Skip to main content
Log in

A kernel-based trend pattern tracking system for portfolio optimization

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

We propose a novel kernel-based trend pattern tracking (KTPT) system for portfolio optimization. It includes a three-state price prediction scheme, which extracts both of the following and reverting patterns from the asset price trend to make future price predictions. Moreover, KTPT is equipped with a novel kernel-based tracking system to optimize the portfolio, so as to capture a potential growth of the asset price effectively. The kernel measures the similarity between the current portfolio and the predicted price relative to control the influence of each asset when optimizing the portfolio, which is different from some previous kernels that measure the probability of occurrence of a price relative. Extensive experiments on 5 benchmark datasets from real-world stock markets with various assets in different time periods indicate that KTPT outperforms other state-of-the-art strategies in cumulative wealth and other risk-adjusted metrics, showing its effectiveness in portfolio optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal A, Hazan E, Kale S, Schapire RE (2006) Algorithms for portfolio management based on the Newton method. In: Proceedings of the 23rd international conference on machine learning

  • Algoet PH, Cover TM (1988) Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. Ann Probab 16(2):876–898

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsekas D (1999) Nonlinear programming. Athena Scientific, Belmont

    MATH  Google Scholar 

  • Blum A, Kalai A (1999) Universal portfolios with and without transaction costs. Mach Learn 35(3):193–205

    Article  MATH  Google Scholar 

  • Borodin A, El-Yaniv R, Gogan V (2004) Can we learn to beat the best stock. J Artif Intell Res 21(1):579–594

    Article  MathSciNet  MATH  Google Scholar 

  • Breiman L (1961) Optimal gambling systems for favorable games. In: Proceedings of the the Berkeley symposium on mathematical statistics and probability, vol 1, pp 65–78

  • Cover TM (1991) Universal portfolios. Math Finance 1(1):1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Book  MATH  Google Scholar 

  • Cui X, Li X, Li D (2014) Unified framework of mean-field formulations for optimal multi-period mean–variance portfolio selection. IEEE Trans Autom Control 59(7):1833–1844

    Article  MathSciNet  MATH  Google Scholar 

  • Duchi J, Shalev-Shwartz S, Singer Y, Chandra T (2008) Efficient projections onto the \(\ell ^1\)-ball for learning in high dimensions. In: Proceedings of the International Conference on Machine Learning (ICML 2008)

  • Friedman J, Tibshirani R, Hastie T (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  Google Scholar 

  • Graham JR, Harvey CR (1996) Market timing ability and volatility implied in investment newsletters’ asset allocation recommendations. J Finance Econ 42:397–421

    Article  Google Scholar 

  • Grinold RC, Kahn RN (1999) Active portfolio management: a quantitative approach for producing superior returns and controlling risk. McGraw-Hill, New York

    Google Scholar 

  • Grinold RC, Kahn RN (2000) Active portfolio management, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Györfi L, Lugosi G, Udina F (2006) Nonparametric kernel-based sequential investment strategies. Math Finance 16(2):337–357

    Article  MathSciNet  MATH  Google Scholar 

  • Györfi L, Udina F, Walk H (2008) Nonparametric nearest neighbor based empirical portfolio selection strategies. Stat Decis 26(2):145–157

    MathSciNet  MATH  Google Scholar 

  • He J, Wang QG, Cheng P, Chen J, Sun Y (2015) Multi-period mean–variance portfolio optimization with high-order coupled asset dynamics. IEEE Trans Autom Control 60(5):1320–1335

    Article  MathSciNet  MATH  Google Scholar 

  • Hoerl A, Kennard R (1988) Ridge regression. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical sciences, vol 8. Wiley, New York, pp 129–136

    Google Scholar 

  • Huang D, Zhou J, Li B, Hoi S.C.H, Zhou S (2013) Robust median reversion strategy for on-line portfolio selection. In: Proceeding of the twenty-third international joint conference on artificial intelligence, pp 2006–2012

  • Huang D, Zhou J, Li B, Hoi SCH, Zhou S (2016) Robust median reversion strategy for online portfolio selection. IEEE Trans Knowl Data Eng 28(9):2480–2493

    Article  Google Scholar 

  • Jegadeesh N (1990) Evidence of predictable behavior of security returns. J Finance 45(3):881–898

    Article  Google Scholar 

  • Jegadeesh N (1991) Seasonality in stock price mean reversion: evidence from the U.S. and the U.K. J Finance 46(4):1427–1444

    Article  Google Scholar 

  • Li B, Hoi SCH (2014) Online portfolio selection: a survey. ACM Comput Surv (CSUR) 46(3):35-1–35-36

    MATH  Google Scholar 

  • Li B, Hoi SCH, Gopalkrishnan V (2011) Corn: Correlation-driven nonparametric learning approach for portfolio selection. ACM Trans Intell Syst Technol 2(3):21

    Article  Google Scholar 

  • Li B, Zhao P, Hoi SCH, Gopalkrishnan V (2012) Pamr: passive aggressive mean reversion strategy for portfolio election. Mach Learn 87(2):221–258

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Hoi SCH, Zhao P, Gopalkrishnan V (2013) Confidence weighted mean reversion strategy for online portfolio selection. ACM Trans Knowl Discov Data 7(1):4

    Article  Google Scholar 

  • Li B, Hoi SCH, Sahoo D, Liu ZY (2015) Moving average reversion strategy for on-line portfolio selection. Artif Intell 222:104–123

    Article  MathSciNet  Google Scholar 

  • Li B, Sahoo D, Hoi SCH (2016) OLPS: a toolbox for on-line portfolio selection. J Mach Learn Res 17(35):1–5

    MathSciNet  Google Scholar 

  • Lintner J (1965) The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev Econ Stat 47(1):13–37

    Article  Google Scholar 

  • Liu Q, Dang C, Huang T (2013) A one-layer recurrent neural network for real-time portfolio optimization with probability criterion. IEEE Trans Cybern 43(1):14–23

    Article  Google Scholar 

  • Markowitz HM (1952) Portfolio selection. J Finance 7(1):77–91

    Google Scholar 

  • Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. R Soc Lond Philos Trans 209:415–446

    Article  MATH  Google Scholar 

  • Merton RC (1969) Lifetime portfolio selection under uncertainty: the continuous-time case. Rev Econ Stat 51(3):247–257

    Article  Google Scholar 

  • Mossin J (1966) Equilibrium in a capital asset market. Econometrica 34(4):768–783

    Article  Google Scholar 

  • Nguyen TT, Lee GB, Khosravi A, Creighton D, Nahavandi S (2015) Fuzzy portfolio allocation models through a new risk measure and fuzzy sharpe ratio. IEEE Trans Fuzzy Syst 23(3):656–676

    Article  Google Scholar 

  • Pola G, Pola G (2012) A stochastic reachability approach to portfolio construction in finance industry. IEEE Trans Control Syst Technol 20(1):189–195

    Article  Google Scholar 

  • Raudys S (2013) Portfolio of automated trading systems: complexity and learning set size issues. IEEE Trans Neural Netw Learn Syst 24(3):448–459

    Article  Google Scholar 

  • Sharpe WF (1964) Capital asset prices: a theory of market equilibrium under conditions of risk. J Finance 19(3):425–442

    MathSciNet  Google Scholar 

  • Sharpe WF (1966) Mutual fund performance. J Bus 39(1):119–138

    Article  Google Scholar 

  • Shiller RJ (2000) Irrational exuberance. Princeton University Press, Princeton

    Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  • Treynor JL, Black F (1973) How to use security analysis to improve portfolio selection. J Bus 46(1):66–86

    Article  Google Scholar 

  • Vardi Y, Zhang CH (2000) The multivariate \(\ell ^1\)-median and associated data depth. Proc Natl Acad Sci USA 97(4):1423–1426

    Article  MathSciNet  MATH  Google Scholar 

  • Vercher E, Bermúdez JD (2013) A possibilistic mean-downside risk-skewness model for efficient portfolio selection. IEEE Trans Fuzzy Syst 21(3):585–595

    Article  Google Scholar 

  • Weber A (1909) Uber den Standort der Industrien. Mohr, Tubingen

    Google Scholar 

  • Weiszfeld E (1937) Sur le point pour lequel la somme des distances de n points donnes est minimum. Tohoku Math J 43:355–386

    MATH  Google Scholar 

  • Yang L, Couillet R, McKay MR (2015) A robust statistics approach to minimum variance portfolio optimization. IEEE Trans Signal Process 63(24):6684–6697

    Article  MathSciNet  MATH  Google Scholar 

  • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Stat Methodol) 67(2):301–320

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, the Area Editor, and the anonymous reviewers for the detailed and constructive comments and suggestions that help to significantly improve this paper. This work is supported by the National Natural Science Foundation of China [Grant Numbers 61703182, 61602211, 61603152]; the Fundamental Research Funds for the Central Universities [Grant Numbers 21617347, 21617404]; the Talent Introduction Foundation of Jinan University [Grant Numbers 88016653, 88016534]; Science and Technology Program of Guangzhou, China [Grant Number 201707010259]; the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET); Guangxi Key Laboratory of Trusted Software [Grant Number kx201606]; the Fundamental Research Funds for the Center for Mathematical Finance in Guangdong Province [Grant Number 50411628].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Yi Yang.

Additional information

Responsible editor: Toon Calders

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, ZR., Yang, PY., Wu, X. et al. A kernel-based trend pattern tracking system for portfolio optimization. Data Min Knowl Disc 32, 1708–1734 (2018). https://doi.org/10.1007/s10618-018-0579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-018-0579-5

Keywords

Navigation