test set.

Figure 6 reports the perplexities of MMNB and MNB with ǫ varied from 0.01 to 1, where ǫ is the
Laplace smoothing parameter as introduced in Section 4.2 for MMNB-Discrete case. The overall
trend is as follows: when ǫ increases, the perplexity on training set increases and the perplexity
on test set decreases. The result is consistent with the Bayesian intuition behind smoothing.
In particular, a lower value of the Laplace smoothing parameter implies a high confidence on the
parameters learnt from the training set. The learnt parameters will surely have a good performance
on the training set itself, but does not necessarily perform well on the test set. On the other hand,
larger value of the smoothing parameter implies a conservative approach, which may have restricted
performance on the training set, but will perform reasonably well on the test set, especially if the
training set is noisy or sparse. Therefore, we observe the ideal behavior one would expect as an
effect of smoothing. Further, the trend is observed for both MNB and MMNB across the entire
range that is tested.

We ran extensive experiments for a range of values for the number of clusters k and the smooth-
ing parameter ǫ. The overall results for the entire (k, ǫ) range on training and test sets are presented
as perplexity surfaces in Figure 7. The key observations are as follows:

1. For the training set results in Figure 7(a), the perplexity surface for MMNB is almost always

22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Entropy

N
um

be
r 

of
 D

at
a 

P
oi

nt
s

(a) MMNB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Entropy

N
um

be
r 

of
 D

at
a 

P
oi

nt
s

(b) NB

Figure 8: Histogram of mixed-membership entropy on Wdbc. For NB, almost all data points have a small

mixed-membership entropy. For MMNB, most of the data points also have a small mixed-membership

entropy, but there are a certain portion of exceptions.
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Figure 9: Histogram of mixed-membership entropy on Sonar. For NB, almost all data points have a

small mixed-membership entropy. For MMNB, the mixed-membership entropy spreads over different ranges,

mostly [0.6,0.7].

lower than that of MNB over the entire range. MNB tends to do marginally better than
MMNB for a very large k and a very high ǫ.

2. Overall, the smoothing parameter has an adverse effect on the training set performance for
both MMNB and MNB. Both models tend to perform better on the training set with a larger
number of latent classes and a smaller value of the smoothing parameter.

3. For the test set results in Figure 7(b), MMNB achieves a lower perplexity than that of MNB
for a smaller smoothing parameter. MNB performs marginally better than MMNB for high
values of the smoothing parameter.

4. The test set performance of MMNB is very consistent across the entire range of (k, ǫ), which
highlights the stability of the model.

5. MNB’s test set performance for low ǫ values is poor, whereas the training set performance is
very good, which is a clear indication of over-fitting.
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Figure 10: Perplexities with ascending mixed-membership entropy on UCI dataset. Perplexities increase

with ascending entropy on most of datasets.

Overall, MMNB demonstrates better performance on the training set and more consistent and
mostly better performance on the test set. Its stability on test set across different choices of pa-
rameters demonstrates its modeling capabilities and makes it more suitable for real life tasks.

Mixed-Membership Assignments of MMNB

To obtain a better understanding of MMNB’s behavior, we run more experiments on UCI data
to study the mixed-membership of data points belonging to different clusters. In particular, we
study the mixed membership using Shannon entropy of the distribution and compare this entropy
between MMNB and NB. A low entropy implies almost hard clustering, whereas higher entropy
implies a truely mixed-membership assignment of points. Figure 8 and 9 are two examples of
mixed-membership entropy histograms on Wdbc and Sonar, where each bar shows the number of
the data points falling into each range of entropies. MMNB and NB both have high accuracy on
Wdbc, but low accuracy on Sonar. From the figures, we can see that NB’s mixed-membership
entropy on both Wdbc and Sonar mostly fall into the extreme low range of [0,0.1]. In comparison,
for Wdbc where MMNB achieves a high micro-precision, MMNB also mostly generates low mixed-
membership entropies, but there are a small portion of data points with relatively high entropies
as [0.4,0.7]. Moreover, MMNB’s entropies on Sonar, where its micro-precision is low, fall into
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Num of Training Set Test set
Clusters MMNB LDA MMNB LDA

5 1.7633±0.0034 98.1762±0.0386 1.7725±0.0231 98.2084±0.2624

10 1.7784±0.0028 98.3465±0.0385 1.8031±0.0219 98.3785±0.2577

15 1.8400±0.0079 98.5684±0.0303 1.8517±0.0224 98.5941±0.2597

20 1.8982±0.0018 98.6900±0.0304 1.8999±0.0202 98.7170±0.2600

25 1.9007±0.0022 98.8084±0.0305 1.9022±0.0200 98.8348±0.2599

Table 5: Perplexity Comparison for MMNB and LDA on Jester with varying number of clusters.

Num of Training Set Test set
Clusters MMNB LDA MMNB LDA

5 1.7220±0.0080 466.1500±3.3531 1.9820±0.0495 515.4462±33.2887

10 1.6690±0.0044 430.8736±3.8621 2.0286±0.0477 502.5386±30.7209

15 1.6289±0.0046 407.4768±3.2146 2.0753±0.0521 506.3093±29.1375

20 1.5934±0.0027 397.6517±2.8421 2.1011±0.0506 513.4418±31.3045

25 1.5580±0.0030 388.1596±2.8644 2.1176±0.0550 525.1515±30.1515

Table 6: Perplexity comparison for MMNB and LDA on Movielens with varying number of clusters.

different ranges, mostly as high as [0.6,0.7]. Similar results are observed on other datasets, that
is, the mixed-membership entropy from NB always falls into the range of [0,0,1], revealing that
NB actually generates a somewhat “hard” clustering where each data point belonging to only one
cluster with an extremely high probability. On the other hand, the mixed-membership entropy from
MMNB always spreads over various ranges, meaning that MMNB generates a “soft” clustering.

NB’s “hard” clustering suffers from at least two limitations: First, it puts a restriction on
allowing one data point to belong to multiple clusters. Second, if the largest component of mixed
membership does not correspond to the correct cluster, the hard clustering assigns the data point
to a completely wrong cluster, since the posterior on even the second largest component is close to
0. In comparison, MMNB’s soft clustering allows one data point to belong to multiple clusters with
varying degrees. Therefore, even though the largest component does not match the right cluster,
MMNB may still assign the data point to the right cluster with a certain probability, which means
the log-loss [2] would be low. The conservative strategy always ensures MMNB to generate a more
reasonable clustering result than NB.

To learn more properties of MMNB, we sort all the data points in the test sets in ascending
order of their mixed-membership entropy, and divide the test sets evenly into five parts according to
the ascending entropy, i.e., the first part contains the first 20% data points with the lowest entropy,
the second part contains the second 20% data points with the second lowest entropy, and so on. We

Num of Training Set Test set
Clusters MMNB LDA MMNB LDA

4 1.8668±0.0052 1503.0433±2.0196 2.0540±0.0142 1634.7652±3.7403

8 1.8114±0.0040 1362.1752±3.4512 2.1702±0.0193 2112.9106±21.5524

12 1.7537±0.0031 1385.4539±3.2186 2.2368±0.0179 1794.5040±13.1146

16 1.6892±0.0051 1375.2157±4.8707 2.2826±0.0222 1816.6249±8.7161

20 1.6368±0.0036 1354.8980±8.1904 2.3114±0.0200 1793.2581±17.642

Table 7: Perplexity Comparison for MMNB and LDA on Foodmart with varying number of clusters.
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Figure 11: Perplexity curves for Movielens, Foodmart and Jester with increasing percentage of noise. Y-axis

has been adjusted to accommodate all three curves. Perplexities on three datasets increase steadily with

adding noise from 1% to 10%.

then calculate the perplexities on these five parts separately. The hypothesis is that the perplexity
increases with ascending mixed-membership entropy, and ideally such increase is monotonic. In
other words, if the model is confident about the cluster assignment of a point (low entropy), then
the test-set perplexity on that point will be low. Figure 10 shows the curves as an average of 10-fold
cross-validation on 9 UCI datasets. Surprisingly, the hypothesis is verified on almost all datasets,
i.e., we observe increasing perplexity with higher mixed-membership entropy on all datasets except
Ionosphere. Since the mixed-membership entropy measures the model’s uncertainty of the result,
and perplexity on test set measures how the model fits the test data, we learn MMNB’s behavior:
In general, the less confidence the model has with the clustering result (higher mixed-membership
entropy), the worse performance it would get (higher perplexity).

6.4 MMNB vs. LDA

In this section, we compare MMNB with LDA on binarized Jester, Movielens and Foodmart. The
lower perplexity achieved by MMNB verifies its flexibility compared with LDA.

6.4.1 Methodology

In principle, it is difficult to compare LDA with MMNB, because they are designed to deal with
different data types, but we can apply these two models on binarized data to make the comparison
possible. Given a binary data matrix, for MMNB, we choose the Bernoulli distribution as the
generative model; for LDA, we consider the features as “words” in the dictionary, and consider
the data points as the “documents” in the corpus. Then for each data point, all features with
the feature value “1” become the “words” that appear in the “document”. For example, in the
binarized Movielens where all entries of 4 or 5 become 1, all movies that are rated 4 or 5 by the user
i could be considered as the words appearing in document i. In that case, the “words” (movies)
in the “document” (user) become the user’s favorite movies. The same strategy was used by [7] to
evaluate LDA on movie rating data.
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Figure 12: Perplexity curves of MMNB and LDA with increasing percentage of noise on binarized Jester.

The perplexity of MMNB increases more steadily with increasing noise than that of LDA.

6.4.2 Results

The results of perplexities as an average of 10-fold cross-validation on Jester, Movielens, and Food-
mart are presented in Table 5-Table 7 respectively. The perplexities of MMNB are orders of magni-
tudes lower than that of LDA across different number of clusters on all three datasets. MMNB’s low
perplexity on training set is possibly because it uses a separate distribution for each feature, instead
of using a same distribution across all features as in LDA. Interestingly, despite large number of
distributions, MMNB still has a much lower perplexity on test set. MMNB’s lower perplexity seems
to indicate that it fits the data and explains the data substantially better than LDA. However, one
must be careful in drawing such conclusions since MMNB and LDA work on different variants of
the data; we discuss this aspect further at the end of this subsection.

We also compare the performance of MMNB and LDA on test set as follows: We randomly hold
out several entries in the data matrix as the test set Xtest and train the model from the training
set Xtrain. We test the perplexity on (Xtrain,Xtest), as well as on (Xtrain, X̃test), where X̃test is
generated by simply flipping the entries 1 to 0 and 0 to 1 on randomly chosen p% of test data. We
record the perplexities with the percentage of noise p increasing from 1% to 10% in steps of 1%
and report the average perplexity of 10-fold cross-validation at each step. The perplexity curves
for Movielens, Foodmart and Jester are shown in Figure 11.

At the starting point, with no noise, the perplexity is on the true test set Xtest, and X̃test is
further away from Xtest with increasing percentage of noise added to it. The hypothesis is that
if the model is good for the true data, as more test data are modified, the fitness between the
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Figure 13: Perplexity curves of MMNB and LDA with increasing percentage of noise on binarized Movielens.

The perplexity of MMNB increases consistently with increasing noise, but the perplexity of LDA goes down

in (d).

model and data will decrease, and ideally such decrease is monotonic. As shown in Figure 11, all
three perplexity lines go up steadily with an increasing percentage of test data modified. This is
a surprisingly good result, implying that our model is able to detect increasing noise in the test
set and convey the message through increasing perplexities. The most accurate result indicated by
the model, i.e., the one with the lowest perplexity, is exactly the true test set at the starting point.
Therefore, MMNB can potentially be used to accurately predict missing values in a matrix.

We add noise at a finer step of modifying 0.1% and 0.01% test data each time with ten steps
respectively, and compare the prediction performance of MMNB with LDA. Figure 12 and 13
presents the results on Jester and Movielens. In both figures, the first row corresponds to adding
noise at steps of 0.01% and the second row corresponds to adding noise at steps of 0.1%. The trends
of the perplexity curves, instead of the absolute value of perplexities, demonstrate the prediction
performance. On Jester, we can see that the perplexity curves for MMNB in both Figure 12(a)
and 12(c) almost always go up with additional noise. However, the perplexity curves for LDA go
up and down from time to time, especially in Figure 12(b), which means that sometimes LDA fits
the data with more noise better than that with less noise, indicating a lower prediction accuracy
compared with MMNB if used for prediction. The difference is even more distinct on the Movielens
dataset. When adding noise at steps of 0.01%, MMNB’s perplexity curve goes up steadily while
LDA’s perplexity curve drops dramatically at the beginning. When the step size increases to 0.1%,
the perplexity curve of LDA even goes down as in Figure 13(d). These comparison show that
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Figure 14: Comparison between LDA and Fast LDA in terms of perplexity and time.

MMNB’s performance is more robust and consistent compared to LDA on the test set.

While extensive results give supportive evidence to MMNB’s better performance, we should be
cautious of the conclusion one can draw from the direct perplexity comparison between MMNB and
LDA. Given a binary dataset, MMNB works on all non-missing entries, but LDA only works on the
entries with value 1. Therefore, MMNB and LDA actually work on different data, and hence their
perplexities cannot be compared directly. However, the comparison gives us a rough idea of these
two algorithms’ behavior, such as the distinct difference in perplexity ranges, similar perplexity
trends with increasing number of clusters, etc.. Moreover, by comparing the perplexity trends with
increasing noise instead of absolute perplexity values, it is shown that MMNB indeed has a better
noise robustness performance on test set than LDA, no matter which part of data they perform on
respectively.

6.5 Fast LDA vs. LDA

In this section, we demonstrate the advantage of fast variational inference used for Fast LDA versus
the original one used in LDA [7]. We also present some comparisons between Fast MMNB with
MMNB. The comparison is made in terms of running time and modeling performance. To evaluate
the modeling performance, we again use perplexity. In addition, for text datasets, we also calculate
the micro-precision and generate the word lists for topics. The hypothesis is that the Fast LDA
would achieve a similar performance with LDA [7], but it would be much more computationally
efficient.

Dataset LDA Fast LDA

NASA 91.4541% 92.8052%

Classic3 67.4757% 67.3330%

CMU-Diff 96.1481% 95.3063%

CMU-Sim 71.4000% 68.9000%

Table 8: Micro-precision comparison of LDA and Fast LDA on text datasets. The micro-precision obtained

by LDA and Fast LDA are similar.

Four text datasets are used for comparing Fast LDA and LDA: NASA, Classic3, CMU-Diff
and CMU-Sim. The comparisons of average perplexity and time over 10-fold cross-validation are
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(a) LDA

Topic 1 Topic 2 Topic 3

runway aircraft passenger

approach maintenance flight

aircraft engine attendant

departure zzz captain

altitude flight seat

turn minimum told
equipment list

time check asked

air traffic fuel back
control

flight time attendants

tower gear aircraft

(b) Fast LDA

Topic 1 Topic 2 Topic 3

runway aircraft passenger

aircraft maintenance flight

approach flight attendant

flight engine capt

departure minimum told
equipment list

time zzz seat

alt check asked

turn time aircraft

landing control back

air traffic crew attendants
control

Table 9: Word list for three topics on NASA. The word lists from LDA and Fast LDA are qualita-
tively similar. Topic 1 is “flight crew”, Topic 2 is “maintenance”, and Topic 3 is “passenger”.

presented in Figure 14. The time shown in the figure is the sum of two parts: training a model from
the training set and applying it to the test set to calculate the perplexity. From the comparison,
we observe very similar perplexities for Fast LDA and LDA on training sets, and a mildly higher
perplexity for Fast LDA on test sets. The overall performance of these two models are quite close
to each other. As for the running time, Figure 14(b) provides the supportive evidence that Fast
LDA is 5-10 times faster than LDA. We also notice that Fast LDA on higher-dimensional dataset
such as CMU-Sim (d = 10083) comparatively saves more time than on lower-dimensional dataset
such as NASA (d = 604). As we have explained in Section 5, by introducing the fast variational
inference, the number of variational parameters φ decreases from

∑n
i=1mi to n, where mi is the

number of words for each document, and n is the total number of the documents. Accordingly, the
optimization times over φ also decreases from

∑n
i=1mi to n. Therefore, roughly, Fast LDA shows

more advantage in terms of running time on higher-dimensional datasets.

We use 5% of the data as initialization, and run Fast LDA and LDA on the whole data sets to
get micro-precision in Table 8 and word lists of topics for NASA and Classic3 as two examples in
Table 9 and Table 10, where the words are listed with decreasing probabilities in each topic7. The
micro-precision comparison shows that Fast LDA is always able to achieve a clustering accuracy
which is close to LDA, and sometimes even slightly higher than LDA. Regarding the word lists for
topics, we can make two observations based on Table 9 and Table 10. First, both LDA and Fast
LDA generate appropriate word lists for the topics. We can map each list to the given topic without
any effort. For example, in the result on NASA, Topic 1 is “flight crew”, Topic 2 is “maintenance”,
and Topic 3 is “passenger”. Second, the word lists from Fast LDA and LDA share most of the
words. The main difference is just the rank of the words in the list.

We also compare Fast MMNB and MMNB on Jester, Movielens, and Foodmart. Figure 15(a)
and 15(b) show the comparison of perplexity and running time respectively, both as an average of
a 10-fold cross-validation. The perplexity obtained from Fast MMNB is quite close to that from
MMNB, especially on training sets. Meanwhile, Figure 15(b) demonstrates that Fast MMNB is
5-10 times faster than MMNB.

7“zzz” in Table 9 is used to denote a name which should be kept secret.
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(a) LDA

Topic 1 Topic 2 Topic 3

information patients flow

library cells boundary

system cases pressure

data normal layer

libraries growth number

research blood mach

systems found results

retrieval treatment theory

science children heat

scientific cell method

(b) Fast LDA

Topic 1 Topic 2 Topic 3

information patients flow

library cells boundary

system cases pressure

libraries normal layer

data growth number

research blood mach

retrieval treatment results

systems found theory

science children shock

scientific cell heat

Table 10: Word list for three topics on Classic3. The word lists from LDA and Fast LDA are
qualitatively similar. Topic 1 is “information retrieval”, Topic 2 is “medicine”, and Topic 3 is
“aeronautics”.
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Figure 15: Comparison between MMNB and Fast MMNB in terms of perplexity and time.

7 Related Work

In this section, we present a brief discussion on the existing literatures related to mixed-membership
models.

Probabilistic latent semantic indexing (pLSI) [21] is an extension of latent semantic index. pLSI
represents each document as a mixing weights (discrete distribution) over a set of topics, i.e., each
document has a mixed-membership belonging to different topics with certain degrees. pLSI also
represents each topic as a distribution over all words in the dictionary. To generate each word
in the document, pLSI first picks a topic based on the mixed-membership of the document, then
generates the word from the distribution of that topic over the words.

While pLSI defines a proper generative model for observed data, it does not have a generative
model for unseen data. In other words, there is only a finite set (the set of the documents in
the training set) of the mixed-memberships over the topics, but no generative model for these
mixed-memberships. Latent Dirichlet allocation (LDA) [7] relaxes this restriction by introducing a
Dirichlet prior on the topic simplex such that the mixed-membership over topics could be generated
from this prior. As an application of LDA, [19] uses a full Bayesian model to analyze abstracts from
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Proceedings of the National Academy of Sciences (PNAS). It not only gives the mixed-membership
of the abstracts belonging to multiple topics, but also gives the correlation between topics and the
evolution of popular topics over years by analyzing mixed-memberships.

[14] propose a more general mixed-membership model which contains four levels, as four levels in
a generative Bayesian model. The model generalizes LDA in the sense that in principle, it allows the
mixed-membership to be generated from various distributions other than Dirichlet distribution, and
each feature to be generated from various distributions other than discrete distribution. However,
it is different from MMNB in that it still assumes that all features share a same distribution. The
authors apply the model to topic modeling for scientific publications on PNAS. The model takes
both the words and references into consideration by choosing an appropriate distribution for the
references.

Recently, considerable amount of work has been done on mixed-membership of relational data.
[1] proposes mixed-membership stochastic blockmodels to deal with binary relationships between
the objects within a group. [38] proposes Bayesian co-clustering which generates mixed-membership
by taking the relationship of various types between the objects in two groups respectively. The
application of the mixed-membership for relational data includes protein-protein interaction anal-
ysis [1], social network analysis [23], etc..

One of the most recent progresses on mixed-membership models is Bayesian partial membership
model (BPM) [20]. BPM is a full Bayesian model which introduces a Dirichlet distribution on the
Dirichlet prior over mixed-membership as well as a conjugate prior on component distribution,
and the component distribution could be any exponential family distribution. The main difference
between BPM and MMNB is that unlike MMNB, BPM does not assume a factorization over the
features of a data point.

8 Conclusion

In this paper, we propose a family of mixed-membership naive Bayes (MMNB) models. Such models
extend the popular naive Bayes (NB) models to work with sparse observations, by marginalizing
over all missing features. In addition, they take advantage of the machinery of hierarchical Baysian
modeling to allow NB models to generate mixed-memberships for the data points. [7] had suggested
that such an extension will be possible due to the modularity of latent Dirichlet allocation (LDA).
In this paper, we demonstrate how powerful such an extension can be in the context of NB models,
while advancing the state-of-the-art on NB as well as LDA. Moreover, the new fast variational
inference algorithms proposed ensure the scalability of MMNB models. When applied in the context
of topic modeling, the same ideas lead to a substantially more efficient algorithm for LDA. Extensive
experiments on a variety of datasets demonstrate that MMNB has a better performance than NB
in terms of clustering accuracy, predictive perplexity, as well as stability. Although MMNB and
LDA are designed for different types of data, the comparisons on binary datasets show that MMNB
is more robust. Further, Fast LDA exhibits a substantial improvement in computational efficiency
as compared to LDA on all text datasets considered.

When applying the model to real applications, for example, movie recommendation systems,
one important problem that still needs to be solved is prediction, i.e., predicting user’s ratings
on certain movies. A brute force way would be to try all possible ratings and pick the one with
the lowest perplexity. However, the cost of such computation would be exponential in the number
of ratings to be predicted, since the ratings are not independent according to the model. Such a
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problem motivates further study on how to do prediction efficiently using such mixed-membership
Bayesian models. Besides, it will be important to investigate automatic model selection approaches
for MMNB models, such as choosing the number of latent clusters, and choosing appropriate ex-
ponential family for each feature.

Acknowledgements: The research was supported by NASA grant NNX08AC36A and NSF grant
IIS-0812183.

A Variational Inference and Parameter Estimation

In this appendix, we give derivations for variational inference algorithms in Section 4 and 5. In
Appendix A.1, we give the derivation for MMNB as a direct generalization of the inference in LDA,
and in Appendix A.2, we give the derivation for Fast MMNB and Fast LDA.

A.1 MMNB

Given a data point x, since a direct computation of log p(x|α,Θ) is intractable, following [7], we
introduce for each data point a variational distribution (Figure 3(a))

q(π, z|γ, φ) = q(π|γ)
d
∏

j=1
∃xj

q(zj |φj) (40)

as a surrogate for the posterior distribution p(π, z|α,Θ,x), where γ is a Dirichlet parameter over
π and φ = {φj , [j]

d
1,∃xj} are discrete parameters over the component z for each of non-missing

features. By applying Jensen’s inequality, we have [7]:

log p(x|α,Θ) = log

∫

π

∑

z

p(π, z,x|α,Θ)dπ

= log

∫

π

∑

z

q(π, z|γ, φ)
p(π, z,x|α,Θ)

q(π, z|γ, φ)
dπ

≥

∫

π

∑

z

q(π, z|γ, φ) log
p(π, z,x|α,Θ)

q(π, z|γ, φ)
dπ

=

∫

π

∑

z

q(π, z|γ, φ) log p(π, z,x|α,Θ)dπ −

∫

π

∑

z

q(π, z|γ, φ) log q(π, z|γ, φ)dπ

=Eq[log p(π, z,x|α,Θ)] +H(q(π, z|γ, φ)) . (41)

Therefore (41) gives a lower bound to log p(x|α,Θ). For each data point xi, denoting the lower
bound with L(γi, φi;α,Θ), we can expand it as

L(γi, φi;α,Θ) =Eq[log p(πi|α)] + Eq[log p(zi|πi)] + Eq[log p(xi|Θ, zi)]

− Eq[log q(πi|γi)] − Eq[log q(zi|φi)] . (42)
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Each term in L(γi, φi;α,Θ) could be further expanded as follows:

Eq[log p(πi|α)] = log Γ(

k
∑

c=1

αc) −

k
∑

c=1

log Γ(αc) +

k
∑

c=1

(αc − 1)(Ψ(γic) − Ψ(

k
∑

l=1

γil))

Eq[log p(zi|πi)] =

d
∑

j=1
∃xij

k
∑

c=1

φijc(Ψ(γic) − Ψ(

k
∑

l=1

γil))

Eq[log p(xi|zi,Θ)] =

d
∑

j=1
∃xij

k
∑

c=1

φijc log pψj
(xij |θjc)

Eq[log q(πi|γi)] = log Γ(

k
∑

c=1

γic) −

k
∑

c=1

log Γ(γic) +

k
∑

c=1

(γic − 1)(Ψ(γic) − Ψ(

k
∑

l=1

γil))

Eq[log q(zi|φi)] =
d
∑

j=1
∃xij

k
∑

c=1

φijc log φijc ,

where γic is the cth component of the variational Dirichlet distribution for the ith data point, φijc
is the cth component of the variational discrete distribution of the jth feature in the ith data point,
and Ψ is the digamma function, i.e., the first derivative of the log Gamma function.

A.1.1 Variational Inference

To obtain the variational parameters, we first maximize L(γi, φi;α, β) with respect to φijc. Since

it is a constrained maximization under the constraint
∑k

c=1 φijc = 1, we construct the Lagrangian
by isolating the terms containing φijc and adding the Lagrange multipliers

L[φijc] = φijc

(

Ψ(γic) − Ψ(

k
∑

l=1

γil) − log φijc + log pψj
(xij|θjc)

)

+ λij(

k
∑

c=1

φijc − 1) ,

where λij is the Lagrangian multiplier. Taking derivative with respect to φijc and setting it to zero,
we have

φijc ∝ exp

(

Ψ(γic) − Ψ(
k
∑

l=1

γil)

)

pψj
(xij |θjc) , [i]k1 , [j]d1 , [c]k1 .

Second, we maximize L(γi, φi;α,Θ) with respect to γic. The terms containing γic are

L[γic] = (αc +

d
∑

j=1
∃xij

φijc − γic)(Ψ(γic) − Ψ(

k
∑

l=1

γil)) − log Γ(

k
∑

c=1

γic) + log Γ(γic) .

Taking derivative with respect to γic and setting it to zero, we get

γic = αc +

d
∑

j=1
∃xij

φijc , [i]k1 , [c]k1 .
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A.1.2 Parameter Estimation

For variational inference, we consider each single data point separately to get variational parameters
for each of them. In this section, we consider all data points together to obtain the estimate for the
model parameters. The overall log-likelihood of the whole dataset X = {xi, [i]

n
1} is the summation

of log-likelihoods for all individual data points, accordingly, the lower bound of log-likelihood of the
whole dataset is the summation of the lower bounds (42) for all data points, i.e.,

∑n
i=1 L(γi, φi;α,Θ).

To maximize the lower bound of log-likelihood with respect to θjc, the terms containing θjc are
given by:

L[θjc] =

n
∑

i=1
∃xij

φijc log pψj
(xij |θjc) .

Following [5], any regular exponential family distribution in the form of

pψ(x|θ) = exp(〈x, θ〉 − ψ(θ))p0(x)

can be expressed in terms of its expectation parameter τ as

p(x|τ) = exp(−df (x, τ))bf (x) ,

where bf = exp(f(x))p0(x) , df (·, ·) is the Bregman divergence determined by the function f , which
is the conjugate of the cumulant function ψ of the family, and τ = E[X] = ∇ψ(θ) with θ the natural
parameter. From this perspective, let sij denote the sufficient statistics for xij , then the estimation
for the mean τjc of the jth feature and the cth component is given by the weighted average of sij as

τjc =

∑n
i=1,∃xij

φijcsij
∑n

i=1,∃xij
φijc

, [j]d1 , [c]k1 ,

and by conjugacy, we have
θjc = ∇fj(τjc) .

In particular, for Gaussian distribution, we have

L[µjc,σ2
jc

] =

n
∑

i=1
∃xij

φijc

(

−
(xij − µjc)

2

2σ2
jc

− log
√

2πσ2
jc

)

.

Taking derivative with respect to µjc and σ2
jc, and setting them to zero, we have

µjc =

∑n
i=1,∃xij

φijcxij
∑n

i=1,∃xij
φijc

σ2
jc =

∑n
i=1,∃xij

φijc(xij − µjc)
2

∑n
i=1,∃xij

φijc
, [j]d1 , [c]k1 .

For discrete distribution, we construct the Lagrangian as

L[pjc(r)] =
n
∑

i=1

φijc

rj
∑

r=1

1(xij = r) log pjc(r) + λjc(

rj
∑

r=1

pjc(r) − 1) ,
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where λjc is the Lagrange multiplier. Taking derivative with respect to pjc(r) and setting it to zero,
we have

pjc(r) ∝
n
∑

i=1

1(xij = r)φijc , [j]d1 , [c]k1 , [r]
rj
1 .

To maximize the lower bound with respect to α, the terms containing α are given by:

L[α] =
n
∑

i=1

(

log Γ(
k
∑

l=1

αl) −
k
∑

c=1

log Γ(αc) +
k
∑

c=1

(αc − 1)(Ψ(γic) − Ψ(
k
∑

l=1

γil))

)

.

Taking derivative with respect to α yields the gradient g(·) as

∂L

∂αc
=

n
∑

i=1

(

Ψ(γic) − Ψ(

k
∑

l=1

γil)

)

+ n

(

Ψ(

k
∑

c=1

αc) − Ψ(αc)

)

. (43)

The derivation depends on {αl, [l]
k
1 , l 6= c}, so there is no closed form solution for αc. Following [7],

we use Newton-Raphson algorithm to update αc iteratively, where,

∂L

∂αcαc
= nΨ′(

k
∑

c=1

αc) − nΨ′(αc) (44)

∂L

∂αcαl
= nΨ′(

k
∑

c=1

αc) (l 6= c) , (45)

so the Hessian matrix H(·) has (44) on diagonal and (45) off diagonal.
Given g(·) and H(·), Newton-Raphson algorithm finds the optimal solution by using the follow-

ing updating equation:
α′ = α+H(α)−1g(α) .

In particular, given g(·) and H(·) as in (43) and (44, 45) respectively, the update equation for αc
is given by

α′
c = αc −

gc − u

hc
, [c]k1 , (46)

where

gc = n

(

Ψ

(

k
∑

l=1

αl

)

− Ψ(αc)

)

+
n
∑

i=1

(

Ψ(γic) − Ψ

(

k
∑

c=1

γic

))

hc = −nΨ′(αc)

u =

∑k
c=1 gc/hc

w−1 +
∑k

c=1 h
−1
c

w = nΨ′(

k
∑

c=1

αc) .

The problem with the update equation (46) is that it ignores the fact that α has a constraint
of αc > 0. Iterating using (46) sometimes takes the updated value outside the feasible range.
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Therefore, we are using an adaptive line search in the updating direction. The update equation is
given by

α′
c = αc − η

gc − u

hc
, [c]k1 . (47)

Multiplying the second term by η, we are performing a line search to prevent αc to go out of the
feasible range (αc > 0). At each updating step, we first let η equal to 1, in that case, (47) becomes
(46). After each iteration, if αc is inside the feasible range, we go on to the next iteration, otherwise,
we decrease η by a factor of 0.5 until αc becomes valid. The objective function is guaranteed to be
improved since we are not changing the update direction but only the scale.

A.2 Fast MMNB

In this section, we give the derivation for Fast MMNB by introducing a new variational distribution
for each data point, given by (Figure 3(b))

q′(π, z|γ, φ) = q′(π|γ)

d
∏

j=1
∃xj

q′(zj |φ) , (48)

where γ is the parameter for variational Dirichlet distribution over π, and φ is the parameter for
variational discrete distribution over all latent components z for all features. Again, by applying
Jensen’s inequality, we obtain the lower bound for log p(x|α,Θ) as

log p(x|α,Θ) ≥ Eq′ [log p(π, z,x|α,Θ)] −Eq′ [log q
′(π, z|γ, φ)] .

Denoting the lower bound for xi with L(γi, φi;α,Θ), it could be expanded as

L(γi, φi;α,Θ) =Eq′ [log p(πi|α)] +Eq′ [log p(zi|πi)] + Eq′ [log p(xi|Θ, zi)]

− Eq′ [log q
′(πi|γi)] − Eq′ [log q

′(zi|φi)] , (49)

where

Eq′ [log p(πi|α)] = log Γ(

k
∑

c=1

αc) −

k
∑

c=1

log Γ(αc) +

k
∑

c=1

(αc − 1)(Ψ(γic) − Ψ(

k
∑

l=1

γil)) (50)

Eq′ [log p(zi|πi)] =mi

k
∑

c=1

φic(Ψ(γic) − Ψ(
k
∑

l=1

γil)) (51)

Eq′ [log p(xi|zi,Θ)] =

d
∑

j=1
∃xij

k
∑

c=1

φic log pψj
(xij|θjc) (52)

Eq′ [log q
′(πi|γi)] = log Γ(

k
∑

c=1

γic) −

k
∑

c=1

log Γ(γic)+

k
∑

c=1

(γic − 1)(Ψ(γic) − Ψ(

k
∑

l=1

γil)) (53)

Eq′ [log q
′(zi|φi)] =mi

k
∑

c=1

φic log φic , (54)

where γic and φic are the variational Dirichlet distribution and discrete distribution for the cth

component of xi respectively, and mi is the number of non-missing entries in each data point xi.
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A.2.1 Variational Inference

First, We maximize L(γi, φi;α, β) with respect to φic. Similar with Appendix A.1, it is a constrained
maximization under the constraint

∑k
c=1 φic = 1, we construct the Lagrangian as:

L[φic] = miφic

(

Ψ(γic) − Ψ(

k
∑

l=1

γil) − log φic

)

+

d
∑

j=1
∃xij

φic log pψj
(xij |θjc) + λi(

k
∑

c=1

φic − 1) ,

where λi is the Lagrange multiplier. Taking derivative with respect to φic and setting it to zero,
we have

φic ∝ exp

(

Ψ(γic) − Ψ

(

k
∑

l=1

γil

))









d
∏

j=1
∃xij

pψj
(xij |θjc)









1/mi

, [i]k1 , [c]k1 .

Second, we maximize L(γi, φi;α,Θ) with respect to γic. The terms containing γic are:

L[γic] = (αc +miφic − γic)(Ψ(γic) − Ψ(

k
∑

l=1

γil)) − log Γ(

k
∑

c=1

γic) + log Γ(γic) .

Taking derivative with respect to γic and setting it to zero, we get

γic = αc +miφic , [i]k1 , [c]k1 .

A.2.2 Parameter Estimation

Similar as Appendix A.1.2, we consider the whole dataset X = {xi, [i]
n
1} together for parameter

estimation. The lower bound of the log-likelihood on X is
∑n

i=1 L(γi, φi;α,Θ) To maximize with
respect to θjc, the terms containing θjc are

L[θjc] =

n
∑

i=1
∃xij

φic log pψj
(xij |θjc) .

Again, from Bregmam divergence perspective, the estimation of expectation τjc is given by

τjc =

∑n
i=1,∃xij

φicsij
∑n

i=1,∃xij
φic

, [j]d1 , [c]k1 ,

where sij is the sufficient statistics.

In particular, for Gaussian, we have

L[µjc,σ2
jc

] =
n
∑

i=1
∃xij

φic

(

−
(xij − µjc)

2

2σ2
jc

− log
√

2πσ2
jc

)

.
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By taking derivative with respect to µjc and σ2
jc and setting them to zero, we get

µjc =

∑n
i=1,∃xij

φicxij
∑n

i=1,∃xij
φic

σ2
jc =

∑n
i=1,∃xij

φic(xij − µjc)
2

∑n
i=1,∃xij

φic
, [j]d1 , [c]k1 .

For discrete case, we construct the Lagrangian as

L[pjc(r)] =

n
∑

i=1

φic

rj
∑

r=1

1(xij = r) log pjc(r) + λjc(

rj
∑

r=1

pjc(r) − 1) ,

where λjc is the Lagrange multiplier. Taking derivative with respect to pjc(r) and setting it to zero,
we have

pjc(r) ∝
n
∑

i=1

1(xij = r)φic , [j]d1 , [c]k1 , [r]
rj
1 .

The update equation for α is the same with (47).

A.3 Fast LDA

The variational distribution introduced for Fast LDA is the same as (48). Similarly, by applying
Jensen’s inequality, the lower bound L(φi, γi;α, β) of the log-likelihood for each document wi is
given by

L(γi, φi;α,Θ) =Eq′ [log p(πi|α)] + Eq′ [log p(zi|πi)] + Eq′ [log p(wi|β, zi)]

− Eq′ [log q
′(πi|γi)] − Eq′ [log q

′(zi|φi)] , (55)

where the terms 1, 2, 4, 5 are the same with (50), (51), (53) and (54) respectively, and the term 3
could be expanded as:

Eq′ [log p(wi|β, zi)] =

mi
∑

j=1

k
∑

c=1

V
∑

v=1

φicw
v
ij log βcv .

A.3.1 Variational Inference

To maximize with respect to φic, noticing
∑V

v=1 βcv = 1, we construct the Lagrangian as

L[φic] = miφic

(

Ψ(γic) − Ψ(
k
∑

l=1

γil) − log φic

)

+

mi
∑

j=1

V
∑

v=1

φicw
v
ij log βcv + λi(

k
∑

c=1

φic − 1) ,

where λi is the Lagrange multiplier. Taking derivative with respect to φic and setting it to zero,
the update equation for φic is given by

φic ∝ exp



Ψ(γic) − Ψ(

k
∑

l=1

γil) +
1

mi

mi
∑

j=1

V
∑

v=1

wvij log βcv



 , [i]n1 , [c]k1 ,

The solution for γic is the same with Fast MMNB, that is,

γic = αc +miφic , [i]k1 , [c]k1 .
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A.3.2 Parameter Estimation

To maximize with respect to βcv, we construct the Lagrangian as

L[βcv] =

n
∑

i=1

mi
∑

j=1

φicw
v
ij log βcv + λc(

V
∑

v=1

βcv − 1) .

Taking derivative with respect to βcv yields

βcv ∝

n
∑

i=1

φic

mi
∑

j=1

wvij , [c]k1 , [v]V1 .

The update equation for α is the same with (47).
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