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Abstract. Kernel methods are powerful tools in machine learning. They
have to be computationally efficient. In this paper, we present a novel
Geometric-based approach to compute efficiently the string subsequence
kernel (SSK). Our main idea is that the SSK computation reduces to
range query problem. We started by the construction of a match list
L(s,t) = {(i,7) : si = t;} where s and t are the strings to be compared;
such match list contains only the required data that contribute to the
result. To compute efficiently the SSK, we extended the layered range
tree data structure to a layered range sum tree, a range-aggregation data
structure. The whole process takes O(p|L|log|L|) time and O(|L|log |L|)
space, where |L| is the size of the match list and p is the length of
the SSK. We present empiric evaluations of our approach against the
dynamic and the sparse programming approaches both on synthetically
generated data and on newswire article data. Such experiments show
the efficiency of our approach for large alphabet size except for very
short strings. Moreover, compared to the sparse dynamic approach, the
proposed approach outperforms absolutely for long strings.

Keywords: string subsequence kernel, computational geometry, layered
range tree, range query, range sum

1 Introduction

Kernel methods [4] offer an alternative solution to the limitation of traditional
machine learning algorithms, applied solely on linear separable problems. They
map data into a high dimensional feature space where we can apply linear learning
machines based on algebra, geometry and statistics. Hence, we may discover
non-linear relations. Moreover, kernel methods enable other data type processings
(biosequences, images, graphs, ...).

Strings are among the important data types. Therefore, machine learning
community devotes a great effort of research to string kernels, which are widely
used in the fields of bioinformatics and natural language processing. The phi-
losophy of all string kernels can be reduced to different ways to count common
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substrings or subsequences that occur in both strings to be compared, say s and
t.

In the literature, there are two main approaches to improve the computation
of the SSK. The first one is based on dynamic programming; Lodhi et al. [6] apply
dynamic programming paradigm to the suffix version of the SSK. They achieve
a complexity of O(p|s||t]), where p is the length of the SSK. Later, Rousu and
Shawe-Taylor [7] propose an improvement to the dynamic programming approach
based on the observation that most entries of the dynamic programming matrix
(DP) do not really contribute to the result. They use a set of match lists combined
with a sum range tree. They achieve a complexity of O(p|L|log min(|s|, |t|)), where
L is the set of matches of characters in the two strings. Beyond the dynamic
programming paradigm, the trie-based approach [BI7I8] is based on depth first
traversal on an implicit trie data structure. The idea is that each node in the
trie corresponds to a co-occurrence between strings. But the number of gaps is
restricted, so the computation is approximate.

Motivated by the efficiency of the computation, a key property of kernel
methods, in this paper we focus on improving the SSK computation. Our main
idea consists to map a machine learning problem on a computational geometry
one. Precisely, our geometric-based SSK computation reduces to 2-dimensional
range queries on a layered range sum tree (a layered range tree that we have
extended to a range-aggregate data structure). We started by the construction
of a match list L(s,t) = {(i,7) : s; = t;} where s and ¢ are the strings to be
compared; such match list contains only the required data that contribute to the
result. To compute efficiently the SSK, we constructed a layered range sum tree
and applied the corresponding computational geometry algorithms. The overall
time complexity is O(p|L|log|L|), where |L| is the size of the match list.

The rest of this paper is organized as follows. Section [2| deals with some
concept definitions and introduces the layered range tree data structure. In
section [3] we recall formally the SSK computation. We also review three efficient
computations of the SSK, namely, dynamic programming, trie-based and sparse
dynamic programming approaches. Our contribution is addressed in Section [
Section [p] presents the conducted experiments and discusses the associated results,
demonstrating the practicality of our approach for large alphabet sizes. Section [f]
presents conclusions and further work.

2 Preliminaries

We first deal with concepts of string, substring, subsequence and kernel. We then
present the layered range tree data structure.

2.1 String

Let X be an alphabet of a finite set of symbols. We denote the number of symbols
in ¥ by |¥]. A string s = s1...5)5 is a finite sequence of symbols of length |s|
where s; marks the i*" element of s. The symbol € denotes the empty string. We
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use Y™ to denote the set of all finite strings of length n and X* the set of all
strings. The notation [s = ¢] is a boolean function that returns

1 if s and ¢t are identical;
0 otherwise.

2.2 Substring

For 1 < i < j < |s|, the string s(i : j) denotes the substring s;s;41...s; of s.
Accordingly, a string ¢ is a substring of a string s if there are strings u and v such
that s = utv (u and v can be empty). The substrings of length n are referred to
as n-grams (or n-mers).

2.3 Subsequence

The string ¢ is a subsequence of s if there exists an increasing sequence of indices
I = (il,...,i|t|) in s, (1 <ip <. < Z‘t| < |S|) such that tj = Si;, fOI‘j =1,..., ‘t|
In the literature, we use t = s(I) if ¢ is a subsequence of s in the positions given
by I. The empty string € is indexed by the empty tuple. The absolute value
[t| denotes the length of the subsequence ¢ which is the number of indices |I],
while I(I) = i, — i1 + 1 refers to the number of characters of s covered by the
subsequence t.

2.4 Kernel methods

Traditional machine learning and statistic algorithms have been focused on
linearly separable problems (i.e. detecting linear relations between data). It is
the case where data can be represented by a single row of table. However, real
world data analysis requires non linear methods. In this case, the target concept
cannot be expressed as simple linear combinations of the given attributes [4].
This was highlighted in 1960 by Minsky and Papert.

Kernel methods were proposed as a solution by embedding the data in a
high dimensional feature space where linear learning machines based on algebra,
geometry and statistics can be applied. This embedding is called kernel. It arises
as a similarity measure (inner product) in a high dimension space so-called feature
description.

The trick is to be able to compute this inner product directly from the original
data space using the kernel function. This can be formally clarified as follows:
the kernel function K corresponds to the inner product in a feature space F' via
a map o.

¢ : X F
x> ()
K(x,2") = (¢(z), ¢(2')).
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2.5 Layered Range Tree

A Layered Range Tree (LRT) is a spatial data structure that supports orthogonal
range queries. It is judicious to describe a 2-dimensional range tree inorder to
understand LRT. Consider a set S of points in R?. A range tree is primarily a
balanced binary search tree (BBST) built on the z-coordinate of the points of S.
Data are stored in the leaves only. Every node v in the BBST is augmented by
an associated data structure (Tgssoc(v)) whitch is a 1-dimensional range tree, it
can be a BBST or a sorted array, of a canonical subset P(v) on y-coordinates.
The subset P(v) is the points stored in the leaves of the sub tree rooted at
the node v. Figure [I] depicts a 2-dimensional range tree for a set of points
S =1{(2,2),(5,2),(3,3),(4,3),(2,4),(5,4)}. In the case where two points have
the same z or y-coordinate, we have to define a total order by using a lexicographic
one. It consists to replace the real number by a composite-number space [2]. The
composite number of two reals x and y is denoted by (z]y), so for two points, we
have:
(zly) < (@y) e z<a'V(iz=2" Ay <y).

Based on the analysis of computational geometry algorithms, our 2-dimensional

[212)] )

(313)] 319) [ (42) | (415)

O The tree with circle nodes is a BBST on z-coordinates.
[0 The arrays with y-coordinates play the role of the associated BBST.

Fig.1. A 2-dimensional range tree.

range tree for a set S of n points requires O(n log n) storage and can be constructed
in O(nlogn) time.

The range search problem consists to find all the points of S that satisfy a range
query. A useful idea, in terms of efficiency, consists on treating a rectangular range
query as a two nested 1-dimensional queries. In other words, let [x1 : 2] X [y1 : yo]
be a 2-dimensional range query, we first ask for the points with z-coordinates
in the given 1-dimensional range query [z; : x2]. Consequently, we select a
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collection of O(logn) subtrees. We consider only the canonical subset of the
resulted subtrees, which contains, exactly, the points that lies in the z-range
[21 : @2]. At the next step, we will only consider the points that fall in the y-range
[y1 : y2].

The total task of a range query can be performed in O(log2 n + k) time, where k
is the number of points that are in the range. We can improve it by enhancing
the 2-dimensional range tree with the fractional cascading technique which is
described in the following paragraph.

The key observation made during the invocation of a rectangular range
query is that we have to search the same range [y; : y2] in the associated
structures of O(logn) nodes found while querying the main BBST by the range
query [z : z3]. Moreover, there exists an inclusion relationship between these
associated structures. The goal of the fractional cascading consists on executing
the binary search only once and use the result to speed up other searches without
expanding the storage by more than a constant factor.

The application of the fractional cascading technique introduced by [3] on a
range tree creates a new data structure so called layered range tree. The technique
consists to add pointers from the entries of an associated data structure 7gssoc Of
some level to the entries of an associated data structure below, say T’ gss0c a8
follows: If Tyssocli] stores a value with the key y;, then we store a pointer to the
entry in 77 4550 With the smallest key larger than or equal y;. We illustrate such
technique in Fig. [2] for the same set represented in Fig. [I] Using this technique,
the rectangular search query time becomes O(logn + k), O(logn) for the first
binary search and O(k) for browsing the k reported points.

< 3
ZNY A

>
(-

O The tree with circle nodes is a BBST on z-coordinates.
[0 The arrays with y-coordinates play the role of the associated BBST.
—  The pointers of the fractional cascading (null pointers are omited).

Fig. 2. A layered range tree, an illustration of the fractional cascading (only between
two levels).
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3 String Subsequence Kernels

The philosophy of all string kernel approaches can be reduced to different ways
to count common substrings or subsequences that occur in the two strings to
compare. This philosophy is manifested in two steps:

— Project the strings over an alphabet X' to a high dimension vector space F',
where the coordinates are indexed by a subset of the input space.

— Compute the distance (inner product) between strings in F'. Such distance
reflects their similarity.

For the String Subsequence Kernel (SSK) [6], the main idea is to compare strings
depending on common subsequences they contain. Hence, the more similar strings
are ones that have the more common subsequences. However, a new weighting
method is adopted. It reflects the degree of contiguity of the subsequence in
the string. In order to measure the distance of non contiguous elements of the
subsequence, a gap penalty A €]0, 1] is introduced. Formally, the mapping function
¢P(s) in the feature space F' can be defined as follows:

o (s) = Z MOy e 5,

I:u=s(I)

The associated kernel can be written as:

Kp(s,t) = (¢¥(s), 9" (1))
=Y #hls)-dh(t)

uexr

=Y Y Y 0O,

wu€X? [iu=s(I) J:u=t(J)

In order to clarify the idea of the SSK, we present a widespread example in the
literature. Consider the strings bar, bat, car and cat, for a subsequence length
p = 2, the mapping to the feature space is as follows:

o2 ar at ba br bt ca cr ct
bar A2 0 A2 A3 0 0 0 0
bat 0 A2 A2 0 23 0 0 0
car A2 0 0 0 0 A2 A3 0
cat 0 A2 0 0 0 A2 0 23

The unnormalized kernel between bar and bat is Ko(bar, bat) = A\*, while the
normalized version is obtained by :

I/(\g(bar, bat) = Ky (bar, bat) //Ka(bar, bar). Ky (bat, bat) = X*/(2X14X0) = 1/(24+)?).
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A direct implementation of this kernel leads to O(] X?|) time and space complexity.
Since this is the dimension of the feature space. To assist the computation of the
SSK a Suffix Kernel is defined through the embedding given by:

S = S N e,

Iell‘,sl wu=s(I)

where I;f denotes the set of p-tuples of indices I with i, = k. In other words, we
consider only the subsequences of length p that the last symbol is identical to
the last one of the string s. The associated kernel can be defined as follows:

s
K, (s,1)

(@5 (s),6™°(1))
=D 5(s)h5(0).

ueXP

To illustrate this kernel counting trick, we take back the precedent example where
the mapping is as follows:

2.5 ar at ba br bt ca cr ct

bar N 0 0 P 0 0 0 0

bat 0 A2 0 0 A3 0 0 0

car A2 0 0 0 0 0 A3 0

cat 0 A2 0 0 0 0 0 A?

for example K3 (bar,bat) = 0 and K5 (bat, cat) = \*.
The SSK can be expressed in terms of its suffix version as:
Isl Il
Kp(s,t) =Y Y K (s(1:4),t(1: ). (1)

i=1 j=1

with K§(s,1) = [s}5 = ts] A2

3.1 Naive Implementation

The computation of the similarity of two strings (sa and ¢b) is conditioned by
their final symbols. In the case where a = b, we have to sum kernels of all prefixes
of s and t. Hence, a recursion has to be devised:

sl It
K (sa,th) =[a=0b] > > NHETHITRS  (s(1:4),¢(1: 5)). (2)

i=1 j=1

This computation leads to a complexity of O(p(|s|?[t|?)).
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3.2 Efficient Implementations

We present three methods that compute the SSK efficiently, namely the dynamic
programming [6], the trie-based [57I8] and the sparse dynamic programming
approaches [7].

To describe such approaches, we use two strings s = gatta and ¢t = cata as a
running example.

Dynamic Programming Approach. The starting point of the dynamic pro-
gramming approach is the suffix recursion given by equation . From this
equation, we can consider a separate dynamic programming table D P, for storing
the double sum:

k l
DP,(k,1) =Y > XTI KS  (s(1:4),¢(1: ). (3)

i=1 j=1

It is easy to see that: Kg(sa,tb) = [a = b] N2 DP,(|s], t])).
Computing ordinary DP, for each (k,l) would be inefficient. So we can devise a
recursive version of equation with a simple counting device:

DPy(k,1) = K5 _1(s(1:k),t(1:1)) + ADP,(k — 1,1) +
ADP,(k,l — 1) — N2DP,(k — 1,1 — 1).

Consequently, using the dynamic programming approach (Algorithm , the
complexity of the SSK becomes O(p|s||t]).

Table [1]illustrates the computation of the dynamic programming tables for
the running example for p = 1,2. The evaluation of the kernel is given by the
sum of entries of the suffix table KPS:

Ki(s,t) = 6)%
Ka(s,t) = 2X* +20° + AT,

Trie-based Approach. This approach is based on search trees known as tries,
introduced by E. Fredkin in 1960. The key idea of the trie-based approach is that
leaves play the role of the feature space indexed by the set XP of strings of length
p. In the literature, there are variants of trie-based string subsequence kernels.
For instance the (p, m)-mismatch string kernel [5] and restricted SSK [8]. In the
present section, we try to describe a trie-based SSK presented in [7] that slightly
differ from those cited above [5I8]. Figure [3|illustrates the trie data structure
for the running example. Each node in the trie corresponds to a co-occurrence
between strings. The algorithm maintains for all matches u = s(I) = uy - - - ug,
I =1iy---i4 alist of alive matches A,(u,g) as presented in Table [2| that records
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Algorithm 1: Dynamic SSK computation
Input: Strings s and ¢, the length of the subsequence p, and the decay penalty A
Output: Kernel values Ky(s,t) = K(q):q=1,...,p

1 m « length(s)

n « length(t)

N

3 K(1:p)<«0
/* Computation of Ki(s,t) */
4 for i = 1:m do
5 for j = 1:n do
6 if sfi] = t[j] then
7 KPS[i,j] + \?
8 L K[1] + K[1] + KPS[i, j]
/* Computation of Ky(s,t):q=2,...,p */
9 for ¢ = 2:p do
10 for i = I:m do
11 for j = 1:n do
12 DPJi,j] + KPS[i, ]+ ADP[i—1, j]+ ADP[i, j—1]— A\>DP[i—1, j—1]
13 if sfi] = t[j] then
14 KPS[i,j] + XNDP[i— 1,5 — 1]
15 L Klq] < Klq] + KPS[i, j]

the last index i, where g = I(I) — |I| is the number of gaps in the match. Notice
that in the same list we are able to record many occurrences with different gaps.
Alive lists for longer matches uc,c € X, can be constructed incrementally by
extending the alive list corresponding to u. Similarly, the algorithm is applied to
the string ¢. The process will continue until achieving the depth p. For efficiency
reasons, we need to restrict the number of gaps to a given integer g4z, so the
computation is approximate. The kernel is evaluated as follows:

Kp(s.t)= Y h(s)dh(t) = Y NHP|Ly(u,g5)| - NP | Ly(u, o).

ueXp 9s,9t

Given that, there are (p +g’"‘”) possible combinations to assign p letters and

Gmaz gaps in a window of lgﬁ?gth P+ Gmaz, the worst-case time complexity of the
algorithm is O((p;gm”) (Is| + [¢]))-

The string subsequence kernel for the running example for p = 1 is:

Ki(s,t) = A" A (a%,0)] - AOTH A, (a2, 0)] + APTHAL (7, 0)] - AT ALt 0)
=4-2242-22=6-)\%
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Table 1. Suffix tables and dynamic programing tables to compute the SSK for p = 1, 2.

KPS, g a t t a
C
a A2 A2
t A2 A2
a \? 2?2

DP, g a t t a

c 0 0 0 0
a 0 A2 A3 A
t 0 A3 A2 4t A2 N34 N°
a

KPSy g a t t a
C
a
t A AP
a A+ A% 4T

Fig. 3. The trie data structure for the running example s = gatta,t = cata

Similar computation is performed for K5 and Kj:

Ko(s,t) = (1-X2F2) (1 AYF2) 4 (1-A0F2 1 1 ATF2) (12 A0F2) (12 A0F2 4 1. A1F2) . (1. 0012
= AT 20 12001

and

Ks(s,t) = (2- A1F3) . (1-X0F3) = 2. \7,
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Table 2. The alive indices for all subsequences of the running example for p =1,2,3
with the number of gaps from 0 to 3.

g AS(7a’7g) At(’a”7g) AS(%’ag) At(’t,vg) AS(’aa,vg) At(’aa’,g)
0 {2,5} {2,4} {3,4} {3}

1 {4}

2 {5}

3

g As(at’, g) A (Cat’, g) As(ta’, g) A (ta’, g) As(ata’, g) A (ata’, g)
0 {3} {3} {5} {4} {4}

; {4} {5} {5,5}

3

Sparse Dynamic Programming Approach. It is built on the fact that in
many cases, most of the entries of the D P matrix are zero and do not contribute
to the result. Rousu and Shawe-Taylor [7] have proposed a solution using the
sparse dynamic programming technique to avoid unnecessary computations. To
do so, two data structures were proposed: the first one is a range sum tree, which
is a B-tree, that replaces the D P, matrix. It is used to return the sum of n values
within an interval in O(logn) time. The second one is a set of match lists instead
of K;? matrix. Ly(i) = {(th]f(s(l 21),t(1: 1)), (j27K]§(s(1 21),t(1 2 g2)), ..}
where I(T?(s(l 2i),t(1: 7)) = /\m*”"*ij(s(l :4),t(1 : 7)). This dummy gap
weight A™~#T"=J allows to address the problem of scaling the kernel values as
the computation progress. Consequently the recursion becomes:

K5 (sa,th) = [a=0A* Y > K2 (s(1:4),t(1:j)). (4)

i<[s| j<[t|

and the separate dynamic programming table can be expressed as follows:

DB 1) = 32 SR (s(130), (15 ), (5)

i<k j<l

Thereafter, the authors devise a recursive version of :

DP,(k,1) =DP,(k— L,1)+ Y K5 | (s(1:),t(1: ). (6)

J<lI

This can be interpreted as reducing the evaluation of an orthogonal range query
to an evaluation of a simple range query multiple times as much as the number
of lines of the Kf matrix.

To evaluate efficiently a range query, the authors use a range-sum tree to
store a set S = {(j,v;)} C {1,...n} x R of key-value pairs. A range-sum tree is
a binary tree of height h = [logn] where each node in depth d =0,1,...,h —1
contains a key j with a sum of values in a sub range [j — 2"~ + 1, j]. The root
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is labeled with 2", the left child of a node j is j — j/2 and the right child if it
exists is j + j/2. Odd keys label the leaves of the tree.

To compute the range sum of values within an interval [1, j] it suffices to
browse the path from the node j to the root and sum over the left subtrees as
follows:

Rangesum([1, j]) = v; + Z V.
he€ Ancestors(j)/h<j

Moreover to update the value of a node j, we need to update all the values of
parents that contain j in their subtree (h € Ancestors(j)/h > j). These two
operations are performed in O(logn)time because we traverse in the worst case
the height of the tree.

For the sparse dynamic programming algorithm (Algorithm [2)) the range-sum
tree is used incrementally when computing @ So that when processing the
match list L, (k) the tree will contain the values v; that satisfy Zle K}il(s(l :
i),t(1:4)),1 < j <. Hence the evaluation of @ is performed by involving a
one dimensional range query:

!
Rangesum([1, j]) = Z vj
j=1

k l
=3 N K (s(1:i), (1 g))

i=1 j=1

DP,(k,1).

Concerning the cost of computation of this approach, the set of match lists is
created on O(m + n + |X| + |L1|) time and space, while the kernel computation
time is O(p|L1|logn), knowing that |Li| > |La| > ... > |L,|.

To illustrate the mechanism of the sparse dynamic programming algorithm,
Figure 4| depicts the state of the range-sum tree when computing K35 (s, t).
Initially the set of match lists is created as follows:

Li(1) = ()

Li(2) = ((2,A7), (4,2%))
Li(3) = ((3,A%))

Li(4) = ((3,A"))

Li(5) = ((2,A%), (4,AT))
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AT 4207 420 4 N2

AT e

Fig. 4. The state of the range-sum tree when computing Kﬁg(& t)

Meanwhile maintaining the range-sum tree, the algorithm update the set of
match lists as presented below:

L2(1) = ()

Ly(2) = ()

Ly(3) = ((3,A))

Ly(4) = ((3,A"))

Lo(5) = ((4, AT + X5 + 1)),

Finally, summing the values of the updated match list after discarding the dummy
weight gives the kernel value Ks(s,t):

KQ(S,t) — )\7 . )\—9+3+3 + )\7 . )\—9+4+3 4 ()\7 + )\5 + )\4) . )\—9+5+4
= AT+ 2)\5 +2)%

4 Geometric based Approach

Looking forward to improving the complexity of SSK, our approach is based
on two observations. The first one concerns the computation of KE (s,t) that is
required only when s, = t|;|. Hence, we have kept only a list of index pairs of
these entries rather than the entire suffix table, L(s,t) = {(¢,7) : s; = t;}.

In the rest of the paper, while measuring the complexity of different compu-
tations, we will consider, |L|, the size of the match list L(s,t) as the parameter
indicating the size of the input data.

The complexity of the naive implementation of the list version is O(p|L|?),
and it seems not obvious to compute K 1;9 (s,t) efficiently on a list data structure.
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Algorithm 2: Sparse Dynamic SSK computation

Input: Strings s and t¢,the length of the subsequence p, and the decay penalty A
Output: Kernel value Kp(s,t) = K

1 m « length(s)
2 n + length(t)
3 Creation of the set of match lists L1
4 for ¢ = 2:p do
5 Rangesum(1 : n) + 0 (Initialization of the range-sum tree)
6 for i = 1:m do
7 foreach (jn,vn) € Lq—1(2) do
8 S + Rangesum][1, j, — 1]
9 if S > 0 then
10 L appendlist(Lq(2), (jn, S))
/* Update of the range-sum tree */

11 foreach (jn,vn) € Lq—1(%) do
12 L update(Rangesum, (jn,vn))

/* Computation of the kernel value for the final level x/
13 K+ 0

14 for i = 1:m do
15 | foreach (ju,vn) € Ly(i) do
16 L K K+vh)\—m—n+z+1h

In order to address this problem, we have made a second observation that the
suffix table can be represented as a 2-dimensional space (plane) and the entries
where s|; = {|; as points in this plane as depicted in Fig. |5 In this case, the
match list generated is

L(s,t) ={A,B,C,D,E,F} ={(2,2),(2,4),(3,3),(4,3),(5,2),(5,4)}.

With a view to improving the computation of the SSK, it is easy to perceive
from Fig. |b[that the computation of can be interpreted as orthogonal range
queries. In this respect, we have used a layered range tree (LRT) in [I]. But the
LRT data structure reports all points that lie in a specific range query. However,
for the SSK computation we require only the sum of values of the reported points.

To achieve this goal, we extend the LRT with the aggregate operations,
in particular the summation one. Hence, a novel data structure was created,
for instance a Layered Range Sum Tree (LRST). A LRST is a LRT with two
substantial extensions to reduce the range sum query time from O(log |L| + k)
to O(log |L|) where k is the number of reported points in the range.

The first extension consists to substitute the associated data structures 7Tgssoc
in the LRT with new associated data structures 7’ ,ssoc Where each entry ¢
contains a key-value pair (j,ps;), ps; = >_p_, vk is the partial sum of Tgss0c in
the position ¢. This extension is made to compute the range sum of 7T ss0. Within
[i,7] in O(1) time as follows : Rangesuml[i, j| = T assocli] — T assoclt — 1].
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Fig. 5. Representation of the suffix table as a 2-dimensional space

The second extension involves the fractional cascading technique. Let 77 455001
and T’ 4ss0c2 be two sorted arrays that store partial sums of Tygs0c1 and Tgssoc2
respectively. Suppose that we want to compute the range sum within a query
q = [y1,y2] In Tassocr and Tassocz. We start with a binary search with y; in
T’ assoc1 to find the smallest key larger than or equal ;. We make also an other
binary search with yo in 77 ss0c1 to find the largest key smaller than or equal
yo. If an entry T gssoc1[i] stores a key y; then we store a pointer to the entry in
T ussoce with the smallest key larger than or equal to y;, say small pointer, and
a second pointer to the entry in 77 4ss0c2 With the largest key smaller than or
equal to y;, say large pointer. If there is no such key(s) then the pointer(s) is
(are) set to nil.

It is easy to see that our extensions does not affect neither the space nor the
time complexities of the LRT construction. So according to the analysis of of
computational geometry algorithms, our LRST requires O(|L|log |L|) storage
and can be constructed in O(|L|log |L|) time. This leads to the following lemma.

Lemma 1. Let s and t be two strings and L(s,t) = {(¢,7) : s; = t;} the match
list associated to the suffix version of the SSK. A Layered range sum tree (LRST)
for L(s,t) requires O(|L|log|L|) storage and takes O(|L|log|L|) construction
time.

We can now exploit these extensions to compute efficiently the range sum inherent
to q = [ylayZ] in 7:185061 and 7;880(;2' Let Tlassocl[il] and T/assocl [22] be the
results of the binary search with y; and ys respectively in 7/ ss0c1- SO the
Rangesum(ylayZ) = T/assocl [12] - T/GSSOC]. [Zl - 1] in assocl takes 0(10g|L|)
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time. To compute the range sum in 7T, ss0c2 We avoid the binary searches. We
consider first the entry T’ ssoc2[j1] pointed by the small pointer of T’ assoc1[i1],
it contains the smallest key from 77 ss0e2 larger than or equal to y;. The second
entry is T’ 4ssoc2[j2] pointed by the large pointer of T’ yssoct1iza], it contains the
largest key from 7", 5s0c2 smaller than or equal to ys. Finally the range sum within
[y17 y2] in assoc2 is given by Rangesum(yla y2) = TlassocQ [jQ] - TlassocQ []1 - 1]
and it takes O(1) time.

Algorithm 3: Geometric SSK computation

Input: Strings s and ¢,the length of the subsequence p, and the decay penalty A
Output: Kernel values Kq(s,t) = K(¢):g=1,...,p
1 m < length(s)
2 n <+ length(t)
3 Creation of the initial match list L
/* Computation of Ki(s,t) */
4 foreach ((i,7),v) € L do
| K]« K[1]+v- X7

/* Computation of Ky(s,t):q=2,...,p */
6 for ¢ = 2:p do

w

Building of the LRST corresponding to the match list L
8 foreach ((i,7),v) € L do
/* Preparing the range query for the entry (,)) */

) rg = [(0] — 60) : (i — 1] + 60)] X [(0] = 00) : (j — 1]+ 00)]
10 result < Rangsum]rq|
11 if result > 0 then
12 Klq] = K[q] + result - X'
13 L appendlist(newL, ((¢, ), result))
14 L + newlL

For our geometric approach (Algorithm [3) we will use the LRST to evaluate
the SSK. We start by the creation of the match list L(s,t) = {((4,4), K5 (s(1 :
i),t(1: 7)) : si = t;} where K5 (s(1:i),t(1:j)) = N2 TKS(s(1:0),¢(1 : j)).
This trick is inspired from [7] to make the range sum results correct. Thus the
recursion becomes as follows:

K$(sa,th) =la=1b > > XNTKS (s(1:i),t(1:])). (7)
i<|s| j<[¢]

In order to construct efficiently the match list we have to create for each charac-
ter ¢ € X alist I(c) of occurrence positions (¢ = s;) in the string s. Thereafter, for
each character t; € t we insert key-value pairs ((7,7), K3 (s(1:4),t(1:7))) in the
match list L(s,t) corresponding to I(t;). This process takes O(|s|+ [t|+|X|+|L|)
space and O(|s|+|X|+|L]|) time. For example, the match list for our running exam-
pleis L(s,t) = {((2,2), )‘7>7 ((2,4), )‘5)7 ((3,3), )‘5)’ ((4,3), )‘4)’ ((5,2), )‘4)7 ((5,4), )‘2)'
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Once the initial match list created, we start computing the SSK for the
subsequence length p = 1. This computation doesn’t require the LRST ; it
suffices to traverse the match list and sum over its values. For length subsequence
q > 1 we will first create the LRST corresponding to the match list, afterward for

each item ((k,1), K5 (s(1: k),t(1:1))) we invoke the LRST with the query rq =
[0,k —1] x [0, —1]. This latter return the range sum within rq: Rangesum(rq) =
Doick 2 (K5 (s(14),8(1 : j))). If Rangesum(rq) is positive then insert the
key-value in a new match list for the level ¢+ 1 and summing the Rangesum(rq)
to compute the SSK at the level q. At each iteration, we have to create a new
LRST corresponding to the new match list until achieving the request subsequence
length p.

We recall that in our case, we use composite numbers instead of real numbers,
see section . In such situation, we have to transform the range query [z :
x2] X [y1 : y2] related to a set of points in the plane to the range query [(z1]| —o00) :
(2] + 00)] x [(y1| — 00) : (y2] + 00)] related to the composite space.

Using our geometric approach, the range sum query time becomes O(log |L|).
For the computation of Kl‘f (s,t) we have to consider |L| entries of the match list.
The process iterates p times, therefore, we get a time complexity of O(p|L|log |L]|)
for evaluating the SSK. This result combined to that of Lemma. [1| lead to
the following theorem that summarizes the result of our proposed approach to
compute SSK.

Theorem 2. Let s and t be two strings and L(s,t) = {(i,7) : s, = t;} the match
list associated to the suffix version of the SSK. A layered range sum tree requires
O(|L|log|L|) storage and it can be constructed in O(|L|log |L|) time. With these
data structures, the SSK of length p can be computed in O(p|L|log|L])).

To compute Ks(s,t), for our running example, we have to invoke the range sum
on the LRST at the step p = 2 represented by Fig[6] The SSK computation is
performed by summing over all the range sums correponding th the entries of
the match list as follows: Kz(s,t) = Rangesum[(0] — oo) : (1| + o0)] x [(0] —
o0) : (1] + 00)] + Rangesum[(0] — 00) = (1] 4 o0)] x [(0] — o0) : (3| + 00)] +
Rangesum[(0] — 00) : (2] + 00)] x [(0] — 00) : (2| 4+ o0)] + Rangesum[(0] — c0) :
(3] +00)] x [(0] = 00) : (2| + 00)] + Rangesum[(0] — 00) : (4] + 00)] x [(0] — o) :
(1] 4+ 00)] + Rangesum[(0] — 00) : (4] + 00)] x [(0] — 00) : (3] + 00)].

To describe how this can be processed, we deal by the range sum of the query
[(0] — 0) : (4] + o0)] x [(0] — 00) : (3] + c0)]. At the associate data structure
corresponding to the split node (3[3) of Fig[6| we find the entries (2[2) and (3]4)
whose y — coordinates are the smallest one larger than or equal to (0] — oo) and
the largest one smaller or equal to (3] + 0o) respectively. This can be done by
binary search. Next, we look for the nodes that are below the split node (3|3) and
that are the right child of a node on the search path to (0] — co) where the path
go left, or the left child of a node on the search path to (4] + o) where the path
go right. The collected nodes are (3]3), (2]2), (4/3) and the result returned form
the associated data structures is A= + A~* + A=2. This is done on a constant
time by following the small and large pointers form the associated data structure
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o [ e s [ s ) [ e i e [ e a ] (5[2)

O The tree with circle nodes is a BBST on z-coordinates.

[0 The arrays with y-coordinates play the role of the associated BBST.

= Small pointers of the extended fractional cascading (null pointers are omited).
— Large pointers of the extended fractional cascading (null pointers are omited).

Fig. 6. The state of the layered range sum tree for the running example at the step
p = 2 with an illustration of the extended fractional cascading (only between two levels).

of the split node. By the same process we obtain the following results of the
invoked range sums:

Rangesum([(0] — o0) : (1] +00)] x [(0] = 00) = (1] 4 00)] =0
Rangesum|(0] — o0) : (1] 4 00)] X [(0] = 00) : (3] + 00)] =0
Rangesum|[(0] — 00) : (2| + 00)] x [(0] — 00) : (2| + 00)] = A2
Rangesum|[(0] — 00) : (3] + 00)] x [(0] — 00) : (2| + 00)] = A2
Rangesum|[(0] — oo) : (4] + 00)] X [(0] = 00) : (1 4 00)] =0

After rescaling the returned values by the factor A7 we obtain the value of
Ko(s,t) = A72 - X383 XA72 M3 - (A2 £ A7 £ A72) A5+ = 201 + 205
A7. While invoking the range sums we will prepare the new match list for
the next step. In our case the new match list contains the following matchs :
{((3:3),A72), ((4,3),A7%), ((5,2), A7 + A1+ A72) .

5 Experimentation

In this section we describe the experiments that focus on the evaluation of our
geometric algorithm against the dynamic and the sparse dynamic ones. Thereafter,
these algorithms are referenced as Geometric, Dynamic and Sparse respectively.
We have discarded the trie-based algorithm from this comparison because it is
an approximate algorithm on the one hand, on the other hand in the preliminary
experiments conducted in [7] it was significantly slower than Dynamic and Sparse.

To benefit from the empiric evaluation conducted in [7], we tried to keep the
same conditions of their experiments. For this reason, we have conducted a series
of experiments on both synthetically generated and on newswire article data on
Reuter’s news articles.
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‘We ran the tests on Intel Core i7 at 2.40 GHZ processor with 16 GB RAM
under Windows 8.1 64 bit. We implemented all the tested algorithms in Java. For
the LRST implementation, we have extended the LRT implementation available
on the page https://github.com/epsilony/.

5.1 Experiments with synthetic data

These experiments concern the effects of the string length and the alphabet
size on the efficiency of the different approaches and to determine under which
conditions our approach outperforms.

We randomly generated string pairs with different lengths (2,4, ...8192) over
alphabets of different sizes (2,4, ...8192). To simplify the string generation, we
considered string symbols as integer in [1, alphabet size]. For convenience of data
visualization, we have used the logarithmic scale on all axes. To perform accurate
experiments, we have generated multiple pairs for the same string length and
alphabet size and for each pair we have took multiple measures of the running
time with a subsequence length p = 10 and a decay parameter A = 0.5. This being

Running time (z)

&1 4

- 125
32 3

String lenoth |=| Alphakbet size 18]

Fig. 7. Running Time of the Geometric algorithm on synthetic data.

said, Fig. [7] reveals, for our geometric approach, an inverse dependency of the
running time with the alphabet size. However, for an alphabet size the running
time is proportional to the string length. Figure [§|shows experimental comparison
of the performance of the proposed approach against Dynamic. Note that the rate
of 100% indicates that the two algorithms deliver the same performances. For the
rates less than 100% our approach outperforms, it is the case for strings based on
medium and large alphabets excepting those having short length (say alphabet
size great than or equal 256, where the string length exceeds 128 characters). For
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Fig. 8. Relative running Time on synthetic data: Geometric/Dynamic.

short strings and also for long strings based on small alphabets, Dynamic excels.
It remains to present results of the comparison experiment with Sparse which
share the same motivations with our approach. Rousu and Shawe-Taylor [7] state
that with long strings based on large alphabets their approach is faster. Figure [J]
shows that in these conditions our approach dominates. Moreover, our approach
is faster than the Sparse one for long strings and for large alphabets absolutely,
but gets slower than Sparse for short strings based on small alphabets.

5.2 Experiments with newswire article data

Our second experiments use the Reuters-21578 collection to evaluate the speed of
Geometric against Dynamic and Sparse on English articles. We created a dataset
represented as sequences of syllables by transferring all the XML articles on to
text documents. Thereafter, the text documents are preprocessed by removing
stop words, punctuation marks, special symbols and finally word syllabifying.
We have generated 22260 distinct syllables. As in the first experiment, each
syllable alphabet is assigned an integer. To treat the documents randomly, we
have shuffled this preliminary dataset.

For visualization convenience, while creating document pairs, we have ensured
that their lengths are close. Under this condition, we have collected 916 pair
documents as final dataset.

To compare the candidate algorithms, we have computed the SSK for each
document pair of the data set by varing the subsequence length form 2 to 20.
Figure [I0] and Figure [T1] depict the clusters of documents where Geometric is
faster than Dynamic and Sparse respectively. A document pair (s,t) is plotted
according to the inverse match frequency (X-axis) and the document size (Y-axis).
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Fig.9. Relative running Time on synthetic data: Geometric/Sparse.

The inverse match frequency is given by: |s||¢|/|L|, it plays the role of the alphabet
size | Y| inherent to the documents s and ¢. The document size is calculated as
the arithmetic mean of the document pair sizes, it plays the role of the string
length. Each cluster is distinguished by a special marker that corresponds to the
necessary minimum subsequence length to make Geometric faster than Dynamic
or Sparse. For the cluster marked by black diamonds, p < 5 is sufficient. The
length 5 < p < 10 is required for the cluster marked by blue filled squares. For
the cluster marked by green circles 10 < p < 20 is required and the last cluster
marked by plus signs p > 20 is needed. We can distinguish three cases in Fig.
The first one arises when the inverse match frequency is weak (small alphabet
size), that is to say for dense matrix. In this case, we require important values
of the subsequence length (p > 10 for small documents and p > 20 for larger
ones) to make Geometric faster than Dynamic. The second case concerns good
inverse match frequencies (large alphabet size) corresponding to sparse matrix.
In this case, small values of the subsequence length (p < 5) suffice to make
Geometric faster than Dynamic. The third case appear for moderate inverse
match frequency (medium alphabet size), the values of p that makes Geometric
faster than Dynamic depend on the document size. The large document size
the large p is required. The results of the comparison between Geometric and
Sparse on newswire article data are depicted in Fig. We can discuss 3 cases:
The first case emerge when the document size becomes large and also for good
inverse match frequency. In this case small values of the subsequence length
(p < 5) suffice to make Geometric faster than Sparse. The second case appear for
small documents and bad inverse match frequencies. The necessary subsequence
length must be important (p > 10 for very small documents and p > 20 for the
small ones). The third case concerns modurate inverse frequencies. In this case
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Fig. 10. Clusters of document pairs where Geometric is faster than Dynamic according
to the subsequence length p.

the value of the subsequence length that makes Geometric faster than Sparse
depends on the document size except large sizes which fall in the first case.

5.3 Discussion of the experiment results

In step with the results of the two experiments, it is easy to see that the algorithms
behave essentially in the same way both on synthetically generated data and
newswire article data. These results reveal that our approach outperforms for
large alphabet size except for very small strings. Moreover, regarding to the
Sparse, Geometric is competitive for long strings.

We can argue this as follows: first, the alphabet size and the string length
affect substantially the kernel matrix form. Large alphabets can reduce potentially
the partially matching subsequences especially on long strings, giving rise to
sparse matrix form. Consequently, great number of data stored in the kernel
matrix do not contribute to the result. In the other cases, for dense matrix, our
approach can be worse than Dynamic by at most Log|L| factor.

On the other hand, The complexities of Geometric and Sparse differ only by
the factors Log|L| and Log n. The inverse dependency of |L| and | ¥| goes in favor
of our approach. Also, the comparisons conducted on our datasets give evidence
that for long strings |L| << n, remembering that the size of the match list
decrease while the SSK execution progress. Moreover, to answer orthogonal range
queries, Sparse invoke one dimensional range query multiple times. Whereas,
Geometric mark good scores by using orthogonal range queries in conjunction
with the fractional cascading and exploit our extension of the LRT data structure
to get directly the sum within a range.
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Fig.11. Clusters of document pairs where Geometric is faster than Sparse according
to the subsequence length p.

6 Conclusions and further work

We have presented a novel algorithm that efficiently computes the string subse-
quence kernel (SSK). Our approach is refined over two phases. We started by
the construction of a match list L(s,t) that contains, only, the information that
contributes in the result. Thereafter, in order to compute, efficiently, the sum
within a range for each entry of the match list, we have extended a layered range
tree to be a layered range sum tree. The Whole task takes O(p|L|log|L|) time
and O(|L|log|L|) space, where p is the length of the SSK and |L| is the initial
size of the match list.

The reached result gives evidence of an asymptotic complexity improvement
compared to that of a naive implementation of the list version O(p|L|?). The
experiments conducted both on synthetic data and newswire article data attest
that the dynamic programming approach is faster when the kernel matrix is
dense. This case is achieved on long strings based on small alphabets and on
short strings. Furthermore, recall that our approach and the sparse dynamic
programming one are proposed in the context where the most of the entries of the
kernel matrix are zero, i.e. for large-sized alphabets. In such case our approach
outperforms. For long strings our approach behave better than the sparse one.

This well scaling of the proposed approach with document size and alphabet
size could be useful in very tasks of machine learning on long documents as
full-length research articles.

A noteworthy advantage is that our approach can be favorable if we assume
that the problem is multi-dimensional. In terms of complexity, this can have
influence the storage and the running time, only, by a logarithmic factor. Indeed,
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the layered range sum tree needs O(|L|log® ™" |L|) storage and can compute the
sum within a rectangular range in O(log? ! |L|), in a d-dimensional space.

At the implementation level, great programming effort is supported by well-
studied and ready to use computational geometry algorithms. Hence, the emphasis
is shifted to a variant of string kernel computations that can be easily adapted.

Finally, it would be very interesting if the LRST can be extended to be
a dynamic data structure. This can relieve us to create a new LRST at each
evolution of the subsequence length. An other interesting axis consists to combine
the LRST with the dynamic programming paradigm. We believe that using
rectangular intersection techniques seems to be a good track, though this seems
to be a non trivial task.
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