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Abstract
Recommender systems are widely used in online platforms for easy exploration of
personalized content. The best available recommendation algorithms are based on
using the observed preference information among collaborating entities. A significant
challenge in recommender system continues to be item cold-start recommendation:
how to effectively recommend items with no observed or past preference information.
Here we propose a two-stage algorithm based on soft clustering to provide an effi-
cient solution to this problem. The crux of our approach lies in representing the items
as soft-cluster embeddings in the space spanned by the side-information associated
with the items. Though many item embedding approaches have been proposed for
item cold-start recommendations in the past—and simple as they might appear—to
the best of our knowledge, the approach based on soft-cluster embeddings has not
been proposed in the research literature. Our experimental results on four benchmark
datasets conclusively demonstrate that the proposed algorithm makes accurate rec-
ommendations in item cold-start settings compared to the state-of-the-art algorithms
according to commonly used rankingmetrics like Normalized Discounted Cumulative
Gain (NDCG) andMean Average Precision (MAP). The performance of our proposed
algorithm on the MovieLens 20M dataset clearly demonstrates the scalability aspect
of our algorithm compared to other popular algorithms. We also propose the metric
Cold Items Precision (CIP) to quantify the ability of a system to recommend cold-start
items. CIP can be used in conjunction with relevance ranking metrics like NDCG and
MAP to measure the effectiveness of the cold-start recommendation algorithm.

Responsible editor: Ira Assent, Carlotta Domeniconi, Aristides Gionis, Eyke Hüllermeier.

B Shameem A. Puthiya Parambath
spparambath@hbku.edu.qa

Sanjay Chawla
schawla@hbku.edu.qa

1 Qatar Computing Research Institute, HBKU Research Complex, Doha, Qatar

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-020-00708-6&domain=pdf


Simple and effective neural-free soft-cluster embeddings… 1561

Keywords Recommender systems · Item recommendation · Item cold-start
problem · Soft-cluster embeddings

1 Introduction

Personalized recommender systems assist users in exploring large collections of items
efficiently to deal with the problem of information overload by filtering the items
into small selections tailored to an individual’s personal preference. This is achieved
by inferring the users’ intrinsic preferences for different items. In typical use cases,
items can be simple tweet messages, food recipes, electronic gadgets or vehicles. Two
popular approaches for recommendation are: (i) content based and (ii) collaborative.
Content-based systems recommend items which are similar in content to the ones a
user favoured in the past whereas collaborative systems recommend items that users
with similar tastes favoured in the past. It is well established in research and practice
that collaborative systems tend to outperform content based systems (Adomavicius
and Tuzhilin 2005; Saveski and Mantrach 2014). Collaborative algorithms make use
of past or observed preference information among collaborating entities (users and
items) to recommend top-N items for a user. The preference information among col-
laborating entities are often represented using a user-item preference or rating matrix
where each entry of the matrix stands for a rating score given by a user for an item.
The rating information can be due to either explicit or implicit feedback; in explicit
feedback settings, users assign a preference score that quantifies the relative degree
of favouritism of a user for the item and is often represented as an ordinal number. In
implicit feedback settings, preference information is inferred from the implicit user-
item interaction like watching a show can be inferred as a positive feedback whereas
skipping it is inferred as a negative feedback (Hu et al. 2008). We limit our exposition
to the explicit feedback settings as it is very popular with many real world problems.
For example, in the Netflix Challenge, movies were rated in the ordinal scale 1, 2, 3,
4, 5, one denoting the least favoured item and five denoting the most favoured.

The collaborative methods for recommendation can be loosely classified under
three schemes: (i) user based, (ii) item based and (iii) latent factor based. Setting aside
the relative merits and demerits of these three schemes, it is argued that all these
approaches work better than content-based systems (Adomavicius and Tuzhilin 2005;
Saveski and Mantrach 2014), but it suffers from the cold-start problem. The user and
item collaborative algorithms work only in warm-start settings i.e., when past rating
data for users and items are available. On the other hand, latent factor models rely
on matrix factorization schemes. In the case of matrix factorization based algorithms,
user and item features can be extracted only for those users and items for which some
rating values are observed. A major challenge in collaborative recommendation is:
how to provide top-N recommendations when rating data is completely missing for
an item or a user. In the recommendation literature this scenario is termed as cold-
start recommendation. The cold-start problem can be either due to a cold-start item
i.e. an item is not yet rated by any user (item cold-start problem) or due to a cold-
start user i.e. a user did not rate any item (user cold-start problem) or both. In this
work, we concentrate on the item cold-start problem, which naturally arises when a
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i1 i2 · · · ik ik+1 · · · im im+1 · · · in−1 in

u1 1 1 · · · 0 0 · · · 1 1 · · · 0 -
u2 1 1 · · · 0 0 · · · 1 1 · · · - -

i1 i2 · · · ik ik+1 · · · im im+1 · · · in−1 in

f1 0 0 · · · 1 1 · · · 1 1 · · · 1 1
f2 1 1 · · · 0 0 · · · 1 1 · · · 1 1

(a) user-item rating matrix (b) item side-information matrix

Fig. 1 Irrelevant (grey) and relevant (blue) items for two users with exact rating profiles (see the user-item
rating matrix (a). In matrix (a) 1 indicates item is preferred, 0 indicates item is disfavored and—indicates
rating is not observed) form three clusters. Our idea is to rank the cold item � (item in in tables) over the
irrelevant warm item� (item in−1 in tables), rated only by the first user, for the second user, as the cold item
is placed nearer to the relevant items. In matrix (b), 1/0 indicates that the item is supported/unsupported by
the corresponding latent factor. The scores obtained by our algorithm for the cold and warm items are 2.35
and 1.48 respectively (Color figure online)

new item is added to the items catalogue. Formally, the problem can be defined as:
Given a user-item rating matrix containing cold-start items, make a personalized top-
N recommendation of items which contains relevant (favoured) cold-start items also,
if any.

We propose an efficient two-stage algorithm1 for item cold-start recommenda-
tion within the collaborative matrix factorization framework. Our algorithm starts by
extracting vector embeddings for the cold and warm items assuming that the items can
be soft-clustered in the space spanned by the enriched side-information. In the second
step, the extracted soft-cluster embeddings of the warm items are used to estimate
latent user embeddings by approximating a low rank factor model on the observed
rating values. Our idea for cold-start recommendation is based on the assumption that
an item lying closer to the relevant items cluster is favoured compared to an observed
irrelevant item. The intuition behind our algorithm is graphically depicted in Fig. 1.

Consider two users u1 and u2 and a set of n items. The user u1 rated (n − 1)
items {i1 . . . in−1} whereas user u2 rated n − 2 items {i1 . . . in−2}. The users have
shown identical tastes i.e. the rating profiles for the (n − 2) items {i1 . . . in−2} for

1 Source code for the algorithm: https://git.io/JJYmO.
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both users are exactly the same. Both the users favoured the item sets {i1 . . . ik−1} and
{im . . . in−2}, but disfavoured the items set {ik . . . im−1}. The item in is unobserved
(represented using) for both the users whereas the item in−1 is disfavoured by u1 but
unobserved for u2. This information is represented in Table: (a) of Fig. 1. Table: (a)
corresponds exactly to the rating matrix associated with the data. The items {i1 . . . in}
are associated with at most two latent factors f1 and f2. In the simplest use case, if
we assume that the items i1 . . . in are movies and each movie can be associated with
at most two genres, f1 and f2 represent the genres associated with the movies. In
such cases, each movie can be represented as a real vector of genre association values.
For example, if the movie titled a has genre association values 0.4 and 0.8, it can be

represented as the vector

[
0.4
0.8

]
.

In the example given in Fig. 1, the items {i1 . . . ik−1} and {ik . . . im−1} are supported2
by the latent factors f2 and f1 respectively. The items {im . . . in} are supported by both
latent factors f1 and f2. This information is shown in the Table: (b) of Fig. 1. Table: (b)
corresponds exactly to the side-information matrix associated with the data. It turns
out that the preferences of u1 and u2 are fully defined by the latent factors f1 and f2 in
the sense that both users disfavor items with support only by f1 and prefer items with
support only by f2. The items with support by both f1 and f2 have mixed preferences.
This is represented using the scatter plot in Fig. 1.3 Items with support only by f1 i.e.
the items for which f1 = 1 and f2 = 0 in the item side-information matrix are plotted
around the line labelled f1 and the items with support only by f2 i.e. the items for
which f1 = 0 and f2 = 1 in the item side-information matrix are plotted around the
line labelled f2. The cluster of points at the top right corner represents the items with
support by both f1 and f2. Items relevant to both users i.e. items with high preference
scores are colored in blue and irrelevant items are colored in gray.

Given the rating and side-information matrix, the task here is to recommend an
unrated item to the user u2. The possible candidate items are in−1 and in . Since the
item in is not observed by either u1 or u2, it is a cold item whereas in−1 is an irrelevant
item for u1 but an unobserved warm item for u2. In Fig. 1, � and � represent the
cold and warm unobserved items respectively. Our idea is to rank the cold item (�),
placed nearer to the cluster of relevant items (blue point cloud), ahead of the relatively
far placed irrelevant warm item (�) when recommending for user u2. To do so, we
first extract the cluster association values from the enriched side-information matrix
and use it to fit user feature vectors using rating information. Since the cold item has
greater association towards the latent factor f2 or smaller association towards the latent
factor f1, the soft-cluster embeddings for the cold itemwill reflect it. The rating scores
obtained by our algorithm for the cold and warm items are 2.35 and 1.48 respectively.

We also observe that the majority of the item cold-start recommendation algorithms
are evaluated using commonly used ranking metrics like NDCG or MAP only. But
in practical settings, recommended items are a mix of both warm and cold items. For
effective evaluation, it is important to quantify the ability of an algorithm to recommend

2 Support of a vector x is the set of all j such that x j > 0.
3 To get a sense of the point cloud and differentiate between individual points, the points are plotted with
a small random noise added to it.

123



1564 S. A. Puthiya Parambath, S. Chawla

cold items. We propose the metric Cold Items Precision (CIP) to measure the ability
of an algorithm to recommend cold items. CIP can be used in conjunction with NDCG
and MAP to measure the effectiveness of the cold-start recommendation algorithm.
In addition, the two-step or split optimization strategy we use in our settings might be
of independent theoretical interest, particularly when applied to cold-start scenarios.

We advise the readers to keep inmind that similar to itemcold-start recommendation
algorithms proposed byVartak et al. (2017) and Saveski andMantrach (2014), our pro-
posed algorithm can handle item or user cold-start problem only; it cannot handle both
the item and user cold-start problems. In addition, we also need the side-information
matrix to contain positive correlations between different side-information categories
to obtain significant performance improvement over other algorithms (see Sect. 4). We
reckon that this might be the case with other content + collaborative based algorithms
also. The remainder of this paper is organized as follows: after a brief overview of the
state-of-the-art personalized item cold-start recommendation algorithms in Sect. 2, we
describe our framework and algorithm in Sect. 3. At the end of Sect. 3, we propose
an extension of the algorithm to handle user cold-start problems. In Sect. 4, we report
the results of our experimental study on three benchmark datasets against strong non-
deep learning based baselines. Though recent studies (Ludewig and Jannach 2018;
Lin 2019; Dacrema et al. 2019; Ludewig et al. 2019) showed that deep learning based
algorithms perform relatively poorly compared to non-deep learning based baselines in
common information retrieval tasks, there is a growing interest within the community
to adapt deep learning based models. In this regard, we compare our algorithm against
state-of-the-art deep graph embedding models for cold-start recommendations. We
conclude the paper in Sect. 5 after describing the results of a qualitative study.

2 Related work

Collaborative item cold-start recommendation algorithms can be broadly classified
into two categories: (i) based on the idea of enriching matrix factorization based
collaborative algorithms with item side-information or metadata and (ii) based on
eliciting user feedback for cold-start items by recruiting a set of users to get initial
ratings. Up to some extent, content-based algorithms are unsusceptible to the cold-
start problem, and a natural strategy to deal with the problem is to adapt collaborative
algorithms to use the content information. Matrix factorization based collaborative
filtering schemes consider preference information of both users and items to extract
latent user and item features from the observed rating matrix. These latent user and
item feature embeddings are used to predict the top-N recommendations. To handle
the cold-start recommendation problem, one can devise methods to incorporate the
side-information data in the matrix factorization scheme.

A large class of cold-start recommendation algorithms are based on the collective
matrix factorization idea proposed by Singh and Gordon (2008). Collective matrix
factorization based algorithms assume the existence of a shared subspace between
different modalities of the data. The shared item subspace can be approximated using
the available side-information and rating data. Typical collective matrix factorization
based algorithms optimize a non-convex joint objective function, defined in terms
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of all the available data modalities, using cyclic block coordinate descent otherwise
known as alternating minimization. Saveski and Mantrach (2014) proposed an algo-
rithm based on the collectivematrix factorization technique that uses the itemmetadata
and the rating data, and exploits the local geometric structure of the metadata space.
The proposed algorithm, called locally collective matrix factorization, decomposes
the side-information and the collaborative matrices in a common low-dimensional
space while preserving the local geometrical structure of the data. This is done by
adding a manifold regularizer (Belkin et al. 2006) to the collective matrix factoriza-
tion objective function. Very recently, Gouvert et al. (2018) also used the collective
matrix factorization ideas to solve the cold-start recommendation in the music rec-
ommendation setting. The proposed algorithm learns the feature vectors for the warm
and cold songs by jointly optimizing a loss function defined in terms of the listening
count data of the songs and the associated tags information. Typical to the collective
matrix factorization models, the authors assume the existence of a shared subspace
between song listen count and tags.

Factorizationmachines (Rendle 2010, 2012) based techniques are also very popular
for cold-start recommendations. Factorization machines based algorithms also make
use of the item side-information to predict the relevance scores for cold items. In
specific application settingswith abundant itemmetadata, such as question-answering,
many cold-start recommendation algorithms based on the idea of using factorization
machines are proposed in the past (Sun et al. 2018; Piazza et al. 2017). In factorization
machines, each user-item interaction is represented as a unique feature-label pair
where the feature is constructed by using the user and item side-information data.
The model parameters are learned using standard supervised learning techniques. The
higher order correlations between different available side-information can also be part
of the feature vector. Factorization machine based models are particularly suitable in
sparse settings when the categorical side-information data is represented using one-
hot encoding. Since factorization machine objective function does not make use of
the user-user correlations explicitly, algorithms based on factorizationmachines might
lose some collaborative information between different users. Though this problem can
be alleviated by encoding observed user-user correlation as part of the feature vector,
it might result in an exponential increase in the dimensionality of the feature space.

Gantner et al. (2010) proposed a two-stage algorithm, similar to ours, by estimating
attribute-to-feature mappings from the rating matrix using supervised learning tech-
niques. In the first stage, the proposed method learns user and item features by fitting
a low rank latent factor model. The extracted user features are used with item meta-
data to learn item weight vectors for different metadata categories for both cold and
warm items in the second stage. In addition to higher computational costs, the above
algorithm may result in severe overfitting as the observed rating values are shared in
the learning phases of both stages of the algorithm. The proposed algorithm uses the
observed ratingmatrix to learn the user and item features in the first phase and the same
observed rating matrix is used to learn the weight matrix in the second phase of the
algorithm. Our proposed method learns item embeddings using cluster assumption in
an unsupervised manner without making use of the observed rating values with lesser
computational cost.
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Park and Chu (2009) extended the pairwise preference ranking model to accommo-
date cold-start items. In the proposed method, the observed rating matrix is assumed
to be a weighted cross-product between user and item metadata vectors. The rating
scores are estimated by fitting a pairwise loss function in the regression framework.
Zhang et al. (2014) extended the collaborative latent factor model to include bias terms
for the metadata categories associated with the items. The final recommendation is
produced by co-training two regressors learned from the observed user-item rating
values and corresponding metadata data.

Barjasteh et al. (2015) proposed an algorithmbased on decoupling the rating estima-
tion and item feature vector estimation into two separate steps. The algorithm extracts
a representative item subspace from the item similarity matrix after estimating the
entries of a fully recoverable submatrix of the original observed rating matrix using
standard matrix completion techniques. The full rating matrix is estimated using the
extracted representative subspace and the information contained in the completed sub-
matrix. Chou et al. (2016) proposed a cold-start next-song recommendation algorithm
in sequential data settings. The proposed algorithm predicts the next-song using ten-
sor factorization that exploits content features extracted from music audio. Recently,
Sedhain et al. (2017) proposed a Low-Rank Linear model for user cold-start recom-
mendation settings. In the proposed algorithm, the observed rating values are used
to estimate a low-dimensional weight matrix from a subset of parametrized low-rank
matrices. This is a generalization of the pure content based cold-start recommendation
algorithm and the proposed algorithm is equivalent to the pure content based algo-
rithm when the weight matrix is replaced with the one-hot encoded side-information
matrix of the items. This approach can also be considered as a special case of the
factorization machines (Rendle 2010) with only a single order of interactions used for
feature engineering.

Clustering based approaches are also used for collaborative filtering in the past
(Ungar and Foster 1998; Salah et al. 2016; Verstrepen et al. 2017). The majority of the
clustering algorithms work by co-clustering the users and items based on the rating
values. Recently, Vlachos et al. (2019) proposed a co-clustering based algorithm for
cold-start recommendation algorithm in the presence of positive only ratings. As in
the case of our algorithm, the proposed algorithm makes use of any side-information
data, but assumes that all the items are either preferred or the preference status is
not known. The side-information data is incorporated into the co-clustering objective
to form a joint optimization objective, and the model parameters are estimated using
alternatingminimization techniques typical to the collectivematrix factorization based
approaches.

Recently, many item representation learning models have been proposed. Kula
(2015) proposed learning item embeddings by aggregating the embeddings for each
category of the side-information. These embeddings are extracted by fitting a low rank
matrix model on the rating data.With the advent of deep representation learning meth-
ods, many deep-neural network based architectures have been proposed to solve the
item cold-start problem. Vasile et al. (2016) proposed learning item embeddings from
the text data associated with the product co-purchase details and item side-information
using deep neural networks. Wei et al. (2016) proposed a 2-stage approach where the
item embeddings for both cold andwarm items are learned using deep neural networks,
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from the side-information in the first stage and are used in the second stage where SVD
based matrix factorization techniques are used to estimate the unobserved rating val-
ues. This work considers recommendation as a rating prediction task whereas we pose
recommendation as a top-N ranking problem. Similarly, Vartak et al. (2017) proposed a
meta-learning item cold-start recommendation algorithm using deep neural networks.
The proposed method works in implicit feedback settings and recommendation is con-
sidered as a binary classification task. Our proposed method differs from the above
methods as our embeddings are soft-cluster embeddings which are not constrained to
work only with the textual description of the items. It is generally believed that the sub-
par performance of the deep learningmodels for information retrieval tasks as opposed
to the language processing and vision tasks is due to the sparsity in the input features
(Sun et al. 2018; McMahan et al. 2013). Moreover, in light of recent studies on the
efficacy of deep learning methods for recommendation tasks, one should be sceptical
about the use of these methods (Dacrema et al. 2019; Ludewig et al. 2019). In spite of
that, deep architecture models are the backbone of many large scale industrial recom-
mender systems like YouTube (Covington et al. 2016). Unlike the settings we study in
this paper, the majority of the deep learning models for cold-start recommendation do
not consider the extreme cold-start scenario. Recent advances in deep learning models
for cold-start recommendation make use of the graph embedding techniques and learn
user and item embeddings by injecting higher order connectivity relations between
users and items using the Laplacian of the user-item implicit interactionmatrix (Zheng
et al. 2018; Wang et al. 2019b).

User feedback elicitation based cold-start recommendation algorithms are mostly
used in online learning settings andwork by eliciting new items or newuser preferences
by actively querying preference information. A typical workflow in such an approach
can be described as: whenever a new item is introduced, the system initiates many
trials and at each trial the new item is presented to a seed user for her opinion, thus
gradually building a rating profile for the item. Zhou et al. (2011) proposed functional
matrix factorization within the active learning framework, employing a decision tree
model for selecting the seed users for each new item and the decision tree model was
combined with the low-rank matrix factorization to fit a prediction model. Feature
vectors for the cold-start items were adaptively built by the seed users’ responses by
modeling the cold-start item feature vector as a function of user response. The decision
tree outputs were mapped to the item feature space and these item features were used
in the subsequent low-rank approximation. The proposed method alternatively learns
the best mapping function and item features. Aharon et al. (2015) proposed a smart
exploration strategy to identify a set of users for rating the cold-start items in online
settings. Similarly, Anava et al. (2015) proposed an algorithm to recruit a set of users
to rate the cold-start items with constraints on the number of users to recruit.

3 Cold-start item recommendations

We are given a set I of n items and a set U of m users. Each user is assumed to have
an inherent personal preference over the set of items I i.e. each item i ∈ I might be
favoured differently by different users. Users’ personal preferences for the items are
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represented using a preference score in the formof ordinal rating values, typically in the
range {1 · · · 5}with higher values indicating favored items and lower values indicating
unfavoured items. We also assume that a user may have the same preference score for
different items and the preference relation is rational. The rating values are tabulated
as am×n user-item rating matrixR where each entryRi j represents the rating values
by the user i for the item j . The unobserved rating values are denoted using zeroes
i.e. Ri j = 0 if user i did not rate item j .

In addition to the above standard collaborative settings assumption, we also assume
that some side-information related to the items is available. We refer to any attribute or
metadata associatedwith items other than ratings as side-information.We represent the
available side-information associated with the items set I using a n× p characteristic
matrix called item side-information matrix A where p is the number of available
side-information categories. For example, if items are movies, then attributes such as
genre, cast, director etc. are referred to as side-information, which can be represented
as a one-hot encoded characteristic matrix. The subspace spanned by the rows of
the characteristic matrix forms side-information space. In the standard item cold-start
scenario, we assume that the item set I is a union of two disjoint sets Iw and Ic i.e.
I = Iw ∪ Ic and Iw ∩ Ic = ∅, where Iw is the set of warm items and Ic is the set of
cold items i.e. items for which no rating values are observed (Ri j = 0 ∀ j ∈ {1 . . . n}).
In the item cold-start recommendation problem, one is interested in recommending
potentially relevant unobserved items to users such that recommendation contains
relevant cold-start items from Ic also, if any.

3.1 Soft cluster membership item embeddings

The crux of our approach lies in extracting rich vector embeddings for items, both
warm and cold, from the available side-information data. To extract the vector embed-
dings, we assume that the items form k weak clusters in the side-information space
and each item is associated with one or more of these k clusters. For example, if
the items are movies and the side-information space is made up of different genres,
each movie will be associated with multiple genres or some latent factors extracted
from genres with different degrees of association. The i th entry of an item vector
embedding indicates the degree to which the corresponding item is associated with
i th cluster.

Instead of working directly on the item side-information matrix, we wish to take
into account possible dependencies between different categories within the side-
information. To explain this idea, consider the movie recommendation example. A
horror movie is expected to have stronger association with movies under the thriller
or suspense genres than family movies. We expect such associations to be reflected
in the soft-cluster embedding vector. For this purpose, we define the enriched side-
information matrix or simply enriched matrixX as the product of the side-information
matrix A with the co-occurrence frequency A�A. The side-information matrix A is
assumed to be the one-hot encoded matrix.
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X = AA�A (1)

NMF based clustering Given a data matrix, k-means clustering can be used
to hard cluster the data points. The k-means can be equivalently cast as a matrix
factorization problem (Ding et al. 2005). When the data matrix contains only non-
negative entries, it is natural to assume that the factor matrices are also non-negative.
Thus, we can frame k-means clustering of non-negative data points as a Non-negative
Matrix Factorization (NMF) problem and the factor matrices can be interpreted as the
cluster membership matrix and matrix of centroids (Ding et al. 2010). Moreover, it
is argued that NMF has clustering capabilities which are superior to k-means (Li and
Ding 2006).

Formally, non-negative factorization of X of the form

argmin
G�G=Nk

Gi j∈{0,1},F≥0

‖X − GF‖2 (2)

whereG ∈ 	n×k+ , F ∈ 	k×p
+ andNk is the k× k diagonal integer matrix, is equivalent

to k-means clustering (Li and Ding 2006). The diagonal elements of Nk indicate the
number of data points in each cluster.

Here G and F can be interpreted as the cluster membership matrix and the feature
representation of the cluster centroids respectively. The i th column ofF corresponds to
the centroid of the i th cluster. The constraintsGi j ∈ {0, 1} andG�G = Nk guarantee
that each data point is associated with exactly one cluster. Thus the optimization
problem in Eq. (2) results in hard clustering as in the case of k-means. Now, relaxing
the constraints Gi j ∈ {0, 1} and G�G = Nk , the optimization problem in Eq. (2)
reduces to the soft-clustering as noted by Li and Ma (2004) and Ding et al. (2005).
Here,Gi j indicates the degree to which the i th item is associated with j th cluster. Lee
and Seung (2001) proposed a simple multiplicative update rule to find a local minima
of the soft-clustering optimization problem.

Fi j = Fi j
(G�X)i j

(G�GF)i j
Gi j = Gi j

(XF�)i j

(GFF�)i j

Convex-NMFBased Clustering:Ding et al. (2010) showed that by constrainingF to
be the linear combinations of the rows of X, a better estimate for the cluster centroids
can be obtained. The authors proposed convex-NMF where the centroid matrix F
is assumed to be a linear combination of the columns of mixed-sign matrix X. The
optimization problem for the convex-NMF takes the form

argmin
G≥0,P≥0

‖X − GPX‖2 (3)

Here, since the enriched matrix X is non-negative, our update rule is slightly different
from the one proposed by Ding et al. (2010). The objective function given in Eq. (3)
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is non-increasing under the update rules

Gi j = Gi j
(XX�P�)i j

(GPXX�P�)i j
Pi j = Pi j

(G�XX�)i j

(G�GPXX�)i j

The above update rule can be easily obtained using gradient descent with adaptive
learning rate. For example, gradient update rule for G can be written as:

Gi j = Gi j + ηi j (XX�P� − GPXX�P�)i j

taking ηi j = Gi j

(GPXX�P�)i j
, we get Gi j = Gi j

(XX�P�)i j

(GPXX�P�)i j

Similarly, gradient update rule for P can be written as:

Pi j = Pi j + ηi j (G�XX� − G�GPXX�)i j

taking ηi j = Pi j

(G�GPXX�)i j
, we get Pi j = Pi j

(G�CC�)i j

(G�GPCC�)i j

Proof for convergence of the above update rule follows the same argument as given
by Ding et al. (2010).

3.2 Extracting user features

Once the soft-cluster membership vector embeddings for items are extracted, the
second stage in our algorithm is to estimate the user features. Following Steck (2013),
we use regularized weighted non-negative matrix factorization to estimate the user
features given item features. We use the Frobenius norm on the user feature matrix as
the regularizer. As the ratings and item features are assumed to be non-negative, we
impose non-negativity constraints on the user features also. The optimization problem
to estimate the user features given the item feature matrix (G) takes the form

argmin
U≥0

‖W 
 (UG� − R)‖2 + 1

2
‖U‖2 (4)

here 
 indicates the Hadamard product andW is the weight matrix defined as

Wi j =
{
1 if Ri j �= 0,

0 if Ri j = 0
(5)

The optimization problem in Eq. (4) is a constrained convex problem and it can
be solved efficiently. Due to the Hadamard product term, the solution to the above
problem cannot be expressed in a simple closed form. The problem can be re-written
such that the solution for the i th row of U can be obtained by solving non-negative
least square (nnls) problem. Let Wi be the n × n diagonal matrix with i th row of W

123



Simple and effective neural-free soft-cluster embeddings… 1571

Algorithm 1: Soft-cluster Embedding based Cold start item recommendation
(SEC)
Input : R,A

1 Construct enriched matrix X = AA�A ;
2 Extract item embeddings matrix G by solving Eq. (2);
3 Extract user embeddings U by solving Eq. (4);

4 Estimate the rating matrix R̂ = UG�;

Output: Top-N - unobserved items in the descending order of R̂

as the diagonal entries of Wi , i th row of U (represented as column vector Ui ) can be
obtained by solving the below regularized nnls

argmin
U≥0

‖QiUi − bi‖2 + 1

2
‖Ui‖2

where Qi = WiG and bi = WiRi . The problem can be converted to standard nnls

problem argminU≥0 ‖Q̂iUi − b̂i‖ by introducing the matrix Q̂i =
[
Qi

I√
2

]
and the

vector b̂i =
[
bi
0

]
where I is the k × k identity matrix. In practice, matrix product

terms Qi = WiG and bi = WiRi can be computed in linear time using broadcasting
techniques available in popular linear algebra packages.

3.3 Ranking in item cold-start settings

Finally, once the item and user embeddings are extracted, preference scores for the
unobserved items including the cold items can be obtained as R̂ = UG�. Top-N
recommendation is carried out by ranking the top-N unobserved items according to
the estimated preference scores. The complete algorithm is given in Algorithm 1.

In practice, the embeddings for a new out-of-train item can be obtained as follows.
The enriched side-information vector for the new item can be obtained using vector-
matrix multiplication. Given the one-hot encoded side-information vector a for a new
item, x = aAT A gives the corresponding enriched side-information vector. Here
AT A is the stored historical co-occurrence frequency matrix. The item embedding
vector Ga can be obtained by solving Eqs. (2) or (3) for the fixed F and x . The cluster
centroids matrix (F) is fixed as it is computed using historical data.

We would like to point out that in our algorithm, joint optimization of soft clus-
tering and matrix completion objectives resulted in poor performance due to error
propagation in the clustering and completion tasks as observed by Barjasteh et al.
(2015). Hence, a two-stage approach is necessary to get lower prediction error and
better performance. Later, we study this effect in detail.
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Fig. 2 Approximation error distribution for joint versus split optimization

3.4 Handling user cold-start problem

Algorithm 1 can be readily modified to handle the user cold-start problem. If B is the
user side-information matrix, we define the enriched user matrix as Y = BB�B. We
can extract the soft cluster membership embedding vectors for users by solving the
relaxed version of Eq. (2) for Y. Given the extracted user features U, item features G
can be estimated by solving the optimization problem 4 for G. The remaining steps
follow as in Algorithm 1.

3.5 Split versus joint optimization

We conclude this section by highlighting the importance of the split (two-step) opti-
mization procedure in our proposed algorithm. Our hypothesis claims that the cold and
warm items can be soft-clustered in the enriched side-information space and the user
rating for an item can be obtained by the inner product between the user feature and
the item cluster association vectors. Our hypothesis also suggests that performance
improvement reported in Sect. 4 can be obtained by split optimization as opposed to
the joint-optimization proposed in other approaches for cold-start recommendations
(Saveski and Mantrach 2014; Zhou et al. 2011; Krohn-Grimberghe et al. 2012; Singh
and Gordon 2008). We empirically validate this hypothesis below.

We create 1000 instances of the optimization problem by randomly drawing the
values of G, F and U from a random uniform distribution. The resulting values of X
and R are given as input to the joint and split optimization strategies. The distribution
of the approximation errors, Frobenius norm of the difference between true U and
the estimated U by the corresponding optimization strategies, are plotted in Fig. 2. As
shown in the figure, split optimization results in lower approximation error (mean error
of∼17) compared to the joint optimization (mean error of∼27). It should also benoted
that variance of the split optimization is slightly higher than the joint optimization. In
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practice, joint optimization of (2) and (4) can be done using alternating minimization
techniques (Jain et al. 2017). Although the joint optimization problem is bi-convex and
closed form solutions exist for each variable update, it is time consuming compared
to the split optimization strategy. In case of joint optimization one has to solve three
non-negative least square problems for each row of the variable matrix, whereas in
case of split optimization, results can be obtained using a multiplicative update rules
and a single non-negative least square solution, thus reducing the time complexity in
addition to the performance improvement.

In our specific case, split optimization works better because of the fact that cluster
centroids F do not depend on users’ preferences and are consequently independent
of the user feature matrix U. In joint optimization, at each iteration F is re-computed
according to the value of U through G, as G value is calculated based on U. In split
optimization,F is not affected by the value ofU and thus results in better approximation
of the centroids. Our experimental study on real world datasets also confirms the above
observation.

4 Experiments

The main purpose of this section is to compare the performance of different state-of-
the-art algorithms against the proposed one. Though many recent studies (Yang et al.
2019;Dacrema et al. 2019; Ludewig et al. 2019) demonstrated that deep learning based
algorithms perform inferior to content + collaborative algorithms in recommendation
tasks, there is a growing interest within the community to adapt deep learning based
models. Hence, we carry out two sets of experiments: in the first set of experiments
we compare our algorithms against state-of-the-art content + collaborative algorithms
and in the second set of experiments we compare the proposed algorithm against
recent graph embeddings based deep learning algorithms. In both cases, we evaluate
different approaches in a movie cold-start recommendation setting. We also perform
qualitative analysis of our results to explain the recommendations provided by the
proposed algorithm.

4.1 Comparison against non-deep learning frameworks

4.1.1 Datasets

We used three benchmark movie datasets for our first set of evaluation (ii) Movie-
Lens 20M (ii) MovieLens 1M and (iii) Yahoo! Movies. MovieLens 20M contains
20,000,263 ratings of 138,493 users across 27,278 movies. MovieLens 1M contains
1,000,209 rating values of 6040 users for 3706 movies. In both MovieLens 20M and
1M datasets, every user has rated at least 20 movies. In case of the Yahoo! Movies,
we removed movies with missing genres and users with less than 15 ratings and the
final dataset contained 138,310 rating values for 3429 users and 8067 movies. In case
of MovieLens 1M and Yahoo! Movies, we used genres as the side-information and
the characteristic matrix is constructed based on the genres associated with movies.
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Consequently, the dimension of the side-information space is 18 and 25, the number of
total genres for MovieLens and Yahoo! Movies respectively. MovieLens 20M dataset
contains additional movie tags given by different users. The dataset contains 35,169
unique (disregarding the case-sensitivity) tags across 19,545 movies. In the final pro-
cessing we filtered out the tag data which does not appear a minimum of 200 times.
The side information matrix is built using the genres and remaining tag information.
Final dimension of the side-information space was 442.

4.1.2 Baselines

We chose four item cold-start recommendation algorithms as baselines: Decoupled
matrix Completion and Transduction (DCT) (Barjasteh et al. 2015), Linear Low-Rank
Regression (LCO) (Sedhain et al. 2017), Local Collective Embeddings (LCE) (Saveski
and Mantrach 2014) and Attribute-to-Feature Mappings (AFM) (Gantner et al. 2010).
LCE employs a joint optimization strategy but DCT and AFM employ split optimiza-
tion strategy like in our case. LCE can be considered as a special case of factorization
machines which uses only 1-level of variable interactions. Other commonly employed
baselines like random recommendations are excluded in our study as previous studies
showed that they always perform poorly compared to our baselines (Barjasteh et al.
2015; Saveski and Mantrach 2014). Our proposed algorithm is called Soft-cluster
Embedding based Cold-start recommendation (SEC).
Decoupled matrix Completion and Transduction (DCT) The algorithm is composed of
matrix complete and information transduction steps. In the complete step, a sub-matrix
extracted from the original rating matrix is completed using matrix completion tech-
niques and in the transduction step a representative subspace from the item similarity
matrix is extracted using top eigenvectors. Completed sub-matrix and representative
subspace are used to estimate the missing rating values.
Low-Rank Linear Cold-Start Recommendation (LCO) LCO models the rating values
as the weighted sum of the available side-information data Sedhain et al. (2017). The
observed rating values are used to estimate a low-dimensional weight matrix from
a subset of parametrized low-rank matrices. LCO algorithm was previously used in
the user cold-start settings and here we adapt it to item cold-start settings by using
item side-information data. Pure content based cold-start recommendation can be
considered as a special case of LCO algorithm where the weight matrix is replaced
with the side-information matrix of the warm items.
Local Collective Embedding (LCE)This is an extension to the collective matrix factor-
ization approach proposed by Singh and Gordon (2008). The LCE algorithm exploits
the local geometric structure of the low dimensional latent space by imposing that two
items closer in the intrinsic geometry should be closer in the low-dimensional space
(Saveski and Mantrach 2014). To achieve this, a manifold regularizer (Belkin et al.
2006) is added to the collective matrix factorization objective function.
Attribute-to-Feature Mappings (AFM) For completeness, we compare our algorithm
against the algorithm proposed by Gantner et al. (2010). Though the proposed method
is a bit older than other baselines, since the work is closely related to our work, we
include that in our comparison. AFM is a two-step algorithm where user and item
embeddings are learned from side-information by modeling the rating matrix as a
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linear combination of the embeddings. The extracted user features are used with item
metadata to learn the item weight matrix for different side-information categories for
both cold and warm items in the second stage.

4.1.3 Evaluation metrics

In addition to the standard ranking metrics Normalized DCG (NDCG) and Mean
Average Precision (MAP), we define a new metric called Cold Items Precision (CIP)
to quantify the number of cold-start items recommended.

Cold Items Precision (CIP) Majority of the previous work on cold-start recom-
mendation, including our baselines, used only ranking metrics like NDCG or MAP to
evaluate the performance. But in practice, items to be recommended are a mix of both
warm and cold items. By using only ranking metrics, one fails to quantify the ability
of the algorithm to recommend cold items. For an effective comparison, in addition
to the ranking metrics, one has to measure the number of recommended cold items.
For this, we define the metric Cold Items Precision (CIP):

C I P = # of recommended cold items

# of recommendations

A higher CIP value means that more cold items are included in the recommendation
in addition to the unobserved warm items. In the case of MAP, since it is a binary
ranking metric, we discretize the rating values such that 4 and 5 ratings are considered
relevant and others as irrelevant.

4.1.4 Experimental protocol

We followed the same experimental protocol as in the baseline algorithm Barjasteh
et al. (2015).We employed fivefold validation by partitioning the items set into 5 equal
disjoint subsets, and using one as testing and the rest as training set. The ratio of test-
ing to training data is 1:4, and the experiment is repeated for each of these 5 disjoint
partitions. Our task is to recommend a fixed number of relevant warm and/or cold
movies from the unobserved test data. The representative users are determined based
on the training set only. We consider recommendation as top-N ranking problem and
follow the evaluation strategy described in Parambath et al. (2016) and Steck (2013).
In the case of the SEC, the number of clusters is set to 60 for MovieLens 20M, and 25
for MovieLens 1M and Yahoo! Movies dataset. For the baseline algorithms, hyper-
parameters are chosen using grid search, wherever applicable, and reported results
correspond to the optimal set of hyperparameters. We use Friedman and Nemenyi
post-hoc test to check the statistical significance of results (Demšar 2006).

4.1.5 Results and discussion

In the case of SEC, we experimentedwithNMF andConvex-NMF clustering schemes.
NMFandConvex-NMFresultswere very similar,with theNMFschemegiving slightly
better results compared to Convex-NMF. Below, we report the results of our algorithm
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Fig. 3 Comparisonof the performances of different non-DLalgorithmson cold-startmovie recommendation
task (MovieLens 20M, SEC = ours)

withNMF scheme. Later, we compare the performance between theNMFandConvex-
NMF schemes on MovieLens 1M dataset.

Figures 3, 4 and 5 present the results of our experimental study with error bars
in terms of NDCG, MAP and CIP on the MovieLens 20M, MovieLens 1M and the
Yahoo! Movies datasets respectively. Our proposed SEC algorithm outperformed all
the baselines in terms of the relevance ranking metrics NDCG and MAP. The first
major inference we can make from our experimental study is that the choice of the
optimization strategy (split-vs-joint optimization detailed in Sect. 3) affects the results

123



Simple and effective neural-free soft-cluster embeddings… 1577

10 20

0.045

0.050

0.055

0.060

0.065

0.070

SEC
DCT
LCO
LCE
AFM

10 20

0.010

0.015

0.020

0.025

SEC
DCT
LCO
LCE
AFM

10 20

0.18

0.20

0.22

0.24

0.26

SEC
DCT
LCO
LCE
AFM

Fig. 4 Comparisonof the performances of different non-DLalgorithmson cold-startmovie recommendation
task (MovieLens 1M, SEC = ours)

on real world datasets as well i.e., joint optimization based techniques perform poorly
compared to split optimization techniques. Split optimization based algorithms like
SEC, DCT and AFM performed better than the joint optimization based LCE. This
can be seen for all three datasets used.

In the case of MovieLens 20M dataset, even for higher values of N ≥ 10, SEC
consistently outperformed its peers. In practical cases, due to budget constraints like
the number of available slots in the webpage or due to the screen size, the value of
N is limited to 5 or less. Hence, it is very important to note the performance of any
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Fig. 5 Comparisonof the performances of different non-DLalgorithmson cold-startmovie recommendation
task (Yahoo! Movies, SEC = ours)

recommendation algorithm for lower values of N . A good recommendation algorithm
should have higher values for NDCG and MAP for lower values of N . SEC results
in better performance on MovieLens 20M, MovieLens 1M and Yahoo! Movies for
smaller number of recommendations (N ) values. As the value of N increases, the
majority of the relevant items are also included in the recommendation list by the
baseline algorithms. Moreover, SEC results are statistically significant compared to
the second-best methods LCO and DCT. It should also be noted that less than half of
the movies (11,516 out of 27,278) in the MovieLens 20M dataset have more than ten
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4 or 5 ratings whereas in MovieLens 1M 2811 movies out of 3706 have more than
ten 4 or 5 ratings. Hence in general performance metric values for MovieLens 1M is
higher than for MovieLens 20M dataset.

In case of MovieLens 1M, SEC improved NDCG values by more than 10% com-
pared to LCO and DCT, the second-best performer. Though AFM is closely related to
our work, due to the overfitting effect we discussed in Sect. 2, its performance is not
up to par with other baselines. It can also be noted that as the recommendation size
increases, MAP values for both MovieLens 20M, MovieLens 1M and Yahoo! Movies
decrease. This is due to the low discretization threshold we use for the binary ranking
metric MAP in the experiments. We deem an item as relevant only when the observed
rating value is 4 or 5. Though the average number of relevant ratings per user inMovie-
Lens and Yahoo! Movies is relatively high, the median relevant ratings per user is very
small for the MovieLens and Yahoo! Movies datasets. From the above observation it
can be inferred that for the majority of the users, our proposed algorithm recommends
all the relevant test items in the top-5 and top-3 rankings. Hence, on average as the
recommendation size increases to more than 5, the MAP values decrease.

In the case ofMovieLens, both 1M and 20M, SECwas able to recommendmore cold
items as compared to others. Higher values of CIP and MAP for SEC clearly indicate
that most of the cold items SEC recommended have ratings values of 4 or 5. In the case
of Yahoo! Movies, when the recommendation size is more than 5, DCT recommended
more cold items than SEC, but lower MAP and NDCG values for DCT clearly show
that most of these items are not very relevant. It should also be noted that even though
the proposed CIP measures the number of cold items in the recommendations, it alone
does not capture the relevance of the cold items. A good cold-start recommendation
algorithm should have higher values for CIP, NDCG and MAP, as NDCG and MAP
measure overall usefulness of the recommendation. Our proposed algorithm achieves
these requirements.

Parameter analysis SEC model has one hyperparameter: k, the number of clusters.
Figure 6 shows a typical behaviour of SEC when k is varied. The results are averaged
over 5 runs of the algorithm on the MovieLens data. Using smaller values of k results
in underfitting the data whereas larger values result in k overfitting. We noticed a
similar trend in the case of MovieLens 20M and Yahoo! Movies as well. One can
choose the best value for k that fits the data using standard techniques (Pham et al.
2005). There is a growing interest in parameter free clustering techniques (Sarfraz
et al. 2019), and considering such techniques for cold-start recommendation will free
us from hyperparameter tuning. We leave this as a future work.

Running time comparisonWecompare the running time complexity of the proposed
algorithm against baseline algorithms. The soft clustering stage of the SEC algorithm
has two update steps. Running time for the F and G update steps are in the order of
O(t((n+p)k2+npk))where t ∼ 100 is the number of iterations to convergence.Often
in practice, k << n. The second stage in the SEC algorithm: solving for Ui can be
done inO(k2) using fast projected gradient methods (Polyak 2015). Time complexity
of LCO algorithm is in the order of O(k3 + k2(n + p)) (Sedhain et al. 2017). DTC
requires solvingmatrix completion problem on a submatrix, which amounts to solving
non-negative least squares iteratively. The running time for matrix completion takes
O(t(m + n)k3) and extracting the top eigenvectors from the item similarity matrix
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Fig. 6 Performance of SEC as a function of the hyperparameter k (# of clusters)

takesO(k3) time. LCEoptimization problem can be solved usingmultiplicative update
rules like in our case and running time is in the order of the clustering step of the SEC
algorithm (Saveski andMantrach 2014). In addition to the time savings, our algorithm
gives a clear and simple intuition on how items are selected for recommendation (see
Fig. 1).

Richness of side-information Our approach relies on extracting soft cluster mem-
bership vector embeddings for items using the item side-information. Hence, it is
very important that side-information contains meaningful correlation information
between different sub-categories. To study the importance of the richness of the side-
information, we create synthetic data such that it follows the same rating distribution
as the MovieLens data, with same n and m values, but with random side-information
such that correlation among different sub-categories in the data is low.

The results of our study is plotted in Fig. 7. SEC algorithm with item embeddings
extracted from random synthetic side-information data (RAND) performedworse than
the worst performer LCE algorithm. Thus, in practice, it is important that side data
contains meaningful information for the SEC algorithm to work.

Raw versus enriched side-information We investigate the effectiveness of the item
embeddings obtained using raw side-information and enriched side-information. We
run SEC by extracting item embeddings directly from the raw side-information A
and comparing the results against SEC with item embeddings obtained using the
enriched side-informationX. SEC with item embeddings using enriched data resulted
in better performance compared to the SECwith item embeddings using raw data. This
result is not surprising as the enriched data captures possible dependencies between
different item metadata categories compared to raw side data. However, SEC with
raw side-information still performed better than our baseline algorithms. The plot for
the comparison against raw vs enriched side-information on the MovieLens dataset
is given in Fig. 8. For a fair comparison, we also plotted the second-best performing
algorithm, LCO.
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Fig. 7 Comparison of SEC algorithmwith synthetic side-information (RAND) against real side-information
(SEC) and lowest performed algorithm in our study (LCE)
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Fig. 8 Raw versus enriched side-information effect on recommendation
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Fig. 9 NMF versus convex-NMF clustering scheme effect on recommendation
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NMF versus convex-NMF clustering Finally, we compare the performance of the
cold-start recommendation using vanilla NMF (non-convex version) against con-
vex NMF clustering schemes. Our experimental results are plotted in Fig. 9. SEC
and SEC(CNVX) represent the vanilla NMF and convex NMF schemes respectively
whereas LCO represents the second-best performer in our experimental study. Though
Convex NMF gives better estimation of the cluster centroids, in practice, vanilla NMF
based clustering gives better performance. A possible hypothesis for these results is
that item clusters are more dispersed than centered. The values for the ranking metrics
NDCG and MAP are higher for the vanilla NMF based cold-start recommendation
compared to the Convex NMF scheme. It is evident from Fig. 9 that Convex-NMF per-
forms suboptimally compared to vanilla NMF, whereas it performs better than LCO,
the second-best algorithm in our experimental study. Like in the case of Raw versus
Enriched Side-Information study, we can conclude that vanilla NMF is the preferred
clustering scheme to get state-of-the-art results. However, Convex NMF based clus-
tering also results in better performance compared to other cold-start recommendation
algorithms.

4.2 Comparison against deep learning algorithms

In this section, we conduct experiments to compare our algorithm against three deep
learning (DL) based algorithms. For completeness, we also include the results of the
DCT algorithm, which came second in our experimental study with non-DL based
algorithms on MovieLens 20M dataset. We choose the following three deep learning
algorithms for our study.

4.2.1 Baselines

Neural Graph Collaborative Filtering (NGCF) (Wang et al. 2019a) NGCF makes use
of higher order connection information between users and items to improve traditional
deep collaborative recommendation algorithms. NGCF (Wang et al. 2019a) randomly
initializes the user and itemembeddings and refines the embeddings by injecting higher
order collaborative signals in the form of the Laplacian of the user-item graph and
propagating throughmultiple neural network layers. TheLaplacian is constructed from
the block diagonal user-item bipartite graph. Higher order connectivity information
is encoded by stacking multiple propagation layers. In our experiments, we used the
source code provided by the authors.4

Graph Convolutional Matrix Completion (GCMC) GCMC is based on semi-
supervised graph convolutional networks (Berg et al. 2018). It works by generating
embeddings for users and items considering only the first-order relationships between
users and items. Given the adjacency matrix, graph auto-encoder is constructed by
minimizing the reconstruction error between the predicted ratings and the observed
ratings and the decoder is defined as a function acting on the user and item embeddings

4 https://git.io/JvVkv.
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and returning the reconstructed rating value. In our experiments, we used the source
code provided by the authors.5

Hybrid Collaborative Filtering with Autoencoders (HCFA) Publicly released code for
NGCF and GCMC does not make use of the item side-information associated with the
data. Hence,we use onemore deep learning based algorithm termedHCFA (Strub et al.
2016). HCFA use stacked denoising autoencoders to learn a non-linear representation
of users and items by integrating the side information with the sparse rating data. The
item side-information is integrated to the item embeddings by simply appending the
side-information to the rating information. In our experiments, we used the source
code provided by the authors.6

4.2.2 Dataset and experimental protocol

The code released by the authors for baseline DL approaches failed to run using
MovieLens 20M dataset due to memory issues.7 Hence for this set of experiments we
used theMovieLens 10M dataset. Unlike in thematrix factorization based approaches,
NGCF andGCMCwork by building user-item bipartite graphs from observed relevant
ratings. This implies that the training set should contain at least one positive rating
for every item and for every user. Hence the approach cannot be applied to extreme
cold-start settings. In extreme item cold-start settings, one assumes that no rating
information about an item is available a priori. So we test our algorithm in non-
extreme cold-start item settings. We remind the readers that we used the code as it is
in the corresponding repositories and used the default configuration settings given by
the authors.

We randomly split the ratings data into training and test sets respectively. We then
removed the users and items with zero relevant ratings from the training set. We
assume that a movie is relevant to a user if it is rated at least with a rating value of 4.
Finally, we make sure that sets of test users are a proper subset of training users by
removing all the test users and items that do not appear in the training set. This whole
procedure is carried out five times randomly, and the reported results are averaged over
five splits. For all three deep learning based algorithms, we used default parameter
settingsmentioned in the respective code. For evaluation, we ranked all the items in the
test set for every test user based on the output score obtained from the corresponding
algorithms.

Since CIP cannot be used in non-extreme cold-start settings, to estimate the cold-
start recommendation capacity of the algorithms, we report the fraction of predicted
items in top 20 recommendations which has less than 1, 2 and 3 ratings in the training
set. We define CIP@k as the CIP of an item with less than or equal to k ratings in the
training set, in addition to the relevance ranking metrics DCG and MAP.

5 https://git.io/JvVI5.
6 https://git.io/JvVL2.
7 We used a 512 GB RAM machine with Nvidia GPUs to run all the experiments.
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Fig. 10 Performance comparison of SEC algorithm against DL based algorithms (MovieLens 10M, SEC =
ours)

Table 1 CIP@k values for
different algorithms for
k = 1, 2, 3

Baseline CIP@3 CIP@4 CIP@5

SEC (ours) 0.59 0.74 0.82

DCT 0.30 0.54 0.73

NGCF 0.18 0.31 0.46

GCMC 0.15 0.26 0.42

HCFA 0.43 0.81 0.94

4.2.3 Results

DCG and MAP values for different algorithms are plotted in Fig. 10. Deep Learning
based algorithms perform poorly compared to the non-DL based SEC and DCT. Our
results conform to the recent analysis of the performance of deep learning based
algorithms on different recommendation related tasks (Dacrema et al. 2019). The
same result has been noted in specific application settings like ad click prediction
(McMahan et al. 2013).

Table1 contains CIP@k values for different algorithms for k = {1, 2, 3}. Though
HCFA returns many cold-items (possibly due to the explicit use of side-information),
the majority of them are not relevant as indicated by the low MAP and DCG values.
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Table 2 Subset of 5 relevant training set movies for a candidate user, and Top 5 recommendations for the
user on Movielens 1M dataset

Relevant training items SEC (ours) DCT LCO

Total recall Lethal weapon 2 Legends of the fall From dusk till dawn

Rush hour Get shorty X-Men Montana

Leathal weapon Gat carter Serial Mom Air America

Romancing the stone From dusk till dawn U-571 Lethal weapon 2

Enemy of the state Star wars: episode V Montana Get shorty

Items in bold letters are relevant test items whereas the entries with bold italicized letters are relevant cold
items

In general, deep learning based algorithms perform suboptimal compared to SEC and
DCT when recommending relevant cold-start items.

4.3 Qualitative analysis

To conclude the experimental validity of the proposed algorithm, we conduct a qualita-
tive analysis of the proposed algorithm against two strong baselines in our experiments
using MovieLens 1M dataset. For this analysis, we randomly choose a user and Top
5 recommendations for this user. We compare the set of recommendations made by
different algorithms for this user and see how well it matches with the users’ true
preferences. Our results are given in Table 2. From the list of relevant training movies,
it is very clear that the user likes movies from Action, Crime, Thriller genres. The top
5 recommendations provided by the SEC algorithm spans the genres Action, Crime,
Thriller and Adventure. Though none of the movies in the training set correspond to
Adventure genre, SECalgorithmwas able to associate the correlation between strongly
connected Action and Adventure genres in the soft-cluster embeddings. As a result,
the top 5 recommendations made by SEC algorithm contain a relevant cold movie,
Star Wars: Episode V—The Empire Strikes Back, whereas other baselines fail to do
so. Not surprisingly, all the cold-start recommendation algorithms correctly recom-
mended Action, Crime, Thriller movies for this user. Overall, top 5 recommendations
made by the proposed SEC algorithm covers three relevant movies which span the rel-
evant genres out of which two are cold items. The second-best performing algorithms
DCT and LCO also recommend many Action genre movies but contain a smaller
number of relevant and cold items compared to the proposed algorithm.

5 Conclusion

Wepresented a newmethod to solve the item cold-start recommendation problem. The
algorithm can be applied in any item cold-start recommendation scenario with access
to item side-information. Our exhaustive experiments on benchmark datasets showed
that the algorithm performs well in terms of popular relevance metrics compared to
strong content, content + collaborative and deep learning based baselines. Qualitative
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analysis of the experimental results explains the recommendation provided by the
proposed algorithm.

One of the main issues associated with the proposed algorithm is that the number
of clusters (k) has to be fixed beforehand using heuristics or based on cross-validation
results. An interesting topic for futurework is: how to select the number of soft-clusters
automatically. There is a growing interest in parameter free clustering techniques,
and considering such techniques for cold-start recommendation will free us from
hyperparameter tuning. Another promising line of future research is to consider the
bandit version of the soft-clustering based recommendation algorithm. Majority of
the current collaborative bandit algorithms use hard clustering to estimate the mean
reward of the unobserved items. We plan to extend the work to soft-clustering bandits
for recommendations.
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