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Abstract

Recent research has highlighted the practical benefits of subjective in-
terestingness measures, which quantify the novelty or unexpectedness of
a pattern when contrasted with any prior information of the data miner
(Silberschatz and Tuzhilin, 1995; Geng and Hamilton, 2006). A key chal-
lenge here is the formalization of this prior information in a way that
lends itself to the definition of an interestingness subjective measure that
is both meaningful and practical.

In this paper, we outline a general strategy of how this could be
achieved, before working out the details for a use case that is important
in its own right.

Our general strategy is based on considering prior information as con-
straints on a probabilistic model representing the uncertainty about the
data. More specifically, we represent the prior information by the max-
imum entropy (MaxEnt) distribution subject to these constraints. We
briefly outline various measures that could subsequently be used to con-
trast patterns with this MaxEnt model, thus quantifying their subjective
interestingness.

We demonstrate this strategy for rectangular databases with knowl-
edge of the row and column sums. This situation has been considered
before using computation intensive approaches based on swap random-
izations, allowing for the computation of empirical p-values as interest-
ingness measures (Gionis et al, 2007). We show how the MaxEnt model
can be computed remarkably efficiently in this situation, and how it can
be used for the same purpose as swap randomizations but computation-
ally more efficiently. More importantly, being an explicitly represented
distribution, the MaxEnt model can additionally be used to define ana-
lytically computable interestingness measures, as we demonstrate for tiles
(Geerts et al, 2004) in binary databases.

Keywords: Maximum Entropy Principle, Subjective Interestingness
Measures, Prior Information, Rectangular Databases, Swap Randomiza-
tions
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1 Introduction

1.1 Prior work on subjective interestingness

Prior information and interestingness of patterns Data mining prac-
titioners commonly have a partial understanding of the structure of the data
investigated. The goal of the data mining process is then to discover any addi-
tional structure or patterns the data may exhibit. Unfortunately, structure that
is trivially implied by the prior information available is often overwhelming, and
it is hard to design data mining algorithms that look beyond it.

For example, it should not be seen as a surprise that items known to be
frequent in a binary database are jointly part of many transactions, as this is
what should be expected even under a model of independence. Rather than
discovering such patterns that are implied by prior information, data mining is
concerned with discovering departures from this prior information.

Interestingness measures that take into account prior information in this way
are commonly referred to as subjective interestingness measures, first introduced
as a concept in Silberschatz and Tuzhilin (1995). In contrast with objective
interestingness measures (such as the support of an itemset and the confidence
of an association rule), they do not depend on the data alone but also on the prior
information of the data miner. An excellent overview of subjective and objective
interestingness measures for data mining can be found in Geng and Hamilton
(2006).

To define subjective interestingness measures, the ability to formalize prior
information is as important as the ability to contrast patterns with this infor-
mation thus formalized. In this paper, we mainly focus on the first of these
challenges: the task of designing appropriate models incorporating prior infor-
mation in data mining contexts. However, we will also outline various possible
approaches of how such a background model can be used to define subjective
interestingness measures, and we will demonstrate one in greater detail on a
practical use case.

Prior work on subjective interestingness measures Several authors have
already suggested ways to incorporate prior information in the data mining
process for this purpose of defining subjective interestingness measures.

In Silberschatz and Tuzhilin (1995), which introduces the idea of subjective
interestingness measures, and in later work (e.g. Padmanabhan and Tuzhilin,
1998, 2000), prior information is formalized as a set of beliefs, each of which
holds with a certain confidence. The beliefs they consider are of the form of
rules X → Y where X and Y are conjunctions of literals. Patterns in the
form A → B are then assessed for unexpectedness in a well-defined way with
respect to each belief. A disadvantage of this approach is that it is local in that
each belief is treated independently of the others. Furthermore, it is specifically
designed for patterns in the form of rules.

An approach that overcomes these problems was proposed in Jaroszewicz and Simovici
(2004), still for binary databases. They propose to use a Bayesian network model
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for the transactions to formalize background knowledge. They then use this
model to compute the difference between the expected frequency of an itemset
and its observed frequency in the data as a subjective measure of interestingness.

Despite its potential, this approach suffers from a few limitations. First,
it may not always be clear how the Bayesian network needs to be designed to
accord with the prior information. The approach is particularly impractical for
data mining practitioners unfamiliar with Bayesian networks. Second, it treats
transactions as i.i.d. random variables. And third and probably most seriously,
the variables in the Bayesian network are the items (or attribute-values), such
that prior information on individual transactions cannot be taken into account.

An approach that resolves all three these problems, albeit for particular types
of data and prior information, is presented in Gionis et al (2007). In this work,
the authors show how one can assess the significance of data mining results
in binary databases with respect to prior information on the row and column
sums. Their methodology relies on swap randomizations, which leave the row
and column sums invariant. By iteratively applying swap randomizations they
show how one can approximately sample from the uniform distribution over
all databases with row and column sums as specified by the prior information.
This can be used by computationally intensive approaches (e.g. Gentle, 2005) for
estimating the significance of data mining results as quantified by the empirical
p-value. Later this work was extended to real-valued data (Ojala et al, 2008)
and to more complex constraints besides row and column sums (Hanhijarvi et al,
2009).

The statistical assessment of data mining results using the randomization
methods from Gionis et al (2007), Ojala et al (2008), Mannila (2008), and Hanhijarvi et al
(2009) is extremely useful and deserves a central place in data mining practice.
However, it would be even more useful if a model for prior information could
be used to directly guide data mining algorithms toward the subjectively more
interesting patterns. Unfortunately, from a practical point of view, the use of
models that are defined implicitly in terms of invariants seems limited to post-
hoc analyses. Indeed, it seems hard to scale algorithms that need to explore an
entire search space of possible patterns if they need to assess each candidate by
means of a randomization test or by referring to a large number of randomized
data sets. Thus it is unclear if and how they could be used to define practical
measures of interestingness other than empirical p-values. A further and at least
as serious disadvantage of randomization methods is that their resolution is lim-
ited by the inverse of the number of randomized data sets considered. This is a
problem in the highly relevant region of small p-values where a high resolution
is important.

In contrast to this, an explicit analytical model capable of formalizing im-
portant types of prior information would enable one to assess patterns in an
analytical way rather than in a computationally intensive way. Interestingness
could then be quantified using exact hypothesis testing as in Gallo et al (2007,
2009), where a relatively simple independence model for items and transactions
was used as a null model formalizing prior information. Alternatively, informa-
tion theoretic principles could be applied to quantify the information content
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of a pattern, as done in Siebes et al (2006) for defining an objective interest-
ingness measure, but then with respect to a background model defined by the
prior information. We will argue that the results in this paper will make this
possible.

1.2 Contributions in this paper

In this paper, we present a methodology for efficiently computing explicitly rep-
resentable probabilistic models for general types of data, able to incorporate
broad classes of prior information. Our approach is based on the maximum en-
tropy (MaxEnt) principle (Jaynes, 1982). In Sec. 2, we first sketch the method-
ology in its full generality, and we briefly outline various ways in which such
a MaxEnt model could be used to define subjective interestingness measures.
This general framework is the first contribution in this paper.

In the second part of the paper we demonstrate this approach for rectangular
databases with constraints on the row and column marginals as prior informa-
tion, and for patterns in the form of tiles Geerts et al (2004). The purpose of
this second part is twofold. First, this particular use case is important in its own
right, and has received a significant amount of attention in the literature (e.g.
Gionis et al, 2007; Ojala et al, 2008; Hanhijarvi et al, 2009). Second, we hope
that elaborating on this use case may support and clarify the general approach
outlined in Sec. 2, thus underscoring its wider potential for the definition of
subjective interestingness measures also in other situations.

This second part of the paper is structured as follows. In Sec. 3, we derive
the MaxEnt model for rectangular databases under row and column sum con-
straints, and show how it can be computed remarkably efficiently. We do this for
binary, positive integer-valued and positive real-valued databases as it comes at
virtually no extra cost as compared to just dealing with binary data. In Sec. 4,
we relate these MaxEnt models to distributions defined implicitly by swap ran-
domizations. In particular, we prove invariance of these MaxEnt models to a
generalized type of swap randomization. In Sec. 5, we show that it is computa-
tionally cheap to sample randomized databases from the MaxEnt model, such
that it can be used as an efficient alternative to swap randomizations. More
importantly, we show how it can be used to define subjective interestingness of
tile patterns with respect to prior information on the row and column sums of
the database. In Sec. 6 we point out some interesting relations with literature.
And in Sec. 7 we provide experiments demonstrating the efficiency and scalabil-
ity as well as experiments to assess usefulness of the subjective interestingness
measure for tiles.

This paper significantly extends two unpublished technical reports (De Bie,
2009a,b), the first one about the maximum entropy modeling approach, the
second one primarily introducing a subjective interestingness measure of which
the one in the present paper is a refinement.
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2 Formalizing prior information, and subjective

interestingness measures: a general approach

In this Section, we introduce the MaxEnt modeling strategy at a general level
(Sec. 2.1), and outline ways in which such a probabilistic representation for
prior information could be used to define subjective interestingness measures
for patterns (Sec. 2.2).

We should stress that in this Section, we have no intention to be overly spe-
cific or focused on a particular type of data, prior information, or pattern type.
Instead, our goal is to outline some general principles and ideas, centred around
the formalization of prior information in a MaxEnt model. To become practical,
these ideas need be developed and specified further in additional research, and
we demonstrate this for a particular use case in the later Sections in this paper.

2.1 The maximum entropy principle to model prior infor-

mation

Here we will introduce the maximum entropy principle and its use for modeling
prior information in full generality. In Sec. 3 we will then apply this to the
special case of rectangular databases and prior information on the row and
column sums.

Let X be any countable set.1 Consider the problem of finding a probability
distribution P over the data x ∈ X that satisfies a set of linear constraints
implied by prior information. In particular, we will consider constraints of the
form:

∑

x

P (x)fi(x) = di, (1)

where fi are real-valued functions of the data. Regarding these functions fi as
properties of the data, these constraints could be the formalization of certain
‘expectations’ (in both the formal and informal meaning of the word) of a data
miner about these properties in the data. As mentioned earlier, we will give a
specific example in Sec. 3, but for now we will focus on the implications of such
a set of constraints on the shape of the probability distribution.

In general, these constraints will not be sufficient to uniquely determine
the distribution of the data. A common strategy to overcome this problem
is to search for the distribution that has the largest entropy subject to these
constraints, to which we will refer as the MaxEnt distribution. Mathematically,

1The results below can easily be extended for measurable sets as well, but we present them
for countable sets for notational simplicity.
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it is found as the solution of:

maxP (x) −
∑

x

P (x) logP (x), (2)

s.t.
∑

x

P (x)fi(x) = di, (∀i) (3)

∑

x

P (x) = 1, (4)

where the last constraint ensures that P (x) is properly normalized.
Originally advocated in Jaynes (1957, 1982) as a generalization of Laplace’s

principle of indifference, the choice for the MaxEnt distribution can be defended
in a variety of ways. The most common argument is that any distribution other
than the MaxEnt distribution effectively makes additional assumptions about
the data that reduce the entropy. As making additional assumptions biases the
distribution in undue ways, the MaxEnt distribution is the safest bet.

A lesser known argument, but not less convincing, is a game-theoretic one
(Topsøe, 1979). Assuming that the true data distribution satisfies the given con-
straints, it remarks that the Shannon-optimal compression code (e.g. Huffman)
designed based on the MaxEnt distribution minimizes the worst-case expected
coding length of a message coming from the true distribution. Hence, using the
MaxEnt distribution for designing a code is optimal in a robust minimax sense.

Besides these motivations for the MaxEnt principle, it is also relatively easy
to compute a MaxEnt model. Indeed, the MaxEnt optimization problem (2-4) is
convex, and can be solved using standard techniques from convex optimization
theory (Boyd and Vandeberghe, 2004). Let us use Lagrange multiplier µ for
constraint (4) and λi for constraints (3). Using λ to denote the vector containing
all Lagrange multipliers λi, the Lagrangian is then equal to:

L(µ,λ, P (x)) = −
∑

x

P (x) logP (x) (5)

+
∑

i

λi

(
∑

x

P (x)fi(x)− di

)
+ µ

(
∑

x

P (x) − 1

)
.

Equating the derivative w.r.t. P (x) to 0 yields the optimality conditions:

logP (x) = µ− 1 +
∑

i

λifi(x),

⇔ P (x) =
1

Z
exp

(
∑

i

λifi(x)

)
,

where we introduced a new variable Z = exp(1 − µ). The normalization con-
straint

∑
x
P (x) = 1 is often imposed constructively by choosing Z to be an

appropriate function of the other Lagrange multipliers λ, in particular:

Z(λ) =
∑

x

exp

(
∑

i

λifi(x)

)
. (6)

6



The function Z(λ) is known as the partition function. This leads to the final
form of the MaxEnt distribution as a function of the Lagrange multipliers λ:

P (x) =
1

Z(λ)
exp

(
∑

i

λifi(x)

)
. (7)

The resulting model is a member of the exponential family of distributions,
such that all existing theory for this family of distributions can be used (e.g.
Wainwright and Jordan, 2008). The optimal values of the Lagrange multipliers
λ can be found by minimizing the Lagrange dual objective. This Lagrange dual
is obtained by substituting Eq. (7) for P (x) in the Lagrangian (Eq. (5)). After
some algebra:

L(λ) = log(Z(λ))−
∑

i

λidi. (8)

Minimizing L(λ) thus yields the values for the Lagrange multipliers and thus
the MaxEnt distribution. In passing we note that it is easy to see that L(λ) is
equal to the negative log-likelihood of distribution from Eq. (7) on data x that
satisfies fi(x) = di. Hence, the MaxEnt distribution subject to constraints (3)
is equivalent to the maximum likelihood distribution of the form (7) fitted to
data for which the constraints fi(x) = di hold deterministically rather than in
expectation (e.g. Wainwright and Jordan, 2008).

The log-partition function log(Z(λ)) is well-known to be a convex function,
such that L(λ) is convex as well. Thanks to this, it turns out that minimizing
L(λ) can be done efficiently for a broad class of constraints, using standard tech-
niques for convex optimization (see Sec. 3.4) or using special purpose techniques
such as Iterative Proportional Fitting (e.g. Wainwright and Jordan, 2008).

A full discussion of the efficiency of the optimization of the Lagrange multi-
pliers in the most general form of the problem is beyond the scope of this paper.
Let us just point out that many results from the graphical models literature can
be borrowed to establish tractability results. Rather than staying at the general
level, we choose to fully explore a specific type of data and prior information of
particular interest to data mining in Sec. 3 below.

2.2 Using the MaxEnt model to define subjective inter-

estingness measures

Given a representation of prior information in the form the MaxEnt distribution,
subjective interestingness of a pattern can be quantified by contrasting it with
the MaxEnt distribution. This can be done by computing some measure of
unexpectedness of the pattern e.g. using hypothesis testing, or by relying on
information theory. Here is a non-exhaustive list of possibilities:

1. Self-information. A first option for quantifying interestingness of a pattern
relies on the probability of the pattern under MaxEnt model. The smaller
this probability is, the more surprising the pattern when contrasted with
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the prior information. Equivalently, the negative log-probability can be
used, which represents the coding length required to encode the pattern
with a Shannon optimal code with respect to the MaxEnt model. In
Shannon’s information theory, such a negative log-probability is known
as the self-information (e.g. Cover and Thomas, 1991). The larger this
quantity, the more information the pattern contains. Interestingly, in
thermodynamics the self-information is also known as surprisal (Tribus,
1961).

2. Information compression ratio. The self-information of a pattern does
not take into account the complexity of describing or communicating the
pattern to the data miner. This complexity could be formalized as the
description length of the pattern in a code that assigns longer code-words
to patterns that are perceived as more complex by the data miner. Then,
we can define a subjective interestingness measure as the ratio of the self-
information of the pattern given the MaxEnt model and the pattern’s
description length. This would correspond to some kind of compression
ratio: how much information is compressed in the description of a pattern?

3. P-value A third option is the probability of the pattern or a stronger
instantiation of the pattern to be present in the data, with respect to
the MaxEnt model as null hypothesis. This probability is known as a
p-value in statistics (e.g. Lehmann and Romano, 1995), and computing
the p-value is at the core of hypothesis testing. With the MaxEnt model
as null hypothesis, patterns with a small p-value are then those that are
maximally surprising given the prior information embedded in it. Hence,
in a certain well-defined sense these will be unexpected to the data miner.

4. P-value based on the likelihood ratio test. To use the previous approach,
a notion of pattern strength needs to be chosen as a test statistic, such
as the frequency of an itemset. Perhaps a more principled approach is
by relying on the ratio of the probability of the data under the MaxEnt
model, versus the probability of the data under an augmented model that
is corrected for the presence of the found pattern. The augmented model
can also be found using MaxEnt, with an additional constraint for the fact
that the pattern is there. Based on this likelihood ratio, a p-value can be
computed using a likelihood ratio test, if certain regularity conditions are
satisfied (e.g. Lehmann and Romano, 1995).

It seems hard to discuss any of these approaches more formally without being
more specific about the particular type of pattern concerned. For this reason, in
Sec. 5.2 we will demonstrate the second option (Information compression ratio),
which we regard as particularly promising, for the particular of tiles in binary
databases. Working out the details of the other approaches, and the connections
between them, could be the subject of further research on the topic of subjective
interestingness.
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3 MaxEnt Distributions for Rectangular Databases

In the rest of the paper, we will elaborate on the details of the outlined general
approach for specific types of data, prior information, and patterns. In the
current Section, we will apply the general MaxEnt modeling strategy to the
important case of rectangular databases. To this end, we will cast the prior
information in the general form of Eq. (1). We will investigate the specific form
of the resulting MaxEnt model, and show how it can be fitted in a remarkably
efficient way.

3.1 Notation

In the rest of this paper, we will denote the database using the matrix D with
m rows and n columns. To maintain generality, we will assume that all matrix
values belong to some specified set D ⊆ R

+, i.e. D(i, j) ∈ D. Later we will
choose the set D to be the set {0, 1} (to model binary databases), the set of
positive integers (to model integer-valued databases), or the set of positive reals
(to model real-valued databases). Other choices can be made, and it is fairly
straightforward to adapt the derivations accordingly. For notational simplicity,
in the subsequent derivations we will assume that D is discrete and countable.
However, if D is continuous the derivations can be adapted easily.

3.2 Swap randomizations and prior information for databases

For binary databases, it has been argued that row and column sums can of-
ten be assumed as prior information.2 Any pattern that can be explained by
referring to row or column sums in a binary database is then deemed uninfor-
mative. Previous work has introduced ways to assess data mining results based
on this assumption (Gionis et al, 2007; Mannila, 2008; Hanhijarvi et al, 2009).
These methods rely on the ability to sample random databases from the uniform
distribution over all databases that satisfy the prior information. To assess a
frequent itemset in the given database, they then compute the empirical p-value
as a subjective interestingness measure, defined as the fraction of the random
databases in which the itemset is at least as frequent as in the given database.

Unfortunately, sampling from this uniform distribution cannot be done in
a direct way. To overcome this, the authors randomize the given database
by iteratively applying elementary randomization operations: so-called swap

randomizations that transform any 2× 2 submatrix of the form

(
1 0
0 1

)
into

(
0 1
1 0

)
. (See Fig. 1 for a graphical illustration.) Clearly, such operations

leave the row and column sums invariant. Furthermore, Gionis et al (2007)
showed how the limit distribution of a Markov chain of random swap operations
is equal to the uniform distribution over all databases with the specified row and

2We refer to Gionis et al (2007) for a detailed argumentation, and to the experiments in
Sec. 7.3 of this paper for a particular use case
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Figure 1: The effect of a swap operation to a binary database.

column marginals. Hence, one can approximately sample from this distribution
by running this Markov chain for a sufficiently long time (although there are
no theoretical results on convergence rates). The swap operation has later been
generalized to deal with real-valued databases as well (Ojala et al, 2008), and
we will get back to this in Sec. 4.

The models we will develop in this paper are based on exactly these invariants
of the row and column sums, be it in a somewhat relaxed form: we will assume
that the expected values of the row and column sums are equal to specified
values. Mathematically, this can be expressed as:

∑

D∈Dm×n

P (D)



∑

j

D(i, j)


 = dri ,

∑

D∈Dm×n

P (D)

(
∑

i

D(i, j)

)
= dcj ,

where dri is the i’th expected row sum and dcj the j’th expected column sum.
Although they have been suggested for binary databases (Gionis et al, 2007),
and later extended to real-valued databases (Ojala et al, 2008), we will explore
the consequences of these constraints in broader generality, for various choices
for D.
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Importantly, it is easy to verify that these constraints are exactly of the type
of Eq. (1), such that the MaxEnt formalism is directly applicable.

3.3 MaxEnt matrix distributions with given expected row

and column sums

The MaxEnt distribution over the set ofm×n matrices D subject to constraints
on the expected row and column sums is thus found by solving:

maxP (D) −
∑

D

P (D) log(P (D)),

s.t.
∑

D

P (D)



∑

j

D(i, j)


 = dri , (9)

∑

D

P (D)

(
∑

i

D(i, j)

)
= dcj , (10)

∑

D

P (D) = 1. (11)

As shown in Sec. 2.1, the resulting distribution will belong to the exponential
family, and will be of the form of Eq. (7). Using Lagrange multipliers λr

i for
constraints (9) and λc

j for constraints (10) this yields:

P (D) =
1

Z(λr,λc)
exp

[
∑

i

λr
i



∑

j

D(i, j)


 +

∑

j

λc
j

(
∑

i

D(i, j)

)]
,(12)

=
1

Z(λr,λc)
exp

[
∑

i,j

D(i, j)(λr
i + λc

j)

]
,

=
1

Z(λr,λc)

∏

i,j

exp
(
D(i, j)(λr

i + λc
j)
)
, (13)

where Z(λr,λc) is the partition function, λr is the vector of Lagrange multi-
pliers λr

i for constraints (9), and λ
c the vector of Lagrange multipliers λc

j for
constraints (10).

Let us have a more detailed look at the partition function. Following Eq. (6),
it is equal to:

Z(λr,λc) =
∑

D∈Dm×n

∏

i,j

exp
(
D(i, j)(λr

i + λc
j)
)
,

=
∏

i,j

∑

D(i,j)∈D
exp

(
D(i, j)(λr

i + λc
j)
)
,

=
∏

i,j

Z(λr
i , λ

c
j),

11



where Z(λr
i , λ

c
j) =

∑
D(i,j)∈D exp

(
D(i, j)(λr

i + λc
j)
)
.

Plugging this into Eq. (13) yields:

P (D) =
∏

i,j

1

Z(λr
i , λ

c
j)

exp
(
D(i, j)(λr

i + λc
j)
)
.

This is a product of exponential family distributions for each of the elements in
the matrix D. The partition function Z(λr,λc) is the product of the partition
functions Z(λr

i , λ
c
j) of each of these individual distributions. Thus, we have

proved the following Theorem.

Theorem 1. The MaxEnt distribution for matrices D ∈ Dm×n subject to con-
straints on the expected row and column sums is of the form:

P (D) =
∏

i,j

Pij(D(i, j)), (14)

where

Pij(D(i, j)) =
1

Z(λr
i , λ

c
j)

exp
(
D(i, j)(λr

i + λc
j)
)

(15)

is a properly normalized probability distribution for the matrix element D(i, j)
at row i and column j. Hence, the MaxEnt model factorizes as a product of
independent distributions for the matrix elements.

It is important to stress that we did not impose independence at the outset.
The independence is a consequence of the MaxEnt objective.

Various particular choices for D will lead to various distributions, with ap-
propriate values for the normalization constant Z(λr

i , λ
c
j). Let us discuss three

examples in detail.

Bernoulli For D = {0, 1}, the partition function

Z(λr
i , λ

c
j) = 1 + exp

(
λr
i + λc

j

)
,

such that:

Pij(D(i, j)) =






exp(λr
i+λc

j)
1+exp(λr

i
+λc

j)
, if D(i, j) = 1,

1

1+exp(λr
i
+λc

j)
, if D(i, j) = 0.

(16)

This means that for D = {0, 1} the MaxEnt distribution for D reduces to
a product of independent Bernoulli distributions, with probability of success

equal to pij =
exp (λr

i+λc
j)

1+exp (λr
i
+λc

j
) for D(i, j).
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Table 1: Three possible domains for the elements of D, the corresponding parti-
tion functions in the MaxEnt distribution P (D) for the matrix element D(i, j),
and the resulting type of distribution for the matrix elements.

D Distribution Z(λr
i , λ

c
j) Parameter: Value

{0, 1} Bernoulli 1 + exp(λr
i + λc

j) success prob.:
exp(λr

i+λc
j)

1+exp(λr
i
+λc

j
)

N Geometric 1
1−exp(λr

i
+λc

j
) success prob.: 1− exp(λr

i + λc
j)

R
+ Exponential − 1

λr
i
+λc

j

rate param.: −(λr
i + λc

j)

Geometric For D = N, the partition function

Z(λr
i , λ

c
j) =

∞∑

k=0

exp
(
k(λr

i + λc
j)
)
,

=
1

1− exp(λr
i + λc

j)
,

assuming that λr
i + λc

j < 0 to ensure convergence of the sum. Thus:

Pij(D(i, j)) =
[
1− exp(λr

i + λc
j)
]
· exp

(
D(i, j)(λr

i + λc
j)
)
,

=
[
1− exp(λr

i + λc
j)
]
·
[
exp(λr

i + λc
j)
]D(i,j)

.

This means that for D = N the MaxEnt distribution for D reduces to a product
of independent geometric distributions, with probability of success equal to 1−
exp(λr

i + λc
j) for the matrix element D(i, j).

Exponential For D = R
+, the partition function

Z(λr
i , λ

c
j) =

∫ ∞

0

exp
(
x(λr

i + λc
j)
)
dx,

= − 1

λr
i + λc

j

,

assuming that λr
i + λc

j < 0 to ensure convergence of the integral. Thus:

Pij(D(i, j)) = −(λr
i + λc

j) · exp
(
D(i, j)(λr

i + λc
j)
)
.

This means that for D = R the MaxEnt distribution for D reduces to a product
of independent exponential distributions, with rate parameter equal to −(λr

i +
λc
j) for the matrix element D(i, j).
These results are summarized in Table 1.

3.4 Optimizing the Lagrange multipliers

We have now derived the shape of the models P (D), expressed in terms of the
Lagrange multipliers, but we have not yet discussed how to compute the values
of these Lagrange multipliers at the MaxEnt optimum.
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In Sec. 2.1, we outlined the general strategy to do this: the optimal values for
the Lagrange multipliers are found by minimizing the Lagrange dual as given
by Eq. (8). For concreteness, let us go through the mathematical details for
the case of a rectangular binary matrix: D ∈ {0, 1}m×n. There should be no
conceptual difficulties in adapting the derivations below for other choices of D,
and for conciseness these adaptations are omitted from this paper.

For D ∈ {0, 1}m×n, the Lagrange dual from Eq. (8) is equal to:

L(λr,λc) = log(Z(λr,λc))−
∑

i

λr
i d

r
i −

∑

j

λc
jd

c
j .

Using Z(λr,λc) =
∏

i,j Z(λr
i , λ

c
j) and Z(λr

i , λ
c
j) = 1 + exp(λr

i + λc
j), this gives:

L(λr,λc) =
∑

i,j

log(Z(λr
i , λ

c
j))−

∑

i

λr
i d

r
i −

∑

j

λc
jd

c
j ,

=
∑

i,j

log
(
1 + exp(λr

i + λc
j)
)
−
∑

i

λr
i d

r
i −

∑

j

λc
jd

c
j .

The optimal values of the parameters are easily found using standard meth-
ods for unconstrained convex optimization such as Newton’s method or (conju-
gate) gradient descent, possibly with a preconditioner (Shewchuk, 1994; Boyd and Vandeberghe,
2004). We will report computational results for two possible choices in Sec. 7.
Gradient descent type methods rely on the gradient of L, while Newton’s method
relies on the gradient as well as the Hessian. Both can easily be computed an-
alytically. The gradient is determined by the first order partial derivatives:

∂L

∂λr
i

=
∑

j

exp(λr
i + λc

j)

1 + exp(λr
i + λc

j)
− dri ,

∂L

∂λc
j

=
∑

i

exp(λr
i + λc

j)

1 + exp(λr
i + λc

j)
− dcj .

Note that these derivatives have a natural interpretation. Indeed, the sum∑
j

exp(λr
i+λc

j)

1+exp(λr
i
+λc

j
) is equal to the expected number of ones in the ith column for

the distribution with the current parameter values, and the partial derivative
∂L
∂λr

i

is equal to the difference between that expected number and the value dri
it needs to be as required by the constraints. The Hessian is determined by the
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second order partial derivatives, given by:

∂2L

∂λr
iλ

r
k

= 0 if i 6= k ,

∂2L

∂λc
jλ

c
l

= 0 if j 6= l ,

∂2L

∂λr2
i

=
∑

j

exp(λr
i + λc

j)(
1 + exp(λr

i + λc
j)
)2 ,

∂2L

∂λc2
j

=
∑

i

exp(λr
i + λc

j)(
1 + exp(λr

i + λc
j)
)2 ,

∂2L

∂λr
iλ

c
j

=
exp(λr

i + λc
j)(

1 + exp(λr
i + λc

j)
)2 .

The number of Lagrange multipliers to be optimized over, which is crucial for
the computational cost of e.g. Newton iterations, is equal to m+ n. While this
is sublinear in the size of the data mn, it is still a daunting number for practical
sizes of databases. However, the computational and space complexity can often
be further reduced, in particular when the numbers of distinct values of dri and
of dcj are small. Indeed, thanks to symmetry and convexity of L, if dri = drk for
specific i and k the corresponding optimal values of the Lagrange multipliers
λr
i and λr

k will be equal as well, and the same goes for the elements of λc. In
practice this allows one to drastically reduce the number of free variables, down
to the sum of the number of distinct expected row sums dri and the number of
distinct expected column sums dcj .

Especially for D = {0, 1}, almost in all practical cases this allows for a
massive reduction in computational complexity. The number of distinct row
and column sums can be upper bounded in terms of the dimensions of D, the
number of non-zero elements in D, and the largest row and column sums in D,
as quantified by the following Lemmas.

Lemma 1. In a binary matrix D ∈ {0, 1}m×n, the number of distinct row sums
m̃ is upper bounded by min(m,n + 1) and the number of distinct column sums
ñ is upper bounded by min(m+ 1, n).

Proof. Let us prove it for row sums only. Clearly the number of distinct row
sums is bounded by the total number of rows m. On the other hand, the
only possible values of the row sums are 0, 1, . . . , n, a total of n + 1 distinct
values.

Lemma 2. In a binary matrix D ∈ {0, 1}m×n with
∑

i,j D(i, j) = s (i.e. with

s ones), the number of distinct row sums m̃ is upper bounded by
√
2s, and the

same holds for the number of distinct column sums ñ.

Proof. Let us prove this bound for the number of rows by contradiction. Assume
that the number of different row sums is larger than

√
2s. This means that the
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number of ones in D is at least
∑√

2s
i=0 i =

√
2s+

√
2s

2

2 = s +
√

s
2 , if the distinct

row sums are 0, 1, . . . ,
√
2s and no row sum is equal to another except those

equal to 0. Since s +
√

s
2 > s, the assumption is incorrect and the number of

different row sums cannot be larger than
√
2s.

Lemma 3. In a binary matrix D ∈ {0, 1}m×n with largest row and column
sums equal to dr

max
and dc

max
respectively, the number of distinct row sums m̃

and the number of distinct column sums ñ are upper bounded by dr
max

+ 1 and
dc
max

+ 1 respectively.

Proof. This follows directly from the fact that row and column sums are integers
larger than or equal to 0 and at most equal to drmax and dcmax respectively.

Combining these Lemmas yields the following Theorem.

Theorem 2. In a binary matrix D ∈ {0, 1}m×n with
∑

i,j D(i, j) = s (i.e.
with s ones), and with largest row and column sums equal to dr

max
and dc

max

respectively, the following inequalities hold for the number of distinct row sums
m̃ and the number of distinct column sums ñ:

m̃ ≤ min
{
m,n+ 1,

√
2s, dr

max
+ 1
}
,

ñ ≤ min
{
m+ 1, n,

√
2s, dc

max
+ 1
}
.

For D the set of integers, similar bounds can be obtained.
Let us thus partition the rows in groups of equal value of dri , and for the k’th

group corresponding to expected row sum d̃rk let us use the Lagrange multiplier

λ̃r
k, with m̃k denoting the number of rows in that group. Similarly we can define

d̃rk, λ̃
c
l and ñl. Then we can express the Lagrange dual as:

L(λ̃
r
, λ̃

c
) =

∑

k,l

m̃kñl log
(
1 + exp(λ̃r

k + λ̃c
l )
)
−
∑

k

m̃kλ̃
r
kd̃

r
k −

∑

l

ñlλ̃
c
l d̃

c
l .

The gradient is easily calculated to be given by:

∂L

∂λ̃r
k

=
∑

l

m̃kñl

exp(λ̃r
k + λ̃c

l )

1 + exp(λ̃r
k + λ̃c

l )
− m̃kd̃

r
k,

∂L

∂λ̃c
l

=
∑

k

m̃kñl

exp(λ̃r
k + λ̃c

l )

1 + exp(λ̃r
k + λ̃c

l )
− ñld̃

c
l ,

and the Hessian elements are computed in a similar way.
The computational complexity of computing the gradient as well as the

Hessian are O(m̃ñ). Applying Newton’s method then requires solving a linear
system of m̃+ñ equations, with computational complexity O((m̃+ñ)3) although
more efficient approximation methods such as conjugate gradient can be used
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(e.g. Boyd and Vandeberghe, 2004). Combining this with Theorem 2 yields

an overall worst-case complexity of at most O(
√
s3) per iteration for Newton’s

method and at most O(s) for first order methods such as gradient descent. The
space complexity for Newton’s method is determined by the size of the Hessian,
such that it is bounded by O(s) and thus of the order of the size of the database
in sparse representation. For gradient-based or conjugate gradient methods, it is
bounded by the size of the gradient O(

√
s). As we will see in the experiments,

these results make the MaxEnt approach amenable for practical problems of
very large scale.

The reader may be left with one concern: the fact that the MaxEnt model
is a product distribution of independent distributions for each D(i, j) seems
to suggest that parameters need to be stored for each of these m × n element
distributions. However, it should be pointed out that one does not need to store
the value of λr

i + λc
j for each pair of i and j. It suffices to store just the λr

i and
λc
j to compute the probabilities for any D(i, j) in constant time. Hence, the

space required to store the resulting model is O(m+n), sublinear in the size of
the data.

4 The Invariance of the MaxEnt Matrix Distri-

bution to δ-Swaps

The MaxEnt models introduced in Sec. 3 are explicitly represented probability
distributions. As a result, they are useful for defining analytically computable
measures of interestingness, as outlined in Sec. 2.2, and we will demonstrate
this by designing a concrete interestingness measure in Sec. 5.2. Still, it is
instructive to point out some relations between our MaxEnt models and the
previously proposed swap randomization approaches and generalizations.

4.1 δ-swaps: a randomization operation on matrices

First, let us generalize the definition of a swap as follows.

Definition 1 (δ-swap). Given an m× n matrix D, a δ-swap for rows i, k and
columns j, l is the operation that adds a fixed number δ to D(i, k) and D(j, l)
and subtracts the same number from D(i, l) and D(j, k).

Of course, for a δ-swap to be useful, it must be ensured that D(i, j) +
δ,D(k, j) − δ,D(i, l) − δ,D(k, l) + δ ∈ D. We will refer to such δ-swaps as
allowed δ-swaps.

Definition 2 (Allowed δ-swap). A δ-swap for rows i, k and columns j, l is said
to be allowed for a given matrix D over the domain D iff D(i, j) + δ,D(k, j)−
δ,D(i, l)− δ,D(k, l) + δ ∈ D.

Clearly, an allowed δ-swap leaves the row and column sums invariant. The
following Theorem is more interesting.
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Theorem 3. The probability of a matrix D under the MaxEnt distribution
subject to equality constraints on the expected row and column sums is invariant
under allowed δ-swaps applied to D.

Proof. It is easily verified from Eq. (15) that:

Pij(D(i, j)) · Pil(D(i, l)) · Pkj(D(k, j)) · Pkl(D(k, l))

= Pij(D(i, j) + δ) · Pil(D(i, l)− δ) · Pkj(D(k, j)− δ) · Pkl(D(k, l) + δ)

for any δ, rows i, k and columns j, l.

This means that for any 2× 2 submatrix of D, adding a given number to its
diagonal and subtracting the same number from its off-diagonal elements leaves
the total probability of the data under the MaxEnt model invariant.

More generally, the MaxEnt distribution assigns the same probability to any
two matrices that have the same row and column sums. This can be seen from
the fact that Eq. (12) is independent from D as soon as the row and column
sums

∑
j D(i, j) and

∑
i D(i, j) are given. In statistical terms: the row and

column sums are sufficient statistics of the data D for the MaxEnt distribution.
We can formalize this in the following Theorem:

Theorem 4. The MaxEnt distribution for a matrix D, conditioned on con-
straints on row and column sums of the form

∑

j

D(i, j) = dri ,

∑

i

D(i, j) = dcj ,

denoted as P (D|
∑

j D(i, j) = dri ,
∑

i D(i, j) = dcj), is identical to the uniform
distribution over all databases satisfying these constraints.

This Theorem further clarifies the connection between the uniform distri-
bution over all matrices with fixed row and column sums, as sampled from
in Gionis et al (2007); Ojala et al (2008) using swap randomizations, and the
MaxEnt distribution.

4.2 Special cases of δ-swaps

The invariants that have been used before in computation intensive approaches
for defining null models for databases are special cases of these more generally
applicable δ-swaps.

For binary databases the conditionD(i, j)+δ,D(k, j)−δ,D(i, l)−δ,D(k, l)+

δ ∈ D corresponds to the fact that either δ = −1 andD(i, k; j, l) =

(
1 0
0 1

)
, or

δ = 1 and D(i, k; j, l) =

(
0 1
1 0

)
. Then, the δ-swap is identical to a swap in a

binary database. This shows that the MaxEnt distribution of a binary database

18



is invariant under swaps as defined in Gionis et al (2007). For positive real-
valued databases, the δ-swap operations reduce to the Addition Mask method
in Ojala et al (2008).

5 Using the MaxEnt model: Randomizing Databases,

and Subjective Interestingness of Tiles

In this Section we will describe how the MaxEnt model from Sec. 3 allows one
to take prior information effectively into account in the data mining process, for
concreteness focusing on binary databases. First we show how it can be used
to randomize databases highly efficiently, such that it is a fast alternative to
swap randomizations. Subsequently, we define a new interestingness measure
for tiles in binary databases when contrasted with prior information on the row
and column sum, based one of the ideas presented in Sec. 2.2.

5.1 Randomizing binary databases

The (δ-)swap operations discussed in the previous Section, being simple invari-
ants of the MaxEnt distribution, can be used for randomizing any of the types of
databases discussed in this paper. This being said, it should be reiterated that
the availability of the MaxEnt distribution should make randomizing the data
using δ-swaps unnecessary. Should it be needed to generate randomizations of a
given database, one can instead sample directly from the MaxEnt distribution,
thus avoiding the computational cost and potential convergence problems faced
in randomizing the data. The thus randomized databases can be used exactly
as proposed in Gionis et al (2007) for the assessment of data mining results.

A randomized binary database can be sampled directly from the MaxEnt
model by looping through all database entries and sampling a Bernoulli ran-
dom variable with success probability Pij(D(i, j) = 1). The complexity of this
approach is O(mn)—prohibitive for large sparse databases.

Fortunately, a faster approach exists, based on the observation that the
number of experiments between two successes in a series of Bernoulli experi-
ments is geometrically distributed. We can sample a sparse representation of a
large number of Bernoulli random variables by sampling these so-called inter-
arrival-times from the geometric distribution. In this way, the time required
is proportional to the number of successes in the set of Bernoulli experiments,
rather than to the total number of Bernoulli experiments.

This approach can only be used if all Bernoulli random variables have the
same success probability, which is not true for the success probabilities Pij(D(i, j) =
1) of the entries under the MaxEnt model. However, two database entries will
have a different success probability only if either their column sums or their
row sums (and thus the associated Lagrange multipliers) are different. From
Lemma 2, it is immediate that the number different combinations of row and
column sums is m̃ñ ≤ (

√
2s)2 = 2s, i.e. at most proportional to the number of

non-zeros in the original matrix.
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Putting things together, this means that a random database can be sampled
from the MaxEnt model using a double for-loop over all distinct λ̃r

i and all dis-

tinct λ̃c
j , with in total at most 2s combinations. For each of these combinations,

all entries in intersections of the rows and columns with these Lagrange mul-
tipliers can be sampled efficiently using the geometric distribution as outlined
above.

The total complexity thus consists of two components: sampling the geo-
metric distribution, and the overhead of looping over all combinations of row
and column Lagrange multipliers. The latter clearly has a complexity bounded
by s. The former has a complexity proportional to the number of non-zeros
in the sampled matrix, which is proportional to s in expectation and tightly
concentrated around it. Hence, the expected complexity is O(s) with the actual
complexity tightly concentrated around this.

We should point out that sampling from the MaxEnt model cannot be used
as a substitute for swapping if the row and column sums need to be preserved
exactly rather than in expectation. This may be the case for categorical data
represented by a binary matrix where each column corresponds to an attribute-
value. However, in that case a MaxEnt model can be fitted on the categorical
representation of the data. Then the constraints will not be on the row and
column marginals, but on the number of times each of the attribute values is seen
for each of the attributes. Without going into detail, the MaxEnt distribution
would then be a product of categorical distributions (one for each database
entry), rather than a product Bernoulli distributions.

5.2 The MaxEnt model to define interestingness of tiles

The above shows that the MaxEnt model can be used as an alternative to
swap randomizations for the generation of randomized versions of databases. A
comparison with swap randomizations for this purpose of randomizing databases
can therefore be made, and the empirical results reported in Sec. 7 show that
the MaxEnt model allows one to generate randomizations more efficiently than
using the swap randomizations strategy.

However, what is more important is that the explicit analytical nature of
the MaxEnt model allows one to use it in situations where swap randomiza-
tions would be impractical, such as for defining new and subjective measures of
interestingness of patterns.

To demonstrate the use of the MaxEnt model for this purpose, we here
work out a specific example. In particular, we will focus on binary databases
D ∈ {0, 1}m×n and a kind of pattern known as a tile (Geerts et al, 2004) that is
denoted as τ and defined as an ordered pair of a set of rows I ⊆ {1, . . . ,m} and
a set of columns J ⊆ {1, . . . , n}, i.e. τ = (I, J). We say that a tile τ = (I, J)
is present in the database D, denoted as τ ∈ D, iff D(i, j) = 1 for all i ∈ I

and j ∈ J . Furthermore, we say that the database entry at row i and column
j is contained in a tile τ = (I, J) iff i ∈ I and j ∈ J , and we denote this more
concisely as (i, j) ∈ τ .
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Below we will define a measure of interestingness for tiles and extend these
ideas also to sets of tiles. Our approach is based on the second option in Sec. 2.2:
computing the compression ratio of information embodied by the statement that
a tile is present in the database. In order to quantify this, we need to quantify
two things: the self-information of a tile pattern with respect to the MaxEnt
model representing the prior information, and its description length representing
its complexity as perceived by the data miner.

5.2.1 The self-information of a tile

Let us try to intuitively quantify the amount of information conveyed to a data
miner if he is told about the presence of a tile in the database. We argue that it
could be formalized by the prior belief the data miner had about the presence
or absence of the tile. The most natural way of formalizing this is to use a
background distribution representing the data miner’s prior expectations, and
to compute the probability Pr(τ ∈ D) of the tile-pattern under this distribution.
The smaller Pr(τ ∈ D), the more information this tile-pattern contains.

A more convenient way of quantifying this is as the negative log-probability,
known as the self-information in Shannon’s information theory (Cover and Thomas,
1991):

SelfInformation(τ) = − log(Pr(τ ∈ D)), (17)

where the probability is taken with respect to the background distribution. If
a pattern is more interesting as its probability is smaller, it is equivalently
more interesting as its self-information is larger, since minus the logarithm is a
monotonically decreasing function.

The self-information is the number of bits (if a base 2 logarithm is used) that
is required to encode a particular outcome of a random variable in a Shannon-
optimal code. Here that random variable is the indicator variable indicating
presence or absence of the tile in the database. Besides its useful interpretation
as a code length, the self-information has an important practical advantage
over the probability of the presence of the tile as a measure of information
content: the logarithm maps extremely small probabilities to numerically more
manageable values.

For the MaxEnt model subject to row and column sums, the self-information
of a tile pattern can be computed very conveniently by relying on Eqs. (14-16):

SelfInformation(τ) = −
∑

(i,j)∈τ

log(pij), (18)

where

pij =
exp

(
λr
i + λc

j

)

1 + exp
(
λr
i + λc

j

) . (19)

I.e., the self-information is equal to the sum of the negative log-probabilities
that the database entry D(i, j) = 1, summed over all row-column pairs (i, j) in
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the tile. The fact that it reduces to a simple sum is due to the independence of
the database entries D(i, j) under the MaxEnt distribution.

5.2.2 The description length of a tile

A data miner is never merely interested in receiving as much information as
possible. Indeed, the best way to achieve this would be to communicate the
entire database to the data miner, which would be of little use. Instead, a data
miner will be interested in hearing about patterns that convey new information
as concisely as possible.

To quantify this, we also need to consider the inherent description length
of the pattern, in this case the tile τ = (I, J), or equivalently its set of rows
I and set of columns J . A sensible way to describe a set of rows I would be
to assume a probabilistic model in which rows occur independently in I, each
with a certain probability p (see below for more details). Then the description
length for the set I under a Shannon-optimal code with respect to this model
is given by:

DescriptionLength(I) = −
∑

i6∈I

log(1− p)−
∑

i∈I

log(p)

= −(m− |I|) log(1 − p)− |I| log(p),

= |I| log
(
1− p

p

)
+m log

(
1

1− p

)
,

Doing the same for the set of columns J and combining both descriptions, the
description length for a tile τ = (I, J) is given by:

DescriptionLength(τ) = DescriptionLength(I) + DescriptionLength(J),

= (|I|+ |J |) log
(
1− p

p

)
+ (m+ n) log

(
1

1− p

)
.(20)

This means that the description length of a tile is equal to its circumference
|I| + |J | times a constant, plus another constant term, which makes intuitive
sense as a model for the perceived complexity of a tile.

The probability parameter p can be set by the data miner to bias the search
toward larger or toward smaller tiles. Indeed, if p is small, the constant com-

ponent (m + n) log
(

1
1−p

)
of a tile description length is small while the vari-

able component (|I| + |J |) log
(

1−p
p

)
is large, thus yielding a short description

length for tiles with a small circumference as compared to large ones. In our
experiments, we set it equal to the probability that D(i, j) = 1 for i and j

sampled uniformly at random, which is equal to the density of the database
p = 1

mn

∑
i,j D.
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5.2.3 The compression ratio of a tile as interestingness measure

The interestingness of a tile can now be quantified as the ratio with which
information is compressed in the tile pattern:

CompressionRatio(τ) =
SelfInformation(τ)

DescriptionLength(τ)
. (21)

This ratio expresses the number of bits of information received by the data
miner (with respect to the MaxEnt model), per bit received to describe the
tile τ . Tiles that have the largest compression ratio are thus most efficient at
communicating aspects of the data the data miner did not expect a priori.

5.2.4 Finding interesting sets of tiles

It is well-known that the set of individually most interesting patterns is often
not the most interesting set of patterns, regardless of which interestingness
measure is used (see e.g. De Raedt and Zimmermann (2007)). This is due to
redundancies between the patterns that are individually interesting. So the
question arises if we can also use the above tools to define the interestingness
of a set of tiles T = {τ1, . . . , τN}. It turns out the approach generalizes easily.
Furthermore, it yields an additional formal argument in favour of using the ratio
of the self-information and description length as interestingness measure for an
individual tile.

Describing a set of tiles requires one to describe each of the tiles in the
set. Hence, the description length of a set of tiles is quantified by the sum of
the description lengths of each of the tiles individually. Slightly overloading
notation, for a set of tiles T = {τ1, . . . , τN}:

DescriptionLength(T ) =
∑

i=1:N

DescriptionLength(τi).

The self-information of a set of tiles is generalized as the negative log-
probability that all tiles in the set are present in the database. Due to the
independence of the database entries under the MaxEnt distribution, this is
equal to the sum of the negative log-probabilities that D(i, j) = 1 for all the
database entries (i, j) belonging to some tile τ ∈ T . Formally:

SelfInformation(T ) = −
∑

(i,j):∃τ∈T with (i,j)∈τ

log(pij),

with pij as defined in Eq. (19).
In practice, we argue that a data miner has a bounded capacity of taking

in and processing patterns. Given this capacity, the data miner would like to
receive as much information as possible. In this setting, tile set mining can be
formalized by the following optimization problem:

max
T

SelfInformation(T ),

s.t. DescriptionLength(T ) ≤ u
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for some upper bound u, representing the data miner’s capacity.
Interestingly, this problem can be reduced to the (weighted) budgeted max-

imum coverage problem (Khuller et al, 1999), which is a weighted variant of
the maximum set coverage problem. In that problem, a universe of elements is
given and with each element a weight is associated. Furthermore, a collection
of subsets of the universe is given, each of which has a specified cost. The task
is to select a set of subsets from the collection so as to maximize the sum of the
weights of the elements in the union of these selected subsets, while respecting
an upper bound on the sum of the costs of the selected subsets.

To reduce our tile mining problem to the budgeted maximum coverage prob-
lem, the elements in the universe are the database entries that are equal to 1.
The collection of subsets is given by the collection of all tiles present in the
database. The weight of the database entry at position (i, j) is equal to the
contribution it makes to the information content of a tile containing it, equal to
− log(pij). And the cost of a tile is equal to its description length.

The budgeted maximum coverage problem is a hard combinatorial problem.
Fortunately, it can be approximated well by using an efficient greedy algorithm
(see Khuller et al (1999) for details). The criterion to greedily select a tile τk for
inclusion as k’th tile in the set is the ratio of the sum of the weights − log(pij)
of database entries (i, j) ∈ τk not yet contained in earlier selected tiles, versus
the description length of τk. Formally, with

SelfInformation+(τk) = −
∑

(i,j)∈τk and (i,j) 6∈τl:l<k

log(pij),

in iteration k of the greedy algorithm selects the tile τk maximizing the CompressionRatio+(τk)
defined as follows:

CompressionRatio+(τk) =
SelfInformation+(τk)

DescriptionLength(τk)
.

In the first iteration, this selection criterion coincides with the interestingness
measure CompressionRatio(τ) as defined earlier, thus corroborating our choice
for the this ratio as interestingness measure.

Note that upon selection of a tile τk in iteration k, the CompressionRatio+(τ)
of any other yet unselected tile can only decrease. This can be exploited by the
algorithm by keeping all yet unselected tiles in a sorted list, sorted according to
their last updated value of SelfInformation+(τ). Then, to select the next best
tile, the tile at the top of this list is considered and the updated value of its
CompressionRatio+(τ) is computed. If this value is still larger than the subse-
quent tile in the list, we can be sure it will remain so even after all subsequent
ones are updated too, and it can be selected as the k + 1’st tile. Otherwise, it
must be inserted in the list to keep it sorted, and the second tile in the list is
considered. This powerful idea was first introduced in Minoux (1978).

The approximation quality of this greedy algorithm is such that any set
of k top-ranked tiles in this list has a self-information that is at least 1 − 1

e

times the maximum self-information that can be achieved by a set of tiles with
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a description length that is not longer. Note that this means that the upper
bound u on the total description length of the set of tiles does not need to be
specified in advance. A data miner can keep querying for the next tile in the
list until satisfied, and be sure that all tiles seen so far constitute a tile set that
conveys near to the maximum amount of information given its total description
length.

6 Discussion

In this Section we point out how the MaxEnt modeling strategy from Sec. 3
can be used almost directly for modeling network adjacency matrices, and we
discuss some relations with the data mining and random networks literature.

6.1 Networks adjacency matrices as a special case of rect-

angular databases

Networks can be represented using their adjacency matrix. A swap operation
applied to this adjacency matrix corresponds to swapping a pair of edges i →
j and k → l, yielding a new pair of edges i → l and k → i. Such edge
swap operations preserve the in- and out-degree of all nodes. They have been
introduced and used for the statistical assessment of network patterns, similar
to the use of swap randomizations in databases (Milo et al, 2002).

All theory developed this paper for rectangular databases can be applied
with minor changes to various types of networks. They can be unweighted or
weighted, directed or undirected (using a symmetricity constraint), with and
without self-loops (by constraining the diagonal to contain zeros only).

We will not go into further details here. However, because of the importance
of networks, in Sec. 7 we will report some empirical results on networks as well.

6.2 Related literature

In the Sec. 1.1 we discussed prior work on subjective interestingness measures.
Here we wish to highlight some further connections with the literature.

6.2.1 Literature related to the MaxEnt model

It is instructive to point out how some existing models are related to particular
cases of the MaxEnt models introduced in this paper.

Most importantly, the MaxEnt model for binary matrices introduced in
this paper is formally identical to the Rasch model, known from psychomet-
rics (Rasch, 1961). This model was introduced to model the performance of
individuals (rows) to questions (columns) in a questionnaire. The matrix ele-
ments indicate which questions were answered correctly or incorrectly for each
individual. The Lagrange multipliers are interpreted as persons’ abilities for
the row variables λr

i , and questions’ difficulties λc
j . Somewhat remarkably, the

model was not derived from the MaxEnt principle but stated directly.
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A similar connection exists with the so-called p∗ models from social network
analysis (Robins et al, 2007). Although motivated differently, the p1 model in
particular is formally identical to our MaxEnt model when applied to adjacency
matrices for unweighted networks.

Thus, the present paper provides an additional way to look at these widely
used models from psychometrics and social network analysis. Furthermore, as
we have shown, the MaxEnt approach suggests generalizations, in particular
towards non-binary databases and weighted networks.

When applied to adjacency matrices of networks, the MaxEnt model is re-
lated to random network models for networks with prescribed degree sequences
(see Newman (2003) and references therein). The most similar model to the
ones discussed in this paper is the one from Chung and Lu (2004). In this pa-
per, the authors propose to assume that edge occurrences are independent, with
each edge probability proportional to the product of the degrees of the pair of
nodes considered. In the notation of the present paper:

P (D) =
∏

i,j

P (D(i, j)) with P (D(i, j)) =
didj

s
,

where s =
∑

i di. Also for this model the constraints on the expected row and
column sums are satisfied.

It would be too easy to simply dismiss this model by stating that among
all distributions satisfying the expected row and column sum constraints, it is
not the maximal entropy one, such that it is biased in some sense. However,
this drawback can be made more tangible: the model represents a probability
distribution only if maxi,j didj ≤ s, which is by no means true in all practical
applications, in particular in power-law graphs. This shortcoming is a symptom
of a bias of this model: it disproportionally favors connections between pairs
of nodes both of high degree, such that for nodes of too high degrees the edge
‘probability’ suggested becomes larger than 1. A brief remark considering a
similar model for binary databases was made in Gionis et al (2007), where it
was dismissed by the authors on similar grounds.

The uses of the maximum entropy principle in statistics are to numerous
to list (Jaynes (1957, 1982) are good starting points). Of particular interest
to this paper is the prior use of the maximum entropy objective as a regu-
larizer in image reconstruction, and more specifically in computer tomography
(e.g. Gull and Skilling, 1984). Here, the intensity distribution over the image is
regarded as a probability distribution, to be inferred from integrals of this dis-
tribution along various paths. This is similar to the MaxEnt model for binary
databases presented in the current paper, where the paths correspond to the
rows and columns.

The maximum entropy principle has also been used before in data mining,
albeit it for a different purpose and in a different manner than in this paper
(e.g. not for the incorporation of prior information into a background model).
For example in Tatti (2008) the frequency of an itemset was contrasted with an
estimate based on the frequency of all its subsets, estimated using the maximum
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entropy principle. In that paper an itemset was considered more interesting
when the actual and estimated frequency differed more strongly, thus defining
an objective interestingness measure. In Savinov (2004) a similar maximum
entropy model had already been used to come up with upper and lower bounds
on the possible support values for itemsets. In Pavlov et al (2003), the maximum
entropy principle was used for query count approximation on binary databases.
Here, the number of results of a query was estimated by relying on probabilistic
models of the rows (transactions) in the database. One of the probabilistic
models considered in this paper was the maximum entropy model subject to
the knowledge of the frequency of the frequent itemsets. For computational
reasons, the maximum entropy model here was computed at query time, for
just the small subset of variables involved in the query.

6.2.2 Literature related to the compression ratio as interestingness

measure

The self-information described in Sec. 5.2 is most strongly related to the surface
of a tile (Geerts et al, 2004). Indeed, if the expected row sums are all equal
and similarly for the column sums, Pr(D(i, j) = 1) under the MaxEnt model
is constant throughout the database and the self-information of a tile is simply
proportional to its size |I|× |J |. In Geerts et al (2004), each tile was attributed
an equal cost as well, and the problem of finding an interesting set of tiles was
formalized as finding the set of tiles of a given maximal size that maximizes
the number of database entries covered. Then it was observed that solving this
optimization problem can be approximated using an (unweighted) budgeted
maximum coverage problem.

Hence, our method can be regarded as a refinement of tiling databases in
two ways: by giving each database entry a different weight (related to the
MaxEnt distribution), and by giving each tile a different cost (depending on its
description length). These two modifications make a dramatic difference in the
subjective quality of the result, as demonstrated in Sec. 7.3.

Another method that is somewhat related is KRIMP (Siebes et al, 2006),
which searches for a set of itemsets that allow one to compress a database. This
approach is motivated by the minimum description length principle, regarding
data mining essentially as a compression process: a pattern set is considered
(objectively) interesting if it has a short description length and simultaneously
allows one to describe the data concisely. This leads to objective interestingness
measures for patterns. In our approach, we are also searching for a pattern set
with a small description length. However, we are not concerned with describing
the entire data as concisely as possible, but instead we want to concisely describe
unanticipated aspects of the data using the pattern set. This makes the resulting
interestingness measure subjective in nature.

Lastly, we should note that in a recent conference paper that however did
not discuss the MaxEnt model in detail, we introduced a similar measure of
interestingness for noisy tiles (Kontonasios and De Bie, 2010), which have also
been discussed by other authors in different contexts, e.g. in Gionis et al (2004)
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and Miettinen et al (2008). However, in the current paper we chose to present
an interestingness measure for noise-free tiles, as it is sufficient to illustrate the
general framework from Sec. 2 without risking to overload the reader by the
technicalities related to noisy tiles.

7 Experiments

In this Section we assess the computational cost of fitting the MaxEnt model
from Sec. 3 for given expected row and column sums. We also assess the cost
and empirical properties of sampling random databases from the MaxEnt model,
and we empirically compare this to swap randomizations. Additionally, we will
show that the MaxEnt model can be fitted efficiently to very large networks as
well. Finally, we will assess the compression ratio as a subjective interestingness
measure for tiles by using it for three document databases.

All experiments were done on a 2GHz Pentium Centrino with 1GB Memory,
and the code used for each of the experiments will be made freely available on
www.tijldebie.net/software/maxent.

7.1 The MaxEnt model for binary databases

We report empirical results on ten databases: seven databases commonly used
for evaluation purposes (Retail (Brijs et al, 1999), Mushroom, Pumsb, Pumsb
star, Connect (Asuncion and Newman, 2007), T10I4D100K, and T40I10D100K
(Agrawal and Srikant, 1994)), as well as the following three textual datasets
turned into databases by considering words as items and documents as transac-
tions:

ICDM. All ICDM paper abstracts until 2007. Each abstract is represented by
a transaction and words are items, after stop word removal and stemming.

KDD. All KDD paper abstracts between 2001 and 2008 (from all sessions)
downloaded from the ACM website. Each abstract is represented by a
transaction and words are items, after stop word removal and stemming.

Pubmed. All Pubmed abstracts retrieved by querying with the search query
“data mining”, after stop word removal and stemming.

Some statistics are gathered in Table 2. The Table also mentions support thresh-
olds used in some of the experiments reported below, as well as the numbers of
closed itemsets satisfying these support thresholds.

For each of these databases we computed the MaxEnt model with expected
row and column sums equal to the observed row and column sums in the data.

Fitting the MaxEnt model The method we used to fit the model is a pre-
conditioned gradient descent method with Jacobi preconditioner (e.g. Shewchuk,
1994), implemented in C++. It is conceivable that more sophisticated methods
will lead to significant further speedups (e.g. methods discussed in Boyd and Vandeberghe
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Table 2: Some statistics for the databases investigated: the number of items
(columns) and transactions (rows) in the database, the support threshold used in
the experiments involving closed itemset mining, the resulting number of closed
itemsets, and the average length of each transaction (row) in the databases.

# items # trans- support # closed average
actions used itemsets transaction

length
ICDM 4,976 859 5 (0.6%) 365,249 48.9
KDD 6,154 843 5 (0.6%) 2,787,847 65.2

Pubmed 12,661 1,683 10 (0.6%) 1,245,454 74.1
Mushroom 120 8,124 81 (1%) 78,362 23.0

Retail 16,470 88,162 9 (0.01%) 191,088 10.3
Pumsb 7,117 49,046 34,332 (70%) 242,001 74.0

Pumsb star 7,117 49,046 14,714 (30%) 16,486 50.5
Connect 130 67,557 40,534 (60%) 68,349 43.0

T10I4D100K 1,000 100,000 100 (0.1%) 26,962 10.0
T40I10D100K 1,000 100,000 1,000 (1%) 65,236 40.0

(2004), many of which have guaranteed super-linear convergence), but this one
is empirically fast enough and has the advantage of being particularly easy to
implement.

To illustrate the speed to compute the MaxEnt distribution, Fig. 2 shows
plots of the convergence of the squared norm of the gradient to zero, for the
first 25 iterations. The initial value for all Lagrange multipliers was chosen to
be equal to 0. Noting the logarithmic vertical axis, the convergence appears
exponential. The lower plot in Fig. 2 shows the convergence of the Lagrange
dual objective to its minimum over the iterations, a very fast convergence in
just a few iterations.

In all experiments we stopped the iterations as soon as the normalized
squared norm of the gradient became smaller than 10−12, which is close to
machine accuracy and we believe it is accurate enough for all practical pur-
poses. The number of iterations required and the overall computation time are
summarized in Table 3.

Assessing data mining results Here we illustrate the use of the MaxEnt
model for assessing data mining results in the same spirit as Gionis et al (2007).
Figure 3 plots the number of closed itemsets retrieved on the original data as
a function of the itemset size. Additionally, it shows averages with 5th-95th
percentile error bars for the results obtained on randomly sampled databases
from the MaxEnt model with expected row sums and column sums constrained
to be equal to their values on the original data. If desired, one could extract
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Figure 2: Top: the squared norm of the gradient on a logarithmic scale as a
function of the iteration number, plotted for four databases: KDD abstracts,
Mushroom, Pubmed abstracts, and Retail. This plot shows the exponential de-
crease of the gradient of the Lagrange dual optimization problem. In the second
plot, the convergence of the Lagrange dual is shown for the same databases.
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Figure 3: For the ten datasets under investigation, these plots show the number
of closed itemsets on a logarithmic scale, as a function of their size (solid blue
line). We also computed the average number of closed itemsets as a function
of their size found on 100 randomized datasets, along with error bars for the
5th and 95th percentile are shown. The results are plotted both for the swap
randomization approach (green dotted line) and the MaxEnt sampling approach
(red dashed line).
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Table 3: The number of iterations required, and the computation time in seconds
to fit the MaxEnt model.

# iterations time (s)
ICDM 13 0.35
KDD 13 0.50

Pubmed 15 1.21
Mushroom 35 0.012

Retail 18 2.0
Pumsb 36 0.10

Pumsb star 37 0.94
Connect 33 0.048

T10I4D100K 34 2.0
T40I10D100K 33 5.3

one global measure from these results, as in Gionis et al (2007), and compute
an empirical p-value by comparing that measure obtained on the actual data
with the result on the randomized versions. However, the plots given here do
not force one to make such a choice, and they still give a good idea about which
itemset sizes are significant in the datasets.

Figure 3 also shows averages and error bars for the results obtained on
databases randomized using swaps, done using the code from Gionis et al (2007)
and using five times the number of nonzero database entries (as recommended
in Gionis et al (2007)). It can be noted that the error bars strongly overlap in
most cases. The difference between the two randomization strategies is largest
for the mushroom dataset. Interestingly, this is a dataset where the transaction
sizes are fixed, such that the MaxEnt modeling approach may indeed yield
qualitatively different results as compared to the swap randomization approach.
Indeed, sampling from the MaxEnt model only conserves the transaction sizes
in expectation. A way around this problem is sketched at the end of Sec. 5.1.

Computational cost compared to swap randomizations The above shows
that randomizing databases using swap randomizations leads to results similar
to those obtained by sampling from a fitted MaxEnt model. However, the
MaxEnt strategy is five to fifteen times more efficient in generating one ran-
domized database (including the overhead for fitting the MaxEnt model), and
about thirty times more efficient when several randomized databases need to be
sampled. These computational results are summarized in Fig. 4.

7.2 The MaxEnt model for various types of networks

Artificially generated power-law networks To assess the feasibility of us-
ing the MaxEnt modeling strategy for networks, we artificially generated power-
law (weighted) degree distributions for networks of various sizes between n = 10
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and n = 106 nodes, with a power-law exponent of 2.5. I.e., for each number
of nodes n we sampled n expected (weighted) degrees di from the power-law
distribution P (di) ∼ d−2.5

i . A power-law degree distribution with this expo-
nent is often observed in realistic networks (Newman, 2003), so we believe this
is a representative set of examples. For each of these degree distributions, we
fitted four different types of undirected networks: unweighted networks with
and without self-loops, and positive integer-valued weighted networks with and
without self-loops.

To fit the MaxEnt models for networks we made use of Newton’s method,
which we implemented in MATLAB. As can be seen from Fig. 5, the compu-
tation time was under 30 seconds even for the largest network with 106 nodes.
The number of Newton iterations is less than 50 for all models and degree
distributions considered.

Real-life networks We also fitted the MaxEnt model to two large real-life
networks:

• A symmetrized snapshot of the internet created by Mark Newman in July
2006.3 This is an undirected unweighted network. The number of nodes
in this network is 22, 963, the total number of different degrees is 161, with
degrees ranging between 1 and 2390. Fitting the MaxEnt model required
0.73 seconds.

• A network of movie actors (Barabasi and Albert, 1999), where edges be-
tween actors are weighted by the number of movies in which they jointly
appeared. I.e., this is an undirected integer-valued weighted network. The
number of nodes (actors) in this network is 127, 823, the total number of
unique degrees is 2, 526, with values ranging between 0 and 8, 382. Fitting
the MaxEnt model required 689 seconds, much larger than for the internet
network mostly due to the larger number of unique degrees.

General remarks on the network experiments This fast performance can
be achieved thanks to the fact that the number of different degrees observed in
the degree distribution is typically much smaller than the size of the network
(see discussion in Sec. 3.4). The bottom graph in Fig. 5, showing the number
of Lagrange multipliers as a function of the network size supports this. The
memory requirements remain well under control for the same reasons.

It should be pointed out that in the worst case for dense or for weighted
networks (and in particular for real-valued weights), the number of distinct
expected weighted degrees and hence the number of Lagrange multipliers can
be as large as the number of nodes n. This would make it much harder to use off-
the-shelf optimization tools for n much larger than a few thousands. However,
the problem can be made tractable again if it is acceptable to approximate the
expected weighted degrees by grouping subsets of them together into bins, and

3Available from http://www-personal.umich.edu/∼mejn/netdata/.
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replacing their expected degree values by a bin average. In this way the number
of Lagrange multipliers can be reduced to an acceptable level.

7.3 Using the MaxEnt model to find interesting sets of

tiles

Here we aim to demonstrate the use of the MaxEnt model in formalizing sub-
jective interestingness where the data miner has prior information on the row
and column sums. We applied the method for finding interesting sets of tiles
from Sec. 5.2 to the three abstract datasets discussed above (KDD, ICDM, and
Pubmed, see Sec. 7.1). The particular type of prior information, on the row and
the column marginals, makes sense in this setting. Indeed, if words are jointly
contained in many documents purely because they are frequent individually, this
association is not very meaningful. Similarly, if documents share many words
purely because they are long and contain many words, this is not interesting
either. Our results below demonstrate that by assuming the frequency of words
and lengths of documents as prior information and searching for patterns that
contrast with that using our methodology, discovery of such trivial associations
is avoided.4

We first mined all tiles covering a number of documents equal to the mini-
mum support threshold mentioned in Table 2 using CHARM (Zaki and Hsiao,
2002), and subsequently ran the greedy approximation to the maximum bud-
geted coverage problem to construct a sorted list of the most interesting of these
tiles. As discussed in Sec. 2.2, this sorted list has the property that each set of
k top-ranked tiles has close to the maximally achievable self-information given
its total description length.

The top-15 tiles as returned by our method are summarized in the left column
of Table 4. (Note that the choice to show just 15 tiles is arbitrary.) We report
the sets of words sorted alphabetically, as well as the size of the set of documents.
For comparison, the results of the related method from Geerts et al (2004) are
shown in the right column.

We argue that our method achieves the most sensible results in terms of
non-redundancy and interestingness of the highly ranked tiles, many of them
coinciding with major topics and concepts in data mining (ICDM, KDD) and
data mining applied to biological problems (Pubmed). In contrast, the tile-
based method seems to favor tiles with few but individually frequent items.

Figure 6 shows the compression ratio for the 50 top-ranked tiles in each
of the three abstract databases. For reference, we also ran our method on a
randomized version of each of these three databases (randomized as described
in Sec. 5.1) and we show the resulting compression ratios on the same plots.
Although the compression ratio exceeds 1 only for a few top-ranked tiles on the
actual databases, it is higher than the largest compression ratio seen on the

4Note that we do not want to sell our method for natural language processing. It simplifies
documents to bags of words, disregarding linguistics, and can therefore not be expected to
perform similarly. Our sole purpose in applying our method to text is to show its properties,
which is hard to do on other databases typically used in this area of research.
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randomized databases at least for all of the 50 top-ranked tiles for which data
is shown in these plots. This corroborates that the top-ranked tiles are indeed
meaningful and cannot be attributed to randomness.
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Figure 6: The compression ratio of the top-50 ranked tiles as a function of
their rank, evaluated on the three abstract databases (full line) as well as on a
randomized version of these databases (dashed lines).

We believe that the true assessment of a subjective measure should be
the subjective one provided just above. Still, we also conducted an objective
comparison between our interestingness measure and the tiling method from
Geerts et al (2004). We took each of the 3 abstract databases and artificially
embedded large tiles in these databases by appending k rows (‘documents’) as
well as k columns (‘words’) to it, ensuring that the database cells in the intersec-
tion of the k new rows and the k new columns are all equal to 1. To ensure that
the overall statistics of the database are maintained, we furthermore randomly
added ones in the cells in the intersection of the existing columns and the new
rows, so as to ensure that the column densities remain the same. Similarly, we
randomly added ones to the cells in the intersection of the existing rows and new
columns to ensure the row frequencies are unchanged. We did this for various
tile sizes k, namely for k = 5, 10, 15, and 20.

We then computed a ranking of tiles based on our newly proposed com-
pression ratio interestingness measure, as well as based on the surface of a tile
(Geerts et al, 2004). We then compared the rank of the embedded tile (or if
possible a larger one containing it) in the ranking returned by these two inter-
estingness measures. The results, shown in Table 5, clearly demonstrate that
our proposed approach is much more effective in finding the embedded tile.

8 Conclusions

A significant amount of data mining research has been devoted to the assessment
of data mining results when contrasted to prior information, leading to the
notion of subjective measures of interestingness. A key task in this endeavour
is the formalization of prior information.
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In this paper, we have introduced a new modeling approach for prior infor-
mation based on the maximum entropy principle. Fitting the resulting MaxEnt
distribution boils down to a well-posed convex optimization problem. We have
also outlined various ways in which the MaxEnt model can be used to contrast
patterns in data with prior information, in order to come up with subjective
interestingness measures.

Applying this general framework to rectangular databases and prior infor-
mation on the row and column sums, it turns out that the MaxEnt model can
be represented particularly compactly, and specific properties can be exploited
to dramatically enhance computational efficiency. Furthermore, we showed how
the MaxEnt model can be used efficiently to sample random databases satis-
fying the prior information. Finally, we also worked out the details of a new
interestingness measure for tiles, referred to as the compression ratio, that takes
account of row and column sums as prior information.

In our further work we will investigate other interesting use cases of the
general framework laid out in Sec. 2. For example, in line with the alternative
randomization strategies suggested in Hanhijarvi et al (2009), we will investi-
gate other types of prior information on rectangular databases, such as on the
variance within rows or columns (then the domain of the database elements can
be chosen to be D = R and the resulting MaxEnt distribution would be a prod-
uct of Gaussian distributions), the support of certain itemsets (for which also
the ideas from Pavlov et al (2003) and Calders (2008) will prove useful), or an
existing cluster structure in the data. Furthermore, the strategy can be applied
to other data types as well, such as categorical data (see end of Sec. 5.1). In
parallel, we will investigate the use of the MaxEnt modeling strategy for other
types of data such as relational databases.
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Table 4: The left column in this Table shows the sets of words (columns) J

and the number of documents |I| containing all these words for the top-15
selected tiles (I, J) by the method described in Sec. 5.2, applied to three abstract
datasets. The right column gives the results when the tiling databases method
from Geerts et al (2004) is used.

ICDM
Compression ratio method, J |I| Tiling databases, J |I|
classifi machin support vector 24 algorithm data 338
analysi discriminant lda linear 10 paper propos 237

associ database mine rule 28 data mine 279
bayes naiv 23 show 370

algorithm discov frequent mine pattern 28 base 369
nearest neighbor 20 result 359

art state 22 approach 349
cluster data dimensional high subspace 11 method 346

account take 19 set 343
play role 14 problem 330

document text word 14 present 305
exampl learn train 17 perform 265

algorithm em expect maximization 8 model 239
frequent item itemset mine 18 larg 221

classifi decis tree 20 algorithm propos 271

KDD
Compression ratio method, J |I| Tiling databases, J |I|

machin support svm vector 25 data paper 389
art state 39 algorithm propos 246

labeled learn supervised unlabeled 10 data mine 312
associ mine rule 36 base method 202

express gene 25 result show 196
frequent itemset 28 problem 373

graph larg network social 15 data set 279
column row 13 approach 330

algorithm faster magnitud order 12 model 301
algorithm data paper propos real synthetic 27 present 296

answer question 18 larg 286
nearest neighbor 13 applic 271

classifi featur machin support text vector 9 perform 266
precis recal 14 real 255
decis tree 33 inform 240

Pubmed
Compression ratio method, J |I| Tiling databases, J |I|

algorithm data database drug gamma item mgps . . . 10 data mine 1545
. . .mine multi poisson report safeti shrinker system
chain data express gene polymerase reaction revers 14 data method result 438

chromatography liquid mass ms spectrometry 11 analysi data 754
est express sequenc tag 37 express gene 369

advers data detect drug mine reactions . . . 11 base 713
. . . report signal spontan

acid amino data mine protein sequenc 32 studi 638
nucleotide polymorphisms singl snps studi 13 data inform 577

availability data motivation result this website 35 develop 594
artifici network neural 36 database 570

data express gene pcr rt 29 system 511
data ii iii iv 16 approach 510

data database interface user web 27 tool 497
arabidopsis express gene plant 25 set 486

care decis health support system 15 high 469
data map organizing som 13 present 431
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Table 5: The ranks of the embedded tile for varying size k in the rankings re-
turned by our compression ratio method and the tiling method from Geerts et al
(2004). Note that for tile size 5, no results are available for the Pubmed database
as the support threshold there is 10 such that the embedded tile is not retrieved.
Clearly, the newly proposed method is much more effective at ranking the em-
bedded tile highly.

k 5 10 15 20
ICDM Compression ratio method 3 1 1 1

Tiling databases > 100 71 16 3
KDD Compression ratio method 2 1 1 1

Tiling databases > 100 94 19 5
Pubmed Compression ratio method N/A 1 1 1

Tiling databases N/A > 100 76 19
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