
Any-time Diverse Subgroup Discovery with

Monte Carlo Tree Search

Guillaume Bosc1, Jean-François Boulicaut1, Chedy Räıssi2, and
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Abstract

The discovery of patterns that accurately discriminate one class label
from another remains a challenging data mining task. Subgroup discovery
(SD) is one of the frameworks that enables to elicit such interesting pat-
terns from labeled data. A question remains fairly open: How to select an
accurate heuristic search technique when exhaustive enumeration of the
pattern space is infeasible? Existing approaches make use of beam-search,
sampling, and genetic algorithms for discovering a pattern set that is non-
redundant and of high quality w.r.t. a pattern quality measure. We argue
that such approaches produce pattern sets that lack of diversity: Only
few patterns of high quality, and different enough, are discovered. Our
main contribution is then to formally define pattern mining as a game
and to solve it with Monte Carlo tree search (MCTS). It can be seen as
an exhaustive search guided by random simulations which can be stopped
early (limited budget) by virtue of its best-first search property. We show
through a comprehensive set of experiments how MCTS enables the any-
time discovery of a diverse pattern set of high quality. It outperforms
other approaches when dealing with a large pattern search space and for
different quality measures. Thanks to its genericity, our MCTS approach
can be used for SD but also for many other pattern mining tasks.

1 Introduction

The discovery of patterns, or descriptions, which discriminate a group of ob-
jects given a target (class label) has been widely studied as overviewed by [45].
Discovering such descriptive rules can be formalized as the so-called subgroup
discovery task (SD introduced by [55]). Given a set of objects, each being associ-
ated to a description and a class label, a subgroup is a description generalization
whose discriminating ability is evaluated by a quality measure (F1-score, accu-
racy, etc). In the last two decades, different aspects of SD have been studied:
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The description and target languages (itemset, sequences, graphs on one side,
quantitative and qualitative targets on the other), the algorithms that enable
the discovery of the best subgroups, and the definition of measures that express
pattern interestingness. These directions of work are closely related and many of
the pioneer approaches were ad hoc solutions lacking from easy implementable
generalizations (see for examples the surveys of [45] and [17]). SD still faces
two important challenges: First, how to characterize the interest of a pattern?
Secondly, how to design an accurate heuristic search technique when exhaustive
enumeration of the pattern space is unfeasible?

[38] introduced a more general framework than SD called exceptional model
mining (EMM). It tackles the first issue. EMM aims to find patterns that cover
tuples that locally induce a model that substantially differs from the model of
the whole dataset, this difference being measured with a quality measure. This
rich framework extends the classical SD settings to multi-labeled data and it
leads to a large class of models, quality measures, and applications [[53, 17, 33]].
In a similar fashion to other pattern mining approaches, SD and EMM have to
perform a heuristic search when exhaustive search fails. The most widely used
techniques are beam search [[53, 42]], genetic algorithms [[15, 41]], and pattern
sampling [[43, 7]].

The main goal of these heuristics is to drive the search towards the most
interesting parts, i.e., the regions of the search space where patterns maximize
a given quality measure. However, it often happens that the best patterns are
redundant : They tend to represent the same description, almost the same set
of objects, and consequently slightly differ on their pattern quality measures.
Several solutions have been proposed to filter out redundant subgroups, e.g. as
did [12, 53, 42, 10]. Basically, a neighboring function enables to keep only local
optima. However, one may end up with a pattern set of small cardinality: This
is the problem of diversity, that is, many local optima have been missed.

Let us illustrate this problem on Figure 1. The search space of patterns,
which can be represented as a lattice, hides several local optima (patterns max-
imizing a pattern quality measure in a neighborhood). Figure 1(a) presents such
optima with red dots, surrounded with redundant patterns in their neighbor-
hood. Given the minimal number of objects a pattern must cover, exhaustive
search algorithms, such as SD-Map [[4, 3]], are able to traverse this search space
efficiently: The monotonocity of the minimum support and upper bounds on
some quality measures such as the weighted relative accuracy (WRAcc) enable
efficient and safe pruning of the search space. However, when the search space
of patterns becomes tremendously large, either the number of patterns explodes
or the search is intractable. Figure 1(b) presents beam-search, probably the
most popular technique within the SD and EMM recent literature. It operates
a top-down level-wise greedy exploration of the patterns with a controlled level
width that penalizes diversity (although several enhancements to favor diversity
have been devised [[53, 54, 42]]). Genetic algorithms have been proposed as well
[[47, 46, 14]]. They give however no guarantees that all local optima will be
found and they have been designed for specific pattern languages and quality
measures [[41]]. Finally, pattern sampling is attractive as it enables direct inter-
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actions with the user for using his/her preferences to drive the search [[9, 43]].
Besides, with sampling methods, a result is available anytime. However, tra-
ditional sampling methods used for pattern mining need a given probability
distribution over the pattern space which depends on both the data and the
measure and may be costly to compute [[9, 43]]. Each iteration is independent
and draws a pattern given this probability distribution (Figure 1(c)).

In this article, we propose to support subgroup discovery with a novel search
method, Monte Carlo tree search (MCTS). It has been mainly used in AI for
domains such as games and planning problems, that can be represented as trees
of sequential decisions [[13]]. It has been popularized as definitively successful
for the game of Go in [50]. MCTS explores a search space by building a game
tree in an incremental and asymmetric manner: The tree construction is driven
by random simulations and an exploration/exploitation trade-off provided by
the so called upper confidence bounds (UCB) [[35]]. The construction can be
stopped anytime, e.g., when a maximal budget is reached. As illustrated on
Figure 1(d), our intuition for pattern mining is that MCTS searches for some
local optima, and once found, the search can be redirected towards other local
optima. This principle enables per se a diversity of the result set: Several high
quality patterns covering different parts of the data set can be extracted. More
importantly, the power of random search leads to anytime mining : A solution
is always available, it improves with time and it converges to the optimal one
if given enough time and memory budget. This is a best-first search. Given a
reasonable time and memory budget, MCTS quickly drives the search towards a
diverse pattern set of high quality. Interestingly, it can consider, in theory, any
pattern quality measure and pattern language (in contrast to current sampling
techniques as developped by [9, 43]).

Our main contribution is to a complete characterization of MCTS for sub-
group discovery and pattern mining in general. Revisiting MCTS in such a
setting is not simple and the definition of it requires smart new policies. We
show through an extensive set of experiments that MCTS is a compelling solu-
tion for a pattern mining task and that it outperforms the state-of-the-art ap-
proaches (exhaustive search, beam search, genetic algorithm, pattern sampling)
when dealing with large search space of numerical and nominal attributes and
for different quality measures.

The rest of this article is organized as follows. Section 2 formally introduces
the pattern set discovery problem. Section 3 then recalls the basic definitions
of MCTS. We present our MCTS method, called mcts4dm, in Section 4. After
discussing the related work in Section 5, we report on experiments for under-
standing how to configure a MCTS for pattern mining (Section 6) and how does
MCTS compare to competitors (Section 7).

2 Pattern set discovery

There exists several formal pattern mining frameworks and we choose here sub-
group discovery to illustrate our purpose. We provide some basic definitions
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(a) Redundancy problem.

Beam

Lattice

Local Optima

Minimum support 
threshold

Subgroups

(b) Beam search.

Lattice

Local Optima

Minimum support 
threshold

Subgroups
Randomly 

sampled area

(c) Sampling exploration.

Built tree

Lattice

Local Optima

Minimum support 
threshold

Subgroups

(d) MCTS-based exploration.

Figure 1: Illustration of different SD search algorithms.

and then formally define pattern set discovery.

Definition 1 (Dataset D(O,A, C, class)). Let O, A and C be respectively a
set of objects, a set of attributes, and a set of class labels. The domain of an
attribute a ∈ A is Dom(a) where a is either nominal or numerical. The mapping
class : O 7→ C associates each object to a unique class label.

A subgroup can be represented either by a description (the pattern) or by
its coverage, also called its extent.

Definition 2 (Subgroup). The description of a subgroup, also called pattern, is
given by d = 〈f1, . . . , f|A|〉 where each fi is a restriction on the value domain of
the attribute ai ∈ A. A restriction for a nominal attribute ai is a symbol ai = v
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Table 1: Toy dataset

ID a b c class(.)
1 150 21 11 l1
2 128 29 9 l2
3 136 24 10 l2
4 152 23 11 l3
5 151 27 12 l2
6 142 27 10 l1

with v ∈ Dom(ai). A restriction for a numerical1 attribute ai is an interval
[l, r] with l, r ∈ Dom(ai). The description d covers a set of objects called the
extent of the subgroup, denoted ext(d) ⊆ O. The support of a subgroup is the
cardinality of its extent: supp(d) = |ext(d)|.

The subgroup search space is structured as a lattice.

Definition 3 (Subgroup search space). The set of all subgroups forms a lattice,
denoted as the poset (S,�). The top is the most general pattern, without
restriction. Given any s1, s2 ∈ S, we note s1 ≺ s2 to denote that s1 is strictly
more specific, i.e. it contains more stringent restrictions.

If follows that ext(s1) ⊆ ext(s2) when s1 � s2.
The ability of a subgroup to discriminate a class label is evaluated by means

of a quality measure. The weighted relative accuracy (WRAcc), intoduced by
[37], is among the most popular measures for rule learning and subgroup dis-
covery. Basically, WRAcc considers the precision of the subgroup w.r.t. to a
class label relatively to the appearance probability of the label in the whole
dataset. This difference is weighted with the support of the subgroup to avoid
to consider small ones as interesting.

Definition 4 (WRAcc). Given a dataset D(O,A, C, class), the WRAcc of a
subgroup d for a label l ∈ Dom(C) is given by:

WRAcc(d, l) =
supp(d)

|O|
×
(
pld − pl

)
where pld = |{o∈ext(d)|class(o)=l}|

supp(d) and pl = |{o∈O|class(o)=l}|
|O| .

WRAcc returns values in [−0.25, 0, 25], the higher and positive, the better
the pattern discriminates the class label. Many quality measures other than
WRAcc have been introduced in the literature of rule learning and subgroup
discovery (Gini index, entropy, F score, Jaccard coefficient, etc. [[2]]). Excep-
tional model mining (EMM) considers multiple labels (label distribution differ-
ence in [53], Bayesian model difference in [19], etc.). The choice of a pattern

1We consider the finite set of all intervals from the data, without greedy discretization.
As shown later, better patterns can be found in that case, when using only MCTS on large
datasets.
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128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

136.16 ≤ a ≤ 152.16
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 151.28
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 27
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
10 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
  9 ≤  c  ≤ 11

136.16 ≤ a ≤ 152.16
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 151.28
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
24 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 27
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
10 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
  9 ≤  c  ≤ 11

Figure 2: The upper part of the search space for Table 1.

quality measure, denoted ϕ in what follows, is generally application dependant
as explained by [22].

Example 1. Consider the dataset in Table 1 with objects in O = {1, ..., 6}
and attributes in A = {a, b, c}. Each object is labeled with a class label from
C = {l1, l2, l3}. Consider an arbitrary subgroup with description d = 〈[128 ≤
a ≤ 151], [23 ≤ b ≤ 29]〉. Note that, for readability, we omit restrictions sat-
isfied by all objects, e.g., [9 ≤ c ≤ 12], and thus we denote that ext(〈〉) = O.
The extent of d is composed of the objects in ext(d) = {2, 3, 5, 6} and we have
WRAcc(d, l2) = 4

6 ( 3
4 −

1
2 ) = 1

6 . The upper part of the search space (most gen-
eral subgroups) is given in Figure 2. The direct specializations of a subgroup
are given, for each attribute, by adding a restriction: Either by shrinking the
interval of values to the left (take the right next value in its domain) or to the
right (take the left next value). In this way, the finite set of all intervals taking
borders in the attributes domain will be explored (see [32]).

Pattern set discovery consists in searching for a set of patterns R ⊆ S of
high quality on the quality measure ϕ and whose patterns are not redundant.
As similar patterns generally have similar values on ϕ, we design the pattern set
discovery problem as the identification of the local optima w.r.t. ϕ. As explained
below, this has two main advantages: Redundant patterns of lower quality on ϕ
are pruned and the extracted local optima are diverse and potentially interesting
patterns.

Definition 5 (Local optimum as a non redundant pattern). Let sim : S ×S →
[0, 1] be a similarity measure on S that, given a real value Θ > 0, defines
neighborhoods on R ⊆ S : NR(x) = {s ∈ R | sim(x, s) ≥ Θ}. r? is a local
optimum of R on ϕ iff ∀r ∈ NR(r?), ϕ(r?) ≥ ϕ(r). We denote by filter(R) the

set of local optima of R and by redundancy(R) = 1− |filter(R)|
|R| the measure of

redundancy of R.

In this paper, the similarity measure on S will be the Jaccard measure
defined by

sim(r, r′) =
ext(r) ∩ ext(r′)
ext(r) ∪ ext(r′)

6



We propose to evaluate the diversity of a pattern set R ⊆ S by the sum of
the quality of its patterns. Indeed, the objective is to obtain the largest set of
high quality patterns:

Definition 6 (Pattern set diversity). The diversity of a pattern set R is eval-
uated by: diversity(R) =

∑
r∈filter(R) ϕ(r).

The function filter() is generally defined in a greedy or heuristic way in the
literature. [53] called it pattern set selection and we use their implementation
in this article. First all extracted patterns are sorted according to the quality
measure and the best one is kept. The next patterns in the order are discarded
if they are too similar with the best pattern (Jaccard similarity between pattern
supports is used). Once a non similar pattern is found, it is kept for the final
result and the process is reiterated: Following patterns will be compared to it.

Problem 1 (Pattern set discovery). Compute a set of patterns R∗ ⊆ S such
that ∀r ∈ R∗, r is a local optimum on ϕ and

R∗ = argmaxR⊆Sdiversity(R).

By construction, R∗ maximizes diversity and it minimizes redundancy. Nat-
urally, R∗ is not unique. Existing approaches sometimes search for a pattern
set of size k [[41]], with a minimum support threshold minSupp [[4]].

3 Monte Carlo tree search

MCTS is a search method used in several domains to find an optimal deci-
sion (see the survey by [13]). It merges theoretical results from decision theory
[[48]], game theory, Monte Carlo [[1]] and bandit-based methods [[5]]. MCTS
is a powerful search method because it enables the use of random simulations
for characterizing a trade-off between the exploration of the search tree and the
exploitation of an interesting solution, based on past observations. Considering
a two-players game (e.g., Go): The goal of MCTS is to find the best action to
play given a current game state. MCTS proceeds in several (limited) iterations
that build a partial game tree (called the search tree) depending on the results
of previous iterations. The nodes represent game states. The root node is the
current game state. The children of a node are the game states accessible from
this node by playing an available action. The leaves are the terminal game
states (game win/loss/tie). Each iteration, consisting of 4 steps (see Figure 3),
leads to the generation of a new node in the search tree (depending on the explo-
ration/exploitation trade-off due to the past iterations) followed by a simulation
(sequence of actions up to a terminal node). Any node s in the search tree is
provided with two values: The number N(s) of times it has been visited, and
a value Q(s) that corresponds to the aggregation of rewards of all simulations
walked through s so far (e.g., the proportion of wins obtained for all simulations
walked through s). The aggregated reward of each node is updated through the
iterations such that it becomes more and more accurate. Once the computation
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budget is reached, MCTS returns the best move that leads to the child of the
root node with the best aggregated reward Q(.).

In the following, we detail the 4 steps of a MCTS iteration applied to a
game. Algorithm 3.1 gives the pseudo code of the most popular algorithm in
the MCTS family, namely UCT (upper confidence bound for trees), as given in
[35].

Algorithm 3.1. 1: function Mcts(budget)
2: create root node s0 for current state
3: while within computational budget budget do
4: ssel ← Select(s0)
5: sexp ← Expand(ssel)
6: ∆← RollOut(sexp)
7: Update(sexp,∆)
8: end while
9: return the action that reaches the child s of s0 with the highest Q(s)

10: end function

11: function Select(s)
12: while s is non-terminal do
13: if s is not fully expanded then return s
14: else s← BestChild(s)
15: end if
16: end while
17: return s
18: end function

19: function Expand(ssel)
20: randomly choose sexp from non expanded children of ssel
21: add new child sexp to ssel
22: return sexp
23: end function

24: function RollOut(s)
25: ∆← 0
26: while s is non-terminal do
27: choose randomly a child s′ of s
28: s← s′

29: end while
30: return the reward of the terminal state s
31: end function

32: function Update(s,∆)
33: while s is not null do
34: Q(s)← N(s)×Q(s)+∆

N(s)+1

35: N(s)← N(s) + 1

8



36: s← parent of s
37: end while
38: end function

39: function BestChild(s)
40: return arg max

s′∈ children of s
UCB(s, s′)

41: end function

UCT: The popular MCTS algorithm.

The Select policy. Starting from the root node, the Select method re-
cursively selects an action (an edge) until the selected node is either a terminal
game state or is not fully expanded (i.e., some children of this node are not yet
expanded in the search tree). The selection of a child of a node s is based on the
exploration/exploitation trade-off. For that, upper confidence bounds (UCB)
are used. They bound the regret of choosing a non-optimal child. The original
UCBs used in MCTS are the UCB1 from [5] and the UCT from [35]:

UCT (s, s′) = Q(s′) + 2Cp

√
2 lnN(s)

N(s′)

where s′ is a child of a node s and Cp > 0 is a constant (generally, Cp =
1√
2
). This step selects the most urgent node to be expanded, called ssel in the

following, considering both the exploitation of interesting actions (given by the
first term in UCT) and the exploration of lightly explored areas of the search
space (given by the second term in UCT) based on the result of past iterations.
The constant Cp can be adjusted to lower or increase the exploration weight in
the exploration/exploitation trade-off . Note that when Cp = 1

2 , the UCT is
called UCB1.

The Expand policy. A new child, denoted sexp, of the selected node ssel is
added to the tree according to the available actions. The child sexp is randomly
picked among all available children of ssel not yet expanded in the search tree.

The RollOut policy. From this expanded node sexp, a simulation is played
based on a specific policy. This simulation consists of exploring the search tree

Select Expand Roll-out Update

Figure 3: One MCTS iteration (taken from [13]).

9



(playing a sequence of actions) from sexp until a terminal state is reached. It
returns the reward ∆ of this terminal state: ∆ = 1 if the terminal state is a
win, ∆ = 0 otherwise.

The Update policy. The reward ∆ is back-propagated to the root, updating
for each parent the number of visits N(.) (incremented by 1) and the aggregation
reward Q(.) (the new proportion of wins).

Example. Figure 3 depicts a MCTS iteration. Each node has no more than 2
children. In this scenario, the search tree is already expanded: We consider the
9th iteration since 8 nodes of the tree have been already added. The first step
consists in running the Select method starting from the root node. Based on a
UCB, the selection policy chooses the left child of the root. As this node is fully
expanded, the algorithm randomly selects a new node among the children of this
node: Its right child. This selected node ssel is not fully expanded since its left
hand side child is not in the search tree yet. From this not fully expanded node
ssel, the Expand method adds the left hand side child sexp of the selected node
ssel to expand the search tree. From this added node sexp, a random simulation
is rolled out until reaching a terminal state. The reward ∆ of the terminal node
is back-propagated with Update.

4 Pattern set discovery with MCTS

Designing a MCTS approach for a pattern mining problem is different than for
a combinatorial game: The goal is not to decide, at each turn, what is the best
action to play, but to explore the search space: The pattern mining problem
can thus be considered as a single-turn single-player game. Most importantly,
MCTS offers a natural way to explore the search space of patterns with the ben-
efit of the exploitation/exploration trade-off to improve diversity while limiting
redundancy. For example, an exhaustive search will maximize diversity, but it
will return a very large and redundant collection (but an exhaustive search is
usually impossible). In contrast, a beam search can extract a limited number of
patterns but it will certainly lack diversity (empirical evidences are given later
in Section 7).

Before going into the formalization, let us illustrate how MCTS is applied
to the pattern set discovery problem with Figure 4. We consider here itemset
patterns for the sake of simplicity, that is, subgroups whose descriptions are sets
of items. We present an iteration of a MCTS for a transaction database with
items I = {a, b, c}. The pattern search space is given by the lattice S = (2I ,⊆).
The MCTS tree is built in a top-down fashion on this theoretical search space:
The initial pattern, or root of the tree, is the empty set ∅. Assume that pattern
ssel = {a} has been chosen by the select policy. During the expand, one of
its direct specializations in {{a, b}, {a, c}} is randomly chosen and added to
the tree,e.g., sexp = {a, c}. During the roll out, a simulation is run from this
node: it generates a chain of specializations of sexp called a path p(ssel, sn) (a
chain is a set of comparable patterns w.r.t. ⊆, or � in the general case). The
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∅

a b c

ab ac

∅

a b c

ab ac

∅

a b c

ab ac

∅

Select Expand RollOut Update

Select ssel, the most urgent node
according to the chosen UCB,

e.g. the UCT

Randomly choose one of the direct
specializations of ssel, noted sexp

(here a superset of {a} of cardinality 2)

Create a path p(ssel, sn) of refinements,
keep the best pattern(s) and its

quality measure Δ (or an aggregation)

Update the parents of ssel in 
the tree, N(.) is incremented by 1

and Q(.) is updated with Δ

ssel

sexp

p(ssel, sn)

Δ

Δ

ssel

Figure 4: A simple instanciation of MCTS for pattern mining.

Select
Choose one of the following UCB:

UCB1 or UCB1-Tuned or SP-MCTS or UCT
Expand

direct-expand: Randomly choose the next direct expansion
gen-expand: Randomly choose the next direct expansion until it changes the extent

label-expand: Randomly choose the next direct expansion until it changes the true positives
Activate LO: Generate each pattern only once (lectic enumeration)

Activate PU: Patterns with the same support/true positive set point to the same node
RollOut

naive-roll-out: Generate a random path of direct specializations of random length.
direct-freq-roll-out: Generate a random path of frequent direct specializations.

large-freq-roll-out: Generate a random paths of undirect specializations (random jumps).
Memory

no-memory: No pattern found during the simulation is kept for the final result.
top-k-memory: Top-k patterns of a simulation are considered in memory.

all-memory: All patterns generated during the simulation are kept.
Update

max-update: Only the maximum ϕ found in a simulation is back propagated
mean-update: The average of all ϕ is back-propagated

top-k-mean-update: The average of the best k ϕ is back-propagated

Table 2: The different policies

quality measure ϕ is computed for each pattern of the path, and an aggregated
value (max, mean, etc.) is returned and called ∆. Finally, all parents of sexp
are updated: Their visit count N(.) is incremented by one, while their quality
estimation Q(.) is recomputed with ∆ (back propagation). The new values
of N(.) and Q(.) will directly impact the selection of the next iteration when
computing the chosen UCB, and thus the desired exploration/exploitation trade
off. When the budget is exceeded (or if the tree is fully expanded), all patterns
are filtered with a chosen pattern set selection strategy (filter(.)).

The expected shape of the MCTS tree after a high number of iterations is
illustrated in Figure 1d. It suggests a high diversity of the final pattern set if
given enough budget (i.e., enough iterations). However, how to properly define
each policy (select, expand, roll out and update), is not obvious. Table 2 sums
up the different policies that we use or develop specifically for a pattern mining
problem.

11



4.1 The Select method

The Select method has to select the most promising node ssel in terms of
the exploration vs. exploitation trade-off. For that, the well-known bounds
like UCT or UCB1 can be used. However, more sophisticated bounds have
been designed for single player games. The single-player MCTS (SP-MCTS),
introduced by [49], adds a third term to the UCB to take into account the
variance σ2 of the rewards obtained by the child so far. SP-MCTS of a child s′

of a node s is:

SP-MCTS(s, s′) = Q(s′) + C

√
2 lnN(s)

N(s′)
+

√
σ2(s′) +

D

N(s′)

where the constant C is used to weight the exploration term (it is fixed to 0.5
in its original definition) and the term D

N(s′) inflates the standard deviation for

infrequently visited children (D is also a constant). In this way, the reward of
a node rarely visited is considered as less certain: It is still required to explore
it to get a more precise estimate of its variance. If the variance is still high, it
means that the subspace from this node is not homogeneous w.r.t. the quality
measure and further exploration is needed.

Also, [5] designed UCB1-Tuned to reduce the impact of the exploration
term of the original UCB1 by weighting it with either an approximation of the
variance of the rewards obtained so far or the factor 1/4. UCB1-Tuned of a
child s′ of s is:

UCB1-Tuned(s, s′) = Q(s′) +

√√√√ lnN(s)

N(s′)
min (

1

4
, σ2(s′) +

√
2 lnN(s)

N(s′)
)

The only requirement the pattern quality measure ϕ must satisfy is, in case
of UCT only, to take values in [0, 1]: ϕ can be normalized in this case.

4.2 The Expand method

The Expand step consists in adding a pattern specialization as a new node in
the search tree. In the following, we present different refinement operators, and
how to avoid duplicate nodes in the search tree.

4.2.1 The refinement operators

A simple way to expand the selected node ssel is to choose uniformly an available
attribute w.r.t. ssel, that is to specialize ssel into sexp such that sexp ≺ ssel:
sexp is a refinement of ssel. It follows that ext(sexp) ⊆ ext(ssel), and obviously
supp(sexp) ≤ supp(ssel), known as the monotonocity property of the support.

Definition 7 (Refinement operator). A refinement operator is a function ref :
S → 2S that derives from a pattern s a set of more specific patterns ref (s) such
that:

12



(i) ∀s′ ∈ ref (s), s′ ≺ s

(ii)∀s′i, s′j ∈ ref (s), i 6= j, s′i � s′j , s
′
j � s′i

In other words, a refinement operator gives to any pattern s a set of its
specializations, that are pairwise incomparable (an anti-chain). The refine op-
eration can be implemented in various ways given the kind of patterns we are
dealing with. Most importantly, it can return all the direct specializations only
to ensure that the exploration will, if given enough budget, explore the whole
search space of patterns. Furthermore, it is unnecessary to generate infrequent
patterns.

Definition 8 (Direct-refinement operator). A direct refinement operator is a
refinement operator directRef : S → 2S that derives from a pattern s the set of
direct more specific patterns s′ such that:

(i) ∀s′ ∈ directRef (s), s′ ≺ s

(ii) 6 ∃s′′ ∈ S s.t. s′ ≺ s′′ ≺ s

(iii) For any s′ ∈ directRef (s), s′ is frequent, that is supp(s′) ≥ minSupp

The notion of direct refinement is well known in pattern mining. For in-
stance, the only way to refine a nominal (resp. Boolean) attribute is to assign
it a value of its domain (resp. the true value). Refining an itemset consists in
adding a item, while refining a numerical attribute can be done in two ways:
Applying the minimal left change (resp. right change), that is, increasing the
lower bound of the interval to the next higher value in its domain (resp. de-
creasing the upper bound to the next lower) as explained by [32]. We still use
the term restriction to denote the operations that create a direct refinement of
pattern.

Definition 9 (The direct-expand strategy). We define the direct-expand strat-
egy as follows: From the selected node ssel, we randomly pick a – not yet
expanded – node sexp from directRef(ssel) and add it in the search tree.

As most quality measures ϕ used in SD and EMM are solely based on the
extent of the patterns, considering only one pattern among all those having
the same extent is enough. However, with the direct-refinement operator, a
large number of tree nodes may have the same extent as their parent. This
redundancy may bias the exploration and more iterations will be required. For
that, we propose to use the notion of closed patterns and their generators.

Definition 10 (Closed descriptions and their generators). The equivalence class
of a pattern s is given by [s] = {s′ ∈ S | ext(s) = ext(s′)}. Each equivalence
class has a unique smallest element w.r.t. ≺ that is called the closed pattern: s
is said to be closed iff 6 ∃s′ such that s′ ≺ s and ext(s) = ext(s′). The non-closed
patterns are called generators.
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Definition 11 (Generator-refinement operator). A generator refinement oper-
ator is a refinement operator genRef : S → 2S that derives from a pattern s the
set of more specific patterns s′ such that, ∀s′ ∈ genRef (s):

(i) s′ 6∈ [s] (different support)

(ii) 6 ∃s′′ ∈ S\genRef (s) s.t. s′′ 6∈ [s], s′′ 6∈ [s′], s′ ≺ s′′ ≺ s (direct next
equivalence class)

(iii) s′ is frequent, that is supp(s′) ≥ minSupp (frequent)

Definition 12 (The gen-expand strategy). To avoid the exploration of patterns
with the same extent in a branch of the tree, we define the min-gen-expand
strategy as follows: From the selected node ssel, we randomly pick a – not yet
expanded – refined pattern from genRef (ssel), called sexp, and add it to the
search tree.

Finally, when facing a SD problem whose aim is to characterize a label
l ∈ C we can adapt the previous refinement operator based on generators on
the extents of both the subgroup and the label. As many other measures, the
WRAcc seeks to optimize the (weighted relative) precision or accuracy of the
subgroup. The accuracy is the ratio of true positives in the extent. We propose
thus, for this kind of measures only, the label-expand strategy: Basically, the
pattern is refined until the set of true positives in the extent changes. This
minor improvement performs very well in practice (see Section 6).

4.2.2 Avoiding duplicates in the search tree

We define several refinement operators to avoid the redundancy within a branch
of the tree, i.e., do not expand ssel with a pattern whose extent is the same
because the quality measure ϕ will be equal. However, another redundancy issue
remains at the tree scale. Indeed, since the pattern search space is a lattice, a
pattern can be generated in nodes from different branches of the Monte Carlo
tree, that is, with different sequences of refinements, or simply permutations of
refinements. As such, it will happen that a part of the search space is sampled
several times in different branches of the tree. However, the visit count N(s)
of a node s will not count visits of other nodes that denote exactly the same
pattern: The UCB is clearly biased. To tackle this aspect, we implement two
methods: (i) Using a lectic order or (ii) detecting and unifying the duplicates
within the tree. These two solutions can be used for any refinement operator.
Note that enabling both these solutions at the same tame is useless since each
of them ensures to avoid duplicates within the tree.

Avoiding duplicates in the tree using a lectic order (LO).
Pattern enumeration without duplicates is at the core of constraint-based

pattern-mining [[11]]. Avoiding to generate patterns with the same extent is
usually based on a total order on the set of attribute restrictions. This poset is
written by (R,l).
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Example 2. For instance, considering itemset patterns, R = I and a lectic order,
usually the lexicographic order, is chosen on I: al bl cl d for I = {a, b, c, d}
and bc l ad. Consider that a node s has been generated with a restriction ri:
we can expand the node only with restrictions rj such that ri l rj . This total
order also holds for numerical attributes by considering the minimal changes
(see the work of [32] for further details).

We can use this technique to enumerate the lattice with a depth-first search
(DFS), which ensures that each element of the search space is visited exactly
once. An example is given in Figure 5. However, it induces a strong bias: An
MCTS algorithm would sample this tree instead of sampling the pattern search
space. In other words, a small restriction w.r.t. l has much less chances to be
picked than a largest one. Going back to the example in Figure 5 (middle), the
item a can be drawn only once through a complete DFS; b twice; while c four
times (in bold). It follows that patterns on the left hand side of the tree have
less chances to be generated, e.g., prob({a, b}) = 1/6 while prob({b, c}) = 1/3.
These two itemsets should however have the same chance to be picked as they
have the same size. This variability is corrected by weighting the visit counts
in the UCT with the normalized exploration rate (see Figure 5 (right)).

Definition 13 (Normalized exploration rate). Let S be the set of all possible
patterns. The normalized exploration rate of a pattern s is,

ρnorm(s) =
Vtotal(s)

Vlectic(s)
=

|{s′|s′ � s,∀s′ ∈ S}|
|{s′|(sl s′ ∧ s′ ≺ s) ∨ s = s′,∀s′ ∈ S}|

Given this normalized exploration rate, we can adapt the UCBs when en-
abling the lectic order. For example, we can define the DFS-UCT of a child s′

of a pattern s derived from the UCT as follows:

DFS-UCT(s, s′) = Q(s′) + 2Cp

√
2 ln (N(s) · ρnorm(s))

N(s′) · ρnorm(s′)

Proposition 4.1 (Normalized exploration rate for itemsets). For itemsets, let
si be the child of s obtained by playing action ri and i is the rank of ri in (R,l):

ρnorm(si) = 2(|I|−|si|)

2(|I|−i−1) .

Proof. Let Vlectic(si) be the size of the search space sampled under si using a
lectic enumeration, and Vtotal(si) be the size of the search space without using
a lectic enumeration. Noting Vtotal(si) = 2(|I|−|si|) and Vlectic(si) = 2(|I|−i−1)

for itemsets, we have ρnorm(si) = Vtotal(si)
Vlectic(si)

= 2(|I|−|si|)

2(|I|−i−1) .

Proposition 4.2 (Normalized exploration rate for a numerical attribute). For
a single numerical attribute a, ρnorm(.) is defined as follows :

• Let s′ = 〈αi ≤ a ≤ αj〉 obtained after a left change: ρnorm(s′) = 1.

15



a b c

ab ac bc

abc

∅

a b c

ab ac bc

abc

∅

The most
 general pattern

Legend:

Vtotal(s)

Vlectic(s)

pattern s

The lattice 
of patterns

Figure 5: Search space as a lattice (left), DFS of the search space (middle), and
the principles of the normalized exploration rate.

• Let s′ = 〈αi ≤ a ≤ αj〉 obtained after a right change. Let n be the number
of values from Dom(a) in [αi, αj ]: ρnorm(s′) = n+1

2 .

Proof. As explained in the proof of (Proposition 4.1), ρnorm(s) = Vtotal(s)
Vlectic(s) .

For a numerical attribute, Vtotal(s) = n(n + 1)/2, i.e. the number of all sub
intervals. If s was obtained after a left change, Vlectic(s) = n(n + 1)/2 as
both left and right changes can be applied. If s was obtained after a right
change, Vlectic(s) = n, as only n right changes can be applied. It follows that

ρnorm(s) = n(n+1)/2
n(n+1)/2 = 1 if s was obtained from a left change and ρnorm(s) =

n(n+1)/2
n = n+1

2 otherwise.

Avoiding duplicates in the tree using permutation unification (PU).
The permutation unification is a solution that enables to keep a unique node

for all duplicates of a pattern that can be expanded within several branches of
the tree. This is inspired from Permutation AMAF of [29], a method used in
traditional MCTS algorithms to update all the nodes that can be concerned
by a play-out. A unified node no longer has a single parent but a list of all
duplicates’ parent. This list will be used when back-propagating a reward.

This method is detailed in Algorithm 4.1. Consider that the node sexp has
been chosen as an expansion of the selected node ssel. The tree generated so
far is explored for finding sexp elsewhere in the tree: If sexp is not found, we
proceed as usual; otherwise sexp becomes a pointer to the duplicate node in the
tree. In our MCTS implementation, we will simply use a hash map to store
each pattern and the node in which is has been firstly encountered.

Algorithm 4.1. 1: H ← new Hashmap()
2: function Expand(ssel)
3: randomly choose sexp from non expanded children of ssel
4: if (node← H.get(sexp)) 6= null then
5: node.parents.add(ssel)
6: sexp ← node
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7: else
8: sexp.parents← new List()
9: sexp.parents.add(ssel)

10: H.put(sexp, sexp) . A pointer on the unique occurrence of sexp
11: end if
12: add new child sexp to ssel in the tree . Expand ssel with sexp
13: return sexp
14:end function

The permutation unification principle.

4.3 The RollOut method

From the expanded node sexp a simulation is run (RollOut). With standard
MCTS, a simulation is a random sequence of actions that leads to a terminal
node: A game state from which a reward can be computed (win/loss). In our
settings, it is not only the leaves that can be evaluated, but any pattern s
encountered during the simulation. Thus, we propose to define the notion of
path (the simulation) and reward computation (which nodes are evaluated and
how these different rewards are aggregated) separately.

Definition 14 (Path policy). Let s1 the node from which a simulation has to
be run (i.e., s1 = sexp). Let n ≥ 1 ∈ N, we define a path p(s1, sn) = {s1, . . . , sn}
as a chain in the lattice (S,≺), i.e., an ordered list of patterns starting from
s1 and ending with sn such that ∀i ∈ {1, . . . , n − 1}, si+1 is a (not necessarily
direct) refined pattern of si.

• naive-roll-out : a path of direct refinements is randomly created with
length pathLength ∈ N+ a user-defined parameter.

• direct-freq-roll-out : The path is extended with a randomly chosen restric-
tion until it meets an infrequent pattern sn+1 using the direct refinement
operator. Pattern sn is a leaf of the tree in our settings.

• large-freq-roll-out overrides the direct-freq-roll-out policy by using special-
izations that are not necessarily direct. Several actions are added instead
of one to create a new element of the path. The number of added actions
is randomly picked in (1, ..., jumpLength) where jumpLength is given by
the user (jumpLength = 1 gives the previous policy). This techniques
allows to visit deep parts of the search space with shorter paths.

Definition 15 (Reward aggregation policy). Let s1 be the node from which
a simulation has been run and p(s1, sn) the associated random path. Let E ⊆
p(s1, sn) be the subset of nodes to be evaluated. The aggregated reward of
the simulation is given by: ∆ = aggr({ϕ(s)∀s ∈ E}) ∈ [0; 1] where aggr is an
aggregation function. We define several reward aggregation policies:

• terminal-reward : E = {sn} and aggr is the identity function.
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• random-reward : E = {si} with a random 1 ≤ i ≤ n and aggr is the
identity function.

• max-reward : E = p(s1, sn) and aggr is the max(.) function

• mean-reward : E = p(s1, sn) and aggr is the mean(.) function.

• top-k-mean-reward : E = top-k(p(s1, sn)), aggr is the mean(.) function
and top-k(.) returns the k elements with the highest ϕ.

A basic MCTS forgets any state encountered during a simulation. This is
not optimal for single player games as relate [8]: A pattern with a high ϕ should
not be forgotten as we might not expand the tree enough to reach it. We propose
to consider several memory strategies.

Definition 16 (Roll-out memory policy). A roll-out memory policy specifies
which of the nodes of the path p = (s1, sn) shall be kept in an auxiliary data
structure M .

• no-memory : Any pattern in E is forgotten.

• all-memory : All evaluated patterns in E are kept.

• top-k-memory : A list M stores the best k patterns in E w.r.t. ϕ(.).

This structure M will be used to produce the final pattern set.

4.4 The Update method

The backpropagation method updates the tree according to a simulation. Let
ssel be the selected node and sexp its expansion from which the simulation is
run: This step aims at updating the estimation Q(.) and the number of visits
N(.) of each parent of sexp recursively. Note that sexp may have several parents
when we enable permutation unification (PU). The number of visits is always
incremented by one. We consider three ways of updating Q(.):

• mean-update: Q(.) is the average of the rewards ∆ back-propagated through
the node so far (basic MCTS).

• max-update: Q(.) is the maximum reward ∆ back-propagated through the
node so far. This strategy enables to identify a local optimum within a part
of the search space that contains mostly of uninteresting patterns. Thus,
it gives more chance for this area to be exploited in the next iterations.

• top-k-mean-update: Q(.) average of the k best rewards ∆ back-propagated
through the node so far. It gives a stronger impact for the parts of the
search space containing several local optima.
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mean-update is a standard in MCTS techniques. We introduce the max-
update and top-k-mean-update policies as it may often happen that high-quality
patterns are rare and scattered in the search space. The mean value of rewards
from simulations would converge towards 0 (there are too many low quality
subgroups), whereas the maximum value (and top-k average) of rewards enables
to identify the promising parts of the search space.

4.5 Search end and result output

There are two ways a MCTS ends: Either the computational budget is reached
(number of iterations) or the tree is fully expanded (an exhaustive search has
been possible, basically when the size of the search space is smaller than the
number of iterations). Indeed, the number of tree nodes equals the number of
iterations that have been performed. It remains now to explore this tree and
the data structure M built by the memory policy to output the list of diverse
and non-redundant patterns.

Let P = T ∪M be a pool of patterns, where T is the set of patterns stored in
the nodes of the tree. The set P is totally sorted w.r.t. ϕ in a list Λ. Thus, we
have to pick the k-best diverse and non-redundant subgroups within this large
pool of nodes Λ to return the result set of subgroupsR ⊆ P. For that, we choose
to implement filter(.) in a greedy manner as done by[53, 10]. R = filter(P) as
follows: A post-processing that filters out redundant subgroups from the diverse
pool of patterns Λ based on the similarity measure sim and the maximum
similarity threshold Θ. Recursively, we poll (and remove) the best subgroup s∗

from Λ, and we add s∗ to R if it is not redundant with any subgroup in R. It
can be shown easily that redundancy(R) = 0.

Applying filter(.) at the end of the search requires however that the pool of
patterns P has a reasonable cardinality which may be problematic with MCTS
in term of memory. The allowed budget always enables such post-processing in
our experiments (up to one million iterations).

5 Related work

SD aims at extracting subgroups of individuals for which the distribution on
the target variable is statistically different from the whole (or the rest of the)
population [[34, 55]]. Two similar notions have been formalized independently
and then unified by [45]: Contrast set mining and emerging patterns. Close
to SD, redescription mining aims to discover redescriptions of the same group
of objects in different views [51]. Exceptional model mining (EMM) was first
introduced by [38] (see a comprehensive survey by [17]). EMM generalizes SD
dealing with more complex target concepts: There are not necessarily one but
several target variables to discriminate. EMM seeks to elicit patterns whose
extents induce a model that substantially deviates from the one induced by the
whole dataset.
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First exploration methods that have been proposed for SD/EMM are ex-
haustive search ensuring that the best subgroups are found, e.g. [34, 55, 31, 3].
Several pruning strategies have been used to avoid the exploration of uninterest-
ing parts of the search space. These pruning strategies are usually based on the
monotonic (or anti-monotonic) property of the support or upper bounds on the
quality measure [[26, 33]]. To the best of our knowledge, the most efficient al-
gorithms are (i) SD-MAP* from [3] which is based on the FP-growth paradigm
[[27]] and (ii) an exhaustive exploration with optimistic estimates on different
quality measures [[39]]. When an exhaustive search is not possible, heuristic
search can be used. The most widely used techniques in SD and EMM are beam
search, evolutionary algorithms and sampling methods. Beam search performs
a level-wise exploration of the search space: A beam of a given size (or dynamic
size for recent work) is built from the root of the search space. This beam only
keeps the most promising subgroups to extend at each level [[36, 44, 53]]. The
redundancy issue due to the beam search is tackled with the pattern skyline
paradigm by [54], and with a ROC-based beam search variant for SD by [42].
Another family of SD algorithms relies on evolutionary approaches. They use a
fitness function to select which individuals to keep at the next generated pop-
ulation. SDIGA, from [15], is based on a fuzzy rule induction system where a
rule is a pattern in disjunctive normal form (DNF). Other approaches have been
then proposed, generally ad-hoc solutions suited for specific pattern languages
and selected quality measures [[47, 46, 14]].

Finally, pattern sampling techniques are gaining interest. [43] employ con-
trolled direct pattern sampling (CDPS). It enables to create random patterns
with the help of a procedure based on a controlled distribution as did [9]. This
idea was extended by [7] for a particular EMM problem to discover exceptional
models induced by attributed graphs. Pattern sampling is attractive as it sup-
ports direct interactions with the user for using his/her preferences to drive the
search. Besides, with sampling methods, a result is available anytime. However,
traditional sampling methods used in pattern mining need a given probability
distribution over the pattern space: This distribution depends on both the data
and the measures [[9, 43]]. Each iteration is independent and consists of drawing
a pattern given this probability distribution. Moreover, these probability distri-
butions exhibit the problem of the long tail: There are many more uninteresting
patterns than interesting ones. Thus, the probability to draw an uninteresting
pattern is still high, and not all local optima may be drawn: There are no
guaranties on the diversity of the result set. Recently, the sampling algorithm
Misere has been proposed by [24, 20, 21]. Contrary to the sampling method of
Moens and Boley, Misere does not require any probability distribution. It is
agnostic of the quality measure but it still employs a discretization of numerical
attribute in a pre-processing task. To draw a pattern, Misere randomly picks
an object in the data, and thus it randomly generalizes it into a pattern that
is evaluated with the quality measure. Each draw is independent and thus the
same pattern can be drawn several times. Finally, MCTS samples the search
space without any assumption about the data and the measure. Contrary to
sampling methods, it stores the result of the simulations of the previous it-
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erations and it uses this knowledge for the next iterations: The probability
distribution is learned incrementally. If given enough computation budget, the
exploration/exploitation trade-off guides the exploration to all local optima (an
exhaustive search). To the best of our knowledge, MCTS has never been used in
pattern mining, however, [23] designed the algorithm FUSE (Feature UCT Se-
lection) which extends MCTS to a feature selection problem. This work aims at
selecting the features from a feature space that are the more relevant w.r.t. the
classification problem. For that, Gaudel and Sebag explore the powerset of the
features (i.e., itemsets where the items are the features) with a MCTS method
to find the sets of features that minimize the generalization error. Each node of
the tree is a subset of feature, and each action consists of adding a new feature
in the subset of features. The authors focus on reducing the high branching
factor by using UCB1-Tuned and RAVE introduced by [25]. The latter enables
to select a node even if it remains children to expand. The aim of FUSE is thus
to return the best subset of features (the most visited path of the tree), or to
rank the features with the RAVE score.

6 Empirical evaluation on how to parameterize
mcts4dm

Our MCTS implementation for pattern mining, called mcts4dm is publicly
available2. As there are many ways to configure mcts4dm, we propose first to
study the influence of the parameters on runtime, pattern quality and diversity.
We both consider benchmark and artificial data. The experiments were carried
out on an Intel Core i7 CPU 4 Ghz machine with 16 GB RAM running under
Windows 10.

6.1 Data

Firstly, we gathered benchmark datasets used in the recent literature of SD and
EMM, that is, from [53, 16, 51, 52, 18]. Table 3 lists them, mainly taken from
the UCI repository, and we provide some of their properties.

Secondly, we used a real world dataset from neuroscience. It concerns ol-
faction (see Table 3).This data provides a very large search space of numerical
attributes (more details on the application are presented by [10]).

Finally, to be able to specifically evaluate diversity, a ground-truth is re-
quired. Therefore, we create an artificial data generator to produce datasets
where patterns with a controlled WRAcc are hidden. The generator takes the
parameters given in Table 4 and it works as follow. A data table with nominal
attributes is generated with a binary target. The number of objects, attributes
and attributes values are controlled with the parameters nb obj, nb attr and
domain size. Our goal is to hide nb patterns patterns in noise: We generate
random descriptions of random lengths Ground = {di | i ∈ [1, nb patterns]}.

2https://github.com/guillaume-bosc/MCTS4DM
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Table 3: Benchmark datasets experimented on in the SD and EMM literature.

Name # Objects # Attributes Type of attributes Target attribute
Bibtex 7,395 1,836 Binary TAG statphys23

BreastCancer 699 9 Numeric Benign
Cal500 502 68 Numeric Angry-Agressive

Emotions 594 72 Numeric Amazed-suprised
Ionosphere 352 35 Numeric Good

Iris 150 4 Numeric Iris-setosa
Mushroom 8,124 22 Nominal Poisonous

Nursery 12,961 8 Nominal class=priority
Olfaction 1,689 82 Numeric Musk

TicTacToe 958 9 Nominal Positive
Yeast 2,417 103 Numeric Class1

Table 4: Parameters of the artificial data generator.

Name Description Psmall Pmedium Plarge

nb obj Number of objects 2,000 20,000 50,000
nb attr Number of attributes 5 5 25

domain size Domain size per attribute 10 20 50
nb patterns Number of hidden patterns 3 5 25
pattern sup Support of each hidden pattern 100 100 100
out factor Proba. of a pattern labeled − 0.1 0.1 0.1
noise rate Proba. of a object to be noisy 0.1 0.1 0.1

For each pattern, we generate pattern sup objects positively labeled with a
probability of 1−noise rate to be covered by the description di, and noise rate
for not being covered. We also add pattern sup×out factor negative examples
for the pattern di: It will allow patterns with different WRAcc. Finally, we add
random objects until we reach a maximum number of transactions nb obj.

6.2 Experimental framework

We perform a large pool of experiments to assess this new exploration method
for pattern mining. For that, we have designed an experimental framework that
enables to test the different combinations of factors for all the strategies we
introduced in previous sections. Each experiment are run on the benchmark
datasets. An experiment consists in varying a unique strategy parameter while
the others are fixed. Since mcts4dm uses random choices, each experiment is
run five times and only the mean of the results is discussed.

Default parameters. For each benchmark dataset, we provide a set of de-
fault parameters (Table 5). Indeed, due to the specific characteristics of each
dataset, a common set of default parameters is unsuitable. Nevertheless, all
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Table 5: The default parameters for each dataset.

Dataset minSupp # iterations Path Policy
Bibtex 50 50k direct-freq-roll-out

BreastCancer 10 50k large-freq-roll-out (jumpLength = 30)
Cal500 10 100k large-freq-roll-out (jumpLength = 30)

Emotions 10 100k large-freq-roll-out (jumpLength = 30)
Ionosphere 10 50k large-freq-roll-out (jumpLength = 30)

Iris 10 50k large-freq-roll-out (jumpLength = 30)
Mushroom 30 50k direct-freq-roll-out

Nursery 50 100k direct-freq-roll-out
Olfaction 10 100k large-freq-roll-out (jumpLength = 30)

TicTacToe 10 100k direct-freq-roll-out
Yeast 20 100k large-freq-roll-out (jumpLength = 30)

datasets share a subset of common parameters:

• The maximum size of the result set is set to maxOutput = 50.

• The maximum redundancy threshold is set to Θ = 0.5.

• The maximum description length is set to maxLength = 5. This is a
widely used constraint in SD that enables to restrict the length of the
description, i.e., it limits the number of effective restrictions in the de-
scription.

• The quality measure used is ϕ = WRAcc for the first label only.

• The SP-MCTS is used as the default UCB.

• The permutation unification (PU) strategy is used by default.

• The refinement operator for Expand is set to tuned-min-gen-expand.

• The direct-freq-roll-out strategy is used for the Roll-Out

• The reward aggregation policy is set to max-reward.

• The memory policy is set to top-1-memory.

• The update policy is set to max-udpate.

List of experiments. Evaluating mcts4dm is performed with six different
batches of experiments:

• Section 6.3 is about the choice of the UCB.

• Section 6.4 deals with the several strategies for the Expand method.
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• Section 6.5 presents the leverage of all the possibilities for the RollOut.

• Section 6.6 shows out the impact of the Memory strategy.

• Section 6.7 compares the behaviors of all the strategies for the Update.

• Section 6.8 performs the experiments by varying the computational bud-
get.

• Section 6.9 studies if mcts4dm is able to retrieved a diverse pattern set.

For simplicity and convenience, for each experiment we display the same batch
of figures. For each dataset we show (i) the boxplots of the quality measure ϕ of
the subgroups in the result set, (ii) the histograms of the runtime and (iii) the
boxplots of the description length of the subgroups in the result set depending
on the strategies that are used. In this way, the impacts of the strategies are
easy to understand.

We do not evaluate memory consumption in this section, as it increases
linearly with the number of iterations (to which should be added the number of
patterns kept by the memory policy).

6.3 The Select method

The choice of the UCB is decisive, because it is the base of the exploration /
exploitation trade off. Indeed, the UCB chooses which part of the search tree will
be expanded and explored. We presented four existing UCBs and an adaptation
with a normalized exploration rate to take into account an enumeration based
on a lectic order (LO). As such, we need to consider also the expand methods
(standard, lectic order LO and permutation unification PU) at the same time.

Figure 6 presents the results. Comparing the runtime for all the strategies
leads to conclude that there is no difference in the computation of the several
UCBs (see Figure 6(a)). Indeed, the impact of the UCBs lies in its computation,
and there is no UCB that is more time-consuming than others. The difference
we can notice, is that when LO is used, the runtime is lower. This result is
expected because with LO, the search space is less large since each subgroup is
unique in the search space (this is not due to the chosen UCB). PU has also a
smaller search space, but it requires call to updates pointers towards subgroups
with the same extent, and requires thus more time.

Figure 6(b) depicts the boxplots of the quality measure of the result set
when varying the UCB. The results suggest that the UCB1-Tuned and DFS-
UCT lead to weaker quality result for several datasets: On the Cal550, Emotions
and Yeast datasets, the quality measures of the result set are worse than the
results of other UCBs (see, e.g., Figure 6(b)). This is due to the fact that the
search space of these datasets is larger than the other with many local optima,
and the UCB1-Tuned is designed to explore less, thus less local optima are
found. Besides, the SP-MCTS seems to be more suitable for SD problems: The
quality is slightly better than other UCBs for the BreastCancer and Emotions
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Figure 6: Impact of the Select strategy.

datasets. LO leads to a worse quality in the result set, whereas PU seems to be
more efficient.

The use of these different UCBs also do not impact the description length
of the subgroups within the result set. For some datasets, the permutation
unification leads to longer descriptions (see for instance Figure 6(c)).

6.4 The Expand method

Considering the Expand policy, we introduced three different refinement op-
erators, namely direct-expand, gen-expand and label-expand, and we presented
two methods, namely LO and PU, to take into account that several nodes in
the search tree are exactly the same. The several strategies we experiment with
are given in Figure 7(bottom). Let us consider the leverage on the runtime
of these strategies in Figure 7(a). Once again, using LO implies a decrease of
the runtime. Conversely, PU requires more time to run. There is very little
difference in the runtime when varing the refinement operator: direct-expand is
the faster one, and label-expand is more time consuming.

Considering the quality of the result set varying the expand strategies, we can
assume that the impact differs w.r.t. the dataset (see Figure 7(b)). Surprisingly,
LO improves the quality of the result set for some datasets (e.g. the Iris dataset
in Figure 7(b)). This contradicts what we observe in the Emotions dataset of
the previous experiment in Section 6.3. Most importantly, the results using
label-expand are better than other ones in most of the datasets. Actually, this
is due that this expand favors pattern with a better accuracy which is part of
the WRAcc.

The description length of the extracted subgroups are quite constant when
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varying the expand strategies (see Figure 7(c)). With LO, the description
lengths are slightly smaller than with other strategies.

6.5 The RollOut method

For the RollOut step we derived several strategies that combine both the path
policy and the reward aggregation policy in Table 6. Clearly, the experiments
show that the runs using the direct refinement operator (naive-roll-out and
direct-freq-roll-out) are time consuming (see Figure 8(a)). In the BreastCancer
data, the runtime are twice longer with the direct refinement operator than
with the large-freq-roll-out path policy. In other datasets (e.g., Ionosphere or
Yeast), the runtime is even more than 3 minutes (if the run lasts more than 3
minutes to perform the number of iterations, the run is ignored). Besides, it
is clear that the random-reward aggregation policy is less time consuming than
other strategies. Indeed, with random-reward, the measure of only one subgroup
within the path is computed, thus it is faster.

Figure 8(b) is about the quality of the result set. The naive-roll-out and
direct-freq-roll-out path policies lead to the worst results. Besides, the quality
of the result set decreases with the random-reward reward aggregation policy in
other datasets (e.g., Emotions). Basically, these strategies evaluate only random
nodes and thus they are not able to identify the promising parts of the search
space. Finally, there are not large differences between other strategies.

As can be seen in Figure 8(c), the description length of the subgroups is
not very impacted by the strategies of the Roll-Out step. The results of the
random-reward reward aggregation policy are still different from other strate-
gies: The description length is smaller for the Mushroom dataset. Using large-
freq-roll-out with jumpLength = 100 leads to smaller descriptions for the Mush-
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Table 6: The list of strategies used to experiment with the RollOut method.

Strategy Path Policy Reward Aggregation Policy
(1) naive-roll-out (pathLength = 20) terminal-reward
(2) direct-freq-roll-out max-reward
(3) direct-freq-roll-out mean-reward
(4) direct-freq-roll-out top-2-mean-reward
(5) direct-freq-roll-out top-5-mean-reward
(6) direct-freq-roll-out top-10-mean-reward
(7) direct-freq-roll-out random-reward
(8) large-freq-roll-out (jumpLength = 10) max-reward
(9) large-freq-roll-out (jumpLength = 10) mean-reward
(10) large-freq-roll-out (jumpLength = 10) top-2-mean-reward
(11) large-freq-roll-out (jumpLength = 10) top-5-mean-reward
(12) large-freq-roll-out (jumpLength = 10) top-10-mean-reward
(13) large-freq-roll-out (jumpLength = 10) random-reward
(14) large-freq-roll-out (jumpLength = 20) max-reward
(15) large-freq-roll-out (jumpLength = 20) mean-reward
(16) large-freq-roll-out (jumpLength = 20) top-2-mean-reward
(17) large-freq-roll-out (jumpLength = 20) top-5-mean-reward
(18) large-freq-roll-out (jumpLength = 20) top-10-mean-reward
(19) large-freq-roll-out (jumpLength = 20) random-reward
(20) large-freq-roll-out (jumpLength = 50) max-reward
(21) large-freq-roll-out (jumpLength = 50) mean-reward
(22) large-freq-roll-out (jumpLength = 50) top-2-mean-reward
(23) large-freq-roll-out (jumpLength = 50) top-5-mean-reward
(24) large-freq-roll-out (jumpLength = 50) top-10-mean-reward
(25) large-freq-roll-out (jumpLength = 50) random-reward
(26) large-freq-roll-out (jumpLength = 100) max-reward
(27) large-freq-roll-out (jumpLength = 100) mean-reward
(28) large-freq-roll-out (jumpLength = 100) top-2-mean-reward
(29) large-freq-roll-out (jumpLength = 100) top-5-mean-reward
(30) large-freq-roll-out (jumpLength = 100) top-10-mean-reward
(31) large-freq-roll-out (jumpLength = 100) random-reward

room dataset. Finally, the description length is not or almost not influenced by
the Roll-Out strategies.

6.6 The Memory method

We derived six strategies for the Memory step given in Figure 9(bottom).
Obviously, the all-memory policy is slower than other strategies because all the
nodes within the path of the simulation have to be stored (see Figure 9(a)).
Conversely, the no-memory policy is the fastest strategy. The runtimes of the
top-k-memory policies is comparable.

Figure 9(b) shows that the quality of the result set is impacted by the choice
of the memory policies. We can observe that the no-memory is clearly worse
than other strategies. Indeed, in the Emotion dataset, the best subgroups are
located more deeper in the search space, thus, if the solutions encountered
during the simulation are not stored it would be difficult to find them just be
considering the subgroups that are expanded in the search tree. Surprisingly,
the all-memory policy does not lead to better result. In fact the path generated
during a simulation contains a lot of redundant subgroups: Storing all these
nodes is not required to improve the quality of the result set. Only few subgroups
within the path are related to different local optima.

As expected in Figure 9(c), the descriptions of the subgroups obtained with
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the no-memory policy are smaller than those of other strategies. Indeed, with
the no-memory policy, the result sets contains only subgroups that are expanded
in the search tree, in other words, the subgroups obtained with the Expand step.

6.7 The Update method

Figure 10(bottom) presents the different strategies we use to implement the
Update step. The goal of this step is to back-propagate the reward obtained
by the simulation to the parent nodes. The runtime of these strategies are
comparable (see Figure 10(a)). However, we notice that the top-k-mean-update
policy is a little more time consuming. Indeed, we have to maintain a list for
each node within the built tree that stores the top-k best rewards obtained so
far.

Figure 10(b) shows the quality of the result set when varying the Update
policies. For most of the datasets, since the proportion of local optima is very
low within the search space, the max-update is more efficient than the mean-
update. Indeed, using the max-update enables to keep in mind that there is
an interesting pattern that is reachable from a node. However, Figure 10(b)
presents the opposite phenomena: The mean-update policy leads to a better
result. In fact, since there are a lot of local optima in the Ionosphere dataset,
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the mean-update can find the areas with lots of interesting solutions. Moreover,
using the top-k-mean-update leads to the mean-update when k increases.

The description of the subgroups in the result set is comparable when vary-
ing the policies of the Update method (see Figure 10(c)). Indeed, the aim
of the Update step is just to back-propagate the reward obtained during the
simulation to the nodes of the built tree to guide the exploration for the follow-
ing iterations. This step does not have a large influence on the length of the
description of the subgroups.

6.8 The number of iterations

We study the impact of different computational budgets allocated to mcts4dm,
that is, the maximum number of iterations the algorithm can perform. As
depicted in Figure 11(a), the runtime is linear with the number of iterations.
The x-axis is not linear w.r.t. the number of iterations, please refer to the
bottom of Figure 11 to know the different values of the number of iterations.

Moreover, as expected, the more iterations, the better the quality of the
result set. Figure 11(b) shows that a larger computational budget leads to a
better quality of the result set, but, obviously, it requires more time. Thus,
with this exploration method, the user can have some results anytime. For the
BreastCancer dataset, the quality decreases from 10 to 100 iterations: This is
due to the fact that with 10 iterations there are less subgroups extracted (12
subgroups) than with 100 iterations (40 subgroups), and the mean quality of
the result set with 100 iterations contains also subgroups with lower quality
measures.

6.9 Evaluating pattern set diversity when a ground truth
is known

Artificial datasets are generated according to default parameters given in Table
4. Then, we study separately the impact of each parameter on the ability to
retrieve the hidden patterns with our MCTS algorithm. After a few trials, we use
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the following default MCTS parameters: The single player UCB (SP-MCTS)
for the select policy; the label-expand policy with PU activated; the direct-
freq-roll-out policy for the simulations, the max-update policy as aggregation
function of the rewards of a simulation, the top-10-memory policy and finally
the max-update policy for the back-propagation.

The ability to retrieve hidden patterns is measured with a Jaccard coeffi-
cient between the support of the hidden patterns and the one discovered by the
algorithm:

Definition 17 (Evaluation measure). Let H be the set of hidden patterns, and
F the set of patterns found by an MCTS mining algorithm, the quality, of the
found collection is given by:

qual(H,F) = avg∀h∈H(max∀f∈F (Jaccard(ext(h), ext(f))))

that is, the average of the quality of each hidden pattern, which is the best
Jaccard coefficient with a found pattern. We thus measure here the diversity.
It is a pessimistic measure in the sense that it takes its maximum value 1 iff all
patterns have been completely retrieved.

It can be noticed that we do not use the Definition 6 for diversity: As a
ground truth is available, we opt for a measure that quantifies its recovering.

Varying the noise parameter. We start with the set of parameters Psmall. The
results are given in Figure 12 with different minimal support values (used during
the expand step and the simulations). Recall that a hidden pattern is random
set of symbols attribute = value when dealing with nominal attributes, repeated
in pattern sup object descriptions: The noise makes that each generated object
description may not support the pattern. Thus, the noise directly reduces the
support of a hidden pattern: increasing the noise requires to decrease the mini-
mal support of the algorithm. This is clearly observable on the different figures.
When the minimum support is set to the same value as the support of the hid-
den patterns (minSupp = 100), the noise has a strong impact and it is difficult
to retrieve the hidden patterns, even when the whole tree (of frequent patterns)
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Figure 12: Ability to retrieve hidden patterns (qual(H,F) in Y-axis) when
introducing noise and mining with different minimum supports minSup.

has been expanded. Reducing the minimal support to 1 makes the search very
resistant to noise. Note that when two lines exactly overlaps, it means that
the search space of frequent patterns was fully explored: MCTS performed an
exhaustive search.

Varying the out factor parameter. Each pattern is inserted in pattern sup trans-
actions (or less when there is noise) as positive examples (class label +). We
also add pattern sup × out factor negative examples (class label −). When
out factor = 1, each pattern appears as much in positive and negative exam-
ples. This allows to hide patterns with different quality measure, and especially
different WRAcc measures. The Table 7 (row (1)) shows that this parameter
has no impact: patterns of small quality are retrieved easily in a small number
of iterations. The UCB hence drives the search towards promising parts that
have the best rewards.

Varying the number of hidden patterns. We claim that the UCB will guide
the search towards interesting parts (exploitation) but also unvisited parts (ex-
ploration) of the search space. It follows that all hidden patterns should be
retrieved and well retrieved. We thus vary the number of random patterns be-
tween 1 and 20 and observe that they are all retrieved (Table 7 (row (2))). When
increasing the number of hidden more patterns, retrieving all of them requires
more iterations in the general case.
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Varying the support size of the hidden patterns. Patterns with a high support
(relative to the total number of objects) should be easier to be retrieved as a
simulation has more chance to discover them, even partially. We observe that
patterns with small support can still be retrieved but it requires more iterations
to retrieve them in larger datasets (Table 7 (row (3))).

Varying the number of objects. The number of objects directly influences the
computation of the support of each node: Each node stores a projected database
that lists which objects belong to the current pattern. The memory required
for our MCTS implementation follows a linear complexity w.r.t. the number
of iterations. This complexity can be higher depending on the chosen memory
policy (e.g. in these experiments, the top-10 memory policy was chosen). The
time needed to compute the support of a pattern is higher for larger dataset,
but it does not change the number of iterations required to find a good result.
This is reported in (Table 7 (row (4))). Run times will be discussed later.

Varying the number of attributes and the size of attributes domains. These
two parameters directly determine the branching factor of the exploration tree.
It takes thus more iterations to fully expand a node and to discover all local
optima. Here again, all patterns are well discovered but larger datasets require
more iterations (Table 7 (row (5) and (6))).
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Table 7: Evaluation of the ability to retrieve hidden patterns in artificial data
generated according to different parameters (average of 5 runs for each point).
qual(H,F) in Y-axis, parameters given in the first columns as X-axis.
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Table 8: Parameters of the artificial data generator. The format of name of the
data is given by their parameters by [nb obj] [nb attr] [domain size].

Name 5000 10 200 5000 50 50 5000 50 200 20000 10 200 20000 50 200

nb obj 5,000 5,000 5,000 20,000 20,000

nb attr 10 50 50 10 50

domain size 200 50 200 200 200

nb patterns 5 5 5 5 5

pattern sup 200 200 200 200 200

out factor 0.05 0.05 0.05 0.05 0.05

noise rate 0.05 0.05 0.05 0.05 0.05

7 Comparisons with existing algorithms

We compare mcts4dm to other SD approaches (exhaustive search, beam search,
genetic algorithms and sampling) in terms of computational time, diversity and
redundancy of the pattern set, and memory usage. In addition to the bench-
mark data we used in the previous section, we generate 5 new artificial datasets
for which parameters are given in Table 8. In this empirical study, we consider
a timeout of 5 minutes that is enough to capture the behavior of the algorithms
that are not based on a computational budget, such as SD-Map or beam search
approaches. Indeed, mcts4dm and sampling methods use a computational bud-
get.

7.1 SD-Map

SD-Map*, an improvement of SD-Map, is considered as the most efficient
exhaustive method for subgroup discovery [[4, 3]]. It employs the FP-Growth
principle to enumerate the search space [[28]]. It operates a greedy discretization
as a pre-processing step to handle numerical data. It can consider several quality
measures to evaluate the interestingness of a subgroup (WRAcc, F1 score, etc.).
The source code is available at http://www.vikamine.org.

Runtime. SD-Map* is very efficient when dealing with dataset of reasonable
search space size. We empirically study the scalability of this algorithm com-
pared to those of mcts4dm for several numbers of iterations. Figure 13 (a)
displays the runtime of SD-Map* on the Mushroom dataset when varying the
minimum support threshold. Clearly, for high minimum support thresholds,
SD-Map* is able to provide the results quickly. However, the runtime is ex-
ponential w.r.t. this threshold, and thus this algorithm cannot be applied to
extract small subgroups. Conversely, mcts4dm is tractable for very low min-
imum support thresholds: Many iterations can be performed. Figure 13 (b)
displays the runtimes for the Ionosphere data and once again mcts4dm is able
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Table 9: Diversity in the result set for artificial data. The value is the qual(H,F)
where H is the set of hidden patterns in the artificial data and F is the set of
found patterns by the algorithm The character ’-’ means that the algorithm
exceeds the time limit of 5 minutes.
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Figure 13: Runtime of SD-Map and mcts4dm when varying minSupp.

to perform lots of iteration in a linear time w.r.t. the minimum support thresh-
old whereas SD-Map* fails.

Redundancy and diversity in the result set. SD-Map* is an exhaustive
search, thus the diversity of the result set is either perfect if the run can fin-
ish or null: Table 9 gives the diversity using the formula of Definition 17 on
artificial data since the ground truth is known. However when dealing with
numerical attributes, SD-Map* does not ensure a perfect diversity anymore.
Indeed, since it handles numerical attributes by performing a discretization in
a pre-processing step, there is no guarantee to extract the best patterns. For
example, in the BreastCancer dataset, the quality measure of the best subgroup
extracted by SD-Map* is 0.18 whereas mcts4dm has found a subgroup whose
quality measure is 0.21 with 50, 000 iterations in only 0.213ms. Figure 14 (a)
and Figure 14 (b) show the redundancy of the result set (computed with the
formula in Definiton 5) extracted on the Mushroom dataset respectively with
minSupp = 264 and minSupp = 282. Obviously, the lower the maximum simi-
larity threshold Θ, the more redundant the result set. Compared to SD-Map*,
mcts4dm produces few redundancy when performing few iterations, but few
iterations are not enough to provide good results: The more iterations, the
more redundancy. Surprisingly, the result set of mcts4dm can be more redun-
dant than those of SD-Map* that represents our baseline. Indeed, the set of
redundant patterns for the main local optima is larger than for other small lo-
cal optima, i.e., there are many more patterns that are similar with the main
local optima than with small local optima. Since mcts4dm generally finds at
first the main local optima, the redundancy measure is higher than those of
SD-Map* because there are, in proportion, more redundant subgroups in the
result set than local optima. When minSupp decreases, SD-Map* becomes
more redundant compared to some mcts4dm runs.

Memory usage. Figure 15 (a) displays the memory usage of our algorithm
mcts4dm on the Mushroom data with different numbers of iterations. As ex-
pected, the more iterations, the higher the memory usage. It grows linearly with
the number of iterations (the creation of the storage structures avoids to see the
linear growth of the memory during the first iterations). Figure 15 (b) displays
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Figure 14: The redundancy in the result set for the Mushroom data varying Θ.
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Figure 15: The memory usage in the Mushroom dataset.

the memory usage when varying the minimum support threshold in the Mush-
room dataset for all the considered algorithms. Here, we only discuss the case of
SD-Map* compared to mcts4dm. Although SD-Map* is an exhaustive search,
its memory usage is similar to (but slightly lower than) those of mcts4dm with
100k iterations. It confirms that the implementation of SD-Map* is efficient.

7.2 Beam search

The beam search strategy is the most popular heuristic method in subgroup
discovery. Cortana is a tool that enables to run SD tasks with beam search
approaches and its source code is available at http://datamining.liacs.nl/

cortana.html. Beam search, originally introduced in [40], is a greedy method
that partially explores the search space with several hill climbings run in parallel.
It proceeds in a level-wise approach considering at each level the best subgroups
to extend at the next level. The number of subgroups that are kept to be
extended at the next level is called the beam width.

Runtime. By definition, beam search can only find, yet very quickly, local
optima reachable from the most general pattern with a hill climbing. Figure 16
shows the runtimes with different beam widths. Obviously, the larger the beam
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Figure 16: Runtime of the beam search exploration and mcts4dm when varying
minSupp in the tictactoe dataset.

width, the longer the runtimes. However, even with a beam width of 500, the
runtime is lower than those of mcts4dm with 100k iterations. This is due to
the greedy nature of beam search that expands subgroups only if the quality
measure increases. However, the local optima that are located deeper in the
search space are often missed since the quality measure is not monotone. For
large data, such as Bibtex, the beam search is not tractable since it is required
to expand all the first level of the search tree to build up the beam. Thus,
in our settings, the timeout of 5 minutes is reached with beam search whereas
mcts4dm can proceed to 100k iterations in 4 minutes.

Redundancy and diversity in the result set. Due to the greedy approach
of the beam search, the redundancy in the result set is the main problem.
Figure 17 (a) compares the redundancy in the TicTacToe data obtained with
several beam searches and with mcts4dm. Clearly, the beam search leads to
a more redundant result set than mcts4dm. This remark holds for all data
we experimented with. For example, in the Olfaction dataset, there is a high
difference in the redundancy in the result set obtained with a beam search as
well (Figure 17 (b)). Besides this high redundancy in the result set with a beam
search, the diversity is not as good as with mcts4dm. Even if in Table 9, the
beam search extracts the local optima for some datasets, it may require large
beam widths that are time consuming. Figure 18 illustrates the diversity for
the BreastCancer data with Θ = 0.2. With 100k iterations, mcts4dm leads to
a much more diverse result set than a beam search.

Memory consumption. The size of the set of patterns extracted with a beam
search is generally lower than the size of the set of patterns obtained with tens
of thousands iterations with mcts4dm. Thus, the memory usage is lower for a
beam search. Figure 15 displays the memory usage of a beam search with a beam
width set to 100 in the Mushroom data. We observe that the memory usage
increases similarly to (but it is lower than) those of mcts4dm when varying the
minimum support thresholds.
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Figure 17: The redundancy in the result set for the TicTacToe and Olfaction
data for the beam search strategy.
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Figure 18: The diversity of the result set in BreastCancer data when Θ = 0.2.

7.3 Evolutionary algorithms

The evolutionary approaches aim at solving problems imitating the process of
natural evolution. Genetic algorithms are a branch of the evolutionary ap-
proaches that use a fitness function to select which individuals to keep at the
next generated population [[30]]. In this empirical study, we evaluate the effi-
ciency of mcts4dm from [41] against the evolutionary algorithm SSDP.

Runtime. SSDP is free from the minimum support constraint: It explores the
whole search space without pruning w.r.t. the support of the patterns. There-
fore, the runtimes of SSDP are the same for all minimum support thresholds
(Figure 19). However, when varying the population size, it comes with large
changes in the runtimes. The runtimes of SSDP are quite similar to those of
mcts4dm when varying the number of iterations. However, in general SSDP
is not scalable when considering a large population size.

Redundancy and diversity in the result set. On one hand, SSDP seems to
provide less redundant pattern sets, due to the mutation and cross-over opera-
tions of this evolutionary algorithm. Figure 21 (a) deals with the Iris data with
minSupp = 7: The redundancy of SSDP is generally better than those of our
algorithm mcts4dm. This is the same conclusion in Figure 20 (b) for Mushroom
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Figure 19: Runtime of SSDP and mcts4dm when varying minSupp in Breast-
Cancer.
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Figure 20: The redundancy in the result set for the iris and mushroom data.

with minSupp = 56. On the other hand, the diversity in the result set of SSDP
is lower than those of mcts4dm. In Table 9, SSDP fails to extract all hidden
patterns in our artificial data. Figure 21 (a) and Figure 21 (b) display the same
result for benchmark datasets. Clearly, mcts4dm is able to extract much more
interesting subgroups than SSDP. Thus, even if the result set of mcts4dm can
be redundant, it provides a more diverse set of patterns compared to the result
set extracted by SSDP. This is due to the population size that is not enough
large to provide a high diversity (but SSDP is not tractable for large population
sizes).

Memory consumption. The memory usage of SSDP depends on the size
of the population. In mushroom, when considering a population of size 1, 000,
the memory usage is higher than those of mcts4dm with 100k iterations for
high minimum support thresholds but it is lower for low minimum support
thresholds (see Figure 15). Indeed, since SSDP does not use any minimum
support threshold, its memory usage is independent w.r.t. minSupp.
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Figure 21: The diversity of the result set when Θ = 0.2.
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Figure 22: Runtime of Misere and mcts4dm when varying minSupp on the
Mushroom dataset.

7.4 Sampling approach

Sampling methods are useful to provide interactive applications. Indeed, they
enable a result anytime. We experiment with the sampling algorithm Mis-
ere [[24, 20, 21]]. Its principle consists in drawing uniformly an object from the
data, and then uniformly pick one of its possible generalizations. Each sample is
independent and thus a pattern can be drawn several times. We chose Misere
as it can consider any pattern quality measure (in contrast to other sampling
approaches such as [43, 9]), and it performs very well.

Runtime. Since this strategy consists in randomly drawing patterns, the run-
time is linear with the number of draws. Varying the minimum support thresh-
olds does not really impact the runtime (Figure 22). An iteration with mcts4dm
is almost only twice much longer than a draw with Misere. This is explained by
the fact that Misere only draws one pattern at once without additional memory
(i.e., the Monte Carlo tree). Conversely, in one iteration, MCTS additionally
performs Select, Expand, Memory and Update steps.

Redundancy and diversity in the result set. Since Misere proceeds
in independent draws of patterns without exploiting the result of the previous
draws of patterns, it leads to a result set that contains little redundancy. Indeed,
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Figure 23: The redundancy and the diversity in the result set for the Cal500
and Bibtex data.

it can draw an interesting pattern that is close to its local optimum, but it
would not try to find this optimum at the next draws. Figure 23 illustrates this:
The result set is much less redundant than those of mcts4dm. For example,
considering a result set containing 1, 000 draws of patterns and another obtained
with 1, 000 iterations from mcts4dm. mcts4dm returns pattern set 10 times
more redundant than Misere. However, since Misere does not exploit the
result of the previous draws, it leads to less diversity. In Table 9, Misere may
require lots of draws to find all local optima. Figure 23 (b) shows for Bibtex
that the diversity is better with mcts4dm than with Misere. Contrary to
mcts4dm, there is no guarantee that Misere will explore the whole search
space, even given a large computational budget. Nevertheless, in Table 9, we
can notice that, in practice, Misere can extract all patterns hidden in artificial
data, but it might require a lot of draws to find them.

Memory consumption. As expected, since this sampling method performs
independent draws, the memory usage is low. In our settings, only the patterns
that are drawn are stored. Figure 15 illustrates the memory usage of Misere
when it has randomly picked 100k patterns. It is constant w.r.t. the minimum
support thresholds, and this is the exploration method that requires the less
memory for low minimum support thresholds.

7.5 Considering several measures

mcts4dm can consider any pattern quality measures. Up to now, we ex-
perimented with the popular WRAcc measure only. We empirically evaluate
mcts4dm with several quality measures that are also used in SD. We consider
some of the quality measures available in Cortana: The entropy, the F1 score,
the Jaccard coefficient and the accuracy (or precision). The measures we use
are not equivalent since they do not sort the patterns in the same order : Each
measure induces a specific profile on the pattern space.

mcts4dm is not measure-dependent since it does not use any prior knowledge
to explore the search space. During the first iterations, mcts4dm randomly
samples the search space, then once it has an estimation – that is usually rather
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Figure 24: The diversity of the result set for several quality measures in the
Mushroom dataset.

not reliable at the beginning – of the distribution of the quality measure on
the pattern space, it biases the exploration to focus on the promising areas
(exploitation) and the areas that have been rarely visited (exploration). The
strategies we developed are useful to handle the specific profile induced by a
quality measure on the pattern space, e.g., if there are lots of local optima in
the search space the exploration strategy should be different than if there are
few local optima. For instance, the mean-update strategy is the most efficient
strategy when we are facing a pattern space with lots of local optima since it
enables to exploit the areas that are deemed to be interesting in average. Thus,
mcts4dm can be used with any quality measure. The choice of the strategies
only impacts how fast it will find the interesting patterns.

We compare our approach with the sampling method Misere which is the
most efficient opponent based on the previous results (see Figure 24). We ex-
periment on the Mushroom dataset to reach low minimum support thresholds
using the four quality measures (the entropy, the F1 score, the Jaccard coeffi-
cient and the accuracy). The results suggest that mcts4dm is able to provide
a good diversity regardless the quality measure that is used. mcts4dm finds a
result set with a better diversity for all quality measures. The results on the
other datasets are similar but not reported here.
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8 Discussion

Based on the empirical study reported in the two previous sections, we now
provide a summary of the main results. First, we experimented with several
strategies we defined for our algorithm mcts4dm. Our conclusions are the
following:

• Select: Concerning the choice of the upper confidence bound, it seems
more suitable to use the SP-MCTS for SD problems, although it has a
limited impact. Activating LO leads to worse results, but with PU we are
able to get more interesting patterns. This is a quite interesting fact as
LO is a widely used technique in pattern mining (enumerate each pattern
only once with a lectic order).

• Expand: We advise to use the label-gen strategy that enables to reach
more quickly the best patterns, but it can require more computational
time.

• RollOut: For nominal attributes, the direct-freq-roll-out is an efficient
strategy. However, when facing numerical attributes, we recommend to
employ the large-freq-roll-out since it may require a lot of time to reach
the maximal frequent patterns.

• Memory: Using a memory strategy is essential since it enables to store
the patterns encountered during the RollOut step. The top-1-memory
is enough to avoid to miss interesting patterns that are located deeper in
the search space.

• Update: When there are potentially many local optima in the search
space, we recommend to set the mean-update strategy for the Update
step. Indeed it enables to exploit the areas that are deemed to be inter-
esting in average. However, when there are few local optima among lots of
uninteresting patterns, using mean-update is not optimal since the mean
of the rewards would converge to 0. In place, the max-update should be
used to ensure that an area containing a local optima is well identified.

Our second batch of experiments compared mcts4dm with the main exist-
ing approaches for SD. For that, we experimented with one of the most efficient
exhaustive search in SD, namely SD-Map*, a beam search, the recent evolu-
tionary algorithm SSDP and a sampling method implemented in the algorithm
Misere. The results suggest that mcts4dm leads, in general, to a more diverse
result set when an exhaustive search is not tractable. The greedy property
of the beam search leads to a low diversity in the result set, and the lack of
memory in sampling methods avoid to exploit interesting patterns to find the
local optima (a pattern may be drawn several times). There is no guarantee
that evolutionary algorithms and sampling approaches converge to the optimal
pattern set even with an infinite computational budget.

MCTS comes with several advantages but has some limits:
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+ It produces a good pattern set anytime and it converges to an exhaustive
search if given enough time and memory (a best-first search).

+ It is agnostic of the pattern language and the quality measures: It handles
numerical patterns without discretization in a pre-processing step and it
still provides a high diversity using several quality measures.

+ mcts4dm is aheuristic: No hypotheses are required to run the algorithm
whereas with some sampling methods, a probability distribution (based on
the quality measure and the pattern space) has to be given as a parameter.

- mcts4dm may require a lot of memory. This memory usage becomes more
and more important with the increase of the number of iterations.

- Despite the use of UCB, it is now well known that MCTS algorithms
explore too much the search space. As MCTS basically requires to expand
all the children of a node before exploiting one of them, this problem is
even stronger when dealing with very high branching factor (number of
direct specializations of a pattern). This problem has been in part tackled
by the progressive widening approach that enables to exploit a child of
a node before all of the other children of the node have been expanded
[[23, 13]].

9 Conclusion

Heuristic search of supervised patterns becomes mandatory with large datasets.
However, classical heuristics lead to a weak diversity in pattern sets: Only
few local optima are found. We advocate for the use of MCTS for pattern
mining: An exploration strategy leading to “any-time” pattern mining that
can be adapted with different measures and policies. The experiments show
that MCTS provides a much better diversity in the result set than existing
heuristic approaches. For instance, interesting subgroups are found by means
of a reasonable amount of iterations and the quality of the result iteratively
improves.

MCTS is a powerful exploration strategy that can be applied to several,
if not all, pattern mining problems that need to optimize a quality measure
given a subset of objects. For example, [6] have already tuned MCTS4DM
for mining convex polygon patterns in numerical data. In general, the main
difficulties are to be able to deal with large branching factors, and jointly deal
with several quality measures. This opens new research perspectives for mining
more complex patterns such as sequences and graphs.
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