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Abstract
Science teams for rover-based planetary exploration missions like the Mars Science
Laboratory Curiosity rover have limited time for analyzing new data before mak-
ing decisions about follow-up observations. There is a need for systems that can
rapidly and intelligently extract information from planetary instrument datasets and
focus attention on the most promising or novel observations. Several novelty detection
methods have been explored in prior work for three-channel color images and non-
image datasets, but few have considered multispectral or hyperspectral image datasets
for the purpose of scientific discovery. We compared the performance of four nov-
elty detection methods—Reed Xiaoli (RX) detectors, principal component analysis
(PCA), autoencoders, and generative adversarial networks (GANs)—and the ability
of each method to provide explanatory visualizations to help scientists understand and
trust predictions made by the system. We show that pixel-wise RX and autoencoders
trained with structural similarity (SSIM) loss can detect morphological novelties that
are not detected by PCA, GANs, and mean squared error autoencoders, but that the
latter methods are better suited for detecting spectral novelties—i.e., the best method
for a given setting depends on the type of novelties that are sought. Additionally, we
find that autoencoders provide the most useful explanatory visualizations for enabling
users to understand and trust model detections, and that existing GAN approaches to
novelty detection may be limited in this respect.
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1 Introduction

The goal of novelty detection approaches is to identify patterns in data that have not
been previously observed (Markou and Singh 2003a, b; Chandola et al. 2009; Pimentel
et al. 2014). The exact definition of “novelty” varies depending on the application
domain and the type of data, but in all cases novel examples differ in some way from
“normal” data (Pimentel et al. 2014) and are of particular interest to the user (Chandola
et al. 2009). Inmany real-world applications, novelty detection can provide significant,
actionable information, such as a novel feature in a medical image may indicate the
presence of a disease or tumor (Schlegl et al. 2017), or novelty in an X-ray scan at
airport security may signal the presence of a weapon (Akcay et al. 2018).

One application domain that may greatly benefit from novelty detection techniques
is rover-based planetary exploration. Rover missions like theMars Science Laboratory
(MSL) Curiosity rover are operated by mission team members through a system of
“tactical planning”: the rover is commanded to make observations on the surface of
Mars, the rover sends the science data from those observations back to Earth, the
science team analyzes the latest data and decides what observations to make on the
next sol1 based on that data, and the process repeats. Since the science team can
only communicate with the rover when there is a clear line of sight between the
rover or one of three Mars orbiters2 and the Deep Space Network3, there are only
a few opportunities each day for downlinking new data and uplinking the new plan.
Additionally, successive rover drives makes follow-up observation of late-identified
science targets increasinglymore costly tomission resources to pursue (since the rover
would need to reverse course to re-visit the target). These factors require scientists to
review the latest science data and identify targets of interest for follow-up analysis in
a relatively short amount of time. MSL typically has less than 12 hours for science
planning, and the upcoming NASA Mars 2020 rover mission may have as few as
five hours (Wilson et al. 2017). There is a need for systems that can rapidly and
intelligently extract information of interest from science instrument data to focus on
potential discoveries and avoid missed science opportunities. These systems must also
provide explanatory visualizations that allow scientists to trust and understand how a
system came to its conclusion, a need that has not been explored extensively in prior
work. We focused our study on the Mastcam imaging system onboard the MSL rover,
which acquires multispectral images in the visible and near-infrared regions of the
electromagnetic spectrum (Bell et al. 2017; Malin et al. 2017). A similar camera to
Mastcam was onboard the Mars Exploration Rovers Spirit and Opportunity (Pancam,
Bell III et al. 2008) and will be onboard the Mars 2020 rover (Mastcam-Z, Bell III
et al. 2016). Thus, the ability to detect novel geology inMastcammultispectral images

1 The “sol” is the number of Martian days elapsed since MSL began operations on Mars.
2 Mars Odyssey, the Mars Reconnaissance Orbiter, and the Trace Gas Orbiter (ExoMars).
3 The Deep Space Network consists of three giant radio antennas in Goldstone (California), Madrid, and
Canberra used for deep space communication.
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could help increase the scientific return frompast, present, and future rover-basedMars
exploration missions. This work aims to enable planning and data analysis teams to
spend their limited available time on the most promising, or novel, observations.

Since the goal of novelty detection is to identify patterns that have not frequently
or ever been observed, in many application domains it is difficult to obtain labeled
novel examples. Labeled examples from the typical class may be plentiful but novel
labeled examples are more scarce. Thus, a common novelty detection approach is to
construct a model based on the typical (non-novel) training examples and identify
novel examples as those that are poorly explained by that model compared to typical
examples (Pimentel et al. 2014). In this work, we compared the performance of mul-
tiple novelty detection methods based on principal component analysis, Reed-Xiaoli
(RX) detectors, autoencoder neural networks, and generative adversarial networks for
prioritizing images with novel geology in Mastcam multispectral images of the Mar-
tian surface. We evaluated the performance of these methods using multiple metrics
chosen to represent their performance in operational use, including interpretability
of detections (via reconstruction errors/residuals) which is an important factor for
ensuring operational uptake of the methods. We present several key findings from our
experiments:

– We propose a new autoencoder loss function—the structural similarity index
(SSIM), a metric traditionally used for image quality assessment (Wang et al.
2004b)—and show that autoencoders trained with SSIM loss are better suited for
detecting morphological novelties while autoencoders trained with conventional
mean squared error (MSE) loss are better suited for detecting spectral novelties. In
addition, we show that using the SSIM as a regularizing term to the MSE autoen-
coder loss can provide better novelty detection performance than the convential
MSE-only loss.

– We show that pixel spectrum representations for RX can enable better performance
on some novelty categories than other methods for which the input representation
is the full multispectral image (flattened vector or tensor).

– We show that, of the compared approaches, autoencoders enable the most useful
explanatory visualizations for users to understand and trust decisions made by the
novelty detection system, but that existing GAN approaches may be limited in
their ability to provide useful explanations for this purpose.

– The best novelty detection method for a given application depends on the type of
novelties that are sought.

2 Related work

Methods for anomaly detection, including novelty detection and outlier detection, have
been surveyed extensively (Markou and Singh 2003a, b; Marsland 2003; Hodge and
Austin 2004; Agyemang et al. 2006; Modenesi and Braga 2009; Chandola et al. 2009;
Pimentel et al. 2014). While outlier detection approaches aim to identify examples
that deviate from the majority of examples in a dataset in an unsupervised manner,
novelty detection approaches aim to identify examples that deviate from the examples
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seen during training. Thus, novelty detection can be viewed as a one-class classifica-
tion problem for which the standard approach is to construct a model for the typical
(non-novel) training examples and identify novel examples in a test set that are not
represented well by that model (Pimentel et al. 2014). Methods designed for outlier
and novelty detection can often be used for both problems, thus we cover related work
for both outlier and novelty detection in this section.

Kernel methods In one-class classification problems, only typical labeled examples
are available during training, and novel labeled examples are used only for evaluation.
The one-class support vector machine (OC-SVM) is a modification of the popular
support vector machine (SVM) method to enable one-class classification (Scholkopf
et al. 2000). OC-SVMs learn a decision boundary around only the typical data in
the training dataset, though novel examples are often included in validation datasets
for tuning hyperparameters since the performance of OC-SVMs depends strongly on
the hyperparameter settings (Ma and Perkins 2003; Wang et al. 2004a; Manevitz and
Yousef 2001; Munoz-Mari et al. 2010; Pimentel et al. 2014; Erfani et al. 2016; Zenati
et al. 2018b). The Support Vector Data Description (SVDD) method is another exten-
sion of SVMs and OC-SVMs that automatically optimizes the model hyperparameters
using artificially generated unlabeled data in a hypersphere around the typical data,
and determines novelty by testing if an example lies within the hypersphere (Pimentel
et al. 2014; Campbell and Bennett 2001; Tax and Duin 1999).

Reconstruction-based methods Reconstruction-based methods are another set of
one-class classification approaches that characterize the typical class by learning a
mapping between typical input examples and a lower-dimensional representation that
minimizes the loss between the input and its reconstruction from the lower-dimensional
representation. PCA can be used for reconstruction-based novelty detection, in which
the reconstruction error between inputs and their inverse transformation from the
principal subspace is used as a novelty score (e.g., Kwak 2008; Chandola et al. 2009;
Toivola et al. 2010; Wagstaff et al. 2013; Xiao et al. 2013; Jablonski et al. 2015). Diaz
andHollmen (2002) used kernel-based and least-squares based general regression neu-
ral networks (GRNNs) for novelty detection and showed that kernel based approaches
providedmoremeaningful and interpretable residuals (reconstruction errors) than least
squares approaches. Given the success of deep neural networks at learning complex
relationships in high-dimensional data (LeCun et al. 2015), more recent approaches
have employed deep learning methods for reconstruction-based novelty detection.
Similar to PCA, autoencoder neural networks (Hinton and Salakhutdinov 2006) are
trained to minimize the reconstruction error for non-novel (typical) examples, and
score the novelty of new inputs using the reconstruction error (e.g., Japkowicz et al.
1995; Thompson et al. 2002; Williams et al. 2002; Manevitz and Yousef 2007; Xiong
and Zuo 2016; Richter and Roy 2017; Zhou and Paaenroth 2017; Kerner et al. 2019).
Variational autoencoders have also been proposed for novelty detection (An and Cho
2015; Park et al. 2018). Generative adversarial networks (GANs) (Goodfellow et al.
2014), which have been successfully used for learning data-generating distributions
for complex datasets (e.g., Antipov et al. 2017; Dong et al. 2018), have been recently
proposed for novelty detection (Schlegl et al. 2017; Akcay et al. 2018; Zenati et al.
2018b).
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Distribution and density estimation methods The Reed-Xiaoli (RX) method, which
computes pixel-wise anomaly scores using the Mahalanobis distance between the
pixel and a background distribution (Reed and Yu 1990), and its kernel variants are
widely used for unsupervised anomaly detection in multispectral and hyperspectral
images (e.g., Kwon and Nasrabadi 2005; Molero et al. 2013; Zhou et al. 2016; Ayhan
et al. 2017; Wagstaff et al. 2019). Though RX is usually used for detecting global
or local outliers/anomalies, it can be used for novelty detection by computing the
background statistics from the typical training dataset as proposed in our study. For
data that are Gaussian-distributed, thresholds on the likelihood of data modeled by a
Gaussian probability distribution, or a mixture of Gaussians using Gaussian Mixture
Models (GMM), can be used to identify novel or outlying examples(Chandola et al.
2009). Similarly, kernel density estimators (KDE) estimate the probability density of a
dataset by assigning individual kernels (e.g., Gaussian kernels) to each data point and
summing over all the kernels (Silverman 1986). Dense regions where points are close
together will contribute more to the density estimate than points in diffuse regions of
the feature space, thus outliers can be identified using a threshold on the likelihood
under the learned probability distribution (e.g., Desforges et al. 1998; Latecki et al.
2007; Ristic et al. 2008; Laxhammar et al. 2009; Schubert et al. 2014). GMMs and
KDEs are examples of probabilistic novelty detection methods, a category that also
includes statistical hypothesis tests and box plots (Pimentel et al. 2014). Local outlier
factor (LOF) (Breunig et al. 2000) detects outliers in sparse regions of the feature
space by computing the local density of each point compared to its nearest neighbors;
several modifications of LOF have been proposed (Tang et al. 2002; Chiu and Fu 2003;
Papadimitriou et al. 2003; Tang et al. 2007).

Distance-based methods Distance-based methods for novelty detection include
nearest-neighbor (e.g., Angiulli and Pizzuti 2002; Ertöz et al. 2003; Bay and
Schwabacher 2003; Dongmei Ren et al. 2004; Abe et al. 2006; Yu et al. 2006; Zhang
and Wang 2006; Ghoting et al. 2008) and clustering approaches (e.g., Yu et al. 2002;
He et al. 2003; Pires and Santos-Pereira 2005; Srivastava and Zane-Ulman 2005; Sri-
vastava 2006; Budalakoti et al. 2006; Clifton et al. 2007; Wang 2009; Filippone et al.
2010; Syed et al. 2010; Kim et al. 2012), but can be problematic for high-dimensional
datasets due to their reliance on an appropriate distance metric (Pimentel et al. 2014).
Carrera et al. (2015) used convolutional sparse models to learn local structures from
typical images and detect novel regions of test images based on the distance between
the learned filter and coefficient map as well as the spread of non-zero elements in the
coefficient maps.

Other methods The Isolation Forest algorithm Liu et al. (2008) is a method based
on random forests that “isolates” individual examples by recursively and randomly
partitioning their features. The number of partitions required to isolate the example
tends to be smaller (shallower trees) for novel examples than for typical examples.
Novelty detection is closely related to the problem of zero-shot learning, which aims
to classify examples from classes not seen during training and can involve detection
of out-of-distribution examples that deviate from the training samples. Bhattacharjee
et al. (2019) investigated the use of an autoencoder for novelty detection to detect
examples from classes not seen in the training dataset. Lee et al. (2018) identified test
samples far from training samples (i.e., novel or adversarial samples) using the Maha-
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lanobis distance between the test sample and a class-conditional Gaussian distribution
computed from the hidden representation at the end of a deep neural network.

An important limitation of prior studies is that they have largely evaluated novelty
detection methods using datasets that contain non-image/relatively low-dimensional
data, grayscale images, or color (RGB) images. Furthermore, many of these datasets
are benchmark datasets and do not emulate real-world applications that would greatly
benefit from operational uptake of novelty detection methods. In this work, we evalu-
ated four novelty detection methods involving PCA, RX, autoencoders, and GANs for
a real-world scientificmultispectral image dataset acquired by theMastcam instrument
onboard theMars Science Laboratory (Curiosity) rover for the real-world task of prior-
itizing images for review during planning of science operations. We focused our study
on reconstruction-basedmethods because the residuals (reconstruction errors) provide
a clear way of identifying what the novel features in the input are and directly relates to
the novelty score for the image. We evaluated the performance of these methods using
multiple metrics chosen to represent their performance in operational use, including
interpretability of detections (via reconstruction errors/residuals). By evaluating exist-
ing novelty detection methods using a challenging real-world dataset of multispectral
images, we demonstrated the tradeoffs in performance and interpretability between
the methods and identified limitations not previously explored in prior studies.

3 Dataset

One instrument the MSL rover uses to make geologic observations on Mars is the
mast camera, or “Mastcam,” a pair of CCD imagers mounted on the rover’s mast ∼2
meters above the surface (Grotzinger et al. 2012; Bell et al. 2017; Malin et al. 2017). A
similar camera to Mastcam called “Mastcam-Z” will be onboard the Mars 2020 rover
(Bell III et al. 2016). Each of the Mastcam cameras, or “eyes,” has an eight-position
filter wheel enabling images to be acquired in “true color” (Bayer pattern broadband
red, green, and blue) and with six narrow-band spectral filters spanning ∼400-1100
nm (visible to short-wave near-infrared) (Bell et al. 2017). The imagers have different
focal lengths: 34 mm for the left eye and 100 mm for the right eye, thus they are
referred to as “M-34” and “M-100” respectively. Some of the band wavelengths also
differ between each eye (Bell et al. 2017). For this reason, we considered images from
theM-34 andM-100 as two separate datasets for which two separate novelty detection
systems should be developed. In this study, we elected to use the M-100 (right eye)
dataset because there were more multispectral images acquired using the right eye
than the left eye in the period of the traverse we studied. Examples of novel geology
in Mastcam images include iron meteorites (Wellington et al. 2017a; Johnson et al.
2014) and broken rocks that expose mineralogy under the dusty surface.

Our reconstruction-based novelty detection experiments require two datasets: one
that represents the typical geologyofMars—whichwill be used for training, validation,
and testing the models–and one that contains expert-identified novel examples, which
will be used for testing only. To construct these datasets, we considered all Mastcam
multispectral images that were acquired between sols (Martian days since landing) 1 to
1666 using all six narrow-band spectral filters (sols 1-1666 correspond to Earth dates
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Fig. 1 Illustration of the Mastcam image processing pipeline

August 6, 2012-April 14, 2017). The earliest Mastcam image product that is available
during tactical planning is the uncalibrated thumbnail version of the full-resolution
image. When Mastcam images are acquired by the MSL rover, the full-resolution
images are stored on the rover’s onboard computer. The rover first downlinks low-
resolution thumbnail versions of theMastcam images, and later (as bandwidth allows)
sends the full-resolution versions of the multispectral images. Figure 1 shows the
flow of Mastcam image data once it arrives at the Deep Space Network. When data
is sent from the rover to the Deep Space Network, the raw image data is sent to
the MSL project team at the Jet Propulsion Laboratory, who processes the raw data
and publishes the uncalibrated images to File Exchange Interface (FEI) servers that
members of the Mastcam instrument team subscribe to. After the uncalibrated data is
received by the primaryMastcamproject site (Malin SpaceScienceSystems,MSSS), it
is processed to create “experimental data records”which contain additional non-image
data (e.g., header information) that are not included in the uncalibrated image products.
At the start of the next planning day after data is downlinked, these experimental data
are sent to the Mastcam calibration team at Arizona State University (ASU), who
creates radiometrically-calibrated versions of the data that are used by members of
the MSL science team for tactical planning. By using the uncalibrated rather than
radiometrically-calibrated versions of Mastcam images, a novelty detection system
could deliver insights about potential observations of interest to the tactical planning
team 1-3 days earlier than in the current, fully-manual process.While it is possible that
novelty detection methods could achieve improved performance using full-resolution
and/or calibrated observations, our goal is to provide insights about the novelty of new
observations as early as possible before tactical planning begins. Thus, we chose to
use the uncalibrated thumbnail versions of full-resolution multispectral images since
these products are the earliest available products for tactical science planning.

These images constitute a dataset of 477 multispectral (6-band) thumbnails. Two
co-authors (D. Wellington and S. Jacob) with experience reviewing Mastcam multi-
spectral products reviewed the images in this source dataset and labeled regions they
considered geologically interesting or “novel” with respect to the typical geology of
Mars. These considerations were based on published results in the literature (e.g.,
Rice et al. 2013; Léveillé et al. 2014; Johnson et al. 2014, 2015; Wellington et al.
2017a, b; Wellington 2018) and science team discussions during the period of tactical
planning in which the images in this dataset were acquired. These labels were in the
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Fig. 2 Example bounding box labels around novel geology in Mastcam images

Table 1 Number of 64 × 64 × 6
image tiles in training,
validation, and test datasets

Dataset Num. typical tiles Num. novel tiles

Train 9302 0

Validation 1386 0

Test 426 430

form of 64 × 64 × 6-pixel bounding boxes (e.g., Fig. 24). They identified 237 novel
bounding boxes within 156 of the 477 source images. We classified the remaining 321
source images as containing only typical geology, and partitioned them into training,
validation, and test sets using a 80%/10%/10% split respectively (after randomiza-
tion). To increase the number of typical images available for training and validation,
we sub-sampled 64 × 64 × 6-pixel tiles from images in the training and validation
datasets using a sliding window with a 16-pixel stride size. This resulted in 9,302
typical training tiles and 1,386 typical validation tiles. We used a larger stride size of
32 pixels to sub-sample tiles from the test images to reduce overlap between images
in the test dataset, resulting in 345 typical test tiles.

The 156 images containing novel bounding box labels were used for testing only.
We again sub-sampled 64×64×6-pixel tiles from these images using a 32-pixel stride.
Any tiles that overlapped with the center of a novel bounding box label were classified
as novel test tiles (430 tiles), while tiles that had no overlap with novel bounding box
labels were classified as typical test tiles and were added to the typical test dataset (81
tiles). Table 1 summarizes the number of novel and typical images in each dataset.

To further assessmodel performance ondifferent types of novel geology inMastcam
images, we divided the novel test dataset into 8 sub-classes based on input from
expert Mastcam multispectral analysts: meteorite, float rock, bedrock, vein, broken
rock, dump pile, drill hole, and dust removal tool (DRT) spot (Fig. 3). Meteorites
are fragments of rocks from meteors originating elsewhere in the solar system that
entered the Mars atmosphere and landed on the surface; meteorites are discovered
serendipitously on Mars during rover exploration missions and depending on the type
of meteorite can be obvious or subtle in Mastcam images (Wellington 2018). Float
rocks are loose rocks transported to their current location by other geologic processes,

4 Since the images in the Mastcam dataset are multispectral (6-band), in all figures displaying examples
from the dataset we display channels 2 (805 nm), 0 (527 nm), and 1 (447 nm) of the input image as red,
green, and blue (respectively).
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Fig. 3 Eight categories of novel geology in Mastcam multispectral image dataset. Images shown are sub-
frames from thumbnail images

Table 2 Number of image tiles
in each sub-class of the novel
test dataset

Sub-class Num. tiles

DRT spot 111

Dump pile 93

Broken rock 76

Drill hole 62

Meteorite 34

Vein 30

Float rock 18

Bedrock 11

thus their composition resembles that of the source material rather than surrounding
material (Wellington 2018). In contrast, bedrock describes material that formed in
place. Veins are materials (usually light-toned) that fill fractures in rocks. The broken
rock sub-class describes rocks that have been broken or crushed (by the rover wheel
or other instrument) to expose the fresh interior of the rock. The dump pile, drill hole,
and DRT spot sub-classes all describe features that are created by the rover performing
contact science on the surface. Dump piles are the drill sample material analyzed by
the CheMin and/or SAM (Blake et al. 2012; Grotzinger et al. 2012; Mahaffy et al.
2013) instruments dumped back onto the surface to make those instruments available
for a new sample. Drill holes are holes created when the rover drills into a rock, and
the tailings are the removed material surrounding the hole. DRT spots are elliptical
spots where dust has been removed using the rotating dust removal tool on the rover;
the contrast between the dust-removed area and the background varies depending on
the color of the rock that underlies the dust and the thickness of the dust layer covering
the rock. Table 2 gives the number of novel test tiles included in each category. The
complete dataset can be accessed at https://doi.org/10.5281/zenodo.1486195.

4 Methods

In this novelty detection application,many labeled examples of typical geology and rel-
atively fewexamples novel geology on theMartian surface are available.We chose four
methods to evaluate for detecting novel geology in rover-based multispectral images
using only typical examples during training: PCA, RX detectors, autoencoders, and
GANs. All of these methods except RX are reconstruction-based methods, which we
chose for their ability to enable visualization of novel detections within the image to
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aid interpretation.We chose to evaluate RX and PCA because they are well established
novelty detection methods and serve as informative baselines for the deep learning
methods. We chose to evaluate autoencoders and GANs because, compared to tradi-
tional methods, deep learning methods have been shown to exhibit better performance
for many high-dimensional image datasets. Code for each method can be accessed
at https://github.com/JPLMLIA/mastcam-noveltydet. We discuss the details of our
implementation for each method below.

4.1 PCA

PCA defines a linear projection of the data onto a principal subspace that retains
maximal variance in the data. The principal components are the eigenvectors of the
data covariance matrix, which can be computed using singular value decomposition
(SVD) (Tipping and Bishop 1999):

U = SVD(�) (1)

where Σ is the covariance matrix for a dataset X . PCA can be used to reduce the
dimensionality of data by retaining the top k principal components (first k columns of
U) and projecting the data onto the k-dimensional principal subspace:

z = UT
r x (2)

where the columns ofUr contain the k principal components, x is a vector of the pixel
intensities in the image, and z is the reduced-dimension representation of x in the
principal subspace. The inverse transformation reconstructs the original data points
from their representation in the principal subspace:

x̂ = Ur z = UrUT
r x (3)

where x̂ is the reconstruction of image x. When PCA is used to reduce the dimension-
ality of data, the reconstruction error between X and X̂ can be interpreted as a novelty
score (Wagstaff et al. 2013):

aPCA(x, x̂) = ||x − x̂||2 (4)

We used the Scikit-learn Python package for applying PCA (Pedregosa et al. 2011).

4.2 RX detector

The RX detector is commonly used to detect anomalous pixels in multispectral or
hyperspectral images. RX assigns an anomaly score to each pixel that is the Maha-
lanobis distance between the pixel and a background distribution estimated from the
data (Reed and Yu 1990; Chang and Chiang 2002). The background is usually defined
to be all pixels in the image except the pixel under test, or a window of pixels around
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the pixel under test. Since our goal is to identify novel features with respect to the
dataset rather than within individual images, we instead computed the RX anomaly
score for each pixel with respect to the background of the entire training dataset, i.e.:

aRXp(xi ) = (xi − μt )
T�−1

t (xi − μt ) (5)

where xi ∈ R
1×m is the spectrum of pixel i acrossm multispectral bands, μt ∈ R

1×m

is the mean spectrum computed from all pixel spectra in the training dataset, and
Σ t ∈ R

m×m is the covariance matrix computed from all pixel spectra in the training
dataset. Since Eq. 5 computes the RX anomaly score for each pixel in the image, not
the entire image, we computed a representative RX anomaly score for an image as the
mean RX score across all pixels in the image.

The RX anomaly score can also be computed for an image using the flattened
multispectral image vector as the input representation rather than the pixel spectrum.
This representation is equivalent to the input representation for PCA (Sect. 4.1). In
this formulation, we compute the RX anomaly score for an image with respect to the
background of the entire training dataset using the following equation (the subscript
“f” indicates a flattened image representation):

aRXf (xi ) = (xi − μt )
T�−1

t (xi − μt ) (6)

where xi ∈ R
1×n is the flattened multispectral image vector, n is the number of pixels

in the multispectral image, μt ∈ R
1×n is the mean image vector computed from all

images in the training dataset, and Σ t ∈ R
n×n is the covariance matrix computed

from all images in the training dataset.
The inverse covariance matrix in Eqs. 5 and 6 projects the input data along the

principal components with the least variance (lowest eigenvectors) and novelty is
assessed as the distance from the mean in this space. Similarly, the reconstruction
error in PCA assesses novelty as the distance of the input data from the mean in
the space of the low-variance principal components (Chang and Chiang 2002). The
primary difference between PCA and RX is that the reconstruction error in PCA
measures the residual information along the components k+1 to n where k is number
of high-variance components retained in the projection matrix and n is the number of
input data features (n is the number of pixels for the flattened image representation),
whereas the inverse covariance matrix in RX includes all components (Chang and
Chiang 2002; Wagstaff et al. 2019).

4.3 Autoencoder

An autoencoder is a type of neural network that learns the salient features in a dataset.
A convolutional autoencoder (CAE) consists of an encoder network tomap (compress)
inputs to a low-dimensional encoding and a decoder network to reconstruct inputs from
the encoding (also called the “bottleneck” representation) using convolutional layers
(Masci et al. 2011). We used a CAE with three convolutional layers in the encoder
and three transposed convolutional layers in the decoder. We used 5 × 5 convolution
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Table 3 CAE architecture.
Layers beginning with “E” and
“D” are part of the encoder and
decoder, respectively

Layer Dimension

Input 64 × 64 × 6

E1 64 × 64 × 12

E2 32 × 32 × 8

E3 (Bottleneck) 16 × 16 × 3

D1 32 × 32 × 8

D2 64 × 64 × 12

D3 (Output) 64 × 64 × 6

kernels in all layers with a stride size of 1 pixel in the first and last layers and 2 pixels in
all other layers. Table 3 gives the size of representations at each layer of the CAE. The
dimension of the bottleneck representation is 16× 16× 3, thus inputs are compressed
by a factor of 32 before being reconstructed by the decoder. The CAE is trained using
a dataset of typical images.

CAE loss functionsThemost common loss function used tominimize error between
CAE inputs and reconstructions ismean squared error (MSE) (Masci et al. 2011;Xiong
and Zuo 2016; Richter and Roy 2017; Kerner et al. 2019), defined as:

E(X, X̂) = 1

NMK

K∑

k=1

M∑

j=1

N∑

i=1

(xki j − x̂ ki j )
2 (7)

where xki j and x̂ ki j are the pixel intensities at row i , column j , and band k of the input

and reconstructed images X and X̂ respectively; N and M are the spatial dimensions
of each image; and K is the number of multispectral bands. Other loss functions have
been proposed in prior work, including binary cross-entropy (in which outputs for
each pixel are interpreted as a probability) (Alain and Bengio 2014; Creswell et al.
2017) and mutual information (Hjelm et al. 2019).

One limitation of MSE loss is that two images with the same MSE can have very
different spatial distributions of pixel errors, e.g., the error can be dispersed as noise
throughout the image or might distort the structure of subjects in the image (Wang and
Bovik 2009). Diaz and Hollmen (2002) also showed that least-squares based methods
can lead to trivial solutions and ineffective residuals for explaining abnormal devia-
tions. The structural similarity index (SSIM)was originally proposed for image quality
analysis to overcome these limitations of MSE (Wang et al. 2004b). SSIM measures
the degradation of structural information between an image and its compressed ver-
sion (e.g., using JPEG compression) based on the assumption that the human visual
system focuses on structural information in a scene (Wang et al. 2004b; Wang and
Bovik 2009). Considering the CAE as a compression function and the reconstructed
image as the lossy form of the input image, we propose to use SSIM to optimize the
weights of the CAE such that SSIM ismaximized. SSIM between amultispectral input
image X and its reconstruction X̂ is defined as:
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S(X, X̂) = 1

K

K∑

k=1

(2μXkμX̂k
+ C1)(2σXk X̂k

+ C2)

(μ2
Xk

+ μ2
X̂k

+ C1)(σ
2
Xk

+ σ 2
X̂k

+ C2)
(8)

where K is the number of bands in X , μXk and μX̂k
are the mean pixel intensities in

band k of X and X̂ ; σ 2
Xk

and σ 2
X̂k

are the variances in pixel intensities in band k of X

and X̂ ; σXk X̂k
is the covariance between pixel intensities in band k of X and X̂ ; and

C1 = 0.01R and C2 = 0.03R are small constants to ensure positive values, where
R = 255 is the dynamic range of the pixel intensities (Wang et al. 2004b). Because
we want to maximize SSIM when training the autoencoder, the SSIM loss function
minimizes the negative SSIM.

Finally, we propose to use a third loss function that combines MSE and SSIM loss:

H(X, X̂) = −S(X, X̂) + λE(X, X̂) (9)

where λ is a constant weighting factor used to balance the magnitude ofMSE loss with
that of SSIM, since SSIM values range from (-1, 1].5. In Sect. 5.1, we compare the
performance a CAE trained with MSE loss, SSIM loss, and a hybrid loss combining
MSE and SSIM for separating novel and typical examples. We did not consider binary
cross-entropy loss because we wish to interpret the reconstructions in each pixel as the
“expected” signal, compared to the input (“observed”) signal.We used the TensorFlow
library in Python for implementation (Abadi et al. 2015).

CAE novelty scores When CAEs are used for novelty detection, the novelty score
for a test image is typically chosen to be theMSE (Eq. 7) or l2-norm between the input
and reconstructed image (Richter and Roy 2017; Zhou and Paaenroth 2017; Kerner
et al. 2019):

aCAE(X, X̂) = ||X − X̂||2 (10)

In prior work, we observed that much of the errors between pixels in the input and
reconstructed image are due to noise in the reconstruction rather than a spatial or
spectral feature that was poorly reconstructed (Kerner et al. 2019). To combat this, we
propose a new novelty score that captures the number of large errors between input
and reconstructed images, which we refer to as “outlier count.” The outlier count is
computed as the number of errors in each pixel between the input and reconstructed
image that are above the mean error, i.e., the number of pixels for which the following
inequality is true:

(xki j − x̂ ki j )
2 >

1

NMK

K∑

k=1

M∑

j=1

N∑

i=1

(xki j − x̂ ki j )
2 (11)

5 https://www.tensorflow.org/api_docs/python/tf/image/ssim.
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where xki j , x̂
k
i j , N , M , and K are defined as in Eq. 7. In Sect. 5.1, we compare the

effectiveness of two novelty scores—l2-norm (Eq. 10) and outlier count (Eq. 11)—for
separating novel and typical test examples.

4.4 GAN

Generative adversarial networks (GANs) are a type of neural network that learns the
data-generating distribution for a dataset via minimax optimization of two networks
(Goodfellow et al. 2014). The generator network G(z) samples from a d-dimensional
normal distribution (where d is the size of the latent vector z) and tries to reconstruct
an image X̂ that resembles images in the training dataset. The discriminator network
D(X) tries to distinguish training images from generated images by classifying inputs
as real or fake. The discriminator minimizes the binary cross-entropy loss during
training, while the generator simultaneously maximizes the discriminator loss:

Cdis(y, ŷ) = ylog(σ (ŷ)) − (1 − y)log(1 − σ(ŷ)) (12)

where y is the binary label (real or fake) for the input image, ŷ is the logit output from
D(X), and σ(ŷ) is the sigmoid function used to map logits to the interval [0, 1]:

σ(ŷ) = 1

1 + e−ŷ
(13)

In a bi-directional GAN (BiGAN), a third network called the encoder network E(X) is
simultaneously trained to map images to a latent vector z ∈ R

d (similar to the encoder
network of the CAE) (Donahue et al. 2017). Thus in a BiGAN, the generator learns to
reconstruct images from an encoded vector as opposed to randomly-sampled vector z,
i.e.,G(E(X)). We used the BiGAN approach to novelty detection proposed in (Zenati
et al. 2018b, a), in which the BiGAN is trained using a dataset of typical images and
the dimension of z is 1×100. Table 4 describes the BiGAN architecture. The encoder
network uses 5×5 convolution kernels while the generator and discriminator networks
use 4× 4 convolution kernels. All convolutional layers use 2× 2-pixel strides except
the first layer of the encoder network. The novelty score of an image is defined as:

aGAN(X, X̂) = (1 − α)LG + αLD (14)

where LG is the generator loss ||X −G(E(X))||, LD is the discriminator feature loss
|| f (X) − f (X̂)|| where f (·) represents the feature activations at the last layer of the
discriminator network (preceding the logit output layer), and α is a constant weighting
factor between the two terms (Zenati et al. 2018a). We used α = 0.1 as in Zenati et al.
(2018a).
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Table 4 BiGAN architecture
(Zenati et al. 2018a)

Layer Dimension

Encoder

Input 64 × 64 × 6

E1 64 × 64 × 64

E2 32 × 32 × 128

E3 16 × 16 × 256

Output 1 × 100

Generator

Input 1 × 100

G1 1 × 256

G2 1 × 32768

G3 32 × 32 × 64

Output 64 × 64 × 6

Discriminator

Input 64 × 64 × 6

D1 32 × 32 × 64

D2 16 × 16 × 128

D3 8 × 8 × 256

D4 1 × 512

Output 1 × 1

5 Experiments

5.1 Autoencoder loss function

In Sect. 4.3, we described three loss functions for tuning the encoder and decoder
weights of theCAE for novelty detection:mean squared error (MSE) (Eq. 7), structural
similarity (SSIM) (Eq. 8), and a hybrid loss combining MSE and SSIM (Eq. 9). We
compared the hybrid loss function performance usingλ = 0.1, 0.01, 0.001.We trained
the CAE until validation loss converged for each of the three compared loss functions
(batch size = 100) and tested eachmodel on the test dataset containing typical and novel
image examples. Figure 4 shows the receiver operating characteristics (ROC) curves
for the CAE with MSE, SSIM, and hybrid loss combined with the l2-norm and outlier
count novelty scores. ROC curves illustrate the tradeoff between the true positive rate
and the false positive rate for a range of threshold settings (in this case, a threshold
on the novelty score to separate novel from typical examples) (Krzanowski and Hand
2009). Points along the ROC curve that have higher true positive rates and lower false
positive for each threshold value will be closer the upper left quadrant of the plot and
span a larger area under the curve. Thus, the area under the curve (AUC) computed
from each ROC curve (Table 5) is often used to summarize a model’s discrimination
performance and compare multiple models before selecting a threshold (Rosset 2004).

The CAE-SSIM and CAE-Hybrid (λ = 0.01) methods combined with the outlier
count novelty score tied for the highest AUC score (0.65) for the test dataset. However,
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Fig. 4 ROC curves for CAE trained with each of three loss functions and two novelty scores (Color figure
online)

Table 5 ROC AUC score for
CAE with MSE, SSIM, and
hybrid loss functions on test
dataset (highest score in bold)

Loss function Novelty score AUC

MSE l2-norm 0.61

Hybrid (λ = 0.1) l2-norm 0.56

Hybrid (λ = 0.01) l2-norm 0.59

Hybrid (λ = 0.001) l2-norm 0.62

SSIM l2-norm 0.63

MSE Outlier Count 0.59

Hybrid (λ = 0.1) Outlier Count 0.64

Hybrid (λ = 0.01) Outlier Count 0.65

Hybrid (λ = 0.001) Outlier Count 0.57

SSIM Outlier Count 0.65
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comparing the ROC curves for these twomethods (orange vs. pink dashed lines) shows
that the CAE-SSIM method reached its maximum true positive rate at a much lower
false positive rate than the CAE-Hybrid method. In other words, a higher true positive
rate for the CAE-Hybrid method would come at the expense of more false positives
than for the CAE-SSIM method (with respect to this test dataset). In practice, for a
novelty detection system being used operationally for tactical planning, it is important
for the ratio of correctly prioritized novel observations to incorrectly prioritized ones
to be high in order to accelerate image reviewwhile also maintaining the user’s trust in
the system—thus, between two models with equivalent AUC scores, the model with
the lower false positive rate at its maximal true positive rate is preferred (CAE-SSIM
in this experiment).

5.2 Novelty detection performance

We evaluated each novelty detection method described in Sect. 4 on the combined
novel and typical test dataset. We evaluated the CAE using the SSIM, MSE, and
hybrid (λ = 0.01) loss functions. We used the outlier count novelty score for CAE-
SSIM and CAE-Hybrid, and the l2-norm novelty score for CAE-MSE (i.e., the scores
that gave the best performance for these loss functions; see Fig. 4 and Table 5). We
computed the ROC AUC score for each method using the entire novel test dataset as
well as each of the 8 novel sub-classes (Fig. 3, Table 2), combined with the typical test
dataset. We report these scores in Fig. 5 and Table 6. We labeled the results from the
PCAmethod as “PCA (flat)” to emphasize that the input representation for this method
is the flattenedmultispectral image vector (as in the RX (flat) method), in contrast with
the CAE and GAN methods for which inputs are tensors and the RX (pixel) method
for which inputs are pixel spectra. The gray dashed line in Fig. 5 indicates the AUC
score for a random choice of novel or typical for each example.

For the entire novel test dataset combined with the typical test dataset, the RX
(pixel) method had the best performance and RX (flat) had the worst performance (no

Table 6 ROC AUC scores for combined novel and typical test dataset overall and for each novel sub-class

Novelty class CAE-Hybrid CAE-MSE CAE-SSIM GAN PCAf RXf RXp

All 0.65 0.61 0.66 0.59 0.50 0.49 0.72

Meteorite 0.50 0.77 0.56 0.74 0.78 0.45 0.97

Float 0.44 0.82 0.37 0.78 0.87 0.56 0.57

Bedrock 0.66 0.87 0.16 0.88 0.87 0.42 0.53

Vein 0.58 0.94 0.13 0.96 0.95 0.36 0.22

Broken rock 0.64 0.88 0.38 0.84 0.90 0.49 0.42

Dump pile 0.66 0.48 0.88 0.49 0.47 0.50 0.83

Drill hole 0.81 0.49 0.79 0.52 0.51 0.51 0.90

DRT spot 0.64 0.39 0.85 0.34 0.41 0.52 0.86

The superscript “f” indicates the input representation is a flattened image vector and “p” indicates the input
representation is a pixel spectrum. Bold text indicates the highest AUC score in each category
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Fig. 5 ROC AUC scores for combined novel and typical test dataset overall and for each novel sub-class
(Color figure online)

better than random guessing). In the float, bedrock, vein, and broken rock categories,
the CAE-MSE, GAN, and PCAmethods performed comparably well, while the CAE-
SSIM, CAE-Hybrid, RX (flat), and RX (pixel) methods performed significantly worse
(AUC scores near or worse than random). In the drill hole, DRT spot, and dump pile
categories, all methods except CAE-SSIM, CAE-Hybrid, and RX (pixel) performed
poorly. In the meteorite category, RX (pixel) had the best performance followed by
comparable performance by the CAE-MSE, PCA, and GAN methods; CAE-SSIM,
CAE-Hybrid, and RX (flat) had the lowest performance in the meteorite category.
Because the DRT spot, drill hole, and dump pile categories have the highest frequency
in the novel test dataset than the other categories (Table 2), high performance scores
in these categories for RX (pixel), CAE-SSIM, and CAE-Hybrid result in higher AUC
scores when using the entire novel dataset, despite poor performance in several other
categories. These results reveal three groups of novel image categories based onmodel
performance: one that contains the drill hole, DRT spot, and dump pile categories;
one that contains the float, bedrock, vein, and broken rock categories; and one that
contains the meteorite category. We will explore explanations for the differences in
model performance for these three categories further in Sect. 7.
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Fig. 6 Precision at N for each method up to N = 430 (number of novel images in test dataset) (Color figure
online)

Table 7 Precision at N = 20 and fraction of novel examples in the bottom 20 images by novelty score

Method Precision at N = 20 False Negatives at N = 20

RX (pixel) 1.0 0.45

CAE-MSE 1.0 0.80

PCA (flat) 0.90 0.05

CAE-Hybrid 0.90 0.30

CAE-SSIM 0.80 0.50

GAN 0.75 0.10

RX (flat) 0.55 0.70

Method with highest precision at N = 20 in bold

5.3 Novelty ranking

During a science planning cycle for Mastcam or other instruments onboard the MSL
Curiosity rover, science team members process and analyze the latest images down-
linked from the rover’s onboard computer to determine targets of interest for follow-up
analysis. Thus, in practice, science teammembers could benefit from novelty detection
algorithms that rapidly prioritize the most interesting observations, e.g., by ranking
new images by novelty score. To evaluate the performance of each novelty detection
method in this prioritization context, we sorted the images in the combined novel and
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Fig. 7 Test images with 6 highest novelty scores for each method. Red frames indicate false positives
(Color figure online)

typical test dataset by novelty score in descending order and calculated the “precision
at N” (P@N) for N ∈ [1, 430] (Fig. 6), where N = 430 is the number of novel
examples in the test dataset. Precision at N is the proportion of correct results in the
top N ranks (Campos et al. 2016):

P@N = #true positives

N
(15)

Figure 6 shows that the RX (pixel) method has the highest P@N for all values of
N . The CAE, GAN, and PCA methods show similar trends in which P@N scores
start high then gradually decrease, with the exception of CAE-SSIM which increases
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Fig. 8 Test images with 6 lowest novelty scores for eachmethod. Red frames indicate false negatives (Color
figure online)

steeply around N = 60. To help science planning teams focus their limited available
time on themost promising observations from a newly-downlinked set ofmultispectral
image observations, it is more important to have high P@N for low values of N with
as few false negatives (representing missed novelties) as possible. Table 7 shows the
precision at N = 20 as well as the fraction of novel examples in the bottom 20 images
by novelty score (false negatives at N ). The RX (pixel) and CAE-MSE methods have
the highest precision at N = 20, but the RX (pixel) method has a lower false negative
rate. PCA has the lowest fraction of false negatives at N = 20 and a P@N = 20 score
close to 1.0 (the overall best P@N score). Thus, we concluded that the RX (pixel),
CAE-MSE, and PCA methods had the best performance as measured by P@N.
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In Fig. 7, we show the 6 images with the highest novelty scores using each method,
and the lowest novelty scores in Fig. 8. Figure 7 shows that all methods except RX(flat)
correctly identified only novel examples in the top 6 ranks. Figure 8 shows that the
PCA and GAN methods all correctly identified only typical examples in the bottom
6, while all other methods had false negatives in the bottom 6 images. The images
ranked least novel by the PCA and GANmethods primarily contain features that occur
frequently in the training dataset—the calibration target (black cylindrical object with
sphere on top) and sand.

6 Explanations

For the proposed novelty detection methods to be useful in practice, they must also
provide explanatory visualizations that allow scientists to trust and understand why an
image was identified as novel and what features within the image are novel. Since the
GAN, CAE, and PCAmethods are reconstruction-based methods in which the novelty
score of the overall image is some measure of the similarity between the input and
reconstructed images, the residual between the input and reconstructed images can
be used as a visualization of the features in the input image (both in the spatial and
spectral dimensions) that were poorly reconstructed by the model (as in Kerner et al.
2019; Diaz and Hollmen 2002, e.g.). We defined the residual, or error map, δ(X, X̂) as
a 64×64×6 tensor containing elements (xki j−x̂ ki j )

2 for i = 1, ..., N , j = 1, ..., M , and
k = 1, ..., K where N = 64 is the number of rows, M = 64 is the number of columns,
and K = 6 is the number of channels in each multispectral image (Kerner et al. 2019).
RX is not a reconstruction-based method, but does RX compute an anomaly score for
each pixel in the image which can be visualized as single-channel image. In Fig. 9, we
show the reconstructions and explanatory visualizations for each model (error map
for the GAN, CAE, and PCA methods; pixel-wise anomaly scores for RX) for an
example from the novel test dataset that contains a nickel-iron meteorite. In all error
maps except RX, we show the error in bands 2, 0, and 1 (same bands as shown for the
input and reconstructed image).

Figure 9 shows that similar explanations are produced using all three CAEmethods
for the example shown, wheremost high-error pixels in the errormap correspond to the
novel meteorite in the input image (though different bands have higher errors between
the threemethods). The PCA error map also shows high-error pixels that coincide with

Fig. 9 Novel input example containing a partial meteorite with reconstructions and explanatory visualiza-
tions (error maps) for each novelty detection method
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the meteorite pixels, but they appear less uniformly distributed over the meteorite area
than in the CAE error maps, and the most error appears focused around the shadowed
point of the meteorite. In the RX visualization, it is possible to make out the structure
of the meteorite, but the error map is noisy and the meteorite does not clearly stand
out from the background as in the other methods.

The GAN error map shows some overlap between high-error pixels and the mete-
orite, however there are large clusters of high-error pixels that do not coincide with
the meteorite. The GAN reconstruction of the input image appears to show features
similar to the Mastcam calibration target and a rock, instead of a lower-resolution
version of the meteorite as in the other methods. During training, the encoder network
of the BiGAN learns to map typical images from the training dataset to latent vectors
z ∈ R

100 based on activations in feature maps learned during training that enable the
generator network to produce a realistic-looking image similar to those in the training
dataset from z. This has the result that similar images in the training dataset will be
nearby in the latent z-space, and clusters in the latent space should contain images
with similar features (e.g., the calibration target or sand) (Donahue et al. 2017). Given
a typical test image that shares characteristics with other typical images in the training
dataset, we would expect the encoder to map the input image to a representation that
is nearby similar images in the latent space. However, given a novel test image, we
should not expect the encoder to map the input to a meaningful encoding z, since
the feature extraction (convolutional) layers of the encoder were tuned to extract fea-
tures common in the typical training images. Consequently, the generated image may
not appear similar to the novel input image because it was conditioned on spurious
activations in the encoder. We will explore this further in Sect. 7.

When analyzing multispectral images, scientists typically use a spectral analysis
tool to inspect the spectrum in a pixel of group of pixels within the image. The spec-
trum is a plot of the wavelength on the x-axis and reflectance on the y-axis. Scientists
compare the observed spectrum to known spectral patterns and characteristics for dif-
ferent materials to come up with interpretations for the observed data (Wellington
et al. 2017a). While Fig. 9 shows the residual error between the input and its recon-
struction as an image, we can also visualize the residual error between the input and
its reconstruction for individual pixel values in each multispectral channel. Thus the
residual for a single pixel across all channels represents the magnitude and direction
of the novelty in each wavelength of the reflectance spectrum.

Figure 10 (left) shows the novel image and CAE-MSE error map containing an
iron meteorite from Fig. 9 with the pixels having the highest error (most novelty)
and lowest error (least novelty) indicated in purple and green respectively. On the
right in Fig. 10, we plotted the spectrum of values across all bands in these two pixel
locations from the input image compared to the reconstructed image. Using this visu-
alization, scientists can quickly identify the direction andmagnitude of novelty in each
band, and combine this information with their domain expertise to make a geologi-
cal interpretation about the novelty. In this example, comparing the novel pixel input
and reconstructed spectrum shows lower reflectance in filter 3 (805 nm) and higher
reflectance in filter 6 (1013 nm) than was expected (reconstructed) by the CAE-MSE
model. The lower reflectance in the 805 nm band indicates that the rock is less red, or
less dusty, which is consistent with the dark-toned appearance of iron meteorites. The
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Fig. 10 Novel input image and errormap for example containing a partial ironmeteorite,with pixel locations
with the highest (most novel) and lowest (least novel) reconstruction error indicated in purple and green
(respectively). Plots compare the normalized input and reconstructed spectrum for the novel and typical
pixel locations. The reflectance value in each pixel was normalized by dividing by the total reflectance
across all values in the spectrum (Color figure online)

higher reflectance in the 1013 nm band results in a positive slope from filter 5 (937
nm) to filter 6, which is consistent with an increase in near-infrared reflectance values
that is typical of iron meteorites relative to native Martian materials (Gaffey 1976;
Wellington et al. 2017a). In contrast, comparing the input and reconstructed spectrum
for the least novel (typical) pixel shows that the observed (input) and expected (recon-
structed) spectrum show minimal differences. This type of explanation is enabled by
a reconstruction-based approach since it requires a reconstructed signal to compare
with the input signal, thus this explanation is not available for the RX detector (which
is not a reconstruction-based approach).

7 Discussion

7.1 CAE loss functions

In Sect. 5.2, we found that the CAE-SSIM had better performance than all methods
except RX (pixel) for detecting novel examples in the DRT spot, drill hole, and dump
pile sub-classes, but worse performance in other sub-classes compared to those other
methods. The only difference between the three CAE methods is the loss function
used for training the model. In Fig. 11, we show an example novel image from the
vein sub-class (left) and from the DRT spot sub-class (right). For each image, we show
the reconstruction (output) from the CAE-MSE, SSIM loss, and hybrid (λ = 0.01)
loss as well as the error map between the input and reconstructed images. The error
maps show the features in the input image that were not reconstructed by each model,
and thus were not optimized by the loss function. In the vein example (Fig. 11, left),
the mineralogy of the light-toned vein is the novel feature, thus if a model detects the
vein as novel we would expect to see colored pixels that align spatially with the vein
in the input image. Both the CAE-MSE and CAE-Hybrid loss detect that the vein is
novel. While the CAE-SSIM error map includes the vein, it also includes the entire
rock, making it difficult to distinguish if the rock or the vein is being detected as novel.
In the morphologically novel example (Fig. 11, right), the bright ellipse where dust
was removed by the DRT is the novel feature, a spatial pattern that did not occur in
typical images in the training dataset. When the CAE is trained using MSE loss, the

123



1666 H. R. Kerner et al.

Fig. 11 Spectrally (left) and morphologically (right) novel examples from the novel test dataset with CAE
reconstructions and error maps

model reconstructs the shape of the image well with some blurring at the borders of
the ellipse; however, when the CAE is trained to optimize SSIM or a combination of
SSIM and MSE, the CAE does not reconstruct the DRT spot at all.

This suggests that optimizing SSIM when training the CAE enables the preserva-
tion of spatial structure between the input and reconstruction during training at the
expense of spectral information, causing the latent feature maps encode primarily spa-
tial information. This causes morphological novelties like the DRT spot in Fig. 11 to
be poorly (or not at all) reconstructed at test time. In contrast, MSE is a measure of
the mean difference in pixel intensity between the input and reconstruction and does
not measure any spatial relationships, thus encouraging the latent features encode pri-
marily spectral information. This causes spectral novelties to be poorly reconstructed
at test time. The hybrid loss aims to leverage the strengths of MSE and SSIM to detect
both spectrally and morphologically novel features, but choosing the optimal setting
for λ may depend on the specific application or dataset.

7.2 RX pixel representations

The results in Fig. 4 showed that, of the compared methods, only RX (pixel) and the
CAEs trained with structural similarity (SSIM and Hybrid) had good performance for
the dumppile, drill hole, andDRTspot categories. In the previous section,wediscussed
why this might be the case for CAEs with SSIM vs. MSE loss by differentiating
between spectral and morphological novelties. Since the input representation for RX
(pixel) is a single pixel spectrum without any spatial context, this does not explain
the superior performance of RX in these categories. We observed that for all novel
categories except meteorite, when RX (pixel) scores were high, scores for the PCA,
GAN, and CAE-MSE methods were low, and vice versa. The input representation is
the flattened multispectral image vector for PCA and the multispectral image tensor
for the GAN and CAE-MSE methods. Both representations include spatial context.
The good performance of RX (pixel) and poor performance of other methods in the
dump pile, drill hole, and DRT spot categories suggests that spatial context does
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Fig. 12 Images from the test dataset with the highest (top) and lowest (bottom) novelty scores using the
GAN method as well as the GAN reconstruction (generator output) for each input and the nearest image
from the training dataset in the latent space. Labels above input images indicate the image label (novel or
typical)

not help identify these novelties (except when the model is trained to encode spatial
information as with SSIM). Conversely, the good performance of the PCA, GAN, and
CAE-MSE methods and poor performance of RX (pixel) in the float, bedrock, vein,
and broken rock categories suggests that spatial context does help identify novelties
in these categories. This difference in performance could also be a result of way we
computed the novelty score for the whole image based on the pixel RX scores for this
method, i.e., by computing the average RX score across all pixels in the image. This
could result in high novelty scores for images that either contain spectra that are strong
outliers with respect to most other pixels in the image (and hence bias the average), or
in which the novel feature spans a large fraction of the total pixels in the image (thus
the novel pixel scores are not diluted by a large number of low non-novel pixel scores).
This could also explain the good performance of RX (pixel) for the meteorite category,
since meteorites exhibit distinct spectral signatures in the near-infrared (Gaffey 1976;
Wellington et al. 2017a) and the meteorite covers a large portion of the frame in most
images in our dataset (see Figs. 3 and 9, e.g.).

7.3 GAN reconstructions

We discussed in Sect. 6 that we should not expect the BiGAN encoder network to map
novel images to latent vectors z that enable the generator network to reconstruct an
image that appears similar to the novel input image, since it is likely conditioned on
spurious activations in the encoder network since the encoder was trained with typical
training images. To test this hypothesis, in Fig. 12 we show the 10 images with the
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highest (top) and lowest (bottom) novelty scores in the test dataset using the GAN
method—representing the “most novel” and “most typical” images in the test dataset
according to the GAN model—as well as the reconstruction (generator output) and
nearest image from the training dataset in the latent space (using Euclidean distance).
Most of the typical images contain the calibration target or sand, which are frequently
observed in the training dataset, and the reconstructed images are very similar to the
input images. There is one novel image in the 10 lowest-scoring images containing a
DRT spot. While the reconstructed image shows that the novel feature (the DRT spot)
was not preserved (as would be expected since the training dataset did not contain any
DRT spots), the difference in pixel intensities corresponding to the DRT spot may not
have been large enough to result in a high novelty score. Most of the novel images in
Fig. 12 (top) contain veins, except the sixth image which contains a broken rock, and
the ninth image which contains a typical image likely misclassified as novel because
of the black stripe (an image artifact) on the left side of the image. Images with this
black stripe were filtered out of the training dataset, so this feature when seen in test
images might (for good reason) be mistaken as novel. The reconstructions for the
vein images are visually similar to each other, but bear little similarity to the input
images. The nearest (typical) training images in the latent space to these novel inputs
are also dissimilar, but appear to either have similar overall coloring or to contain linear
features, which suggests these features might be extracted by the convolutional layers
in the encoder network. In examples such as these, the explanatory visualizations we
discussed in Sect. 9 may not be useful to a scientist who wishes to understand which
features in the input image were considered novel by the detector. This is an important
limitation of the GANmethod for novelty detection, and GAN approaches that enable
explanatory visualizations of detections could be a valuable topic for future work.

There is one image in in both the top 10 and bottom 10 images in Fig. 12 where the
reconstructed images contain all zeros. Though these images appear nearly identical
to the other images in the row (of veins for the novel examples and sand for the typical
examples), the reconstruction is anomalous and the nearest training images are not
similar to those of similar input images in each row. This suggests that there may also
be some instability to the GAN approach for novelty detection.

8 Conclusions

There has been limited prior work exploring novelty detection methods for multi-
spectral images and scientific data. In this work, we compared the performance of
autoencoder, GAN, PCA, and RX approaches for prioritizing images with novel geo-
logic features in multispectral images of the Martian surface acquired by the Mastcam
imaging system in order to accelerate tactical planning for the Mars Science Labora-
tory (MSL) Curiosity rover. We found that the RX (pixel) method had the best overall
performance as measured by ROC AUC score and Precision @ N, but may not pro-
vide the most effective explanatory visualizations for allowing users to understand the
features in an image that were detected as novel. For the CAE methods, we showed
that maximizing structural similarity (SSIM) during training enables accurate detec-
tion of morphologically novel features that are not detected by most other methods
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(including the CAE trained with mean squared error). For images with spectral nov-
elties, we found that the CAE with MSE loss and PCA had the best performance. The
CAEmethods were also shown to enable more effective explanatory visualizations for
novel detections at the image and pixel spectrum level. Finally, we demonstrated that
existing GAN approaches to novelty detection may be limited in their ability to enable
explanatory visualizations of detections, which are critical for their practical use in
novelty detection applications. In a future study, we plan to investigate the impact of
the choice of autoencoder loss function on novelty detection performance for different
types of novelties (e.g., spectral vs. morphological) as well as the interpretability of
the residual image [e.g., as shown in Diaz and Hollmen (2002) for general regression
neural networks].

Following this studyof the comparisonof novelty detectionmethods,we are actively
developing an interface for these methods into the tactical planning process for MSL
and Mars 2020 to assess their benefit in a practical setting. In addition, we are investi-
gating the use of these and other novelty detection methods for identifying targets for
follow-up analysis onboard the rovers, as a novelty-based variant of the Autonomous
Exploration for Gathering Increased Science (AEGIS) autonomous targeting system
(Francis et al. 2017). While training time is longer for the deep learning methods
presented in this study (autoencoder and GAN) than for PCA and RX, all methods
have similar inference times for test examples using a GPU (a Tesla M60 GPU was
used for this study), thus are equally suitable for ground-based analysis. However,
the size and complexity of the deep learning models would pose a problem for their
implementation on the rovers’ onboard computers, thus we will evaluate PCA, RX,
and other methods that are more computationally efficient. Finally, we plan to extend
this work to explore novelty detection systems for orbital remote sensing images of
Mars, Earth, and other planets to prioritize images that contain rare surface features
or atmospheric phenomena.
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