
ar
X

iv
:1

90
4.

07
97

4v
1

 [
cs

.L
G

]
 1

5
A

pr
 2

01
9

Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

Discovering Episodes with Compact Minimal Windows

Nikolaj Tatti

the date of receipt and acceptance should be inserted later

Abstract Discovering the most interesting patterns is the key problem in the
field of pattern mining. While ranking or selecting patterns is well-studied for
itemsets it is surprisingly under-researched for other, more complex, pattern
types.

In this paper we propose a new quality measure for episodes. An episode
is essentially a set of events with possible restrictions on the order of events.
We say that an episode is significant if its occurrence is abnormally compact,
that is, only few gap events occur between the actual episode events, when
compared to the expected length according to the independence model. We
can apply this measure as a post-pruning step by first discovering frequent
episodes and then rank them according to this measure.

In order to compute the score we will need to compute the mean and the
variance according to the independence model. As a main technical contribu-
tion we introduce a technique that allows us to compute these values. Such
a task is surprisingly complex and in order to solve it we develop intricate
finite state machines that allow us to compute the needed statistics. We also
show that asymptotically our score can be interpreted as a P -value. In our
experiments we demonstrate that despite its intricacy our ranking is fast: we
can rank tens of thousands episodes in seconds. Our experiments with text
data demonstrate that our measure ranks interpretable episodes high.

Keywords episode mining; statistical test; independence model; minimal
window

Nikolaj Tatti
ADReM, University of Antwerp, Belgium
DTAI, KU Leuven, Belgium
HIIT, Aalto University, Finland
E-mail: nikolaj.tatti@aalto.fi

http://arxiv.org/abs/1904.07974v1

2 Nikolaj Tatti

1 Introduction

Discovering the most interesting patterns is the key problem in the field of
pattern mining. While ranking or selecting patterns is well-studied for itemsets,
a canonical and arguably the easiest pattern type, it is surprisingly under-
researched for other, more complex, pattern types.

Discovering episodes, frequent patterns from an event sequence has been
a fruitful and active field in pattern mining since their original introduction
by Mannila et al (1997). Essentially, an episode is a set of events that should
occur close to each other (gaps are allowed) possibly with some constraints
on the order of the occurrences, see Section 2 for full definition. While the
concept of support for itemsets is straightforward, it is simply the number of
transactions containing the pattern, defining a support for episodes is more
complex. The most common way of defining a support is to slide a window
of fixed size over the sequence and count in how many windows the pattern
occurs. Such a measure is monotonically decreasing and hence all frequent
episodes can be found using APriori approach given by Mannila et al (1997).
Alternatively we can consider counting minimal windows, that is finding and
counting the most compact windows that contain the episode.

The common wisdom is that finding frequent patterns is not enough. Dis-
covering frequent patterns with high threshold will result to trivial patterns,
omitting many interesting patterns, while using a low threshold will result
in a pattern explosion. This phenomenon has led to many ranking methods
for itemsets, the most well-studied pattern type. Unlike for itemsets, ranking
episodes is heavily under-developed. Existing statistical approaches for rank-
ing episodes are mostly based on the number of fixed-size windows (see more
detailed discussion in Section 6). However, a natural way of measuring the
goodness of an episode is the average length of its instances—a good episode
should have compact minimal windows. Hence, our goal and contribution is a
measure based directly on the average length of minimal windows.

The most straightforward and common way to measure significance for
itemsets is to compare the observed support, the number of transactions in
which all attributes co-occur, against the independence model: if the observed
support deviates a lot from the expectation, we consider the itemset important.
In this paper we use the same principle and propose an interestingness measure
for an episode by comparing the observed lengths of minimal windows of the
episode against the expectation computed from the independence model. Given
a set of episodes we can now apply our measure to each episode and rank the
episodes, placing episodes with the most abnormal minimal windows on top.
While this is an easy task for itemsets, computing statistics turns out to be
complex for episodes.

We define our score as follows: given an episode G, we assign a weight to
each minimal window of G based on how long it is. The weight will be large for
small windows and small for large windows. To compute the expected weight
we assume that for each symbol we have a probability of its occurrence in the
sequence. We then compute the expected weight based on a model in which the

Discovering Episodes with Compact Minimal Windows 3

symbols are independent of each other. We say that the episode is significant if
the observed average weight is abnormally large, that is, the minimal windows
are abnormally short.

Example 1 Assume that we have an alphabet of size 3, Σ = {a, b, c}. Assume
that the probabilities for having a symbol are p(a) = 1/2, p(b) = 1/4, and
p(c) = 1/4. Let G be a serial episode a → b. Then s is a minimal window
for G if and only if it has a form ac · · · cb. Hence the probability of a random
sequence s of length k to be a minimal window for G is equal to

p(s is a minimal window of G, |s| = k) =
1

2
× 1

4
× 1

4k−2
.

We are interested in a probability of a minimal window having length k. To
get this we divide the joint probability by the probability

p(s is a minimal window of G) =

∞
∑

k=2

1

2
× 1

4
× 1

4k−2
= 1/6.

Using this normalisation we get that the probability of a minimal window
having length k is equal to

p(|s| = k | s is a minimal window of G) = 3/4× 1/4k−2,

for k ≥ 2, and 0 otherwise. If we now weight minimal windows with an expo-
nential decay, say, 1/2|s|, then the expected weight is equal to 3/14 ≈ 0.2. On
the other hand, assume that we have a sequence s = abcacbcababcab. There are
4 minimal windows of length 2 and one minimal window of length 3. Hence,
the observed average weight is (4 × 1/22 + 1/23)/5 = 0.225 suggesting that
the minimal windows are more compact than what the independence model
implies.

Computing the needed statistics turns out to be a surprisingly complex
problem. We attack this problem in Section 4 by introducing a certain finite
state machine having episodes as the nodes. Then using this structure we are
able to compute the statistics recursively, starting from simple episodes and
moving towards more complex ones.

Our recipe for the mining process is as follows: Given the sequence we
first split the sequence in two. The first sequence is used for discovering can-
didate episodes, in our case episodes that have a large number of minimal
windows. Luckily, this condition is monotonically decreasing and we can mine
these episodes using a standardAPriorimethod. We also compute the needed
probabilities of individual events from the first sequence. Once we have discov-
ered candidate episodes and have computed the expectation, we compare the
expected weight against the average observed weight from the second sequence
using a simple Z-score. This step allows us to prune uninteresting episodes,
which is in our case episodes that obey the independence model.

The rest of the paper is structured as follows. In Section 2 we introduce the
preliminary definitions and notation. We introduce our method for evaluating

4 Nikolaj Tatti

the difference between the observed windows and the independence model in
Section 3. In Sections 4–5 we lay out our approach for computing the inde-
pendence model. We present the related work in Section 6. Our experiments
are given in Section 7 and we conclude our work with discussion in Section 8.
All proofs are given in Appendix.

2 Preliminaries and Notation

We begin by presenting preliminary concepts and notations that will be used
throughout the rest of the paper.

A sequence s = (s1, . . . , sL) is a string of symbols coming from a finite
alphabet Σ, that is, we have si ∈ Σ. Given a sequence s and two indices i and
j, such that i ≤ j, we denote by s[i, j] = (si, . . . , sj) a sub-sequence of s.

An episode G is represented by an acyclic directed graph with labelled
nodes, that is G = (V,E, lab), where V = (v1, . . . , vK) is the set of nodes, E is
the set of directed edges, and lab is the function lab : V → Σ, mapping each
node vi to its label.

Given a sequence s and an episode G we say that s covers the episode
if there is an injective map f mapping each node vi to a valid index such
that the node and the corresponding sequence element have the same label,
sf(vi) = lab(vi), and that if there is an edge (vi, vj) ∈ E, then we must have
f(vi) < f(vj). In other words, the parents of the node vi must occur in s
before vi. Traditional episode mining is based on searching episodes that are
covered by sufficiently many sub-windows of certain fixed size.

Example 2 Consider an episode given in Figure 1. This episode has 4 nodes
labelled as a, b, c, and d, and requires that a must come first, followed by b and
c in arbitrary order, and finally followed by d. Figure 1 also shows an example
of a sequence that covers the episode.

a

b

c

d a c b a d b c

Fig. 1: A toy episode with 4 nodes and an example of a sequence covering the
episode

An elementary theorem says that in a directed acyclic graph there exists a
sink, a node with no outgoing edges. We denote the set of sinks by sinks(G).

Discovering Episodes with Compact Minimal Windows 5

Given an episode G and a node v, we define G − v to be the sub-episode
obtained from G by removing v, and the incident edges.

Given an episode G we define a set of prefix episodes by

pre(G) = {G} ∪
⋃

v∈sinks(G)

pre(G− v) ,

that is, a prefix episode H is a subepisode of G such that if vi is contained in
H , then all parents (in G) of vi are also contained in H .

Example 3 Episode given in Figure 1 has 6 prefix episodes. Among of these 6
episodes one is empty, the remaining 5 episodes are given in Figure 2.

G1

a

b

c

d

G2

a

b

c G3

a

b

G4

a

c G5

a

Fig. 2: Non-empty prefix episodes of an episode given in Figure 1

3 Minimal Windows of Episodes

Traditionally, discovering episodes from a single long sequence can be done in
two ways. The first approach is to slide a window of fixed sized over the window
and count the number of windows in which the episode occurs. The second
approach is to count the number of minimal windows. The goal of this paper is
to build a measure based minimal windows. If the statistic is abnormal, then
we consider this pattern important.

In order to make the preceding discussion more formal, let G be an episode,
and let s be a sequence. We say that s is a minimal window forG if G is covered
by s but not by any proper sub-window of s. In this paper we are interested
in discovering episodes that have abnormally compact minimal windows, a
natural way of defining the significance of an episode.

Example 4 Consider a toy episode given in Figure 1. The sequence given in
Figure 1 covers the episode but it not a minimal window. However, if we
remove 2 last symbols from the sequence, then the sequence becomes a minimal
window.

Example 5 Consider a serial episode a → b, that is a pattern stating event a
should be followed by an event b, and two sequences ’abababababababab’ and
’abacbadbaxbaybab’. If we fix the length of a window to be 6 (or larger), then
the number of windows covering the episode will be the same for the both
sequences. In fact, in this case all windows will contain the episode. However,
occurrences of the episode in these sequences are different. In the first sequence,

6 Nikolaj Tatti

all minimal windows are of length 2, while in the second sequence, we have 2
minimal windows of length 2 and 4 minimal windows of length 3. Our intuition
is that a→ b should be considered more significant in the first sequence than
in the second.

Our goal in this paper is to design a measure that will indicate if the mini-
mal windows are significantly compact. One approach would be to measure the
average length of minimal windows. However, this ratio is susceptible to the
variance in large minimal windows: consider that we have two minimal win-
dows: the first is of length 10 and the other is of length 1000. Then the length
of the second window dominates the average length, even though the first win-
dow is more interesting. In order to counter this phenomenon we suggest using
the following statistic. Assume that we are given a parameter 0 < ρ < 1. Let
s be a minimal window for G. We define the weight of a window to be ρ|s|.
Compact windows will have a large value whereas large windows will have a
small value. Let r be the average weight of all minimal windows for G.

We are interested in testing whether r is significantly large. In order to
do that, let s be a random sequence and define a random variable Yi = a if
s[i, a] is a minimal window, if there is no such a we define Yi = 0. Define also
Xi = Yi > 0 to be the indicator whether s has a minimal window of G starting
at ith index.

We suggest using the following statistic. Given a parameter 0 < ρ < 1, we
define Zi = Xiρ

Yi−i+1. Then r is an estimate of a statistic
∑∞

i=1 Zi/
∑∞

i=1Xi.
We will show that there is µ and σ such that

√
L
(

L
∑

i=1

Zi/

L
∑

i=1

Xi − µ
)

approaches a normal distribution N(0, σ2). This suggest to define a measure
sc(G) =

√
L(r − µ)/σ. This is simply a Z-normalisation of the statistic r.

We can also compute Φ (−sc(G)), where Φ is the cumulative density func-
tion of the standard normal distribution N(0, 1), and interpret this quantity
as a P -value. However, this interpretation is problematic mainly because the
normal distribution estimate is only accurate asymptotically.

Hence, we only consider sc(G) merely as a ranking measure. Nevertheless,
this measure makes a lot of sense: it measures how much the observed value
deviates from the expectation, a common approach in ranking patterns, and
it also takes the account the uncertainty of the measure.

In order to achieve our goal, we need to perform two steps

1. We need to show that sc(G) converges into N(0, 1)
2. We need to compute µ and σ2 that are needed for sc(G).

Both of these steps are non-trivial. Proving asymptotic normality is difficult
because Xi, Zi, and Yi are not independent, hence we will have to show that
the sequence is mixing fast enough. Computing µ and σ2 will require a set of
recursive equations. The remaining theoretical sections are devoted to proving
asymptotic normality and computing the mean and the variance.

Discovering Episodes with Compact Minimal Windows 7

a

b

c

d

(a) Episode G

x1 x2

x3

x4

x5 x6
a

b

c

c

b
d

(b) Machine MG

Fig. 3: Toy example of an episode G and the corresponding machine MG.

4 Detecting Minimal Windows

In this and the next section we establish our main theoretical contribution,
which is how to compute sc(G).

We divide our task as follows: In Section 4.1 we build a finite state machine
recognising when an episode is covered. In Section 4.2 we modify this machine
so that we can use it for subsequent statistical calculations. Using this machine
as a base we construct in Section 4.3 a machine that is able to recognise a
minimal window of G.

4.1 Constructing finite state machine

We begin by constructing a finite state machine that recognises the coverage
of an episode.

In this paper, a finite state machine (or simply a machine) M is a DAG
with labelled edges and a single source. We allow multiple edges between two
nodes.

Given a state x in M we say that s covers x if there is a subsequence
t = (si1 , . . . , siN) such that x can be reached from the source node using t as
an input.

Given an episode G, we define a machineMG to be a DAG containing prefix
graphs as nodes V (MG) = {xH | H ∈ pre(G)}. We add an edge e = (xH , xF)
if and only if there is a sink node v ∈ V (G) such that H = F − v. We label
edge e with the label of v, lab(e) = lab(v).

Example 6 Consider an episode G given in Figure 3a. The corresponding ma-
chine MG is given in Figure 3b. Sink state x6 corresponds to episode G and
source state x1 corresponds to the empty episode. Intermediate state x5 cor-
responds to G2 given in Figure 2, x3 corresponds to G3, x4 corresponds to G4,
and x2 corresponds to G5.

Comparing the definition of coverage of a state in x and the definition of
a coverage for episodes gives immediately the following proposition.

Proposition 1 Given an episode G, a sequence s covers an episode H ∈
pre(G) if and only if s covers the corresponding state xH in MG.

8 Nikolaj Tatti

4.2 Making Simple Machines

In order to be able to compute the needed probabilities in subsequent sections,
a machine need to have a crucial property. We say that machine M is simple

if each state in M does not multiple incoming edges with the same label. If
we reverse the direction of edges, then simplicity is equivalent to a finite state
machine being deterministic.

In general, MG is not simple. If an episode G contains two nodes, say vi
and vj with the same label such that vi is not an ancestor of vj and vice versa,
then there is a state xH in MG, where H is a prefix episode having vi and
vj as sinks will have (at least) two incoming edges with the same label (see
Figures 4a–4b).

Luckily, we can transformMG into a simple machine. This transformation
is almost equivalent to a process of making a non-deterministic finite state
machine to deterministic.

In order to make this formal, let us first give some definitions. Assume that
we are given a machine M . Given a state x in M , we define

in(x) = {lab(e) | e = (y, x) ∈ E(M)}

to be the set of labels of all incoming edges. If X is a subset of states in M ,
then we write in(X) =

⋃

x∈X in(x).
Let X be a subset of states in M and let a be a label. We define

sub(X ; a) = {y | e = (y, x) ∈ E(M), lab(e) = a, x ∈ X}

to be the union set of parents of each v ∈ X connected with an edge having
the label a. We also define

stay(X ; a) = {x ∈ X | a /∈ in(x)}

to be the set of states that have no incoming edge with a label a.
Let i be the (unique) source state in M . We define

par(X ; a) =

{

sub(X ; a) ∪ stay(X ; a) if i /∈ sub(X ; a)

{i} if i ∈ sub(X ; a) .

Finally, we define a closure of X inductively to be the collection of sets of
states

cl(X) = {X} ∪
⋃

a∈in(X)

cl(par(X ; a)) .

We are now ready to define a simple machine sm(M). The states of this
machine are

V (sm(M)) =
⋃

x∈sinks(M)

cl({x}) .

An edge e = (X,Y) with a label a is in E(sm(M)) if and only if a ∈ in(Y) and
X = par (Y ; a). Since, for each a, there is only one X such that X = par(Y ; a),
it follows that sm(M) is simple.

Discovering Episodes with Compact Minimal Windows 9

a

a

b

(a) G

x1

x2

x3

x4

x5

x6

a

a

a

a

b

b

a

(b) Machine MG

x1

x2x3

x3

x4

x5

x6

a

a

a

b

b

a

(c) Machine sm(MG)

Fig. 4: Toy example of an episode G and the corresponding machines MG and
sm(MG).

Example 7 A machine MG given in Figure 4b is not simple since the state x4
has two incoming edges with a, each edge correspond to either one of a. In
order to obtain sm(MG), we first observe that the nodes are

{{x6}} ∪ cl({x4}) ∪ cl({x5}) = {{x6} , {x4} , {x5}} ∪ cl({x2, x3}) ∪ cl({x5})
= {{x6} , {x4} , {x5} , {x2, x3} , {x3} , {x1}} .

This final machine is given in Figure 4c. Note that sm(MG) is simple since
parents of x4 are grouped together.

The following proposition reveals the expected result betweenM and sm(M).

Proposition 2 Let M be a machine. Let X = {x1, . . . , xN} be a state in

sm(M). Then a sequence s covers V if and only if s covers at least one xi.

The coverage of a machine is based on subsequences and working with
subsequences is particularly difficult since there may be several subsequences
that cover episode G, which leads to difficulties when computing probabilities.

Instead of working with subsequences directly, we will define a greedy func-
tion. Assume that we are given a simple machine M . Let x ∈ M be a state
and let s = (s1, . . . , sL) be a sequence. We define a greedy function recursively

g(x, s) =

x if L = 0,

g(y, s[1, L− 1]) if there is (y, x) such that lab((y, x)) = sL,

g(x, s[1, L− 1]) otherwise.

In other words, the greedy function descends to parent states as fast as possi-
ble.

Example 8 Consider a machine MG given in Figure 3b and sequence s =
acbadbc given in Figure 1. We have

g(x6, acbadbc) = g(x6, acbadb) = g(x6, acbad) = g(x5, acba)

= g(x5, acb) = g(x4, ac) = g(x2, a) = g(x1, ∅) = x1.

The example suggests that a sequence covers an episode if the greedy func-
tion reaches the source state in the corresponding machine. This holds in gen-
eral: the following proposition shows that we can use the greedy function to
test for coverage. Note that this crucial property is specific to machine induced
from episodes. It will not hold for a general machine.

10 Nikolaj Tatti

Proposition 3 Let G be an episode, then a sequence s covers X, a state in

sm(MG), if and only if g(X, s) = {i}, the source state of sm(MG).

Corollary 1 Let G be an episode and let X be the sink state of sm(MG). A
sequence s covers G if and only if g(X, s) = {i}, the source state of sm(MG).

4.3 Machine recognising minimal windows

So far we have constructed MG and sm(MG) that recognise when a sequence
covers G. However, we are interested in finding out when a sequence is a
minimal window for G.

Assume that we are given an episode G and let M = sm(MG). Let I = {i}
be the source state of M and let S = {xG} be the sink state of M . We define
two machines,

1. M1 is obtained from M by adding a new source state, say J , and adding
an edge (J, I) for each possible label.

2. M2 is obtained from M by adding a new sink state, say T and adding an
edge (S, T) for each possible label.

Both M1 and M2 are simple.
Let us first considerM1. Assume that we are given a sequence s = s1 · · · sL

such that g(S, s) = I. Then we know immediately that s covers G but s[2, L]
does not. Now let us consider M2. Sequence s[1, L − 1] covers G if and only
g(T, s) = I. Consequently, we need to design a machine that simultaneously
computes g(S, s) for M1 and g(T, s) for M2.

In order to do so we need to define a special machine. Assume that we
are given two simple machines M1 and M2, and a set of pairs of states Θ =
{(xi, yi)}Ni=1, where xi is a state in M1 and yi is a state in M2. We will now
define a join machine, M∗ = co(M1,M2, Θ), that is guaranteed to contain the
states from Θ. To define the states of this machine, let z1 be a state in M1

and let z2 be a state in M2. We first define a set of pairs of states recursively

f(z1, z2) = (z1, z2) ∪
⋃

a∈in(z1)∪in(z2)

f(g(z1, a) , g(z2, a)).

We define the states of M∗ to be
⋃

θ∈Θ f(θ). Two states α = (y1, y2) and
β = (z1, z2) are connected with an edge (α, β) if and only if yi = g(zi, a) and
a ∈ in(z1) ∪ in(z2). It follows immediately that M∗ is simple.

Proposition 4 Let M1 and M2 be two simple machines. Let Θ be a set of

pairs of states. Define M∗ = co(M1,M2, Θ). Let α = (x1, x2) be a state in

M∗. Then g(α, s) = (g(x1, s) , g(x2, s)).

We can now define a machine that we will use to test whether sequence is
a minimal window of G. Let M1, M2, S and T as defined above. Let M∗ =
co(M1,M2, {(S, T)}). The following proposition demonstrates how we can use
M∗ to characterise the minimal window.

Discovering Episodes with Compact Minimal Windows 11

Proposition 5 Let M1, M2, M
∗, and I be as defined above. Let α be a sink

state of M∗. Then, a sequence s is a minimal window for G if and only if

g(α, s) ∈ Ω, where Ω = {(I, Y) | I 6= Y is a state of M2}.

For the purpose of recognising minimal windows, there are lot of redundant
states in M∗. Any state that is not a child or part of Ω can be removed and
the outgoing edges reattached to the source state without effecting the validity
of Proposition 5. This is true because once the greedy function reaches any
such state then it will never reach Ω. To optimise we remove two types of
non-source states: any of form (J, Y), where J is the source state of M1 and
any state of form (Y, Y). We refer to the resulting machine as minm(G).

Example 9 Consider an episode G given in Figure 5a. The machine sm(MG)
is given in Figure 5b and the augmented versionsM1 andM2 are given in Fig-
ures 5c–5d. These machines are then combined toM∗ = co(M1,M2, {(x1, x0)}),
given in Figure 5e.

The final, simplified, machine is given in Figure 5f. In order to a sequence to
be a minimal window for G, the greedy function must land either in (x5, x3),
(x5, x1), or in (x5, x4). Note that many states from M∗ are removed. For
example, if we are in x1x0 and we see any other symbol than c, then we know
that s is not a minimal window since s must end with c in order to be one.

5 Computing Moments

Now that we have defined a machine for recognising a minimal window, we will
use it to compute the needed probabilities. In Section 5.1 we demonstrate how
to use the machine to compute the expected weight. In Section 5.2 we show
the asymptotic normality and in Section 5.3 we demonstrate how to compute
the variance. We finish the section by considering computational complexity.

5.1 Computing probabilities

Proposition 5 gives us means to express the minimal window using a machine
and the greedy function. In this section we demonstrate how to compute prob-
abilities that the greedy function lands in some particular state.

Let M be a simple machine. Let Y be a set of states in M and let x be a
state in M . Let us first define

pg(x, Y, L) = p(g(x, s) ∈ Y | |s| = L)

to be the probability that a random sequence s of length L reaches one of the
states in Y .

Proposition 6 Let M be a simple machine. Let Y be a set of states in M
and let x be a state in M .

12 Nikolaj Tatti

a

b

c

(a) G

x1

x2

x3 x4

x5

c

b a

a b

(b) sm(MG)
x1

x2

x3 x4

x5

x6

c

b a

a b

(c) M1

x0

x1

x2

x3 x4

x5

c

b a

a b

(d) M2

x5x3

x4x2 x5x1 x3x2

x5x4

x4x1 x3x1

x2x1

x1x0

x6x1

x6x2

x6x3 x6x4

x6x5

x1x1

x2x2

x3x3 x4x4

x5x5

c

b a

a b ab

c b a c

a b

c

a, b

c

c

b a

a b

a, c

b

b, c

a

c

a

b

a, b

(e) co(M1,M2, {(x1, x0)})

ψ

x5x3

x4x2 x5x1 x3x2

x5x4

x4x1 x3x1

x2x1

x1x0

a b ab

c b a c

a b

c

c

a, b

(f) minm(G)

Fig. 5: Toy episode and related machines. Figure 5a contains an episode G. A
simple machine sm(MG) is given in Figure 5b. Machines given in Figures 5c–
5d are used to construct a machine to recognise a minimal window, Figure 5e.
In order to a sequence to be a minimal window we must land to a highlighted
node when starting from x1x0. The states with dashed outgoing edges are
redundant and can be be collapsed, resulting in a machine given in Figure 5f.

Then it holds that for L > 0,

pg(x, Y, L) =
∑

a∈Σ

p(a)pg(g(x, a) , Y, L− 1) . (1)

For L = 0, we have

pg(x, Y, 0) =

{

1 if x ∈ Y,

0 if x /∈ Y.

Example 10 Consider a machine minm(G) given Figure 5f. Assume that the
individual probabilities are p(a) = 0.3, p(b) = 0.2, and p(c) = 0.5. The accord-
ing to Proposition 1, pg(x4x2, x5x3, 1) = 0.2 and

pg(x4x2, x5x3, L) = 0.5pg(x4x2, x5x3, L− 1)

for L > 1, which implies that pg(x4x2, x5x3, L) = 0.2× 0.5L−1. We can verify
this by observing that the sequence of L events that leads from x4x2 to x5x3
must have L− 1 events labelled as c followed by one b.

Discovering Episodes with Compact Minimal Windows 13

To solve the needed quantities, we need to compute moments,

m(x, f, Y) =

∞
∑

L=1

f(L)pg(x, Y, L) .

Proposition 5 now immediately implies that we can express the needed
statistics using moments.

Proposition 7 Assume an episode G. Let M = minm(G) and let α and Ω
be as in Proposition 5. Let Yi, Xi and Zi be defined as in Section 3. Then

E [X1] = m(α, f,Ω) , for f(L) = 1,

E [Y1] = m(α, f,Ω) , for f(L) = L,

E [Z1] = m(α, f,Ω) , for f(L) = ρL,

E
[

Z2
1

]

= m(α, f,Ω) , for f(L) = ρ2L,

E [Y1Z1] = m(α, f,Ω) , for f(L) = ρLL.

Note that the sum has infinite number of terms, hence we cannot compute
this by raw application of Proposition 6. Luckily, we can express moments in
closed recursive form. First, we need to show that the moments we consider
are finite.

Lemma 1 Let M be a simple machine. Let Y be a set of states in M . Assume

that p(a) > 0 for all a ∈ Σ. Assume that we are given a function f such that

f(L) grows at polynomial rate. If the source node is not contained in Y , then

m(x, f, Y) is finite for any state x.

Proposition 8 Let M be a simple machine. Assume that we have a function

f mapping an integer to a real number. Assume also for L ≥ 1, we have

f(L − 1) = cf(L) + h(L) for some c ∈ R and a function h. Assume that f
and g grow at polynomial rate, at maximum. Let q = 1 − ∑

a∈in(x) p(a) and

set r = c− q. Let i(y) = pg(y, Y, 0) f(0). Then

m(x, f, Y) =
1

r

(

qi(x)−m(x, h, Y) +
∑

a∈in(x)
y=g(x,a)

p(a)(m(y, f, Y) + i(y))
)

.

We can now use Proposition 8 to compute the moments given in Proposi-
tion 7.

Proposition 9 The identity f(L− 1) = cf(L) + h(L) holds for the following

functions,

f(L) = 1, for c = 1, h(L) = 0,

f(L) = L, for c = 1, h(L) = −1,

f(L) = ρL, for c = ρ−1, h(L) = 0,

f(L) = ρ2L, for c = ρ−2, h(L) = 0,

f(L) = ρLL, for c = ρ−1, h(L) = −ρL−1.

14 Nikolaj Tatti

Example 11 Consider machine minm(G) given in Figure 5e. Let us define Ω =
{(x5, x3), (x5, x1), (x5, x4)}. Assume also that the probabilities for the symbols
are p(a) = 0.3, p(b) = 0.2, and p(c) = 0.5. Let f(L) = 1.

Then using Proposition 8 we see that

m((x4, x2), f, Ω) = 0.2/0.5 = 0.4,

m((x3, x2), f, Ω) = 0.3/0.5 = 0.6,

m((x4, x1), f, Ω) = (0.2 + 0.5× 0.4)/0.7 = 4/7,

m((x3, x1), f, Ω) = (0.3 + 0.5× 0.6)/0.8 = 3/4,

m((x2, x1), f, Ω) = 0.3× 4/7 + 0.2× 3/4 = 0.32,

m((x1, x1), f, Ω) = 0.5× 0.32 = 0.16,

and the moment for the remaining states is equal to 0.

Proposition 8 gives us means for a straightforward algorithm Moments

for computing moments (given in Algorithm 1). Moments takes as input a
simple machine M , a map i for initial values, a map h for update values, and
a constant c. Note that Moments is linear function of i and h, that is,

Moments(M,k1i1 + k2i2, k1h1 + k2h2, c) =

k1Moments(M, i1, h1, c) + k2Moments(M, i2, h2, c)

for any constants k1 and k2. We will use this property later for speed-ups.

Algorithm 1: Moments(M, i, h, c) computes moments using Proposi-
tion 8.
input : a simple machine M , a map i for initial values, a map h for update values,

and a constant c for recursive update
output : Moment of f for every state x ∈M

1 for x ∈M in topological order do
2 q ← 1−

∑

a∈in(x) p(a);

3 r ← c− q;
4 m(x)← 1

r

(

qi(x)− h(x) +
∑

a∈in(x)
y=g(x,a)

p(a)(m(y) + i(y))
)

;

5 return m;

5.2 Asymptotic Normality

We will now prove that our statistic approaches to the normal distribution.
The proof is not trivial since the variables Xi and Zi are not independent.
Hence we will use Central Limit Theorem for strongly mixing sequences.

Our first step is to show that the sequence the central limit theorem holds
for (Zi, Xi).

Discovering Episodes with Compact Minimal Windows 15

Proposition 10 Let G be an episode. Sequence 1/
√
L
∑L

k=1(Zk, Xk)− (q, p)
converges in distribution to N(0, C), where q = E [Z1], p = E [X1], and C is

a 2 × 2 covariance matrix, C11 = Var [Z1] + 2D11, C22 = Var [X1] + 2D22,

C21 = C12 = Cov [X1, Z1] +D12 +D21, where

D11 =

∞
∑

i=2

E [(Z1 − q)(Zi − q)] , D22 =

∞
∑

i=2

E [(X1 − p)(Xi − p)] ,

D12 =

∞
∑

i=2

E [(Z1 − q)(Xi − p)] , D21 =

∞
∑

i=2

E [(X1 − p)(Zi − q)] .

Since the central limit theorem holds for (Zi, Xi), we can apply this to
obtain the main result.

Proposition 11 Let G be an episode. Let p, q and C be as in Proposition 10.

Define µ = q/p. Then

√
L
(

∑L
k=1 Zk

∑L
k=1Xk

− µ
)

converges to N(0, σ2) as L→ ∞ , where σ2 = p−2
(

C11 − 2µC12 + µ2C22

)

.

These results suggest that we can use Φ(−sc(G)) as a P -value, where Φ
is the cumulative density function of the normal distribution. However, in
practice we have several problems:

– The result is accurate only asymptotically. Moreover, the distribution of
sc(G) can be heavily skewed so we need a large number of samples in order
to estimate become accurate.

– We do not have directly, the probabilities of individual items, instead we
will estimate the probabilities from the training sequence. This will in-
troduce some error in prediction making the P -values smaller than they
should be.

– We are computing a large number of statistical tests. In such case, it is
advisable to use some technique, for example, Bonferroni correction, to
compensate for the multiple hypotheses problem. However, it is not obvious
which technique should we use.

Because of these problems, instead of interpreting Φ(−sc(G)) as a P -value,
we simply use sc(G) to rank patterns and use it as a top-K method. Note that
Φ is a monotonic function, hence the larger the score, the smaller the P -value.

By studying the formulas in the above propositions we see that we can
compute the necessary statistics p and q using Proposition 7, and consequently
we can compute µ. However, in order to compute the variance σ we need to
compute D11, D12, D21, and D22 given in Proposition 10. We will demonstrate
a technique for computing these statistics in the next section.

16 Nikolaj Tatti

5.3 Computing Cross-moments

Our final step is to compute cross-moments given in Proposition 10. In order
to do so we first need to prove a different formulation of these statistics. This
formulation is more fruitful as we no longer have to deal infinite sums.

Proposition 12 Let p, q, D11, D12, D21, and D22 be as in Proposition 10.

Define v = E [Y1] and w = E [Y1Z1]. Then

D22 = E

[

X1

Y1
∑

k=2

Xk

]

− (v − p)p, D12 = E

[

X1Z1

Y1
∑

k=2

Xk

]

− (w − q)p,

D21 = E

[

X1

Y1
∑

k=2

ZkXk

]

− (v − p)q, D11 = E

[

X1Z1

Y1
∑

k=2

ZkXk

]

− (w − q)q.

Our next step is to compute the moments. To that end, let M = minm(G)
be a machine recognising the minimal window of G, let α be a sink state in
M , and let Ω be the states as in Proposition 5. We will study the probability
p(Y1 = a, Yk = a + b), where a ≥ k > 1 and b ≥ 1. Let u = s[k, a] and
v = s[a+1, a+b]. The idea is to break the probability into a sum of probabilities
based on the state g(α, v) and g(α, u). These probabilities can be further
decomposed into three factors which we can then turn into moments using
Proposition 8.

Define a random variable E = g(α, s[1, a]) ∈ Ω. This variable is true if
and only if Y1 = a. In addition, define F = g(α, s[k, a+ b]) ∈ Ω and Gβ =
g(β, u) ∈ Ω.

Let us write Θ to be all proper intermediate states of M between α and
Ω. Since k > 1, Y1 = a implies that g(α, u) ∈ Θ. Similarly, Yk = a+ b implies
that g(α, v) ∈ Θ. We can now write p(Y1 = a, Yk = a+ b) as

p(Y1 = a, Yk = a+ b) = p(E,F)

=
∑

β∈Θ

p(E,F, g(α, v) = β) =
∑

β∈Θ

p(E,Gβ , g(α, v) = β)

=
∑

β∈Θ

p(E,Gβ)p(g(α, v) = β) =
∑

β∈Θ

pg(α, β, b) p(E,Gβ)

=
∑

β∈Θ

pg(α, β, b)
∑

γ∈Θ

p(E,Gβ , g(α, u) = γ)

=
∑

β∈Θ

pg(α, β, b)
∑

γ∈Θ

p(g(γ, s[1, k − 1]) ∈ Ω,Gβ , g(α, u) = γ)

=
∑

β∈Θ

pg(α, β, b)
∑

γ∈Θ

pg(γ,Ω, k − 1) p(Gβ , g(α, u) = γ).

(2)

The only non-trivial factor in Equation 2 that we cannot solve using M is
p(g(β, u) ∈ Ω, g(α, u) = γ). To solve this we construct yet another machine.

Discovering Episodes with Compact Minimal Windows 17

Let M∗ = co(M,M, {(θ, α) | θ ∈ Θ}) and let Ω∗
γ = {(ω, γ) | ω ∈ Ω}. Then

Proposition 4 implies that

p(Gβ , g(α, u) = γ) = pg
(

(β, α), Ω∗
γ , a− k + 1

)

.

This leads to

p(Y1 = a, Yk = a+b) =
∑

β,γ

pg(α, β, b) pg(γ,Ω, k − 1) pg
(

(β, α), Ω∗
γ , a− k + 1

)

.

(3)
Let us write Ak = Y1 − k+1. We now define a function f by which we can

express the missing cross-moments,

f(P,Q,R) = E

[

X1

Y1
∑

k=2

ρP (k−1)+QAk+R(Yk−Y1)Xk

]

.

This function is particularly useful since we can now apply Equation 3 and
obtain a closed form using moments,

f(P,Q,R) =

∞
∑

k=2

∞
∑

b=1

∞
∑

a=k

ρP (k−1)+Q(a−k+1)+Rbp(Y1 = a, Yk = a+ b)

=
∑

β,γ

m(α,R, β)m(γ, P,Ω)m
(

(β, α), Q,Ω∗
γ

)

.
(4)

Let us now express the cross-moments using f . We see immediately that,

E

[

X1

Y1
∑

k=2

Xk

]

= f(0, 0, 0),

E

[

X1

Y1
∑

k=2

Z1Xk

]

= E

[

X1

Y1
∑

k=2

ρ(k−1)+AkXk

]

= f(1, 1, 0),

E

[

X1

Y1
∑

k=2

ZkXk

]

= E

[

X1

Y1
∑

k=2

ρAk+Yk−Y1AkXk

]

= f(0, 1, 1),

E

[

X1

Y1
∑

k=2

Z1XkZk

]

= E

[

X1

Y1
∑

k=2

Xkρ
(k−1)+2Ak+Yk−Y1

]

= f(1, 2, 1).

As a final step we describe how we can optimise computation of f(P,Q,R).
First recall that Moments, given in Algorithm 1, is linear with respect to its
parameters i and h. Consider Equation 4. Instead of computing the sum over
β explicitly, we can compute Moments(M, i, 0, ρR), where i(β) is defined as
∑

γ m
(

γ, ρP , Ω
)

m
(

(β, α), ρQ, Ω∗
)

. We can repeat this trick again to remove
the explicit sum over γ. The pseudo-code taking into account these optimisa-
tions is given in Algorithm 2.

18 Nikolaj Tatti

Algorithm 2: CrossMoments

1 M ← minm(G);
2 α← sink state of M ;
3 Ω ← as in defined in Proposition 5;
4 Θ ← intermediate states of α and Ω;
5 M∗ ← co(M,M, {(θ, α) | θ ∈ Θ});
6 i1(θ)← I(θ ∈ Ω);

7 m←Moments(M, i1, 0, ρP);
8 foreach state x in M∗ do
9 if x = (ω, θ), where ω ∈ Ω and θ ∈ Θ then

10 i2(x)← m(θ);

11 m←Moments(M∗, i2, ρQ);
12 foreach θ ∈ Θ do
13 i3(θ)← m((θ, α));

14 m←Moments(M, i3, 0, ρR);
15 return m(α);

Example 12 Let us compute f(0, 1, 1) for an episode G given in Figure 5a.
Let M = minm(G), given in Figure 6. Note that this machine is the same
machine given in Figure 5f. Let us define Ω = {ω1, ω2, ω3}. Assume also that
the probabilities for the symbols are p(a) = 0.3, p(b) = 0.2, and p(c) = 0.5
and assume that we selected ρ = 1/2. Define hk(x) = ρkx.

To compute f(0, 1, 1) we need to compute moments from three different
machines. The obtained moments from a previous machine is fed as initial
values to the next machine as shown in Figure 6. We use M for the first and
the third machine. The second machine is co(M,M, {(θ1, α), . . . , (θ5, α)}) with
redundant states removed. This machine is given in Figure 6.

ψ

ω1

θ4 ω2 θ5

ω3

θ2 θ3

θ1

α

a b ab

c b a c

a b

c

c

a, b

ψ

ω1θ3

θ4θ1 θ5θ1

ω3θ2

θ2α θ3αθ4α θ5α

θ1α

a b ab

cc
a, b
a, b c c

c

a, b

c

a, b

ψ

ω1

θ4 ω2 θ5

ω3

θ2 θ3

θ1

α

a b ab

c b a c

a b

c

c

a, b

Fig. 6: Machines needed to compute the cross-moments for an episode G given
in Figure 5a. The first and the third machines are M = minm(G) and the
second machine is co(M,M, {(θ1, α), . . . , (θ5, α)}). We simplified the machine
by collapsing all states containing ψ to one state. The arrows between the
machines indicate how the moments from the previous machines are passed to
the next machine as initial values.

Discovering Episodes with Compact Minimal Windows 19

We start with M , and as initial values we set 1 whenever a state is in Ω,
and 0 otherwise. This is equivalent to Example 9. We need moments only for
two states, θ2 and θ3, which are

m(θ2, h0, Ω) = 4/7 and m(θ3, h0, Ω) = 3/4.

We now use the moments of θ2 and θ3 as initial values for (ω3, θ2) and
(ω1, θ3), that is, we set i2((ω3, θ2)) = 4/7 and i2((ω1, θ3)) = 3/4, and 0 for
other states. We can now compute the moments,

m((θ4, θ1), h1, i2) = (0.2× 3/4)/2 = 3/40,

m((θ5, θ1), h1, i2) = (0.3× 4/7)/2 = 6/70,

m((θ2, α), h1, i2) = m((θ4, α), h1, i2) = (0.5× 3/40)/2 = 3/160,

m((θ3, α), h1, i2) = m((θ5, α), h1, i2) = (0.5× 6/70)/2 = 3/140,

and 0 for the remaining states. We feed these moments into initial values i3
and compute the final moments,

m(θ4, h1, i3) = (0.5× 3/160)/1.5 = 1/160,

m(θ5, h1, i3) = (0.5× 3/140)/1.5 = 1/140,

m(θ2, h1, i3) = (0.3× 3/160 + 0.5/160)/1.7 = 14/2720,

m(θ3, h1, i3) = (0.2× 3/140 + 0.5/140)/1.8 = 11/2520,

m(θ1, h1, i3) = (0.2× 14/2720+ 0.3× 11/2520)/2 = 0.0012,

m(α, h1, i3) = 0.5× 0.001/2 = 0.0003.

Consequently, f(0, 1, 1) = m(α, h1, i3) = 0.0003.

5.4 Computational complexity

Let us now finish this section by discussing the computational complexity.
Given a machine M , evaluating moments will take O(V (M) + E(M)) time.
Hence, we need to study the sizes of our machines. Given an episode G with
N nodes, the first machine MG may have 2N states. This happens if G is a
parallel episode. In practice, as we will see in the experiments, this is not a
problem since N is typically small.

Exponentiality is (most likely) unavoidable since testing whether a se-
quence covers an episode is known to be NP-hard problem (Tatti and Cule,
2011), and since we can use MG to test coverage in polynomial time w.r.t. the
states in MG we must have episodes for which we have exponential number of
states.

SimplifyingMG may also lead to an exponential number of nodes. This may
happen if we have a lot of unrelated nodes with same labels. Typically, this

20 Nikolaj Tatti

will not happen, especially, if the sequence has a large alphabet. Moreover, we
can avoid this problem by mining only strict episodes (Tatti and Cule, 2012)
in which we require that if there are two nodes with the same label, then one of
the nodes must be an ancestor of the other. For such episodes, MG is already
simple.

Computing a joint machine co(M,M) may result into a machine having

|V (M)|2 states. In practice, the amount of states in minm(G) is much smaller
since not all pairs are considered. Similarly, a machine needed for computing
cross-moments may have O(|V (minm(G))|2) nodes. We will see that in our
experiments the number of states and edges remains small, making the method
fast in practice.

6 Related Work

Our approach can be seen as an extension of (Tatti, 2009) where we developed
a statistical test based on average length of minimal windows. We used a
recursive update similar to the one given in Proposition 6, however we capped
the length of minimal windows and computed explicitly the probabilities of an
episode having a minimal window of a certain length. In this work we avoid
this by using Proposition 7. Additional limitation of (Tatti, 2009) is that we
were forced to simulate cross-moments where in this work we compute them
analytically.

Statistical measures for ranking episodes have been considered by Gwadera et al
(2005b,a) in which the authors considered episode to be significant if the
episode occurs too often or not often enough in windows of fixed size. As
a background model the authors used independence model in (Gwadera et al,
2005b) and Markov-chain model in (Gwadera et al, 2005a). The authors’ ap-
proach in (Gwadera et al, 2005b) is similar to ours: First they construct a finite
state machine, essentially MG , and use recursive update similar Proposition 6
in order to compute the mean, that is, the likelihood that the sequence of
length L covers the episode under independence assumption. The main differ-
ence between our approach and theirs is that we base our measure directly on
compactness, the average length of a minimal window, while they base their
measure on occurrence, that is, in how many windows the episode occurs.

Working with the general episodes is difficult for two main reasons. Firstly,
general episodes are more prone to suffer from pattern explosion due to the
fact that there are so many directed acyclic graphs. Secondly, the simplest task
such as testing whether a sequence contains an episode is a NP-hard prob-
lem (Tatti and Cule, 2011). Several subclasses of general episodes have been
suggested. Pei et al (2006) suggested mining episodes from set of strings, se-
quences of unique symbols. Tatti and Cule (2012) suggested discovering closed
strict episodes. An episode is strict if two nodes with the same label are always
connected. Achar et al (2012) suggested discovering episodes with unique la-
bels possibly with some additional constraints, for example, the number of
paths in a DAG. The authors suggested a score based on how evenly uncon-

Discovering Episodes with Compact Minimal Windows 21

nected nodes occur in front of each other. Tatti and Cule (2011) considered a
broader class of episodes in which nodes are allowed to have multiple labels.

Casas-Garriga (2003) proposed a criterion for episodes by requiring that the
consecutive symbols in a sequence should only within a specified bound. While
this approach attacks the problem of fixed windows, it is still a frequency-
based measure. This measure, however, is not monotonic as it is pointed out
by Méger and Rigotti (2004). It would be useful to see whether we can compute
an expected value of this measure so that we can compute a P -value based on
some background model.

In a related work, Cule et al (2009) considered parallel episodes signifi-
cant if the smallest window containing each occurrence of a symbol of an
episode had a small value. Their approach differ from ours since the small-
est window containing a fixed occurrence of a symbol is not necessarily the
minimal window. Also, they consider only parallel episodes whereas we con-
sider more general DAG episodes. An interesting approach has been also taken
by Calders et al (2007) where the authors define a windowless frequency mea-
sure of an itemset within a stream s to be the frequency starting from a certain
point. This point is selected so that the frequency is maximal. However, this
method is defined for itemsets and it would be fruitful to see whether this idea
can be extended into episodes.

Finite state machines have been used by Trońıcek (2001); Hirao et al (2001)
for discovering episodes. However, their goal is different than ours since the
actual machine is built upon a sequence and not the episode set and it is used
for discovering episodes and not computing the coverage.

7 Experiments

In this section we present our experiments with the quality measure using
synthetic and real-world text sequences.

7.1 Datasets

We conducted our experiments with several synthetic and real-world sequences.
The first synthetic sequence, Ind consists of 40 000 events drawn indepen-

dently and uniformly from an alphabet of 1 000 symbols. The second synthetic
sequence, Plant also contains 40 000 events independently and uniformly from
an alphabet of 1 000 symbols but in addition we planted 5 serial episodes. Each
episode consisted of 5 nodes, each node with a unique label. We planted each
episode 100 times and we added a gap between two consecutive events with a
10% probability.

Our third dataset, Moby, is the novel Moby Dick by Herman Melville.1 Our
fourth sequence, Nsf consists of 739 first NSF award abstracts from 1990.2

1 The book was obtained from http://www.gutenberg.org/etext/15.
2 The abstracts were obtained from http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html

http://www.gutenberg.org/etext/15
http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html

22 Nikolaj Tatti

Our final dataset, Address, consists of inaugural addresses of the presidents of
the United States.3 To avoid the historic concept drift—early speeches have
different vocabulary than the later ones—we entwined the speeches by first
taking the odd ones and then even ones. Our fourth dataset, Jmlr, consists
of abstracts from Journal of Machine Learning Research.4 The sequences were
processed using the Porter Stemmer and the stop words were removed. The
basic characteristics of sequences are summarised in Table 1.

Table 1: Characteristics of the sequences. The second column contains the
number of symbols in the sequence. The third column contains the size of the
alphabet of each sequence.

Sequence length |Σ|
Ind 40 000 1 000
Plant 40 000 1 000

Moby 105 719 10 277
Address 62 066 5 295
Jmlr 75 646 3 859
Nsf 35 370 4 592

7.2 Experimental Setup

Our experimental setup mimics the framework setup by Webb (2007) in which
the data is divided into two parts, the first part is used for discovering the
patterns and the second part for testing whether the discovered patterns were
significant. We divided each sequence into two parts of equivalent lengths. We
used the first sequence for discovering the candidate episodes and training
the independence model. Then we tested the discovered episodes against the
model using the second sequence. We set parameter ρ to 1/2.

To generate candidate episodes we used a miner given by Tatti and Cule
(2012). This miner discovers episodes in a breath-first fashion, that is, an
episode is tested if and only if all its sub-episodes are frequent. The miner out-
puts closed5 and strict episodes. Requiring episodes to be closed reduces redun-
dancy between candidates considerably as there are typically many episodes
describing the same set of minimal windows. The alphabet is large in our se-
quences, which implies that it is quite unlikely to see the same symbol twice
within a short window. Consequently, there are only few non-strict frequent
episodes.

3 The addresses were obtained from http://www.bartleby.com/124/pres68.
4 The abstracts were obtained from http://jmlr.csail.mit.edu/
5 An episode is closed if there are no superepisode with the same support.

http://www.bartleby.com/124/pres68
http://jmlr.csail.mit.edu/

Discovering Episodes with Compact Minimal Windows 23

As a constraint we required that the number of non-overlapping minimal
windows must exceed certain threshold in the first sequence. This is a mono-
tonic condition that allows us to discover all candidates efficiently. During
mining we also put an upper limit for minimal windows. The parameters and
the numbers of candidates are given in Table 2.

Table 2: Parameters used for mining candidate episodes. The second column
contains the allowed maximal length of a minimal window during mining. The
third column contains threshold for the number of disjoint minimal windows.
The fourth column contains the number of non-singleton episodes.

Sequence max window threshold # of episodes

Ind 15 4 1 249
Plant 15 5 734

Moby 20 10 6 043
Address 20 4 41 888
Jmlr 20 10 14 528
Nsf 20 15 2 845

7.3 Computational complexity

Let us first study computational complexity in practice. As we pointed out
earlier it is possible that sizes of structures needed to compute the score become
exponentially large. To demonstrate the sizes in practice we computed the
average number of states and edges in machines used to compute the score.
The results are given in Table 3.

From these results we see that the number of nodes and edges stay small.
This is due to the fact that majority of episodes are small, typically with 2–3
nodes. Simplification does not add any new nodes or edges since we use strict
episodes, where nodes with the same label must be connected, consequently,
MG is simple. Number of nodes and edges are at highest for M∗, a machine
needed to compute cross-moments for Nsf data. This is due to the fact that
Nsf contains a lot of phrases where the same words are being repeated. As a
consequence, we discover large episodes which in turn generate large machines.
Running times given in the last column of Table 3 imply that ranking is
fast. Ranking discovered episodes is done within few seconds. For example, in
Address ranking 40 000 episodes takes less than 5 seconds.

We consider only closed and strict episodes as candidates. If we consider
also non-closed episodes, then the distribution of episode types may change
as long closed episodes tend to be serial. Consequently, we will have more
general episodes. This may result in larger machines as serial episodes have
the simplest machines.

24 Nikolaj Tatti

Table 3: Average sizes of machines used for ranking episodes. Even columns,
labelled with |V |, contain the number of nodes, while odd columns, labelled
with |E|, contain the number of edges. The first machine MG recognises when
episode is covered, the second machine sm(MG) is a simplification of MG . The
third machine minm(G) tests whether a sequence is a minimal window, and
the last machineM∗ is used for computing cross-moments, see Section 5.3. The
last columns is the time needed to rank the discovered episodes per dataset.

MG sm(MG) minm(G) M∗

Sequence |V | |E| |V | |E| |V | |E| |V | |E| time (s)

Ind 3.8 3.7 3.8 3.7 4.7 3.7 3.5 1.7 0.34
Plant 4.4 4.5 4.4 4.5 6.6 6.6 11.5 13.3 0.28

Moby 3.9 3.6 3.9 3.6 4.7 3.9 4.1 2.4 1.37
Address 4.6 5 4.6 5 6.6 6.3 8.7 7.4 4.40
Jmlr 4.7 5 4.7 5 6.6 6.2 8.5 6.8 3.55
Nsf 7.3 9.7 7.3 9.7 14.3 18.1 39.6 49.3 1.09

7.4 Significant Episodes

Let us first consider Plant dataset. The first 5 episodes according to our rank-
ing were exactly the planted patterns. The scores of these patterns are between
99 500 and 84 000. The following patterns are typically a combination of an
original pattern with an additional parallel symbol or a subset of an original
pattern. The scores of these patterns, though significant, are dropping fast:
the score of the 6th pattern is 67 000, the score of 7th pattern is 42 000. Note
that if we used frequency (or any other monotonic measure) as a score, subsets
of these planted patterns would have appeared first in the list.

Our next step is to see what types of episodes does our score preferred. In
order to do that, we first consider Figure 7 where we have plotted the number
of nodes in an episode as a function of rank. We see that top patterns tend to
have more nodes. This is especially prominent with Address and Nsf datasets.

We continued our experiments by computing the proportion of episode
types, that is, whether an episode is a parallel, serial, or general, as a function
of rank, given in Figure 8. From figures we see that distribution depends heavily
on a sequence. Serial episodes tend to be distributed evenly, parallel episodes
tend to be missing from the very top and general episodes tend to be missing
from the very bottom.

Finally, let us conclude by demonstrating some of the discovered top pat-
terns from Address and Jmlr datasets, given in Figure 9. The first three pat-
terns represent phrases that are often said by the presidents. Episode in Fig-
ure 9b is particularly interesting since presidents tend to acknowledge vice
president(s) and the chief justice at the beginning of their speeches but the or-
der is not fixed. The remaining 3 patterns represent common phrases occurring
in abstracts of machine learning articles.

Discovering Episodes with Compact Minimal Windows 25

200 400 600 800 1,000

2

3

4

5

rank

n
u
m
b
e
r
o
f
n
o
d
e
s

Moby

Address

Jmlr

Nsf

Fig. 7: Number of nodes in top-1 000 episodes as a function of rank. Counts
are smoothed by computing averages of batches of ten episodes

0 2 000 4 000

0

0.2

0.4

0.6

0.8

1

rank

p
ro

p
o
rt
io
n
o
f
ty

p
e
s

(a) Moby

0 10 000 20 000 30 000 40 000

0

0.2

0.4

0.6

0.8

1

rank

p
ro

p
o
rt
io
n
o
f
ty

p
e
s

(b) Address

0 5 000 10 000

0

0.2

0.4

0.6

0.8

1

general

parallel

serial

rank

p
ro

p
o
rt
io
n
o
f
ty

p
e
s

(c) Jmlr

0 1 000 2 000

0

0.2

0.4

0.6

0.8

1

rank

p
ro

p
o
rt
io
n
o
f
ty

p
e
s

(d) Nsf

Fig. 8: Proportions of different types of episodes as a function of rank. The top
area corresponds go the general episodes, the middle area represents parallel
episodes and the bottom area represents serial episodes. Proportions were
computed by dividing the ranked patterns into 100 bins

7.5 Asymptotic normality

Proposition 11 implies that if the independence assumption hold in the testing
sequence, then sc(G) should behave like a sample from a standard normal

26 Nikolaj Tatti

preserv protect defend constitut unit state

(a) Address, 1st episode, sc(G) = 766 946

vice presid

chief justice

(b) Address, 3rd,
sc(G) = 11 483

four year ago

(c) Address, 7th episode, sc(G) = 807

reproduce kernel hilbert space

(d) Jmlr, 1st episode, sc(G) = 10 971

support vector machin svm

(e) Jmlr, 2nd episode, sc(G) = 10 641

real world data set

(f) Jmlr, 3rd episode, sc(G) = 4 269

Fig. 9: Examples of highly ranked episodes from Address and Jmlr datasets

distribution as the size of the sequence increases. In this section we test the
rate of convergence.

To that end we generated several sequences with independent events, each
event having equal probability to occur. We generated three training sequences
from alphabets of 100, 500, and 1 000 symbols. Each sequence contained 10 000
events. For each training sequence we generated 3 testing sequences of different
lengths, namely 104, 105, and 106.

From each testing sequence we mined frequent episodes. We selected the
thresholds such that we got roughly 10 000 episodes, more specifically, we used
12, 3, 2 as thresholds for sequences with 100, 500, 1 000 symbols respectively.
We then tested the discovered non-singleton episodes on testing sequences.
Note that computing the score requires probabilities of individual events. We
computed the scores both by using the true probabilities and by estimating
the probabilities from the training sequence.

In Figure 10 we plotted the proportion of episodes for which Φ (−sc(G))
is smaller than the threshold. Proposition 11 implies that ideally this plot
should be the identity line between 0 and 1. We see that this is the case in
Figure 10a. As we increase the size of the alphabet, the estimate becomes more
and more inaccurate. We believe that this is due to high skewness of the actual
distribution. When using true probabilities for individual probabilities, longer
testing sequences produce better results. Using estimated values introduces
additional errors, as can be seen in Figure 10d where a testing sequence of
length 106 is less ideal than the sequence of 105. However, this phenomenon
can be attacked by dividing the sequence to training and testing portion more
fairly, thus making the estimates more accurate.

8 Discussion and Conclusions

In this paper we proposed a new quality measure for episodes based on mini-
mal windows. In order to do this, we approached by computing the expected
values based on the independence model and compared the expectations to
the observed values by computing a Z-score.

Discovering Episodes with Compact Minimal Windows 27

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P -value Φ(−sc(G))

p
ro

p
.
o
f
e
p
is
o
d
e
s

(a) |Σ| = 100, true distr.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P -value Φ(−sc(G))

p
ro

p
.
o
f
e
p
is
o
d
e
s

(b) |Σ| = 500, true distr.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P -value Φ(−sc(G))

p
ro

p
.
o
f
e
p
is
o
d
e
s

(c) |Σ| = 1000, true distr.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P -value Φ(−sc(G))

p
ro

p
.
o
f
e
p
is
o
d
e
s

(d) |Σ| = 100, learned distr.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P -value Φ(−sc(G))

p
ro

p
.
o
f
e
p
is
o
d
e
s

(e) |Σ| = 500, learned distr.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P -value Φ(−sc(G))

p
ro

p
.
o
f
e
p
is
o
d
e
s

|s|=104

|s|=105

|s|=106

(f) |Σ| = 1000, learned distr.

Fig. 10: Cumulative proportion of episodes as a function of a score Φ (−sc(G))
in generated sequences with independent events. Ideally, the proportion is an
identity function. The left column represents sequences with 100 symbols, the
centre column represents sequences with 500 symbols, and the right column
represents sequences with 1 000 symbols. The top row uses true occurrences
for individual symbols when computing the moments, while the bottom row
estimates the occurrences from training sequence. Each plot contains three
lines representing different sizes of testing sequences

Our main technical contribution is a technique for computing the moments
of minimal windows. In order to do so we created a series of elaborate finite
state machines and demonstrated that we can compute the moments recur-
sively. In this paper we chose to use a specific statistic, namely ρd, where d is
a length of a minimal window and ρ is a user-given parameter. However, the
same principle can be applied also directly on the length of minimal windows.

While the actual computation of statistics is fairly complex and requires a
great number of recursive updates, and even may be exponentially slow, our
experiments demonstrate that the computation is fast in practice, we can rank
tens of thousands of episodes in the matter of seconds.

Our technique has its limitations. In synthetic data, plant, after finding 5
true patterns, our method continued scoring high patterns that were either
superpatterns of subpatterns of the first 5 patterns. All these patterns are
significant in the sense that they deviate significantly from the independence
model. Nevertheless, they provide no new information about the underlying
structure in the data. This problem occurs in any pattern ranking scheme
where the ranking method does not take other patterns into account.

28 Nikolaj Tatti

Approaches to further reduce patterns by considering patterns as a set
instead of individual patterns have been developed for itemsets. For example,
one approach for itemsets involve in partitioning itemsets into subitemsets and
applying independence assumption between the individual parts Webb (2010).
Transforming this idea to episodes is not trivial. A more direct approach—
although using only serial episodes—where episodes were selected using MDL
techniques was suggested in Tatti and Vreeken (2012). An extension of this
work to general episodes would be interesting.

Proposition 11 implies that we can interpret our measure as a P -value. In
practice, this can be problematic as we demonstrate in Section 7.5. Since the
distributions are heavily skewed, especially when dealing with a large alphabet,
we require a lot of samples before the normality assumption becomes accurate.
Nevertheless our experiments with synthetic and text data demonstrate that
our score produces interpretable rankings.

Acknowledgements

Nikolaj Tatti was partly supported by a Post-Doctoral Fellowship of the Re-
search Foundation – Flanders (fwo).

References

Achar A, Laxman S, Viswanathan R, Sastry PS (2012) Discovering injective
episodes with general partial orders. Data Min Knowl Discov 25(1):67–108

Billingsley P (1995) Probability and Measure, 3rd edn. John Wiley & sons
Calders T, Dexters N, Goethals B (2007) Mining frequent itemsets in a stream.
In: Proceedings of the 7th IEEE International Conference on Data Mining
(ICDM 2007), pp 83–92

Casas-GarrigaG (2003) Discovering unbounded episodes in sequential data. In:
Knowledge Discovery in Databases: PKDD 2003, 7th European Conference
on Principles and Practice of Knowledge Discovery in Databases, pp 83–94

Cule B, Goethals B, Robardet C (2009) A new constraint for mining sets in
sequences. In: Proceedings of the SIAM International Conference on Data
Mining (SDM 2009), pp 317–328

Gwadera R, Atallah MJ, Szpankowski W (2005a) Markov models for identi-
fication of significant episodes. In: Proceedings of the SIAM International
Conference on Data Mining (SDM 2005), pp 404–414

Gwadera R, Atallah MJ, Szpankowski W (2005b) Reliable detection of
episodes in event sequences. Knowledge and Information Systems 7(4):415–
437

Hirao M, Inenaga S, Shinohara A, Takeda M, Arikawa S (2001) A practical
algorithm to find the best episode patterns. In: Discovery Science, pp 435–
440

Discovering Episodes with Compact Minimal Windows 29

Mannila H, Toivonen H, Verkamo AI (1997) Discovery of frequent episodes
in event sequences. Data Mining and Knowledge Discovery 1(3):259–289,
DOI http://dx.doi.org/10.1023/A:1009748302351

Méger N, Rigotti C (2004) Constraint-based mining of episode rules and opti-
mal window sizes. In: Knowledge Discovery in Databases: PKDD 2004, 8th
European Conference on Principles and Practice of Knowledge Discovery in
Databases, pp 313–324

Pei J, Wang H, Liu J, Wang K, Wang J, Yu PS (2006) Discovering frequent
closed partial orders from strings. IEEE Transactions on Knowledge and
Data Engineering 18(11):1467–1481

Tatti N (2009) Significance of episodes based on minimal windows. In: Pro-
ceedings of the 9th IEEE International Conference on Data Mining (ICDM
2009), pp 513–522

Tatti N, Cule B (2011) Mining closed episodes with simultaneous events. In:
Proceedings of the 17th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD 2011), pp 1172–1180

Tatti N, Cule B (2012) Mining closed strict episodes. Data Min Knowl Discov
25(1):34–66

Tatti N, Vreeken J (2012) The long and the short of it: summarising event
sequences with serial episodes. In: The 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2012, pp 462–470

Trońıcek Z (2001) Episode matching. In: Combinatorial Pattern Matching, pp
143–146

van der Vaart AW (1998) Asymptotic Statistics. Cambridge Series in Statis-
tical and Probabilistic Mathematics, Cambridge University Press

Webb GI (2007) Discovering significant patterns. Machine Learning 68(1):1–33
Webb GI (2010) Self-sufficient itemsets: An approach to screening potentially
interesting associations between items. TKDD 4(1)

A Proofs

Proof (Proof of Proposition 2) We will prove this by induction. Let i be the source state
of M . The proposition holds trivially when X = {i}, a source state. Assume now that the
proposition holds for all parent states of X.

Assume that s covers X. Let t be a subsequence of s that leads sm(M) from the
source state {i} to X. Let se be the last symbol of s occurring in t. Then a parent state
Y = {y1, . . . , yL} = par (X; se) is covered by s[1, e − 1]. By the induction assumption at
least one yk is covered by s[1, e−1]. If there is xj ∈ X such that xj = yk, then xj is covered
by s, otherwise there is xj that has yk as a parent state. The edge connecting xj and yk is
labelled with se. Hence s covers xj also.

To prove the other direction assume that s covers xj . Let t be a sub-sequence that leads
M from i to xj . Let se be the last symbol occurring in t. Let y be the parent state of xj
connected by an edge labelled with se. Since se ∈ in(X), we must have Y as a parent state
of X such that y ∈ Y . By the induction assumption, s[1, e− 1] covers Y . Hence s covers X.
�

In order to prove Proposition 3 we need the following lemma.

30 Nikolaj Tatti

Lemma 2 Let G be an episode and assume a sequence s = (s1, . . . , sL) that covers G. Let
H = {G− v; v ∈ sinks(G) , lab(v) = sL}. If H is empty, then s[1, L−1] covers G. Otherwise,
there is an episode H ∈ H that is covered by s[1, L− 1].

Proof Let f be a valid mapping of V (G) to indices of s corresponding to the coverage. If H
is empty, then L is not in the range of f , then s[1, L− 1] covers G. If H is not empty but L
is not in the range of f , then s[1, L− 1] covers G, and any episode in H.

Assume now that L is in range of f , that is, there is a sink v with a label sL. Episode
G − v is in H. Moreover, f restricted to G − v provides the needed mapping in order to
s[1, L− 1] to cover G− v. �

Proof (Proof of Proposition 3) If g(X, s) = {i}, then it is trivial to see that s covers X.
Assume that s covers X. We will prove this direction by induction over L, the length of

s. The proposition holds for L = 0. Assume that L > 0 and that proposition holds for all
sequences of length L− 1.

Let Y = g(X, sL). Note that g(X, s) = g(Y, s[1, L− 1]). Hence, to prove the proposition
we need to show that s[1, L− 1] covers Y .

If Y = {i}, then s[1, L − 1] covers Y . Hence, we can assume that Y 6= {i}, that is,
Y = sub(X; sL) ∪ stay(X; sL).

Proposition 2 implies that one of the states of MG, say x ∈ X, is covered by s. Propo-
sition 1 states that the corresponding episode, say H, is covered by s.

Assume that x ∈ Y . This is possibly only if x ∈ stay(X; sL) that is there is no sink
node in H labelled as sL. Lemma 2 implies that s[1, L− 1] covers H, Propositions 1 and 2
imply that s[1, L− 1] covers Y .

Assume that x /∈ Y , Then sub(X; sL) ⊆ Y contains all states of MG corresponding
to the episodes of form H − v, where v is sink node of H with a label sL. According to
Lemma 2, s[1, L−1] covers one of these episodes, Propositions 1 and 2 imply that s[1, L−1]
covers Y . �

Proof (Proof of Proposition 4) We will prove the proposition by induction over L, the length
of s. The proposition holds when L = 0. Assume that L > 0 and that proposition holds for
sequence of length L− 1.

Let β = (y1, y2) = g(α, sL). Then, by definition of M∗, yi = g(xi, sL). Write t =
s[1, L− 1]. Since

g(β, t) = g(α, s) , g(y1, t) = g(x1, s) , g(y2, t) = g(x2, s) .

and, because of induction assumption, g(β, t) = (g(y1, t) , g(y2, t)), we have g(α, s) =
(g(x1, s) , g(x2, s)). �

Proof (Proof of Proposition 5) Assume that s is a minimal window for G. Since s covers
S in M , g(S, s;M) = I. This implies that g(S, s;M1) = I or g(S, s;M1) = J . The latter
case implies that s[2, L] covers S inM , which is a contradiction. Hence, g(S, s;M1) = I. Let
Z = g(T, s;M2). If Z = I, then s[1, L − 1] covers S in M , which is a contradiction. Hence
Z 6= I. Proposition 4 implies that g(α, s) = (I, Z).

Assume that g(α, s) = (I, Y) such that Y 6= I. Proposition 4 implies that g(S, s;M1) = I
and g(T, s;M2) 6= I. The former implication leads to g(S, s;M) = I which implies that s
covers G.

If s[2, L] covers G, then g(S, s[2, L];M) = I and so g(S, s;M1) = J , which is a contradic-
tion. Hence s[2, L] does not cover G. The latter implication leads to g(S, s[1, L− 1];M) 6= I
which implies that s[1, L− 1] does not cover G. This proves the proposition. �

Proof (Proof of Proposition 6) If L = 0, then g(x, s) = x which immediately implies the
proposition. Assume that L > 0. Note that g(x, s) = g(g(x, sL) , s[1, L− 1]).

p(g(x, s) ∈ Y | |s| = L)

=
∑

a∈Σ

p(a)p(g(x, s) ∈ Y | |s| = L, sL = a)

=
∑

a∈Σ

p(a)p(g(g(x, a) , s[1, L− 1]) ∈ Y | |s| = L, sL = a).

Discovering Episodes with Compact Minimal Windows 31

Since individual symbols in s are independent, it follows that

p(g(g(x, a) , s[1, L− 1]) ∈ Y | |s| = L, sL = a) = pg(g(x, a) , Y, L− 1) .

This proves the proposition. �

Proof (Proof of Lemma 1) Define q =
√

1−mina∈Σ p(a). Note that q < 1. We claim that
for each x there is a constant Cx such that pg(x, Y, L) ≤ CxqL = O(qL) which in turns
proves the lemma. To prove the claim we use induction over parenthood of x and L.

Since the source node is not in Y , the first step follows immediately. Assume that the
result holds for all parent states of x. Define

Cx = max
(

1,
1

q(1− q)
∑

a∈in(x)
y=g(x,a)

p(a)Cy

)

which implies qCx + q−1
∑

a∈in(x)
y=g(x,a)

p(a)Cy ≤ Cx.

Since Cx ≥ 1, the case of L = 0 holds. Assume that the the induction assumption holds
for Cy and for Cx up to L− 1. Let r = 1−

∑

a∈in(x) p(a). Note that r ≤ q2. According to

Proposition 6 we have

pg(x, Y, L) = rpg(x, Y, L− 1) +
∑

a∈in(x)
y=g(x,a)

p(a)pg(y, Y, L− 1)

≤ rCxq
L−1 +

∑

a∈in(x)
y=g(x,a)

p(a)Cyq
L−1

≤ qL
(

qCx + q−1
∑

a∈in(x)
y=g(x,a)

p(a)Cy

)

≤ qLCx.

This proves that pg(x, Y, L) decays at exponential rate. �

Proof (Proof of Proposition 8) The proposition follows by a straightforward manipulation
of Equation 1. First note that

∞
∑

L=1

f(L− 1)pg(x, Y, L) = cm(x, f, Y) +m(x, h, Y) . (5)

Equation 1 implies that

∞
∑

L=1

f(L− 1)pg(x, Y, L) =
∑

a∈Σ
y=g(x,a)

p(a)
∞
∑

L=1

f(L− 1)pg(y, Y, L− 1)

=
∑

a∈Σ
y=g(x,a)

p(a)(i(y) +
∞
∑

L=1

f(L)pg (y, Y, L))

=
∑

a∈Σ
y=g(x,a)

p(a)(i(y) +m(y, f, Y))

= q(i(x) +m(x, f, Y)) +
∑

a∈in(x)
y=g(x,a)

p(a)(i(y) +m(y, f, Y)).

(6)

Combining Equations 5 and 6 and solving m(x, f, Y) gives us the result. �

To prove the asymptotic normality we will use the following theorem.

32 Nikolaj Tatti

Theorem 1 (Theorem 27.4 in (Billingsley, 1995)) Assume that Uk is a stationary
sequence with E [Uk] = 0, E

[

U12
k

]

<∞, and is α-mixing with α(n) = O(n−5), where α(n)
is the strong mixing coefficient,

α(n) = sup
k,A,B

|p(A,B) − p(A)p(B)|,

where A is an event depending only on U−∞, . . . , Uk and B is an event depending only
on Uk+n, . . . , U∞. Let Sk = U1 + · · · + Uk. Then σ2 = limk 1/kE [Sk] exists and Sk/

√
k

converges to N(0, σ2) and σ2 = E
[

U2
1

]

+ 2
∑

∞
k=2 E [U1Uk].

Proof (Proof of Proposition 10) Let us write Tk = (Zk, Xk)−(q, p) and SL = 1/
√
L
∑L

k=1 Tk.
Assume that we are given a vector r = (r1, r2) and write Uk = rTTk. We will first prove
that rTSL converges to a normal distribution using Theorem 1.

First note that E [Uk] = 0 and that

E
[

U12
k

]

=
12
∑

i=0

(12

i

)

ri1r
12−i
2 E

[

Zi
kX

12−i
k

]

= r122 E [Xk] +
12
∑

i=1

(12

i

)

ri1r
12−i
2 E

[

Zi
k

]

.

Since every moment of Zk and Xk is finite, E
[

U12
k

]

is also finite. We will prove now that
Uk is α-mixing.

Fix k and N . Write W to be an event that s[k + 1, N] covers G. If W is true, then
Xl and Zl (and hence Ul) for l ≤ k depends only s[l,N], that is, either there is a minimal
window s[l,N ′], where N ′ < N or Xl = Zl = 0.

Let A be an event depending only on U−∞, . . . , Uk and B be an event depending only
on UN+1, . . . , U∞. Then p(A,B |W) = p(A |W)p(B |W). We can rephrase this and bound
α(n) ≤ p(s[1, n− 1] does not covers G). To bound the right side, let M = sm(MG), let v be
its sink state and let V be all states save the source state. Then the probability is equal to

p(s[1, n− 1] does not covers G) = pg(v, V, n− 1) .

Since V does not contain the source node, the moment m
(

v, n→ n5, V
)

is finite. Conse-
quently, n5pg(v, V, n)→ 0 which implies that α(n) = O(n−5). Thus Theorem 1 implies that
rTSL converges to a normal distribution with the variance σ2 = r21C11+2r1r2C12+r22C22 =
rTCr. Levy’s continuity theorem (Theorem 2.13 van der Vaart, 1998) now implies that the
characteristic function of rTSL converges to a characteristic function of normal distribution
N(0, σ2),

E
[

exp
(

itrTSL

)]

→ exp
(

−1/2t2rTCr
)

.

The left side is a characteristic function of SL (with tr as a parameter). Similarly, the right
side is a characteristic function of N(0, C). Levy’s continuity theorem now implies that SL

converges into N(0, C). �

Proof (Proof of Proposition 11) Function f(x, y) = x/y is differentiable at (q, p). Since

1/
√
L
(
∑L

k=1(Zk, Xk)− (q, p)
)

converges to normal distribution, we can apply Theorem 3.1
in (van der Vaart, 1998) so that

√
L

(

∑L
k=1 Zk

∑L
k=1Xk

− µ
)

=
√
Lf

(

1/L
L
∑

k=1

Zk, 1/L
L
∑

k=1

Xk

)

−
√
Lf(q, p)

converges to N(0, σ2), where σ2 = ∇f(q, p)TC∇f(q, p). The gradient of f is equal to
∇f(q, p) = (1/p,−µ/p). The proposition follows. �

Proof (Proof of Proposition 12) To prove all four cases simultaneously, let us write write A
to be either X1 or Z1 and let Bk to be either Xk or Zk. Let a = E [A] and b = E [Bk]. First
note that E [(A− a)(Bk − b)] = E [A(Bk − b)], which allows us to ignore a inside the mean.

Discovering Episodes with Compact Minimal Windows 33

Assume that we have 0 < n < k. Then given that Y1 = n, A and X1 depends only on n
first symbols of sequence. Since Bk does not depend on k−1 first symbols, this implies that

p(A,Bk | Y1 = n) = p(A | Y1 = n)p(Bk | Y1 = n) = p(A | Y1 = n)p(Bk),

which in turns implies that E [A(Bk − b) | Y1 = n] = 0.
Note that for A = 0 whenever Y1 = 0. Consequently, we have

E

[

A

∞
∑

k=2

(Bk − b)
]

=

∞
∑

n=1

E

[

A

∞
∑

k=2

(Bk − b) | Y1 = n

]

p(Y1 = n)

=
∞
∑

n=1

E

[

A
n
∑

k=2

(Bk − b) | Y1 = n

]

p(Y1 = n)

= E

[

A

Y1
∑

k=2

(Bk − b)
]

= E

[

A

Y1
∑

k=2

Bk

]

− E

[

A

Y1
∑

k=2

b

]

= E

[

A

Y1
∑

k=2

Bk

]

− E [A(Y1 −X1)] b

= E

[

X1A

Y1
∑

k=2

XkBk

]

− E [A(Y1 −X1)] b,

where the second last equality holds because
∑Y1

k=2 1 = Y1−X1 and the last equality follows

since Xk = X2
k
and Zk = XkZk for any k. �

	1 Introduction
	2 Preliminaries and Notation
	3 Minimal Windows of Episodes
	4 Detecting Minimal Windows
	5 Computing Moments
	6 Related Work
	7 Experiments
	8 Discussion and Conclusions
	A Proofs

