
Noname manuscript No.
(will be inserted by the editor)

Scalable Attack on Graph Data by Injecting Vicious
Nodes

Jihong Wang · Minnan Luo · Fnu Suya ·
Jundong Li · Zijiang Yang · Qinghua Zheng

Received: date / Accepted: date

Abstract Recent studies have shown that graph convolution networks (GCNs)
are vulnerable to carefully designed attacks, which aim to cause misclassification
of a specific node on the graph with unnoticeable perturbations. However, a vast
majority of existing works cannot handle large-scale graphs because of their high
time complexity. Additionally, existing works mainly focus on manipulating exist-
ing nodes on the graph, while in practice, attackers usually do not have the priv-
ilege to modify information of existing nodes. In this paper, we develop a more
scalable framework named Approximate Fast Gradient Sign Method (AFGSM)
which considers a more practical attack scenario where adversaries can only inject
new vicious nodes to the graph while having no control over the original graph.
Methodologically, we provide an approximation strategy to linearize the model
we attack and then derive an approximate closed-from solution with a lower time
cost. To have a fair comparison with existing attack methods that manipulate
the original graph, we adapt them to the new attack scenario by injecting vicious
nodes. Empirical experimental results show that our proposed attack method can
significantly reduce the classification accuracy of GCNs and is much faster than
existing methods without jeopardizing the attack performance.

Keywords Graph Convolution Networks · Vicious Nodes · Scalable Attack

1 Introduction

Graphs are widely used to model various types of real-world data and many canon-
ical learning tasks such as classification, clustering, and anomaly detection have
been widely investigated for the graph-structured data (Bhagat et al., 2011; Tian
et al., 2014; Perozzi et al., 2014a; Tang et al., 2016). In this paper, we focus on
the task of node classification. Recently, to solve the node classification problem,

Jihong Wang · Minnan Luo · Qinghua Zheng
Xian Jiaotong University, China
E-mail: wang1946456505@stu.xjtu.edu.cn, minnluo@xjtu.edu.cn, tjlu@mail.xjtu.edu.cn

Fnu Suya · Jundong Li Zijiang Yang
University of Virginia, USA Western Michigan University, USA
E-mail: {suya, jundong}@virginia.edu E-mail: zijiang.yang@wmich.edu

ar
X

iv
:2

00
4.

13
82

5v
1

 [
cs

.C
R

]
 2

2
A

pr
 2

02
0

2 Jihong Wang et al.

graph convolution networks (GCNs) have gained a surge of research interests in
the data mining and machine learning community because of their superior pre-
diction performance (Pham et al., 2017; Cai et al., 2018; Monti et al., 2017). How-
ever, recent research efforts showed that various graph mining algorithms (e.g.,
GCNs) are vulnerable to carefully crafted adversarial examples, which are “unno-
ticeable” to humans but can cause the learning models to misclassify some target
nodes (Zügner et al., 2018; Dai et al., 2018; Bojchevski and Günnemann, 2018).
The vulnerabilities of these learning algorithms can lead to severe consequences
in security-sensitive applications. For example, GCNs are often used in the risk
management area to evaluate the credit level of users (Dai et al., 2018; Akoglu
et al., 2015; Bolton et al., 2001), as user-user information is often used in this con-
text, it provides ample opportunities for criminals to increase their credit score by
connecting to high-credit users. In this paper, we focus on assessing the robustness
of graph convolution networks against adversarial attacks. Different from existing
efforts that directly manipulate the original graph, we investigate a more realistic
attack scenario of injecting vicious nodes and develop a scalable solution to tackle
the problem.

Limitations of Current Approaches. There are two common issues of existing
works on attacking GCNs (Zügner et al., 2018; Dai et al., 2018; Bojcheski and
Günnemann, 2018): the scalability issue and the explicit assumption that adver-
saries can easily manipulate existing nodes on the graph. First, GCNs are usually
applied in large-scale graphs in various domains (Ying et al., 2018; Hamilton et al.,
2017; Chen et al., 2018), which puts a high demand on the scalability of the un-
derlying attack models. However, existing efforts (Zügner et al., 2018; Dai et al.,
2018; Bojcheski and Günnemann, 2018) cannot be easily generalized to handle
large-scale graphs. Second, in actual life, attackers may not be able to manipulate
existing nodes in a graph. For example, GCNs are often used to classify users on
social websites like Twitter or Weibo for content recommendation by exploring
the friendship graph of users. But attackers usually have no ability to manipu-
late existing users on these websites. To achieve the purpose of attack, a simple
way is to register some new accounts on these websites and enable these accounts
to establish connections with existing users, e.g ., following other users or mak-
ing comments on the same posts. Despite that, existing attack models seldomly
consider this new attack scenario. The aforementioned two limitations motivate
us to investigate the following research problem: how to effectively and efficiently
manipulate the prediction results of GCNs on a specific node by injecting vicious
nodes to a large graph?

Challenges. There are three challenges in the new attack scenario, where the
first two are general challenges for devising efficient attacks on GCNs while the
third one is a unique challenge of the new attack scenario we consider.

– Discreteness. Different from images which can be approximately regarded as
a continuous field as the value of pixels can be any integers between 0 and 255,
graph-structured data is often depicted in the discrete domains. Thus existing
attack (Dong et al., 2018; Szegedy et al., 2013)strategies that are widely used in
other domains (e.g ., computer vision) cannot be directly applied. The proposed
solution needs to well handle the potential combinatorial problem efficiently.

– Poisoning Attack. Unlike the clear separation between training and test
data in other domains, the node classification task is often conducted in a

Scalable Attack on Graph Data by Injecting Vicious Nodes 3

Fig. 1: Comparison between the attack scenario in existing literature and the new
attack scenario considered in this paper.

transductive setting, where the test data (without ground-truth labels) is also
considered in the training phase. Because of this, when the test data is manip-
ulated, the graph is also dynamically updated. Therefore, it is important to
propose attack strategies that remain effective after the model is retrained on
the manipulated data. This leads to a bi-level optimization problem which is
often computationally expensive to solve.

– High complexity of Existing methods. We can adapt existing methods to
the new attack scenario. However, they all fail to scale to large graphs as their
time complexities are very high (the complexity analysis is shown in Section
4.3). Considering that the node classification task is usually conducted on large
graphs in practice, it is important to develop an efficient method that can be
scaled to real-world large graphs.

Contributions. With the above-mentioned challenges, we propose a novel Ap-
proximate Fast Gradient Sign Method (AFGSM), which can modify and inject
vicious nodes efficiently in the new attack setting. Specifically, our contributions
can be summarized as follows:

– A New Attack Scenario. We consider a more practical attack scenario where
adversaries can only inject vicious nodes to the graph while the original nodes
on the graph remain unchanged.

– Adapting Existing Attacks to New Scenario. We adapt and carefully
tune the exiting attacks to our new attack scenario and adopt these attacks as
the baselines for comparison.

– A More Efficient and Effective Algorithm. We propose a new attack
strategy named Approximate Fast Gradient Sign Method (AFGSM), which
can generate adversarial perturbations much more efficiently than the baseline
attacks while maintaining similar attack performance.

– Extensive Evaluation. We empirically illustrate the effectiveness of our
method on five benchmark datasets and also test on two state-of-the-art graph
neural networks and one unsupervised network embedding model.

2 Related Work

Adversarial examples are extensively studied in the image classification task and
recently researchers also show its existence in graph-related problems. Therefore,
we will discuss related works in both the image domain and the graph domain.

4 Jihong Wang et al.

Attack on Images. Szegedy et al. (2013) first demonstrate the vulnerability
of deep learning models to adversarial examples using L-BFGS method and at-
tributes the existence of adversarial examples to high non-linearity of deep mod-
els. Later on, Goodfellow et al. (2014) propose an efficient Fast Gradient Sign
Method (FGSM) and instead demonstrates that adversarial examples exist be-
cause deep learning models are linear in nature. Carlini et al. (Carlini and Wag-
ner, 2017) propose a stronger C&W attack that breaks heuristic defenses that are
effective against adversarial examples generated using L-BFGS method. Madry
et al. (Madry et al., 2017) propose the Projected Gradient Attack (PGD) and
successfully break defenses that are effective against FGSM attacks. C&W and
PGD attacks are commonly adopted as benchmarks for evaluating the robustness
of new defenses as non-certified defenses can be easily evaded by considering some
variants of the two attacks (Athalye et al., 2018). However, these attacks cannot
be applied to our setting because of the discrete nature of graph data.

Attack on Graphs. Some earlier attacks on graphs focus on modifying the graph
structure. Chaoji et al. (2012) add edges to maximize the content spreading in
social network platforms such as Twitter. Researchers also reveal that the shortest
path of a graph can be changed by slightly perturbing its structure (Israeli and
Wood, 2002; Phillips, 1993). Csji et al. (2014) aim to maximize the PageRank
score of a target node in a network with structure manipulation. However, all
these attacks are not designed for graph learning algorithms (e.g ., graph neural
networks or node embedding algorithms such as DeepWalk).

Recently, researchers also demonstrate the vulnerability of graph learning al-
gorithms. Chen et al. (2017) inject noise to a bipartite graph that represents DNS
queries to mislead the result of graph clustering. However, their attack is generated
through manual effort based on attacker’s domain knowledge. Zhao et al. (2018)
study the poisoning attacks on multi-task relationship learning, but based on an
assumption that the sampled nodes are i.i.d. within each task, which does not
hold for the node classification task. Dai et al. (2018) study evasion attacks on
node classification and graph classification problems. However, their perturbation
is only limited to the edges of the graph, while attackers can benefit more by addi-
tionally manipulating features of nodes (shown in Section 5.4). Zügner et al. (2018)
propose Nettack, which manipulates both edges and features of the graph with a
greedy approach. In addition, the authors propose an efficient method to calculate
the constraint condition on the perturbations to ensure the generated perturba-
tions are “unnoticeable”. Bojcheski and Günnemann (2018) study poisoning attack
on unsupervised node embeddings by borrowing ideas from matrix perturbation
theory to maximize the loss of DeepWalk (Perozzi et al., 2014b) and change the
embedding outcome. Sun et al. (2019) study the new attack scenario by inject-
ing vicious nodes to perturb the graph using a reinforcement learning strategy.
However, the complexity of reinforcement learning (Watkins and Dayan, 1992) is
pretty high thus cannot scale to large graphs. Zügner and Günnemann (2019) pro-
pose a data poisoning attack named Meta-attack based on meta-learning, which
can reduce the overall classification accuracy of the GCN by only perturbing small
fraction of the training data.

Note that, all the aforementioned attacks except (Sun et al., 2019) on graph
learning algorithms focus on changing edges or features of existing nodes and are
not designed for injecting vicious nodes to the graph. As shown in Section 5,

Scalable Attack on Graph Data by Injecting Vicious Nodes 5

directly adapting these attacks to the new attack scenario is not promising due to
high complexity and we are motivated to devise a new attack strategy tailored for
the vicious node setting with a low computational cost.

3 Problem Definition

3.1 Notation and Preliminary

In this section, we first introduce the notations used throughout this paper and
preliminaries of GCNs. Here, following the standard notations in the literature
(Kipf and Welling, 2016; Zhou et al., 2018; Wu et al., 2019), we assume that G =
(V, E ,F) denotes an undirected attributed network (graph) with n nodes (e.g ., vi ∈
V),m edges (e.g ., eij = (vi, vj) ∈ E), and d attributes (features) (e.g ., fi ∈ F). The
features of these n nodes are given by X = [x1,x2, · · · ,xn]> ∈ {0, 1}n×d, where
xi ∈ {0, 1}d denotes the feature for the i-th node vi. The adjacency matrix A ∈
{0, 1}n×n contains the information of node connections, where each component
Aij denotes whether the edge eij exists in the graph. Here, we represent the
graph as G = (A,X) for simplicity. Note that only a limited number of nodes
possess label information in many real-world scenarios and we denote these nodes
as VL, where each node vi ∈ VL is affiliated with the label cv ∈ C.

Following the well-established work on node classification (Kipf and Welling,
2016), the probability of classification with GCN is formulated as:

Z = fθ(G) = softmax
(
Âσ

(
ÂXW (1)

)
W (2)

)
, (1)

whereZvc denotes the probability of assigning node v to the class c; Â = D̃−
1
2 ÃD̃−

1
2

is calculated by Ã = A + I and the diagonal matrix D̃ with diagonal element

D̃ii =
∑
j Ãij for i = 1, 2, · · · , n; θ =

{
W (1),W (2)

}
collects all the trainable

parameters; σ(·) is an activation function (ReLU is used in this paper). In the
framework of semi-supervised classification, the optimal parameter θ∗ is learned
by minimizing the cross-entropy loss on the labeled nodes VL, i.e.,

min
θ
Ltrain (fθ (G)) = −

∑
v∈VL

lnZvcv . (2)

3.2 Problem Definition and Methodology

Different from previous works (Dai et al., 2018; Zügner et al., 2018; Zügner and
Günnemann, 2019), in this paper, we consider a new scenario: attacking a specific
target node v0 ∈ V to change its prediction by injecting nin vicious nodes that
are not on the original graph, denoted by Vin with |Vin| = nin and Vin ∩ V = ∅.
Formally, let G′ =

(
A′,X ′

)
be the new graph after performing small perturbations

on the original graph G, then we have

A′ =

[
A E

E> O

]
, X ′ =

[
X
Xin

]
. (3)

Here E ∈ {0, 1}n×nin denotes the relationship matrix between original nodes and
vicious nodes. Specifically, Eij = 1 if the original node vi ∈ V is connected to the
vicious node vj ∈ Vin, andEij = 0 otherwise. Symmetric matrixO ∈ {0, 1}nin×nin

represents the relationships between vicious nodes in Vin. The edge information

6 Jihong Wang et al.

denoted by E and O are called vicious edges in this paper. Xin ∈ {0, 1}nin×d is
the feature matrix of vicious nodes. It is noteworthy that the perturbations can
only be performed on E,O and Xin while A and X remain unchanged.

Formally, the problem of adversarial attacks on graph G in the new scenario is
typically formulated as the following bi-level optimization problem 1:

min
{E,O,Xin}∈Φ(G′)

Latk
(
fθ∗

(
G′
))

= Z′v0cv0 − max
cnew 6=cv0

Z′v0cnew
(4)

s.t. θ∗ = arg min
θ
Ltrain

(
fθ
(
G′
))
.

where Z′ = fθ∗(G′) denotes the prediction confidence scores for all classes on
the perturbated graph G′, Latk is the loss function during attack, Φ(G′) is the
constraints that E,O andXin should meet on the perturbed graph G′. In the inner
optimization problem, we get the optimal weights θ∗ of the model f(i.e., GCN) on
the current perturbed graph G′ and in the outer optimization problem, we get the
optimal perturbation(i.e., E, O and Xin) on the current model fθ∗ . Subsequently,
we will introduce the loss function on attack and constraint conditions in details.

Loss function of attacks. The loss function of attacks Latk aims to find a
perturbed graph G′ that classifies the target node v0 as cnew and has maximal
distance to the ground truth label cv0 in terms of log-probabilities/logits. Thus,
the smaller Latk is, the worse the classification performs on the target node v0.
It is noteworthy that the surrogate model proposed in (Zügner et al., 2018) is
typically used to generate perturbations instead of using Eq. (1) such that:

Z = fθ(G) = Â2XW . (5)

The simplification is necessary for efficiency since it enables us to derive an ap-
proximate optimal solution (shown in section 4). In this sense, the loss function
on attack turns to

Latk
(
fθ∗

(
G′
))

=
[
Â′

2
X ′W

]
v0cv0

− max
cnew 6=cv0

[
Â′

2
X ′W

]
v0cnew

. (6)

Constraint conditions. There should be some constraint conditions to ensure
unnoticeable perturbations, i.e., the definition of Φ(G′). One of the most widely
used constraints for the adversarial attack is `0-norm constraint. Specifically, the
number of vicious edges by a budget ∆e should be sparse, i.e.,

‖E‖0 + 0.5‖O‖0 ≤ ∆e, (7)

where ‖·‖0 denotes the `0-norm of a matrix (i.e., the number of non-zero elements
of a matrix). Additionally, if we inject vicious nodes with strange pairs of features
(e.g ., mutually exclusive features), it will be easily detected. For this issue, the
work in (Zügner et al., 2018) proposes a statistical test based on the co-occurrence
graph of features to decide that a feature is unnoticeable if it occurs together with
a node’s original features. However, note that there are no original features for
vicious nodes in our new scenario. Indeed, we can design the features arbitrarily.
In this paper, we take a more practical solution by modifying the constraint such

1 The problem is formulated as bi-level optimization because the perturbed test input is also
used in the training procedure and the model weight is dependent on perturbed test data.

Scalable Attack on Graph Data by Injecting Vicious Nodes 7

that the vicious nodes cannot import co-occurrence pairs of features that do not
exist in the original graph. Formally:

∃ fi, fj ∈ F , ∃ uin ∈ Vin, [Xin]uin,i
= 1 ∧ [Xin]uin,j

= 1

only if ∃u ∈ V,Xu,i = 1 ∧Xu,j = 1
(8)

This constraint means that if feature i and feature j occur together on the vicious
node uin, they must have occurred together in an original node u. In other words,
no new co-occurrence pairs of features will be imported on the vicious nodes.
Moreover, considering that vicious nodes with too few or too many features may
be noticeable, we constrain the `0-norm of vicious nodes to be equal to the mean
of `0-norm of original nodes, i.e., ∀ uin ∈ Vin, ‖ [Xin]uin· ‖0 = ‖X‖0/n where
[Xin]uin· is the uin-th row of matrix Xin (i.e., the feature vector of vicious node
uin).

4 The Proposed Framework

It is a very challenging problem to solve the proposed optimization problem in
Eq. (4) due to the discreteness of the graph-structured data. In this section, we will
first discuss how to adapt existing methods to the new attack scenario: injecting
vicious nodes to perturb graphs. Moreover, considering the high computational
complexity of existing methods, we propose a novel method (AFGSM) to speed
up the computation and hence the developed method is scalable to large-scale
graphs. Note that although we only focus on undirected graphs, all algorithms in
this paper can be easily generalized to directed graphs.

4.1 Adapting Existing Methods for the New Scenario

In this paper, we consider three methods designed for the traditional scenario,
including Nettack (Zügner et al., 2018), FGSM (Zügner et al., 2018) and Meta-
attack (Zügner and Günnemann, 2019). To adapt them to the new attack scenario,
we generate vicious nodes under the constraint conditions in Section 3.2 which
is designed specifically for the new attack scenario instead of the constraints in
(Zügner et al., 2018).

There are two strategies to adapt existing methods to the new scenario. First,
we can inject all vicious nodes to the graph, and then consider the vicious nodes
as special original ones. We call this strategy as one-time injection. Second, we
can inject vicious nodes one by one and once we inject a vicious node, we optimize
the corresponding edges and features. We call this strategy sequential injection.

Nettack for the new scenario. Nettack(Zügner et al., 2018) addresses the bi-
level optimization problem following a greedy strategy. Specifically, we initialize
the vicious edges in the graph G′ with E,O, and set the initial Xin by randomly
sampling from the original graph G. Then we apply Nettack on the graph G′ and
constrain that perturbations are performed on E,O and Xin. In each iteration,
Nettack assigns a score for each potential edge that satisfies the constraints and
choose the edge with the maximum score to flip. The main cost of Nettack is the
calculations of the scores, thus it derives an incremental update method that can
get the new scores from the old scores after each iteration in constant time.

According to the analysis in (Zügner et al., 2018), the time complexity of
Nettack in terms of nin vicious nodes is O (∆e · ninj · (n ·Neiv0 + fd)), where

8 Jihong Wang et al.

Neiv0 is the number of the one-order and second-order neighbors of the target node
v0, f is the number of non-zero features in each vicious node’s feature vector(i.e.,
‖X‖0/n). Specifically, there are ∆e iterations. In each iteration, n scores for each
vicious node should be calculated by considering all non-zero elements in [Â′2]v0·
(Neiv0 edges average). And for each vicious node, once we select a feature (f at
most) for it, we need to check whether the candidate features (d at most) of the
node is co-occurring with it. Note that the strategies we adopt won’t affect the
computational complexity.

Meta-attack for the new scenario. Meta-attack(Zügner and Günnemann, 2019)
utilizes the idea of meta-learning to optimize the perturbations generated on
graphs. Note that Meta-attack is originally designed to attack the whole graph
rather than attacking a specific target node v0. To apply Meta-attack to the new
attack scenario, we replace the loss function Latk with Eq. (6) and update the
meta-gradients by

∇metaG′ = ∇G′Latk(fθ∗(G′))
s.t. θ∗ = optθ(Ltrain(fθ(G′)))

(9)

where opt(·) is a differentiable optimization procedure (e.g ., gradient descent or
its variants). In each iteration, Meta-attack picks the edge and the feature value
with the maximum meta-gradient to flip.

According to (Zügner and Günnemann, 2019), the time complexity of Meta-
attack for the new scenario is O

(
∆e
(
Tn2 + ninfd

))
, where T is the number of

iterations. For each iteration, the second-order gradient (Hessian matrix) should
be calculated with a computational complexity of O

(
n2
)
. And for computation of

features, it needs O (∆eninfd) just like Nettack.

FGSM for the new scenario. FGSM(Zügner et al., 2018) computes the gra-
dients of Latk w.r.t. edges and features and then it chooses the edge with the
maximum revised gradient (i.e., multiply −1 if the edge exists) to flip and opti-
mize the features with the signs of gradients.

The time complexity of FGSM is O
(
∆e
(
n2 + ninfd

))
. For each iteration, the

computation of gradients needs O
(
n2
)
. And like Nettack, the computation of

features needs O (∆eninfd).

4.2 Approximate Fast Gradient Sign Method (AFGSM)

Although existing methods can be adapted to the new attack scenario, their com-
putational complexity is often too high to allow them to scale up in large-scale
graphs in practice. To address this problem, we propose an efficient algorithm in
this section, named Approximate Fast Gradient Sign Method (AFGSM) which
injects vicious nodes one by one (i.e., the sequential injection strategy).

Specifically, we inject vicious node vin with edge information ein ∈ {0, 1}n and
feature vector xin ∈ {0, 1}d to attack the target node v0 in graph G = (A,X),
and denote the new graph by G′ = (A′,X ′), where

A′ =

[
A ein
e>in 0

]
∈ {0, 1}(n+1)×(n+1),X ′ =

[
X

x>in

]
∈ {0, 1}(n+1)×d. (10)

It is noteworthy that there are two possible values for the v0-th component of edge
information ein, i.e., [ein]v0 = 0 or 1, where [·]k refers to the k-th component of

Scalable Attack on Graph Data by Injecting Vicious Nodes 9

a vector. [ein]v0 = 1 indicates that the vicious node vin is allowed to connect to
the target node v0 directly, namely direct attack; otherwise, we call it indirect
attack, which is more difficult to be detected by intelligent defense algorithms
since the vicious node is not connected to the target node directly.

Here we assume that in large-scale graphs, the changes of degrees of original
nodes can be ignored after injecting only one vicious node, thus we can approxi-
mate the self-loop degree matrix D̃′ as

D̃′ ≈
[
D̃

d̃vin

]
∈ R(n+1)×(n+1), (11)

where d̃vin = dvin + 1; dvin refers to the predefined degree of the vicious node vin
(i.e., how many connections it will build with existing nodes). In this sense, the
Laplacian matrix of graph G′ is calculated by

Â′ = D̃′
− 1

2 (A′ + I)D̃′
− 1

2 ≈
[
Â êin
ê>in d̃

−1
vin

]
∈ R(n+1)×(n+1),

where êin = (d̃vin)−
1
2 D̃−

1
2 ein. As a result, the probability of classification Z′ after

perturbation is derived as

Z′ = Â′
2
X ′W ≈

[
Â2X + êinê>inX + Âêinxin + d̃−1

vin êinxin
ê>inÂX + d̃−1

vin ê>inX + ê>inêinxin + d̃−2
vinxin

]
W . (12)

Specifically, the probability of classification for the target node v0 turns to

Z′v0j ≈ [Â2XW]v0j + [êin]v0 ê
>
inX[W]·j +

(
ê>in[Â]·v0 + d̃−1

vin
[êin]v0

)
xin [W]·j (13)

for j = 1, 2, · · · , |C|, where [·]i· and [·]·j denote the i-th row and j-th column of a
matrix, respectively. [·]ij refers to the i-th row and j-th component in a matrix.

Based on the approximation above, we observe that Z′v0j turns out to be linear

with feature vector xin ∈ {0, 1}d and edge information ein ∈ {0, 1}n. Since the
loss function Latk formulated in Eq. (6) is also linear with Z′v0j , we can obtain the
optimal closed-form solutions of xin and ein which minimize loss function Latk
by their gradients.

An approximate closed-form solution of xin. From Eq. (13), the output Z′

is linear with respect to the variable xin. Therefore, a closed-form solution of xin
w.r.t. the optimization problem in Eq. (4) can be obtained as follows

x∗in = −0.5sign

(
∂Latk
∂xin

)
+ 0.5, (14)

where sign(·) is the element-wise function that takes the sign of a value. In other
words, the features are set to 1 if the corresponding gradients in ∂Latk

∂xin
are negative

and 0 otherwise. The gradients of loss function Latk w.r.t. the variable xin can be
calculated as follows

∂Latk
∂xin

≈ d̃−1
vin

(
e>inD̃

− 1
2 [Â]·v0 + d̃−1

vin d̃
− 1

2
v0 [ein]v0

) (
[W]·cv0 − [W]·cnew

)
, (15)

where d̃−1
vin(e>inD̃

− 1
2 [Â]·v0 + d̃−1

vin d̃
− 1

2
v0 [ein]v0) is always positive, and thus can be

ignored since we only care about the signs of the gradients.

10 Jihong Wang et al.

Algorithm 1 The proposed AFGSM algorithm.

Require: Graph G = (A,X), the target node v0, the number of vicious nodes nin, the budget
of edge perturbations ∆e;

1: Train the surrogate model on the original graph G and get its weight matrix W ;

2: Randomly assign the degrees of vicious nodes d
(0)
vin , d

(1)
vin , · · · , d

(nin−1)
vin to satisfy the budget

constraint
∑nin−1
k=0 d

(k)
vin = ∆e;

3: G′(0) ← G,A(0) ← A,X(0) ← X;
4: Calculate x∗in according to Eq. (14);
5: for t = 0, · · · , nin − 1 do

6: Initialize e
(t)
in = 0,x

(t)
in = 0;

7: x
(t)
in ← Sample ‖X‖0/n features from x∗in under the constraint condition Φ(G);

8: e(t) ← Calculate e∗in according to Eq. (16);

9: G′(t+1) =
(
A(t+1),X(t+1)

)
← Update A(t) and X(t) according to Eq. (10);

10: end for
11: return G′(nin) =

(
A(nin),X(nin)

)
;

Algorithm 2 The proposed AFGSM-ada algorotihm.

Require: Graph G = (A,X), the target node v0, the number of vicious nodes nin, the budget
of edge perturbations ∆e;

1: Randomly assign the degrees of vicious nodes d
(0)
vin , d

(1)
vin , · · · , d

(nin−1)
vin to satisfy the budget

constraint
∑nin−1
k=0 d

(k)
vin = ∆e;

2: G′(0) ← G,A(0) ← A,X(0) ← X;
3: for t = 0, · · · , nin − 1 do
4: Train the surrogate model on the perturbed graph G′(t) and get its weight matrix W ;
5: Calculate x∗in according to Eq. (14);

6: Initialize e
(t)
in = 0,x

(t)
in = 0;

7: x
(t)
in ← Sample ‖X‖0/n features from x∗in under the constraint condition Φ(G);

8: e(t) ← Calculate e∗in according to Eq. (16);

9: G′(t+1) =
(
A(t+1),X(t+1)

)
← Update A(t) and X(t) according to Eq. (10);

10: end for
11: return G′(nin) = (A(nin), X(nin));

An approximate closed-form solution of ein. Without loss of generality, we
assume that the vicious node vin connects to a fixed number of nodes in the
original graph G, and therefore dvin = ‖ein‖0 holds. Since the output Z′ is linear
w.r.t. the variable ein, we achieve a closed-form solution of ein with constraint in
Eq. (7), i.e.,

e∗in = −0.5sign

(
∂Latk
∂ein

− gdin1

)
+ 0.5, (16)

where gdin is the din-th smallest element of ∂Latk

∂ein
. In other words, the i-th com-

ponent of e∗in is set to 1 if the corresponding gradients are less than the din-th
smallest gradient in ∂Latk

∂ein
. The gradients of loss function Latk w.r.t. the variable

ein is derived as follows

∂Latk
∂ein

≈
(
d̃vin d̃v0

)− 1
2

(
d̃
− 1

2
vin [ein]v0 D̃

− 1
2X + D̃−1[Ã]·v0xin

)(
[W]·cv0 − [W]·cnew

)
,

(17)

where (d̃vin d̃v0)−
1
2 is always positive, and thus can be ignored.

We summarize the procedure of the proposed AFGSM in Algorithm 1. Note
that the approximate closed-form solution of feature vector x∗in is calculated for

Scalable Attack on Graph Data by Injecting Vicious Nodes 11

Table 1: The detailed statistics of the used datasets. NLCC and ELCC are the
numbers of nodes and edges in the largest connected component, d is the dimension
of features and C is the number of classes.

Dataset NLCC ELCC d C frequency of classes

Citeseer 2,110 3,668 3,703 6 532, 463, 388, 308, 304, 115
Cora 2,485 5,069 1,433 7 726, 406, 379, 344, 285, 214, 131
DBLP 16,766 44,422 2,476 4 6935, 6532, 1777, 1522
Pubmed 19,717 44,324 500 3 7875, 7739, 4103
Reddit 149,177 5,215,380 602 41 28163, 15163, 13963, 13065, 12742, ... 2

once as it only depends on the weights W . However, the approximate closed-form
solution of edge information e∗in relies on variables A and X and thus should be
updated as the vicious nodes are injected one by one in a sequential manner.

Note that Algorithm 1 treats the model weight matrix W as static. Alterna-
tively, we also develop an adaptive version of AFGSM, namely AFGSM-ada by re-
training the surrogate model once we inject a vicious node using the AFGSM. We
summarize the procedure of AFGSM-ada in Alghritm 2. Similarly, we also develop
the adaptive version of Nettack and FGSM correspondingly, namely Nettack-ada
and FGSM-ada. As for Meta-attack, it updates the model weights dynamically, so
there is no need to develop its variant.

Complexity of AFGSM. The time complexity of the proposed AFGSM algo-
rithm is O (nin (n+ fd)). This is because that the gradients in Eq. (15) and Eq.
(17) is concise enough such that they can be calculated by several vectors and no
matrix multiplication is involved. And for each vicious node, the computation of
features needs O (fd) just like analyzed above.

4.3 Comparison of Complexity

Comparing the time complexity of different methods, we observe that

AFGSM:O (nin (n+ fd)) < Nettack:O (∆e · ninj · (n ·Neiv0 + fd)) <

FGSM:O
(
∆en

2 + ninfd
)
< Meta-attack:O

(
∆eTn

2 + ninfd
)

As a result, the proposed AFGSM algorithm is the most efficient one in terms
of time complexity and then followed by Nettack, FGSM and Meta-attack. Exper-
imental results also substantiate the conclusion in the next section.

5 Experiments

In this section, we evaluate the effectiveness and efficiency of our attack in the new
attack scenario. We first provide the experimental setup (Section 5.1). Then we
show the results of adapting existing methods to the new attack scenario following
two different strategies: one-time injection and sequential injection (Section 5.2).
Next, we explore the performance of our methods on large graphs and analyze the
time cost (Section 5.3). Finally, we consider two stricter scenarios where attackers

2 The frequency of classes are: 28163, 15163, 13963, 13065, 12742, 12041, 11149, 10239, 7915,
5863, 5087, 5048, 4937, 4898, 4849, 4668, 4547, 4212, 4188, 4184, 4161, 4040, 3930, 3588, 3538,
3422, 3279, 2970, 2960, 2792, 2687, 2630, 2304, 2232, 2115, 1696, 1645, 1588, 1554, 991, 328

12 Jihong Wang et al.

Table 2: Accuracy of victim learning models against different attacks with one-time
injection strategy w.r.t. different number of initial connections between vicious
nodes and target node. Clean denotes the model without any attacks. Random
denotes the model in which the vicious nodes connect to existing nodes randomly
and their features are also sampled randomly according to those of existing nodes.

Method
Citeseer Cora

GCN GAT Deepwalk GCN GAT Deepwalk

Clean 0.892± 0.010 0.804± 0.008 0.736± 0.054 0.928± 0.016 0.788± 0.027 0.840± 0.028
Random 0.772± 0.020 0.708± 0.016 0.648± 0.041 0.868± 0.029 0.700± 0.022 0.728± 0.063
Nettack-0% 0.480± 0.025 0.460± 0.022 0.652± 0.041 0.424± 0.008 0.516± 0.023 0.744± 0.029
Nettack-50% 0.336± 0.029 0.304± 0.015 0.592± 0.081 0.352± 0.016 0.428± 0.016 0.656± 0.064
Nettack-100% 0.248± 0.010 0.244± 0.015 0.604± 0.102 0.324± 0.023 0.356± 0.022 0.651± 0.032
Meta-attack-0% 0.148± 0.020 0.156± 0.015 0.460± 0.046 0.204± 0.015 0.272± 0.020 0.484± 0.061
Meta-attack-50% 0.112± 0.027 0.140± 0.028 0.412± 0.059 0.224± 0.039 0.232± 0.010 0.520± 0.073
Meta-attack-100% 0.104± 0.008 0.164± 0.015 0.352± 0.081 0.188± 0.020 0.196± 0.023 0.452± 0.047
FGSM-0% 0.208± 0.020 0.300± 0.033 0.524± 0.041 0.336± 0.015 0.436± 0.057 0.596± 0.085
FGSM-50% 0.200± 0.013 0.216± 0.023 0.504± 0.034 0.260± 0.013 0.304± 0.015 0.536± 0.048
FGSM-100% 0.216± 0.023 0.216± 0.150 0.504± 0.066 0.292± 0.010 0.252± 0.016 0.488± 0.032

have limited capability and show the performance of the AFGSM method in these
restricted cases (Section 5.4).

5.1 Experimental Setup

We conduct our experiments on five well-known public datasets: Citeseer (Sen
et al., 2008), Cora (McCallum et al., 2000), Pubmed (Sen et al., 2008), DBLP (Zhang
et al., 2019) and Reddit (Hamilton et al., 2017). The first four are citation networks
where nodes are documents, edges are citation links and features are selected as
the words in the document after filtering out the stop words. And the last one is
a post-to-post graph where nodes are posts and edges denote these posts are from
the same user. Due to the high cost of training models (e.g ., GCN and Deepwalk)
on the original Reddit graph(around 230k nodes), we randomly sample a subgraph
with nearly 150K nodes. The detailed statistics of these datasets are shown in Ta-
ble 1. Following the same attack setting in (Zügner et al., 2018), we only consider
the largest connected component for convenience.

In the experiments, we split the datasets into training set (10%), validation set
(10%), and test set (80%). Note that in practice, attackers rarely can manipulate
the training data. Therefore, we only inject vicious nodes to the test set (without
labels). We first train a surrogate model on the training set, and then among all
nodes that are correctly classified, we select (i) the 10 nodes with the highest
margin of classification, (ii) the 10 nodes with the lowest margin of classification,
(iii) 30 nodes selected randomly as our target nodes to be attacked. Since we focus
on transductive classification in this paper, the model is then retrained on the
mixture of clean training and perturbed test data. For each target node, we repeat
the retraining process 5 times with different random seeds to stabilize the results
and the average performance is reported.

5.2 Adapting Existing Methods to the New Scenario

As mentioned in the previous section, the node injection process can be performed
in two ways: inject nodes all at once (one-time injection) and inject nodes se-
quentially (sequential injection). In this section, we compare the performance of
different attacks with these two different node injection strategies.

Scalable Attack on Graph Data by Injecting Vicious Nodes 13

One-time injection. The one-time injection can be roughly treated as the spe-
cial case of the attack scenario considered in (Zügner et al., 2018) as nodes are
added in advance and perturbations are generated using existing attacks3. One-
time injection proceeds by first connecting a fixed number of vicious nodes to the
target node directly and then treat the newly added nodes as existing nodes and
apply the attacks proposed in (Zügner et al., 2018; Zügner and Günnemann, 2019).
We choose to connect the vicious nodes directly because connections to the target
node usually lead to better attack performance (Zügner et al., 2018). However, we
do not know the optimal number of vicious nodes that should be connected and
testing all combinations of vicious nodes is not practical. Therefore, we randomly
connect 0%, 50% and 100% of the vicious nodes to the target node. Although this
simple approach cannot cover all the cases, as shown below, connecting all vicious
nodes (to the target node) gives the best attack performance.

The results of different attacks under different number of initial connections
(to the target node) are shown in Table 2. Note that we enforce the same per-
turbation budget (10 nodes and 20 edges) for all methods in Table 2 for a fair
comparison. First, we observe that all attacks get the best performance when we
connect 100% of vicious nodes to the target node, which is also consistent with
our intuition and the results in (Zügner et al., 2018) that (more) connections with
target node gives better attack results. Second, we find that Meta-attack performs
the best in the one-time injection. The reason is that Meta-attack generates the
perturbation on edges and features utilizing the second-order gradients which can
provide more information by considering the model weights dynamically. However,
the complexity of Meta-attack is often very high because of the higher-order gra-
dients and hence, cannot scale to large graphs such as DBLP and Pumbed used in
the paper. Third, interestingly, we observe that FGSM performs better than Net-
tack in the new scenario which is quite different from the results in (Zügner et al.,
2018). We hypothesize that it may be due to the limited search space of Nettack in
the new scenario. More specifically, the initial values of E, O are extremely sparse
(i.e., only a small number of connected edges) compared to the number of existing
nodes and edges in the graph, even if we connect 100% of vicious nodes to the
target node initially. Therefore, the search space for Nettack is severely limited.

Sequential injection. Next, we explore the performance of different attacks us-
ing the sequential injection strategy. Following the same setting in the one-time
injection, we still connect the vicious nodes to the target node, but in a sequential
manner. The results are shown in Table 3.

We find that, in the sequential addition scenario, FGSM performs better while
Meta-attack performs worse compared to their counterpart in the one-time injec-
tion scenario. For example, on the Cora dataset, FGSM-one-time only lowers the
GCN accuracy from 92.8% to 29.2% while FGSM-sequential lowers the accuracy to
25.6%. Differently, still on the Cora dataset and with the GCN model, Meta-attack-
one-time can lower the accuracy from 92.8% to 18.8% while Meta-attack-sequential
can only lower it to 24.8%. As for Nettack, there is no significant difference in the
performance by following different node injection strategies. Nettack-one-time can

3 There is a difference in the constraint for feature perturbations. As explained in Section
3.2, we do not have specific feature constraints (however, we do not allow the occurrence of
pairs of features that do not exist in the original nodes) for the vicious nodes while in the
original scenario, the number of feature perturbations cannot exceed a certain threshold.

14 Jihong Wang et al.

Table 3: Accuracy of victim learning models against different attacks with two
different strategies. Attacks with a postfix of one-time are attacks with one-time
node injection strategy. Attacks with a postfix sequential are attacks with sequen-
tial node injection strategy.

Method
Citeseer Cora

GCN GAT Deepwalk GCN GAT Deepwalk

Clean 0.892± 0.010 0.804± 0.008 0.736± 0.054 0.928± 0.016 0.788± 0.027 0.840± 0.028
Nettack-one-time 0.248± 0.010 0.244± 0.015 0.604± 0.102 0.324± 0.023 0.356± 0.022 0.651± 0.032
Nettack-sequential 0.252± 0.024 0.228± 0.010 0.644± 0.066 0.316± 0.015 0.356± 0.020 0.784± 0.065
Meta-attack-one-time 0.104± 0.008 0.164± 0.015 0.352± 0.081 0.188± 0.020 0.196± 0.023 0.452± 0.047
Meta-attack-sequential 0.120± 0.012 0.228± 0.016 0.392± 0.071 0.248± 0.024 0.240± 0.013 0.420± 0.046
FGSM-one-time 0.216± 0.023 0.216± 0.150 0.504± 0.066 0.292± 0.010 0.252± 0.016 0.488± 0.032
FGSM-sequential 0.156± 0.020 0.144± 0.015 0.408± 0.061 0.256± 0.008 0.316± 0.008 0.456± 0.023

lower the accuracy on Cora to 32.4% while Nettack-sequential lowers it to 31.6%.
For GCN on the Citeseer, Nettack-one-time lowers the accuracy to 24.8% while
Nettack-sequential lowers it to 25.2%, which has a negligible difference. We hy-
pothesize that different performance of Meta-attack and FGSM under the two
injection strategies is related to the search space identified by the node injection
strategies and the nature of the attacks.

The main difference between the two node injection strategies is the degree
of freedom in their valid search space. For the sequential injection, attacks are
limited to manipulate a limited number of edges for each vicious node as we have
a constraint on the degree of each vicious node. Therefore, for attacks that utilize
limited information (e.g., first-order gradient for FGSM), this limitation helps to
prevent attacks from manipulating too many sub-optimal edges for a single node
and hence avoids getting stuck into bad solutions. In contrast, for the one-time
injection, attacks are only constrained by the total number of vicious edges and
thus have higher freedom when perturbing edges. For attacks with limited infor-
mation, a higher degree of freedom can easily lead to suboptimal solutions while
with more information (e.g., second-order derivative for Meta-attack), a higher
degree of freedom leads to better attack results. For Nettack, it still suffers from
the limited search space with sequential injection (similar to the analysis in one-
time injection) and hence, doesn’t show significant difference under different node
injection strategies. Moreover, we observe that FGSM with sequential injection
performs relatively closely to the costly Meta-attack with the one-time injection
and the gap can be further reduced by adaptively retraining the model during
attack process and more details can be found in Table 4. However, in comparison
to the complicated second order in Meta-attack, the first-order gradient in FGSM
can be easily approximated and hence more efficient AFGSM is proposed in this
paper.

For experiments presented in the rest part of the paper, when choosing the
baseline methods, for each method, we select the best one under the two node in-
jection strategies. Specifically, we select FGSM-sequential, Meta-attack-one-time,
and Nettack-one-time. For convenience, we still denote them as FGSM, Meta-
attack and Nettack, respectively.

5.3 Attack by AFGSM and its adaptive variant.

We conduct experiments on small and large-scale graphs to show the effectiveness
and efficiency of our attack. For each attack in this section, we additionally consider

Scalable Attack on Graph Data by Injecting Vicious Nodes 15

Table 4: Accuracy of victim learning models against different attacks and adaptive
variants. Attacks with a postfix of ada are adaptive attacks with victim learning
models retrained during the attack process.

Method
Citeseer Cora

GCN GAT Deepwalk GCN GAT Deepwalk

Clean 0.892± 0.010 0.804± 0.008 0.736± 0.054 0.928± 0.016 0.788± 0.027 0.840± 0.028
Random 0.772± 0.020 0.708± 0.016 0.648± 0.041 0.868± 0.029 0.700± 0.022 0.728± 0.063
Nettack 0.248± 0.010 0.244± 0.015 0.604± 0.102 0.324± 0.023 0.356± 0.022 0.651± 0.032
Nettack-ada 0.256± 0.008 0.224± 0.023 0.556± 0.069 0.304± 0.023 0.304± 0.019 0.656± 0.064
Meta-attack 0.104± 0.008 0.164± 0.015 0.352± 0.081 0.188± 0.020 0.196± 0.023 0.452± 0.047
FGSM 0.156± 0.020 0.144± 0.015 0.408± 0.061 0.256± 0.008 0.316± 0.008 0.456± 0.023
FGSM-ada 0.112± 0.010 0.136± 0.015 0.444± 0.057 0.208± 0.020 0.364± 0.015 0.472± 0.056

AFGSM 0.224± 0.023 0.192± 0.016 0.532± 0.060 0.304± 0.015 0.404± 0.041 0.580± 0.051
AFGSM-ada 0.104± 0.027 0.128± 0.020 0.484± 0.055 0.212± 0.008 0.388± 0.036 0.588± 0.056

an adaptive variant of the attack, which trains the model dynamically during the
attack process. Therefore, both AFGSM and FGSM have two attack forms: one
with fixed model during the attack and one with dynamically retrained model
during the attack. Meta-attack does not have its adaptive variant because the
original attack already retrains the model during the attack. We denote the attack
with adaptive training by adding a postfix “ada”.

On small graphs. First, we conduct experiments on small graphs (e.g ., Citeseer
and Cora). The results are shown in Table 4. We find that adaptively training
models during the attack process helps FGSM and AFGSM achieve better per-
formance. For example, AFGSM for GCN on the Citeseer dataset only lowers the
accuracy from 89.2% to 22.4% while AFGSM-ada lowers it to 10.4%. Although
Meta-attack still performs the best among all methods, FGSM-ada and AFGSM-
ada get a pretty close performance to Meta-attack. AFGSM performs similar to
FGSM because our approximation technique preserves the attack effectiveness
while improves the efficiency significantly. To show that the good performance of
AFGSM and AFGSM-ada does not depend on a specific set of hyperparameters,
we also compare all the attacks using different constraint budgets. The results are
shown in Figure 2. We can easily find that under different sets of attack hyper-
parameters, AFGSM is still very effective and AFGSM-ada performs close to the
best performing Meta-attack. We emphasize that AFGSM achieves the compara-
bly good performance with much lower computational complexity.

On large graphs. To show the scalability of our algorithm, we first conduct
experiments on large DBLP and Pubmed datasets (still with 10 vicious nodes and
20 edges). For graphs with 10K+ nodes, we can still obtain results for Nettack,
FGSM, and AFGSM and their adaptive variants. Meta-attack cannot scale to
these graphs and hence, we do not include the results of Meta-attack. Details of
the experiments can be found in Table 5. We observe similar results as of small
graphs: AFGSM performs closely to FGSM, and their adaptive variants provide
better performance. One exception happens for Deepwalk on DBLP, which might
be because of the poor transferability of the adaptive attack on GCN to Deepwalk
(attacks on GAT and Deepwalk are all transferred from the attacks on GCN).
Among all methods, FGSM-ada performs the best and AFGSM-ada is close to
FGSM-ada. However, due to high complexity, FGSM or FGSM-ada cannot scale

16 Jihong Wang et al.

Fig. 2: Accuracy on GCN with different numbers of vicious nodes and edges. (a)
and (c) denote the performance of GCN with different numbers of vicious edges and
10 nodes on Citeseer and Cora, respectively. (b) and (d) denote the performance
of GCN with different numbers of vicious nodes and 10 nodes on Citeseer and
Cora, respectively.

to graphs with more than 30K nodes (tested on our machine4 using sampled
subgraphs from Reddit).

We further test the performance of our attack on larger graphs, where none of
the baseline attacks can scale. We construct the large graph by subsampling from
the Reddit dataset with 150K nodes. Note that we only perturb edges because the
features of Reddit are preprocessed and it is impractical to directly manipulate
the preprocessed features. Considering that the results of target nodes with higher
degrees are harder to be mislead (Zügner et al., 2018), we attack the target nodes
with dv0/2 vicious nodes and dv0 edges. The results are shown in Table 6. Our
AFGSM can still significantly reduce the accuracy on the GCN model. The trans-
ferability of the attack on GCN to Deepwalk is relatively low and we leave it as
future work to improve the transferability of AFGSM on extremely large graphs.
We also note that, when evaluating our attack on extremely large graphs, the main
bottleneck will be in the model training instead of the attack process. Therefore,
as long as there are efficient methods to train models on extremely large graphs,
our attack can always scale and (highly probably) work.

4 We record the actual run time on the same machine with configuration: CPU (i9-7900X,
3.30GHz), 128GB RAM.

Scalable Attack on Graph Data by Injecting Vicious Nodes 17

Table 5: Accuracy of victim learning models against different attacks on large
graphs.

Method
DBLP Pubmed

GCN GAT Deepwalk GCN GAT Deepwalk

Clean 0.880± 0.025 0.808± 0.010 0.856± 0.023 0.904± 0.022 0.848± 0.020 0.832± 0.020
Random 0.712± 0.020 0.724± 0.015 0.832± 0.047 0.848± 0.016 0.796± 0.023 0.792± 0.032
Nettack 0.268± 0.016 0.420± 0.021 0.712± 0.035 0.152± 0.027 0.252± 0.010 0.796± 0.046
Nettack-ada 0.272± 0.016 0.436± 0.019 0.808± 0.016 0.156± 0.023 0.240± 0.000 0.824± 0.030
FGSM 0.260± 0.000 0.644± 0.015 0.652± 0.032 0.120± 0.013 0.220± 0.000 0.516± 0.037
FGSM-ada 0.240± 0.000 0.592± 0.016 0.664± 0.034 0.116± 0.015 0.220± 0.000 0.504± 0.029
AFGSM 0.252± 0.016 0.528± 0.016 0.604± 0.034 0.156± 0.008 0.224± 0.008 0.728± 0.030
AFGSM-ada 0.216± 0.013 0.460± 0.013 0.656± 0.028 0.136± 0.020 0.224± 0.023 0.648± 0.030

Table 6: Accuracy on Reddit

Method
Reddit

GCN Deepwalk

Clean 0.860± 0.010 0.96± 0.000
Random 0.860± 0.042 0.944± 0.008
AFGSM 0.572± 0.027 0.892± 0.020

Fig. 3: Run time comparison on the GCN
model.

Time cost analysis. To compare the computational cost of different methods,
we conduct experiments (on the same machine mentioned above) on subgraphs of
DBLP with different sizes (i.e., varying from 1K to 15K nodes with a step size
of 1K nodes). The results of time cost are shown in Figure 3. It is obvious that
AFGSM is much more efficient than other baseline attacks, and the order of time
cost aligns well with the complexity analysis in Section 4.3 (i.e., AFGSM is the
most efficient and followed by Nettack, FGSM, and Meta-attack). Furthermore,
the execution time of AFGSM remains relatively stable when the size of the graph
grows, while the run time of other attacks grow much faster when the graph size
increases, especially for Meta-attack (time cost is 3,000 times higher than AFGSM
and cannot scale to the DBLP dataset with more than 13K nodes).

5.4 Edge-only perturbation and Indirect perturbation

In this section, we explore two additional restricted perturbations: edges-only per-
turbation and indirect perturbation to verify the robustness of our attack algorithm
in more practical and restricted settings.

Edge-only perturbation. From the practical point of view, manipulation of fea-
tures can be hard since attackers may not have the knowledge of how features
in the graph are selected and preprocessed. Therefore, we study the performance
AFGSM when attackers are only allowed to change edges of vicious nodes. To do
so, we inject vicious nodes with random features sampled from the original graph
instead of some well-designed features to get rid of the impact of features and only
focus on the edges. We denote our attack in the restricted setting as AFGSM-edges

18 Jihong Wang et al.

Fig. 4: Accuracy of victim learning model against edge-only attacks.

Fig. 5: Accuracy of victim learning model against indirect attacks.

since we only optimize edges during the attack process. The results are shown in
Figure 4. We observe that AFGSM in the restricted setting still succeeds. We fur-
ther verify whether features and edges are equally important in the new attack
scenario. By comparing the performance of AFGSM and AFGSM-edges as well as
AFGSM-ada and AFGSM-ada-edges, we observe that perturbing only the edges
limits the attack performance significantly. This is in contrast to the findings in
the attack scenario of (Zügner et al., 2018), where the authors observe that manip-

Scalable Attack on Graph Data by Injecting Vicious Nodes 19

ulating features are not very important for successful attacks. Such contrast exists
because, in the scenario of (Zügner et al., 2018), the attacker can only perturb
features of the original nodes slightly (to remain unnoticeable) while in the new
attack scenario, original features of vicious nodes can be rather arbitrary (but per-
turbations still follow the constraint in Eq. (7)). Hence, the new attack scenario
grants the attacker more freedom in designing the perturbed features.

Indirect perturbation. In some cases, attackers may not be able to build connec-
tions with the target node directly. For example, some Facebook users can change
their privacy settings and do not allow friend requests from unknown users who
do share any mutual friends. Therefore, we evaluate the performance of our attack
when attackers are not allowed to build direct connections to the target node. We
denote the variant of our attack as AFGSM-in in the restricted setting. Results are
shown in Figure 5. We observe that even in the restricted setting, the attack still
succeeds in fooling the victim learning model. Unsurprisingly, we also observe that
attacks in the current setting are much less successful than the attack in the case
where vicious nodes can be directly connected to the target node. This observation
also highlights the importance of building direct connections to the target node.

6 Conclusion

In this paper, we consider a practical attack scenario against GCN models, where
attackers are only allowed to inject vicious nodes to the graph. We then propose
a new attack algorithm named AFGSM to generate reliable adversarial perturba-
tions efficiently. Through extensive experimental evaluations, we verify that GCN
models are still vulnerable in the new attack setting and further show that our pro-
posed AFGSM method outperforms the baselines significantly in terms of attack
effectiveness and efficiency.

References

Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection and description: a survey.
Data mining and knowledge discovery 29(3):626–688

Athalye A, Carlini N, Wagner D (2018) Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. arXiv preprint arXiv:180200420

Bhagat S, Cormode G, Muthukrishnan S (2011) Node classification in social networks. In:
Social network data analytics, Springer, pp 115–148

Bojcheski A, Günnemann S (2018) Adversarial attacks on node embeddings. arXiv preprint
arXiv:180901093

Bojchevski A, Günnemann S (2018) Adversarial attacks on node embeddings via graph poi-
soning. arXiv preprint arXiv:180901093

Bolton RJ, Hand DJ, et al. (2001) Unsupervised profiling methods for fraud detection. Credit
scoring and credit control VII pp 235–255

Cai H, Zheng VW, Chang KCC (2018) A comprehensive survey of graph embedding: Prob-
lems, techniques, and applications. IEEE Transactions on Knowledge and Data Engineering
30(9):1616–1637

Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: 2017
IEEE Symposium on Security and Privacy (SP), IEEE, pp 39–57

Chaoji V, Ranu S, Rastogi R, Bhatt R (2012) Recommendations to boost content spread in
social networks

Chen J, Ma T, Xiao C (2018) Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:180110247

Chen Y, Nadji Y, Kountouras A, Monrose F, Vasiloglou N (2017) Practical attacks against
graph-based clustering

Csji BC, Jungers RM, Blondel VD (2014) Pagerank optimization by edge selection. Discrete
Applied Mathematics 169(6):73–87

20 Jihong Wang et al.

Dai H, Li H, Tian T, Huang X, Wang L, Zhu J, Song L (2018) Adversarial attack on graph
structured data. arXiv preprint arXiv:180602371

Dong Y, Liao F, Pang T, Su H, Zhu J, Hu X, Li J (2018) Boosting adversarial attacks with
momentum. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp 9185–9193

Goodfellow IJ, Shlens J, Szegedy C (2014) Explaining and harnessing adversarial examples.
arXiv preprint arXiv:14126572

Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In:
Advances in neural information processing systems, pp 1024–1034

Israeli E, Wood RK (2002) Shortest-path network interdiction. Networks: An International
Journal 40(2):97–111

Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:160902907

Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2017) Towards deep learning models
resistant to adversarial attacks. InInterna-tional Conference on Learning Representations,
2018

McCallum AK, Nigam K, Rennie J, Seymore K (2000) Automating the construction of internet
portals with machine learning. Information Retrieval 3(2):127–163

Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM (2017) Geometric deep
learning on graphs and manifolds using mixture model cnns. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp 5115–5124

Perozzi B, Akoglu L, Iglesias Sánchez P, Müller E (2014a) Focused clustering and outlier de-
tection in large attributed graphs. In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp 1346–1355

Perozzi B, Al-Rfou R, Skiena S (2014b) Deepwalk: Online learning of social representations.
In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, ACM, pp 701–710

Pham T, Tran T, Phung D, Venkatesh S (2017) Column networks for collective classification.
In: Thirty-First AAAI Conference on Artificial Intelligence

Phillips CA (1993) The network inhibition problem. In: Acm Symposium on Theory of Com-
puting

Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classifica-
tion in network data. AI magazine 29(3):93–93

Sun Y, Wang S, Tang X, Hsieh TY, Honavar V (2019) Node injection attacks on graphs via
reinforcement learning. arXiv preprint arXiv:190906543

Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2013) In-
triguing properties of neural networks. arXiv preprint arXiv:13126199

Tang J, Aggarwal C, Liu H (2016) Node classification in signed social networks. In: Proceedings
of the 2016 SIAM international conference on data mining, SIAM, pp 54–62

Tian F, Gao B, Cui Q, Chen E, Liu TY (2014) Learning deep representations for graph
clustering. In: Twenty-Eighth AAAI Conference on Artificial Intelligence

Watkins CJ, Dayan P (1992) Q-learning. Machine learning 8(3-4):279–292
Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2019) A comprehensive survey on graph

neural networks. arXiv preprint arXiv:190100596
Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J (2018) Graph convolutional

neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 974–983

Zhang D, Yin J, Zhu X, Zhang C (2019) Attributed network embedding via subspace discovery.
arXiv preprint arXiv:190104095

Zhao M, An B, Yu Y, Liu S, Pan SJ (2018) Data poisoning attacks on multi-task relationship
learning. In: Thirty-Second AAAI Conference on Artificial Intelligence

Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2018) Graph neural networks:
A review of methods and applications. arXiv preprint arXiv:181208434

Zügner D, Günnemann S (2019) Adversarial attacks on graph neural networks via meta learn-
ing. arXiv preprint arXiv:190208412

Zügner D, Akbarnejad A, Günnemann S (2018) Adversarial attacks on neural networks for
graph data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, ACM, pp 2847–2856

	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The Proposed Framework
	5 Experiments
	6 Conclusion

