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Abstract
Community detection is one of the most popular researches in a variety of complex
systems, ranging from biology to sociology. In recent years, there’s an increasing
focus on the rapid development of more complicated networks, namely multilayer
networks. Communities in a single-layer network are groups of nodes that are more
strongly connected among themselves than the others, while in multilayer networks,
a group of well-connected nodes are shared in multiple layers. Most traditional algo-
rithms can rarely perform well on a multilayer network without modifications. Thus,
in this paper, we offer overall comparisons of existing works and analyze several
representative algorithms, providing a comprehensive understanding of community
detection methods in multilayer networks. The comparison results indicate that the
promoting of algorithm efficiency and the extending for general multilayer networks
are also expected in the forthcoming studies.
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1 Introduction

Network theory is an important tool for describing and analyzing complex systems
throughout a variety of disciplines. Community structures, defined as groups of nodes
that are more densely connected than with rest of the network, are widely existed in
many real-world complex systems, such as sociology, biology, transportation systems,
and so on (Newman 2018). Discovering communities in these systems has become a
primary approach to understand how network structure relates to system behaviors.
As an effective technique to unveil the underlying structures, community detection has
been utilized in many scenarios, such as finding potential friends in social media (Zhu
et al. 2017), recommending products for users (Li and Zhang 2020), analyzing social
opinions (Wang et al. 2017), and so on.

With the deepening of research, more and more scholars come to realize that
simply uncovering communities in a single network is insufficient to analyze the
structures and system behaviors in real-life applications. Unlike the community struc-
ture in single-layer networks, communities in multilayer networks are comprised of
a group of well-connected nodes in all layers. For example, individuals in social net-
works may have various interactions (e.g. sending emails, participating in the same
activity) among them (Ansari et al. 2011). As a result, the conventional studies are
encountering with an essential problem of how to utilize the multiple views of the
network (Papalexakis et al. 2013). There are also similar scenarios with relevant nota-
tions such as multiplex networks (Verbrugge 1979), multilevel networks (Wang et al.
2013), network of networks (Gao et al. 2011), interdependent networks (Buldyrev et al.
2010), multi-dimensional networks (Berlingerio et al. 2011c), which can be generally
regarded as multilayer networks (Kivelä et al. 2014). As more interaction information
implied, community detection in multilayer networks has been introduced to leverage
various relationships to get more accurate results (Liu et al. 2018).

1.1 Background

The research of complex networks oriented from graph theory, which is started from
the “Seven Bridges of Königsberg” problem in 1736. Although naive inmany respects,
this approach has been extremely successful in many real-life applications. At the end
of the 20th century, by employing the graph model, the famous small-world (Watts
and Strogatz 1998) and scale-free (Barabási and Albert 1999) features were dis-
covered (Newman 2018). In 2002, Girvan and Newman uncovered the community
structure in networks (Girvan and Newman 2002), which opened up a continuous
upsurge of relevant research. The so-called community structures are groups of nodes
that are more strongly or frequently connected among themselves than with the others.
Therefore, community detection is proposed to find the most reasonable partitions of
a network via observed topological structures. Several conventional approaches are
listed in Table 1.

In recent years, a sea of improved algorithms based on the above approaches are
proposed with fruitful results. However, with the exponential growth of data scale,
community detection on large volume data has encountered a serious of problems. For
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4 X. Huang et al.

example, some datasets are changingwith time, which brings challenges for traditional
research on a static graph. In other words, traditional methods are incapable of dealing
with large-scale time-varying networks.

Lancichinetti et al. (2009) raise two problems: The first one is about hierarchical
structure, which means large communities are composed of small communities and
in turn, large communities group together to form even larger ones. The second is
overlapping communities, for example, people belong to more than one community,
depending on their families, friends, professions, hobbies, etc. Nodes belong to more
than one community is a pervasive scenario in networks.

Besides, the interactions among nodes are becoming more complicated than ever
before. The conventional monolayer network (i.e. single-layer network) has provided
plentiful cases in which a unit in a complex system is charted into a node, and the
interactions between units are straightly represented as edges, no matter what type
or weight of the interactions are. With the development of network modeling, we are
starting to realize that the existing models cannot fully capture the details existed in
some real-life problems,which even leads to incorrect descriptions of somephenomena
taking place on real-world networks. Some representative problems occurred are listed
as follows.

(1) Multiple interactions among social networks. There has been an increasing focus
on social media such as Twitter, Facebook, and Google+, etc. People share their
opinions on daily affairs, chat with friends, or evenmake trades on these platforms.
Themain problem for analyzing social networks is themultiple interactions among
individuals. For example, relationships between two individuals may include
friendship, kinship, or schoolmates. If we regard all the relationships as undis-
tinguished edges, the differences will be ignored, which is probably leading to
incorrect results.

(2) Interbank trades. Online payments are replacing traditional cash payments and
credit cards, which offers a convenient lifestyle, meanwhile, providing a new way
for financial criminals. For example, in money laundering activities (Colladon and
Remondi 2017), criminals use different channels to conduct trades. If we simply
analyze the transfer records from a single bank with a graph model, the result
may be unconvinced. Thus, it is necessary to collect data from all possible trade
channels with a multilayer network model, in which each channel can be regarded
as a layer.

(3) Urban transportation system. The study on the urban transportation system has
causedwide public concern in the last decade (Black 2018; Sultana et al. 2019).Cit-
izens travel in a variety of ways such as bus, subway, tram, and so on. In analyzing
the public transportation system, the characteristics of various modes of trans-
portation should be fully considered, especially for some hub stations (Zhang et al.
2018b) that should be given more attention to solving traffic congestion problems.
When bus routes are blocked, numerous passengers select subway alternatively,
which results in crowd subway operations. Inherently, the urban transportation
system is a multilayer network model.

By tackling the above problems with the multilayer network model (Kivelä et al.
2014; Boccaletti et al. 2014), we are able to get a more reasonable result, i.e., the

123



A survey of community detection methods in multilayer networks 5

community structures in multilayer networks benefit to identify functionally cohesive
sub-units and reveal complex interactions and heterogeneous links.

1.2 Main contributions

There have been numerous attempts to address community detection problem in
multilayer networks through diverse approaches, e.g., identifying communities in tem-
poral networks by modularity-maximization (Bazzi et al. 2016), where the authors
emphasize the difference between “null networks” and “null models” in modularity
maximization and discuss the effect of interlayer edges on the multilayer modularity-
maximization problem. De Bacco et al. (2017) propose a generative model for
multilayer networks, which can be used to aggregate layers into clusters or to compress
a dataset by identifying especially relevant or redundant layers. The proposed model
is capable of incorporating community detection and link prediction for multilayer
networks, and experimental results on both synthetic and real-world datasets shows
its feasibility. Analyzing multilayer networks is of great importance because many
interesting patterns cannot be obtained by analyzing single-layer networks. That’s our
motivation for summarizing these approaches. The contributions of this work are:

(1) Webuild a taxonomyof community detectionmethods based on various techniques
used.

(2) We provide a detailed survey of works that come under different categories.
(3) The evaluation measures for community results are categorized and summarized.
(4) The applications of community detection in multilayer networks are introduced,

as well as interesting directions for future works.

To the best of our knowledge, this is the latest work that provides a comprehensive
survey on various community detection methods in multilayer networks.

1.3 Outline of the paper

The remainder is organized along the other 5 sections. In the next section, we start by
presenting the multilayer network models with several real-world datasets and give
brief comparisons on different definitions. Section 3 summarizes the existing commu-
nity detection methods in multilayer networks and provides some metrics for quality
evaluation. We introduce various applications of community detection in multilayer
networks in Sect. 4, such as temporal networks, social networks, transportation sys-
tems, and biological systems. Section 5 offers concluding remarks and perspective
ideas.

2 Models

As mentioned above, numerous researchers dedicated to solving the problems in
their own situations. In the 1930s, sociograms (Roethlisberger and Dickson 2003)
were proposed to represent social relationships in a banking room, which contains
14 individuals via 6 different types of social interactions, as shown in Fig. 1. Such
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6 X. Huang et al.

Fig. 1 The sociograms proposed by Roethlisberger et al. contains 14 individuals via 6 different types of
social interactions, observed friendship ties and cliques in a factory. Position reflects the location of their
workspace

networks are known as “multiplex networks” (Mucha et al. 2010) or “multi-relational
networks” (Cai et al. 2005) in which edges are categorized by their types.

In recent years, great endeavors have been made to unveil the basic mechanisms for
the generation of networkswith specific structural properties. The analysis of networks
has profound implications in very different fields, from social media analytics to biol-
ogy (Newman 2018). The conventional graph model is incapable when the network
is differentiated, multipartite, integrated, and dynamic. Thus, a series of more com-
plicated models are proposed, such as temporal networks (Kostakos 2009), multiplex
networks, k-partite networks, and so on (Boccaletti et al. 2014; Kivelä et al. 2014).
However, the sudden and immense explosion of research on multilayer networks has
also led to a great deal of confusion (Ahmed et al. 2018; Farooq and Zhu 2018; Kivelä
et al. 2014; Paolucci 2018). The multilayer network we focus, in this paper, is not a
neural network but a mathematic model which can be utilized to represent the com-
plicated network structures.

A multilayer network is a network made of multiple graphs, called layers, which
share the same set of nodes, but differ in their edges. To distinguish the definition
of a multilayer network from a single-layer network, we intuitively compared the
representation of a real-world dataset between the two models. Al Qaeda cell was
isolated from a safe hiding place during training and plan terrorist attacks, which
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A survey of community detection methods in multilayer networks 7

Fig. 2 The social relationships of 9/11 terrorists represented by a graph model. It is a single-layer network,
which consists of 69 nodes and 159 edges. The size of the node represents the number of the neighbors
(i.e., the node’s degree)

forced the organization to forma relatively dense social network, inwhich theHamburg
branch planned and eventually participated in the implementation of the September
11 attacks (Silber 2011). The social relationships of 9/11 terrorists are represented in
Fig. 2.

If we classify the closeness of the social actions among the terrorists, we can obtain
three groups of links, abstracted into a three-layered network, as shown in Fig. 3.

It is obvious that the multilayer networks reveal more detailed information than the
monolayer network. The multilayer network model contains nodes and edges from
different layers, which represents the different frequencies (or types) of interactions
among them.

The nodes in a multilayer network are consistent in that of graph model, which
represents individuals across multiple layers likewise. Specifically, some works indi-
cate that the nodes in a multilayer network can be classified into different categories
(e.g. bipartite network), thereby the network composed of these nodes is described as
a node-colored network (Baltakiene et al. 2018; Brummitt 2014; Kivelä et al. 2014).
The different colors represent different types of nodes. For example, the urban trans-
portation system mainly contains buses, subway, and so on. The bus stop and subway
station make no difference in a conventional graph model but differ in a multilayer
network for the different manners of transportation, thereby they are printed with dif-
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8 X. Huang et al.

Fig. 3 The 9/11 terrorists’ interactions represented by a multilayer network. L1 presents confirmed close
contact, L2 shows various recorded interactions, L3 contains potential or planed or unconfirmed interactions

Fig. 4 The transportation system in Chengdu city of China, where the left layer shows the bus lines and the
right layer shows the subway system. The nodes from different layers are connected by interlayer edges if
the corresponding stations are within 0.5km

ferent colors. Inherently, the layers’ information has covered the different node colors,
i.e., the multilayer network model is a capable solution. The transportation network
of Chengdu city is plotted by Muxviz (De Domenico et al. 2015b), as shown in Fig. 4.

The edges in a multilayer network are classified into intralayer edges and interlayer
edges (De Domenico et al. 2016). The intralayer edges request the two nodes of this
edge are in the same layer, while the interlayer edges (or crossed layer edges) connect
nodes among different layers, as illustrated in Fig. 5.

A layer in multilayer networks is composed of a set of nodes and edges, i.e., a graph
model. The layers are also organized into two categories:

123



A survey of community detection methods in multilayer networks 9

Fig. 5 A three-layered toy
network. The edges in each layer
are called intralayer edges, as
marked by solid lines, the
dashed lines crossed adjacent
layers represent interlayer edges

– Ordinal layers. The layers are sorted by a certain order, inwhich the interlayer edges
connect the corresponding nodes in the adjacent layers. Take temporal networks
for example, there are numerous layers representing different snapshots, but the
order of layers is decided by the time sequence.

– Categorical layers. The layers are classified into several groups, where each group
represents a type of interaction.

2.1 Definitions

There are many terms for describing multilayer networks, such as multiplex network,
multi-relational network, edge-colored network, node-colored network, multilevel
network, multi-dimensional network, independent networks, networks of networks,
temporal network and so on (Boccaletti et al. 2014; Kivelä et al. 2014). Table 2 sum-
marizes the main notations used throughout this paper.

As we have known, a graph is a tuple G = (V , E), where V is a set of nodes
and E ⊆ V × V is the set of edges that connect pairs of nodes (Bollobás 2013). The
model of multilayer networks is more complicated and there are mainly two kinds of
explanations. One is summarized by Kivelä et al. (2014), described as

M = (VM , EM , V ,L), (1)

where VM ⊆ V ×L1 ×L2 × · · · ×Ld , EM ⊆ VM × VM . They employed a sequence
L, described as

L = {Lα}dα=1, (2)

123



10 X. Huang et al.

Table 2 Main symbols used in this paper

Symbol Scenario Description

R General definitions Set of real numbers

G Monolayer A graph or a monolayer network

n Monolayer The number of nodes

m Monolayer The number of edges

V Monolayer Node set in a graph or monolayer networks

E Monolayer Edge set in a graph or monolayer networks

ki Monolayer The degree of node i

Γ (i) Monolayer The neighbors of node i

Q Monolayer Modularity (Newman and Girvan 2004)

D Monolayer Modularity density (Li et al. 2008)

S Monolayer Surprise (Aldecoa and Marín 2011)

L Multilayer The total number of layers

G Multilayer A multilayer network comprised of graphs

C Multilayer Collection of interlayer edges

α Multilayer Aspect (Kivelä et al. 2014) or layer

Gα Multilayer A graph of layer α

Vα Multilayer Node set in layer α

Eα Multilayer Edge set in a layer α

L Multilayer Collection of layers

Lα Multilayer Elementary layer α

M Multilayer Multilayer network model

M̌ Multilayer The supra-adjacency matrix

Aα Multilayer The adjacency matrix of layer α

Iαβ multilayer The interlayer edges between layer α and β

kα
i Multilayer The degree of node i in layer α

QM Multilayer Modularity for multiplex networks

ρc Miscellaneous Redundancy index

δ Miscellaneous Kronecker delta

where α is called aspect, and Lα depicts an elementary layer. The layer is a product of
elementary layers, which can be represented as L1 × L2 × · · · × Ld . The illustration
of the multilayer network is given in Fig. 6.

Another model is proposed by Boccaletti et al. (2014), defined as

M = (G, C), (3)

where G = {Gα;α ∈ {1, . . . , L}} is a family of (directed or undirected weighted or
unweighted) graphs Gα = (Vα, Eα), which represents layers ofM and C depicts the
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A survey of community detection methods in multilayer networks 11

Fig. 6 The illustrated multilayer network model proposed by Kivelä et al. As shown in the left panel,
the multilayer network has a total of four nodes, so V = 1, 2, 3, 4. There are two aspects, which has
corresponding elementary-layer sets L1 = {A, B} and L2 = {X , Y }. Therefore, there are four layers:
(A, X), (A, Y ), (B, X), and (B, Y ). The right panel shows the representation of the conventional graph
model with multiple labels of nodes

interactions between nodes of any two different layer, given by

C = {Eαβ ⊆ Vα × Vβ;α, β ∈ 1, . . . , L, α �= β}, (4)

The two models differ in the definition of “aspect”. Kivelä’s model takes into
account real-life situations, e.g., a social network contains relations among various
types, timeline or situations.Each relation set is regarded as an aspect, namely a classifi-
cation of layers, providing a comprehensive perspective. Thus, it is more considerate.
The structure with aspects concept is much richer than that of ordinary networks.
Possible aspects include different types of interactions or communication channels,
different subsystems, different spatial locations, different points in time, and so on (De
Domenico et al. 2016). However, Boccaletti’s model is a general form that easy to
understand. Specifically, the supra-adjacency matrix is a distinct tool for representa-
tion of a multilayer network, defined as

M =

⎡
⎢⎢⎢⎣

A1 I12 · · · I1L
I21 A2 · · · I2L
...

...
. . . · · ·

IL1 IL2 · · · AL

⎤
⎥⎥⎥⎦ ∈ RN×N , (5)

where A1, A2, . . . , AL are the adjacency matrix of layer 1, 2, . . . , L , respectively. N
is the total number of nodes, which can be calculated by N = ∑

1≤l≤L |V l |. The
non-diagonal block Iαβ represents the inter-layer edges of layer α and layer β. Thus,

123



12 X. Huang et al.

Fig. 7 Supra-adjacency representation of 9/11 terrorists’ network. The supra-adjacency matrix is repre-
sented as a block matrix, where the rows and columns depict the terrorists. The diagonal blocks indicate
the interactions, while the non-diagonal blocks represents the that terrorists are simultaneously active on
different respects of observed social actions

the interlayer edges can be represented as

I =
L⋃

α,β=1,α �=β

Iαβ. (6)

Take the above-mentioned 9/11 terrorists’ network for instance, the supra-adjacency
matrix is represented in Fig. 7.

We also list some specific networks that can be represented by a multilayer network
manner in the following.

Multiplex network is a special case of multilayer networks (Solá et al. 2013), where
all layers share the same set of nodes but may have multiple types of interactions.
Some works also use multi-relational networks, multidimensional networks (Berlin-
gerio et al. 2011b) or edge-colored networks (no interlayer edges) for substitution.
The underlying limitations exist in the network is node-aligned, i.e. each layer has
the same nodes but merely differs in edges. Multiplex network is a special form of
multilayer network, where the number of nodes in each layer is consistent, and the
nodes are one-to-one correspondence. This network model simplifies the complexity
of the general multilayer network form and is therefore widely used to deal with some
special problems (Kanawati 2015).

Temporal networks (or time-varying networks) differ with conventional dynamic
networks, which focus more on the ordinal variations of connections (Kostakos 2009).
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A survey of community detection methods in multilayer networks 13

Fig. 8 Themonolayer network representation of the relationships of characters in “Game of Thrones” of the
first five seasons, which contains 796 characters and 2823 links among them. The size of the node depicts
the degree centrality, e.g., Tyrion Lannister, Jon Snow, and Daenerys Targaryen, as three key roles in the
story, have larger degrees

Fig. 9 The multilayer network representation of the relationships of characters in “Game of Thrones” of
the first five seasons. Each layer represents a season and the links between the ordinal layers represent the
corresponding relationship of characters across different seasons

The temporal network has its own set of researchmodels (Kempe et al. 2002; Kostakos
2009; Tang et al. 2012a), which can illustrate the dynamic characteristics of temporal
networks. But it must bementioned that the power of amultilayer network is that it can
be compatiblewith the representation of the temporal network and can also describe the
dynamic characteristics likewise. For example, the multilayer network model we have
introduced (Boccaletti et al. 2014) can regard the network structure at each moment
as a layer, and the arrangement between different layers is in chronological order. We
collected the relationship of characters in the Game of Thrones (the first five seasons),
as shown in Figs. 8 and 9.

The study of k-partite networks starts from the complete k-partite graph (i.e., a
set of graph vertices decomposed into k disjoint sets such that no two graph vertices
within the same set are adjacent) (Brouwer and Haemers 2012). Thus, the k-partite
network is also described as node-colored networks (Kivelä et al. 2014), where the
nodes are unacquainted in the same layer but have the other layers’ common neighbors
with other nodes in the same layer. A sample of k-partite networks is shown in Fig. 10.
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14 X. Huang et al.

Fig. 10 Illustration of a k-partite network, where k = 3. There are no intralayer edges in any layer of the
network, while the edges are all inter-connected across adjacent layers

Fig. 11 IllustrationofSouthwomenactivities network,which is a typical bipartite network.Thequalification
of the binary network is to check if there are links between nodes in the same type.All the links are connecting
nodes with different types of nodes, corresponding with the non-diagonal elements as shown in the middle
panel. The right panel presents the corresponding supra-adjacency matrix

However, a special case of k-partite (i.e., k = 2) networks is the bipartite network (or
two-mode network), which is more accessible by us. For example, a customer’s trans-
action records of products can be represented by a “customer-product” network. Fig. 11
presents a classic bipartite network, namely, South women activities network (Davis
et al. 2009).

2.2 Features

Many basic metrics such as centrality, node similarity, are commonly used by commu-
nity detection algorithms in monolayer networks. While in multilayer networks, the
metrics need to be reformulated and adapted. Thus, in this section, some most impor-
tant features of multilayer networks are introduced. Studies of structural properties
include descriptors to identify the most central nodes according to various notions of
importance (Battiston et al. 2014; De Domenico et al. 2015c, 2013; Halu et al. 2013;
Solá et al. 2013) and quantify triadic relations such as clustering and transitivity (Bat-
tiston et al. 2014; Cozzo et al. 2015; De Domenico et al. 2013).
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2.2.1 Centrality

The rankingof nodes inmultilayer networks is oneof themost pressing and challenging
tasks that research on complex networks is currently facing (Lü et al. 2016). Many
centrality measures have been used for single-layer networks to rank the importance of
the nodes, such as degree centrality (Bonacich 1972), betweenness centrality (Freeman
1977), closeness centrality (Freeman 1978), k-shell centrality (Carmi et al. 2007),
eigenvector centrality (Bonacich 1987), PageRank (Brin and Page 1998), Leader-
Rank (Lü et al. 2011), Local Centrality (Chen et al. 2012), Bridge-Rank (Salavati
et al. 2018), and so on. The above measures are widely used in the monolayer network
model, while the study on nodes centrality in multilayer networks is still an open issue.

Before introducing the centrality in networks, we will first cover the neighborhood
in a multiplex network. There are two definitions for the neighborhood in a multiplex
network: One is given by a restrict aggregation concept that j is a neighbor of i if
j is connected to i in each layer. The other is loosely defined as j is connected to i
in at least one layer (Kazienko et al. 2010). Alhajj and Rokne (2014) give a trade-
off definition of the above two methods: j is a neighbor of i if it is connected to i
in at least m layers, where 1 ≤ m ≤ L , and L is the total number of layers. This
definition may be capable of analyzing the node’s centrality in a multiplex network
with numerous layers, but it is not ideal enough for introducing another threshold
on the number of layers for consideration. However, when applying the concept in a
general form of multilayer networks, there are also some problems to be solved. The
first problem is the nodes’ relationships in a multilayer network, i.e., there may be no
corresponding nodes of i in other layers, e.g. in a k-partite network where the nodes of
each layer are totally different. The second problem is about the presentation format of
the node’s neighborhood, the degree centrality can hardly distinguish a node with the
same amount of interlayer edges and intralayer edges. The third problem is whether
to give equal consideration of weights on interlayer edges and intralayer edges.

In monolayer networks, one of the main centrality measures is the degree of each
node: the more links a node has, the more important the node is. The centrality of
node i , e.g. the degree of a node i in a multiplex network is the vector (Battiston et al.
2014), defined as

ki = (k1i , k
2
i , . . . k

L
i ), (7)

where kLi is the degree of node i in the Lth layer. We can also convert it into another
form for simplification, given by

ki =
L∑

l=1

kli . (8)

Another solution for the centrality of multilayer nodes is through the diffusion
across multiple layers. Examples of this measure include influential nodes identifica-
tion, viral marketing, information diffusion, and so on (Lü et al. 2016). The network
structure is more complicated with higher computational complexity. Some scholars
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believe that the interlayers edges should be under consideration discriminatively when
calculating the node centrality, while others insist on the viewpoint that the interlayer
edges make the same contribution to the centrality calculation. Likewise, the degree
centrality measures used in multilayer networks can be substituted by other measures,
e.g. Eigenvector centrality (Solá et al. 2013).

Above all, in a general form of multilayer network, the nodes may differ in each
layer and we cannot obtain the corresponding nodes and calculate the centrality of the
nodes directly. This problem has drawnmuch attention in recent years, including some
popular endeavors such as user identification across multiple networks (Carmagnola
and Cena 2009; Feng et al. 2017; Liang et al. 2015; Yang et al. 2018), social network
coalescence, network alignment (Bayati et al. 2013), and so on.

2.2.2 Correlations

Multilayer networks encode significantly more information than their isolated single
layers, since they incorporate correlations between the nodes in different layers and
between the statistical properties of layers. The correlations of multilayer networks
include interlayer degree correlations (Nicosia and Latora 2015), layers overlap-
ping (Kao and Porter 2018), and so on. Some scholars point out that the communities
in multilayer networks should consider for overlapping features, while allowing the
communities to affect each layer in a different way, including arbitrary mixtures of
assortative, disassortative, or directed structure (De Bacco et al. 2017). A definition
of local overlap (Cellai et al. 2016) is defined as

oαβ
i =

∑
j

θ(ωα
i j )θ(ω

β
i j ), (9)

where oαβ
i is the number of overlapping edges that are incident to node i in both layer

α and layer β,ωα
i j andω

β
i j are the weights of intralayer edges (i, j) in layer α and layer

β, respectively. θ(x) = 1 if x > 0 and θ(x) = 0 otherwise. Based on this concept, Kao
et al. propose a method that grouping structurally similar layers in multiplex networks
and find meaningful groups of layers (Kao and Porter 2018). Considering the degree
in undirected multiplex networks, the connection similarity is defined as

φαβ = 1

N

∑
i

φ
αβ
i ∈ [0, 1], (10)

where φ
αβ
i is local similarity, defined as

φ
αβ
i = oαβ

i

kα
i + kα

i − oαβ
i

. (11)

The correlations of nodes are of great importance in analyzing multilayer network
structures. Zhan et al. improved the community detection algorithms inmulti-relational
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social networks by utilizing triangles and latent factor cosine similarity prior meth-
ods (Zhan et al. 2018). The local topological correlations between any pair of nodes
from different layers are also utilized to calculate the centrality of nodes in multilayer
networks (Kuncheva and Montana 2015).

3 Methods

Communities are known as groups of nodes that are more strongly or frequently
connected among themselves than with the remainders (Aldecoa and Marín 2013).
Although connecting patterns with other members are possible, they usually have
higher linking probability within the group (Fortunato and Hric 2016). Community
detection is a fundamental issue in network science, and most existing approaches
have been developed for monolayer networks. However, many complex systems are
composed of coupled networks through different layers, where each layer represents
one of many possible types of interactions.

3.1 Problem statement

Communities in single-layer networks comprise a group of well-connected nodes,
while in multilayer networks, communities reveal the relationships among nodes in
various layers. The comparison of communities on toy examples in single-layer net-
works and multilayer networks is given in Fig. 12.

The problem of community detection algorithms in multilayer networks is to divide
the network into a set of disjoint cohesivemodulesC1,C2, . . . ,Ck where eachmodule
Ck is comprised of a group of nodes densely connected inside and loosely connected
outside the community. It can be described as

∪k
i=1 Ci =

L∑
α=1

Vα, (12)

with ∩k
i=1Ci = φ for non-overlapping community detection and ∩k

i=1Ci �= φ for
overlapping scenarios. Dalibard (Dalibard 2012) gives the three requirements about
community detection works as followings:

(1) The community detection should allow for overlapping communities.
(2) The detected results should be statistically significant, which means applying the

algorithm on a random null model should return no communities.
(3) The detected results should be hierarchical.

Specifically, most of the existing approaches can scarcely satisfy the requirements
and hold reasonable efficiency. Besides, the evaluation metrics are also varied from
one to another, as introduced in the following subsection.
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Fig. 12 Comparison of communities in monolayer and multilayer networks. The nodes with different gray
levels represent different communities. (a) Communities in a monolayer network. (b) Communities in a
two-layered network, each community shares nodes in Layer 1 and Layer 2

3.2 Evaluation functions

Quality evaluation for partition results is a complex task due to the lack of a shared
and universally accepted definition of community structures. A wide variety of quality
functions have been proposed to solve the community detection problem from differ-
ent perspectives. Several representative metrics are analyzed and classified into three
categories (Cazabet et al. 2015):

(1) Single score metrics
(2) Evaluation on generated networks
(3) Evaluation on real networks with ground truth

Single score metrics employ quality functions associating a score to the community
detection result. For example, the number of edges between partitions can be utilized
to evaluate the performance of a given algorithm. Popular metrics include Modular-
ity (Newman and Girvan 2004), Modularity density (Li et al. 2008), surprise (Aldecoa
and Marín 2011), and so on. These metrics are universal but often criticized with
no consensus of the several meaningful levels of partitions. The comparison with
generated networks, e.g., LFR benchmark (Lancichinetti et al. 2008) is widely used
to compare the partitions with the community affiliations. It is easy to recognize a
good community and capable of evaluating variations in usual communities. How-
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ever, sometimes the generated networks are not realistic and differ from the partitions
we want. The comparison of real networks with ground truth seems to be a reasonable
solution. Normalized Mutual Information (Danon et al. 2005), Precision, Recall, and
F1-score (Herlocker et al. 2004; Perry et al. 1955) are representative methods. However,
these methods depend on the priori partition labels, which are probably unknown in
most of real-world datasets.

3.2.1 Modularity, modularity density, performance and surprise

In 2004, modularity (Newman and Girvan 2004) was first proposed by Newman as an
evaluation for community partitions, defined as

Q = 1

2m

∑
i j

(
Ai j − ki k j

2m

)
δ(Ci ,C j ), (13)

wherem is the number of edges, Ai j is the element of the adjacency matrix, δ(C1,C2)

equals 1 if i and j are in the same community, otherwise 0. In 2010, Mucha et al.
proposed QM (Mucha et al. 2010) for evaluating community in time-dependent, mul-
tiscale and multiplex networks, defined as

QM = 1

2μ

{(
Ai jα − γ

kiαk jα
2mα

)
δαβ + δi j C jαβ

}
δ(giα, g jβ), (14)

whereμ denotes the number of links inmultiplex networks, γ is the resolution parame-
ter. Ai jα represents the adjacencymatrix of nodes in layerα.C jαβ represents interlayer
edge connecting node j among layer α and layer β. This metric introduces a coupling
between communities in neighboring layers by allowing interlayer edges, while differ-
ent γ enables the detection of different scale communities. However, the range of γ is
required to be manually determined, which may be unable to obtain reasonable results
without an appropriate γ . Afterward, a variational version of QM is given (Pramanik
et al. 2017) as

Q = 1

2m

∑
i j

(Ai j − Pi j )δ(ψi , ψ j ), (15)

where δ(ψi , ψ j ) is the Kronecker delta function, it equals 1 iff ψi = ψ j , i.e. i and j
belong to the same community and 0 otherwise. The penalty term Pi j is the expected
probability of existing an edge between nodes i and j if edges are placed at random
as

Pi j =

⎧⎪⎨
⎪⎩

P1
i j , if i ∈ V 1& j ∈ V 1

P2
i j , if i ∈ V 1& j ∈ V 2

P12
i j , if i ∈ V 1& j ∈ V 2 or i ∈ V 2& j ∈ V 1

, (16)
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where P1
i j can be calculated by P1

i j = (hi ×h j )/(2|E1|) and P2
i j = (hi ×h j )/(2|E2|)

and P12
i j = (ci × c j )/(2|I12|). hi and h j are the intralayer degrees of nodes i and j ,

and ci and c j are the respective coupling degrees of i and j . |I12| depicts the amount of
all the interlayer edges among layers L1 and L2. Likewise, the multiplex modularity
is also criticized by resolution limits (Vaiana and Muldoon 2018).

Modularity density (Li et al. 2008) was proposed to solve the resolution limits
problem, defined as

D =
c∑

i=1

L (Vi , Vi ) − L
(
Vi , V̄i

)
|Vi | , (17)

where c is the total number of communities, |Vi | is the number of nodes of the i-
th community. L (Vi , Vi ) = Σ j∈Vi ,k∈Vi A jk denotes the number of edges among i-
th community and L

(
Vi , V̄i

) = Σ j∈Vi ,k∈V̄i A jk denotes the number of connections
between the i-th community and other communities.

In 2010, Performance (Fortunato 2010) was proposed as a community quality func-
tion, which mainly considered the number of correctly “interpreted” pairs of nodes
(i.e., the nodes belonging to the same community and connected by an edge, and nodes
belonging to different communities and not connected by an edge), defined as

P =
∣∣{(i, j) ∈ E,Ci = C j

}∣∣ + ∣∣{(i, j) /∈ E,Ci �= C j
}∣∣

n(n − 1)/2
, (18)

where E denotes the edges set, Ci and C j denote the i-th and j-th communities,
respectively, n is the total number of nodes. Specifically, Coverage (Fortunato 2010)
was defined as the ratio of the number of intra-community edges by the total number
of edges, given as

C =
∣∣{(i, j) ∈ E,Ci = C j

}∣∣
n(n − 1)/2

. (19)

In 2011, Aldecoa andMarín (2011) proposed the “Surprise” as ameasure for detect-
ing communities. Different from merely considering the number of edges required in
a partition, this metric takes the number of nodes into account, and it is capable of
resolving the resolution limit problem and detecting small communities (Fortunato
and Barthelemy 2007; Lancichinetti and Fortunato 2011). It is an interesting function
to measure how impossible is a given partition compared to a null model, defined as

S = − log
min(M,n)∑

j=p

(M
j

)(F−M
n− j

)
(F
n

) , (20)

where F is the maximum possible number of links in the network (i.e. k[k − 1]/2,
being k the number of nodes), n is the observed number of links, M is the maximum
possible number of intracommunity links observed in a partition. The parameter S,
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which stands for Surprise, indeed measures the “surprise” (improbability) of finding
by chance a partition with the observed enrichment of intracommunity links to a
random graph. The authors declare that surprise implicitly assumes a more complex
definition of community: a precise number of units for which it is found a density of
link which is statistically unexpected given the features of the network, and in 2013,
they also designed surprise maximization methods for detecting community structure
in complex networks (Aldecoa and Marín 2013). As an effective metric for evaluating
community structures, experiments on the human brain network (Fox and Lancaster
2002; Laird et al. 2005) have also proved its priority tomodularity (Nicolini andBifone
2016).

3.2.2 MDL, Pareto frontier and redundancy

The fundamental idea behind the MDL principle is that any regularity in a given
set of data can be used to compress the data, i.e. to describe it using fewer symbols
than needed to describe the data literally (Grunwald 2004). Rosvall et al. convert the
community detection task into solving a coding problem following the MDL princi-
ple (Rosvall and Bergstrom 2008). Analogously, the objective function of community
detection can be considered as a multi-objective optimization problem. The optimal
partitioning for a multilayer network is achieved by maximizing a local evaluation
indicator (e.g. local modularity (Chen et al. 2018b)) in each layer, i.e.,

C = argmax
C

[ f1(C), f2(C), . . . , fk(C)], (21)

where k denotes the number of communities. However, calculating an exact Pareto
front is, in general, a challenging task. The most popular approximate methods are
genetic algorithms, which employ biologically inspired heuristics to attempt to trans-
form randomly selected seed cases into solutions on the Pareto front using propagation
Multi-objective Management (Caramia and Dell’Olmo 2008).

Berlingerio et al. define the redundancy index ρc (Berlingerio et al. 2011a), which
captures the phenomenon that a set of nodes constitute a community in a dimension
tend to constitute communities also in other dimensions. The redundancy figures out
the fraction of redundant links in a multi-dimensional network, defined as

ρc =
∑

(u,v)∈P̄c

|{α : ∃(u, v)α ∈ E}|
L × |Pc| , (22)

where c represents a community, α is a layer of all the layers L = {1, 2, . . . , L}, P is
a set of node pairs (u, v) existed at least one layer in a multilayer network; P̄ is the set
of node pairs existed at least two layers. P̄c is the subset of P appearing in c; P̄c ⊆ P̄
is the subset of P̄ only containing node pairs in c. The more layers connect each pair
of nodes within a community, the higher the redundancy will be.
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3.2.3 Purity, NMI, and ARI

The clustering accuracy measures are widely utilized to evaluate and compare the
performance of community detection algorithms on real-world networks with given
ground-truth communities. Suppose the computed clusters Ω = {ω1, ω2, . . . , ωk}
with respect to the ground truth classes C = c1, c2, . . . , ck . Purity (Zhao and Karypis
2004) represents the percentage of the total number of nodes classified correctly,
defined as

Purity(Ω,C) = 1

N

∑
k

max
j

∣∣ωk ∩ c j
∣∣ , (23)

where N is the total number of nodes, and |ωk ∩ c j | depicts the number of nodes in
the intersection of ωk and c j . To compromise the quality of the clustering against the
number of clusters, we can utilize normalized mutual information (i.e., NMI) (Danon
et al. 2005). The confusion matrix is comprised of ground communities and generated
partitions, thereby NMI is defined as

NMI (A, B) =
−2

∑CA
i=1

∑CB
j=1 Ni j log

Ni j N
Ni N j∑CA

i=1 Ni log
Ci
N + ∑CB

j=1 N j log
C j
N

, (24)

where A and B denote the ground-truth communities and the detected partitions. CA

and CB are the number of groups in partition A and B, respectively. Ni j depicts the
elements of the confusion matrix. Ni is the sum of the elements in row i , N j is the
sum of elements in column j . N is the number of nodes. The range of NMI is [0, 1].
If A = B, NMI (A, B) = 1. If A and B are completely different, NMI (A, B) = 0.
Suppose an approximate size z as the number of community sets, the computation
of NMI requires O(z2) comparisons, which is incapable of evaluating partitions for
large-scale networks. In order to cope with the high computational complexity of
such method in recent years, several approaches (Cazabet et al. 2015; Rossetti et al.
2016a, b), e.g., the precision, recall, and F1-score are employed, defined as

Precision = TP

TP + FP
, (25)

Recall = TP

TP + FN
, (26)

F1−score = 2 × (Precision × Recall)

Precision + Recall
, (27)

with TP = true positive, FP = false positive, FN = false negative and TN= true negative.
Besides, Rand Index is also a popular measure, which represents the percentage of TP
and TN decisions assigns that are correct (i.e. accuracy), defined as

RI (Ω,C) = TP + TN

TP + FP + FN + TN
. (28)
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ARI (Schütze et al. 2008) is RI defined to be scaled in the range [0, 1]. All of the
metrics in this subsection are in the range of [0, 1], and the higher the metric, the better
the clustering quality is.

3.3 Algorithms classification

Early approaches either collapse multilayer networks into a weighted single-layer
network (Berlingerio et al. 2011a; Tang et al. 2012b; Taylor et al. 2016b, a), or extend
the existing algorithms for each layer and then merge the partitions via consensus
clustering (Tang et al. 2009; Papalexakis et al. 2013). However, these approaches
have been criticized for ignoring the connections across layers, thereby resulting in
low accuracy. Research to date has exhibited some novel algorithms for discovering
communities in multilayer networks directly (Ma et al. 2018; Pamfil et al. 2019).
Generally speaking, the strategies are mainly classified into three categories (Tagarelli
et al. 2017):

– Flattening methods
– Aggregation methods
– Direct methods

Flattening methods collapse the layers’ information into a single layer and then
conduct the traditional monolayer algorithms for detecting communities. This strat-
egy is very common in multiplex networks, where the multiplex network is converted
into a multi-relationship network (Rocklin and Pinar 2013) or a monolayer net-
work (Kuncheva and Montana 2015).

Aggregation methods discover the communities in each layer and then merge them
by a certain aggregation mechanism, which could be useful for removing redundant
information. The aggregation process requires 2L comparisons and it’s very time-
consuming for a temporal network with numerous layers. Thus, “layer communities
grouping” is proposed to reduce the redundant layers (Kao and Porter 2018). Dal-
ibard proposed a parameter Pl

Ck
for each layer l ∈ L to describe the probability of

communities, and then aggregate the communities in each layer in terms of a correla-
tion coefficient ραβ between layers α and β (Dalibard 2012). Numerical experiments
on synthetic multilayer networks show that the analysis fails in aggregated networks,
whereas themultilayer method can accurately identifymodules across layers that orig-
inate from the same interaction process (DeDomenico et al. 2015a). Thus, aggregation
is not recommended.

Direct methods aim to detect the community structures directly on the multilayer
network by optimizing some quality-assessment criteria without flattening (Oselio
et al. 2015). For example, Pramanik et al. defined a multilayer modularity index, i.e.,
QM , and combined with the improved GN and Louvain algorithms, namely GN-QM

and Louvain-QM , respectively (Pramanik et al. 2017).
There has been plenty of endeavors made in the last decades, however, research

for multilayer networks is still in infancy (Tagarelli et al. 2017), and it is promising to
extract communities without collapsing multilayer networks. Several representative
methods are introduced in the following subsections.
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Table 3 Similarity measures for MNLPA algorithm

Metric in monolayer networks Modification for multilayer networks

JC(i, j) = |Γ (i)∩Γ ( j)|
|Γ (i)∪Γ ( j)|

∑L
α=1

(
1

2ωα
(
|N |
|U | + |Ń |

|Ú | )
)

∑L
α=1 ωα

CN(i, j) = |Γ (i) ∩ Γ ( j)|
∑L

α=1

(
1

2ωα
(|N |+|Ń |)

)
∑L

α=1 ωα

AA(i, j) = ∑
z∈|Γ (i)∩Γ ( j)| 1

log kz

∑k
α=1

(
1

2ωα
(
∑

z∈N 1
log|Γ α

z | +
∑

z∈Ń
1

log|Γ α
z | )

)

∑L
α=1 ωα

Γ (i) and Γ (i) denote the neighbors of node i and node j , respectively. ωα denotes the weight of layer α,
N = Γ α

out_ j ∩ Γ α
in_i , Ń = Γ α

in_ j ∩ Γ α
out_i , U = Γ α

out_ j ∪ Γ α
in_i and Ú = Γ α

out_ j ∪ Γ α
in_i . Γ

α
out_ j and Γ α

in_i
denote out-neighbors and in-neighbors of node j and node i in layer α, respectively. Z is the intersection
of j’s out-neighbors and i’s in-neighbors. Ź is the intersection of j’s in-neighbors and i’s out-neighbors

3.3.1 Improved label propagation algorithm

Label propagation algorithms utilize the propagation features of networks and have
linear complexity and reasonable results. These methods allow the nodes to adopt new
characteristics depending on the behavior of their neighbors, e.g. adopts labels of the
biggest amount of its neighbors. The process of LPA is shown as follows:

Step 1: Traverse the network and assign a unique label to each node.
Step 2: Establish a random order of the node’s revision.
Step 3: Each node is revised in the assigned order and adopts the most frequent label

of its neighbors.
Step 4: The process is performed iteratively until the algorithm converges and no label

changes occur anymore.

Inspired by the traditional LPAprocess, Alimadadi et al. (2019) redefined the neigh-
borhood in multilayer networks and then proposed MNLPA to detect communities in
a weighted and directed Facebook activity network. The algorithms are summarized
as followings:

Step 1: Each node u is initiated with a unique label, then the neighbors of u in all
layers are obtained, marked as Nu .

Step 2: Calculate the similarity (measures are listed in Table 3) of u between the node
v in Nu , and mark v when the similarity score is more than a given threshold
σ .

Step 3: Repeat the following steps until the stop criterion is satisfied:

– Nodes are ordered randomly;
– For each node u, each marked similar neighbor sends out its label to u, and
mark the node u with maximum labels.

Step 4: Divide communities by the nodes with the same labels.

The MNLPA is praiseworthy with efficiency, and capable of dealing with weighted
and directed networks, but also criticized by instability. The partition result is sensitive
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Fig. 13 Comparison of LPA and MNLPA algorithms conducting on Facebook datasets. The homophily
obtained by MNLPA algorithm is marked by gray bars, thus the resultant communities are similar and fit
the definition of the community to some extent

Fig. 14 Three synthetic multilayer networks for evaluating the proposed MNLPA. The top three panels
show the multilayer networks, in which each has three layers with community labels generated by LFR
benchmark (Lancichinetti et al. 2008). The bottom three panels show the relevant supra-adjacency matrices

to the threshold parameter in MNLPA and the density of the network dataset. As they
declared, the MNLPA algorithm is verified by experiments on real-world datasets and
the results are reprinted in Fig. 13.

As the Facebook datasets are not provided in their works, we construct several
synthetic three-layered networks, as plotted in Fig. 14.

Experiments on the constructed synthetic networks suggest that MNLPA algorithm
is fastidious about the parameters. The changing ofmodularitywith the varying thresh-
old δ is plotted, as shown in Fig. 15.

As shown in Fig. 15, the performance of the proposed MNLPA is not satisfied.
With an increasing threshold in [0.2, 0.4], the modularity increased, thus we guess the
threshold should be greater than 0.4 approximately. The Facebook datasets utilized in

123



26 X. Huang et al.

Fig. 15 The modularities
tendency obtained by the
MNLPA algorithm conducting
on three different synthetic
networks changes with the
varying threshold δ
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the experiments are weighted and directed, which may make prominent differences
in the experimental results. In brief, the MNLPA is suitable for large-scale networks
under certain conditions (e.g., weighted and directed), while for general multilayer
networks, it’s necessary to make modifications to improve the performance.

3.3.2 Nonnegative matrix factorization methods

Nonnegative matrix factorization (NMF) was proposed by Lee and Seung (2001).
It aims to factorize the original nonnegative matrix into the product of two other
nonnegative matrices. For applications in community detection methods, the original
nonnegative matrix can be an adjacency matrix, thereby the objective (loss) function
can be presented as

min
U≥0,V≥0

L(A,UV T ) =
∥∥∥A −UV T

∥∥∥2
F

, (29)

where A is a n × n adjacency matrix, and both U and V are n × k matrices. The rank
k corresponds to the number of divided communities. It has been widely utilized in
detecting communities in complex networks (Jiao et al. 2017; Liu et al. 2017;Wu et al.
2018).

Recently, Ma et al. applied this method (S2j-NMF) to community detection for
multilayer networks (Ma et al. 2018). They propose a quantitative function (i.e. mul-
tilayer network modularity density) and prove the trace optimization of multilayer
modularity density is equative to the objective functions of the community detection
algorithms (e.g. k-means (MacQueen 1967), NMF, spectral clustering (Ng et al. 2002),
multiview clustering for multilayer networks, etc.). The modularity density QD for
{Vc}kc=1 is defined as

QD

(
{Vc}kc=1

)
=

k∑
c=1

L (Vc, Vc) − L
(
Vc, V̄c

)
|Vc| , (30)

where QD({Vc}kc=1) is themodularity density of community partitions, k is the number
of partitions, V̄c depicts the partitions after removing Vc. L(Vi , Vj ) calculates the
connections between Vi and Vj , defined as
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L(Vi , Vj ) =
∑

p∈Vi ,q∈Vj

wpq , (31)

where p and q are the nodes of the partition Vi and Vj , respectively. wpq is the weight
of the edge (p, q) and equals 1 in unweighted networks. The objective function is
transformed into a multi-objective optimization problem as

QG
D

(
{Vc}kc=1

)
= 1

m

m∑
l=1

k∑
c=1

Ll (Vc, Vc) − Ll
(
Vc, V̄c

)
|Vc| , (32)

where Ll(Vi , Vj ) is the same with equation (31) applied in l layer. QG
D({Vc}kc=1) is

the objective function of the partitions in multilayer network G. Thus, the optimal
partitioning {Vc}kc=1 for the multilayer network by maximizing the modularity density
in each layer can be represented as

⎧⎪⎪⎨
⎪⎪⎩

max
(
Q1

D({Vc}kc=1)
)

max
(
Q2

D({Vc}kc=1)
)

· · ·
max

(
Qm

D({Vc}kc=1)
)

. (33)

Afterward, dense subgraphs are discovered by employing a greedy search strategy
in multilayer networks. The conventional NMF algorithm combined with a factorized
basis matrix and various coefficient matrices are applied to each layer. Finally, the
experiments are conducted on several datasets, which verifies the proposed method.

The complexity of this method is O(mn2k), where m is the number of layers
and k is the number of partitions. Thus, it is probably not acceptable for large-scale
networks. Besides, as the authors mentioned, the algorithm is based on multiplex
networks, which is not capable of handling the general form of multilayer networks.
The algorithm relies on prior information and the number of target communities, and
the decomposition process might be time-consuming.

3.3.3 Randomwalk methods

Kuncheva et al. propose a community detection algorithm, namely LART (Locally
Adaptive Random Transitions) for the detection of communities that are shared by
either some or all the layers in multiplex networks (Kuncheva and Montana 2015).
They employ the supra-adjacency matrix M̌ and define the transition probabilities of
four possible moves among the nodes, described as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(i, j)(i,k) = M̌(i, k)(i, k)

ki,k

P(i, j)( j,k) = M̌(i, k)( j, k)

ki,k

P(i,k)(i,l) = M̌(i, k)(i, l)

ki,k
P(i, j)( j,l) = 0

, (34)

where ki,k is the multiplex degree of node vki in M̌ defined as ki,k = ∑
j,l M̌(i,k)( j,l),

P(i, j)( j,k) depicts the transition probability from node i of layer k (i.e., vki ) to node j
of the layer l (i.e., vlj ). The probability to move from node vki to node vlj is zero when
i �= j and k �= l since there cannot exist a direct move where there is no connection.
The transition probabilities are represented as a matrix P of the random walk process
and written as

P = D−1M̌, (35)

where D is the diagonal matrix defined by the multiple node degrees. A dissimilarity
matrix S(t) which depends on the multiplex random walk of steps t is defined. The
dissimilarity matrix is defined according to the nodes i and j are in the same layer or
different layers, denoted by

S(t)(i,k)( j,k) =

√√√√√
N∑

h=1

L∑
m=1

(
P t

(i,k)(h,m) − P t
( j,k)(h,m)

)2

k(h,m)
, (36)

S(t)(i,k)( j,l) = √
s1 + s2 + s3, (37)

where s1, s2, s3 are defined as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s1 = ∑N
h=1

(
P t

(i,k)(h,k)√
k(h,k)

− P t
( j,l)(h,l)√
k(h,l)

)2

s2 = ∑N
h=1

(
P t

(i,k)(h,l)√
k(h,l)

− P t
( j,l)(h,k)√
k(h,k)

)2

s3 = ∑N
h=1

∑L
m=1;m �=k,l

(
P t

(i,k)(h,m)
−P t

( j,k)(h,m)

)2

k(h,m)

. (38)

Afterward, the agglomerative clustering is utilized to merge nodes in communities.
The multiplex modularity QM is employed to evaluate the quality of partitions. The
process of LART is shown as follows:

Step 1: Assign each node in each layer to its own community.
Step 2: Merge nodes based on the average linkage criterion using the distance matrix

S and obey the principle of the merged community has at least one within-
layer or interlayer connection.
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Fig. 16 The comparison of the
proposed LART algorithm with
MM and PMM
algorithms (Kuncheva and
Montana 2015) on the five
simulated scenarios of the
synthetic network
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Step 3: Merge the nodes only if the maximum QM is reached.
Step 4: Obtain the shared and non-shared communities.

The experiments are conducted on synthetic multiplex networks, and the experi-
mental results are shown in Fig. 16.

The proposed LART algorithm is conducting on five different scenarios and the
experimental result demonstrates the performance of the proposed algorithm. How-
ever, the algorithm is limited to multiplex networks, and the real-world networks are
much more complicated. Hence, the performance of the LART algorithm for real-
world datasets is uncertain.

3.3.4 Multi-objective optimization methods

Pizzuti and Socievole (2017) proposed the Multi-layer many-objective Optimization
algorithm (MLMaOP), in which they formulated the community detection problem in
multilayer networks as a many-objective optimization problem and a given objective
is contemporarily optimized on all the network layers. In their work, they give the
multi-objective optimization problem (MOP) as

min
x

F(x) = ( f1(x), f2(x), . . . , fd(x)) subject to x ∈ X , (39)

where d is the number of objective functions, x = (x1, x2, . . . , xn) ∈ X is the decision
vector with a domain of definition X ⊆ Rn, F : X → Z is the mapping from the
decision space X to the objective space Z . When d ≥ 3, an MOP is referred to as
Many Objective Optimization Problem (MaOP) (Farina and Amato 2002). Pareto-
dominance relation is used to define a partial ordering in the objective space. Thus,
the problem of community detection in multilayer networks using MaOP is defined
as

min F(P) = (F1(P), F2(P), . . . , Fd(P)) subject to P ∈ Ω, (40)

where each Fα : Ω → R computes the value of the objective function only on the
layerGα . For the main purpose is to get a maximized Q, so Fα(P) = −Qα(P)means
that the greater Q, the smaller Fα(P) partitions on each layer. The main process of
MLMaOP is shown as follows:

Step 1: Initialize a rand partition by using the adjacency matrix of projected M .
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Fig. 17 The comparison of MLMaOP algorithm with competitors on SSRM dataset (Loe and Jensen 2015)

Step 2: Traverse the partition in all the layers, evaluate the objection function on Gα

to obtain Fα(P). Assign a rank based on Pareto dominance and then combine
parents and offspring partition into fronts.

Step 3: Select the best points, and apply the variation operators and create the next
partition.

Step 4: Choose a solution from the Pareto front.

The comparison of MLMaOP algorithm with other approaches (Loe and Jensen
2015) is shown in Fig. 17.

The proposed algorithm with three different strategies is competitive on the parti-
tions P1, while on P2 and P3, we can see that the NMI results obtained by the other
algorithms are better. Besides, theMLMaOP algorithm suffers from a low convergence
rate to Pareto front and is likely to be time-consuming for detecting communities in
large-scale networks.

3.4 Discussion

In the last decade, a plethora of approaches have been proposed to address the com-
munity detection problem with enormous network data. We list several representative
methods (from 2009 to 2019), as shown in Table 4.

Table 4 shows that most of the presented methods are holding relatively high com-
plexity, where GN-QM , Louvain-QM and LART methods are based on multiplex
modularity maximization and unfavorable on general multilayer networks. Moreover,
themajority are designed formultiplex networks, which require the nodes in each layer
should be aligned. As we have introduced in the previous subsection, some improved
version of classic monolayer algorithms, e.g., GenLouvain has been regarded as a
benchmark and is really worth expecting for general multilayer networks. We can
anticipate four prospective directions, i.e., randomwalk-based method, tensor decom-
position, nonnegative matrix factorization, and modularity optimization will receive
increasing attention over time.

In addition to the above-mentioned directions, quite a part of algorithms focus
on overlapping community detection (Liu et al. 2018) and local community detec-
tion (Interdonato et al. 2017; Jeub et al. 2015; Li et al. 2019). On the one hand,
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with the increasing of network scale, global computation becomes time-consuming,
which promoting local community detection into our view. Liu et al. (2017) proposed
an improved multi-objective evolutionary approach for community detection in multi-
layer networks.Aiming at solving the local community detectionproblem, they employ
a string-based representative scheme and genetic operation and local search. However,
the algorithm adapts the strategy of conducting the Louvain algorithm (Blondel et al.
2008) on each layer and then merges the partitions, which seems to deviate from the
multilayer community concept. More than that, comparisons with other competitors
are not provided. On the other hand, overlapping communities are also ubiquitous
in multilayer networks (De Domenico et al. 2016), i.e., some nodes are attached to
multiple partitions simultaneously (Chen et al. 2016). Kao and Porter (2018) proposed
a method based on computing pairwise similarities between layers and then executing
community detection for grouping structurally similar layers in multiplex networks.
The algorithm is verified in both synthetic and empirical multiplex networks. As most
of the compared algorithms are designed for multiplex networks, there’s still a great
deal of works to do in community detection in the general multilayer networks.

In brief, the research on community detection for multilayer networks is just in its
infancy. At the time of this writing, there is still no standard algorithms for general
multilayer networks and quite a few problems remain to be solved, such as the opti-
mization of algorithm process to avoid time-consuming procedures, the extending of
algorithms for applying in general form of multilayer networks, the simplification of
mathematical model, and so on.

4 Applications

The study of detecting community structures in multilayer networks is experiencing a
blossom in the last decade. Relevant researches cover various aspects among our daily
life such as analyzing influential users in multiple social platforms (Al-Garadi et al.
2018), finding organization of proteins in a biological system (Gosak et al. 2018) and
managing urban transportation system with various traffic manners (Liu et al. 2019),
etc. The following subsections summarized applications of community detection via
a multilayer network framework.

4.1 Temporal networks partition

Community detection in temporal networks, i.e., temporal community detection, is
required to find how communities emerge, grow, combine, and decay in an evolving
process (Kawadia and Sreenivasan 2012). A common approach to detect temporal
communities is to obtain communities independently in each snapshot by utilizing
static methods and then map the partitions between two snapshots together as many
as possible. Obviously, it fails to achieve the goal of revealing the evolving process
because such methods do not adequately use partitions found in past snapshots to
inform the identification for the optimal partition on the current snapshot (Jiao et al.
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2017). Thus, as the foremost step of modeling, the traditional graphmodel is incapable
of presenting inter-connections in a temporal network.

Multilayer network model is commonly employed in the study of time-varying
networks (or temporal networks, multi-slice networks), in which the time snapshots
are modeled as layers and the layers are ordered by a certain sequence. However,
there’s a foundational question: Across how many layers must a community persist
in order for layer aggregation to benefit detection? To solve this problem, a layer
aggregation approach (De Domenico et al. 2014) is proposed to reduce data size or as
a data filter to benefit network-analysis outcomes. SinceMucha et al. (2010) introduced
the multiplex modularity optimization method, numerous attempts were made in this
field (Drugan et al. 2011; Nguyen et al. 2011; Li and Garcia-Luna-Aceves 2013),
which opened up a upsurge in unveiling the communities in time-varying networks.
Taylor et al. (2017) proposed the random matrix theory and found layer aggregation
to significantly influence detectability. The detectability limitation is described as the
ability of network structure to form a community, i.e., if the community structure
is too weak, it cannot be found upon inspection of the network (Lancichinetti and
Fortunato 2011). When the aggregative network corresponds to the summation of
the adjacency matrices encoding the network layers, aggregation always improves
detectability. The research is beneficial to understand the contraction of network layers
and analyze pairwise-interaction data to obtain sparse network representations. The
application of layer aggregation can be used for anomaly detection in network data,
e.g., in cybersecurity, detecting harmful events such as attacks, intrusions, and fraud.

4.2 Transportation networks optimization

On account of the critical role of transportation system in modern society, the study
on traffic dynamics has become one of the most successful applications of complex
network theroy. However, the vast majority of researches treat transportation networks
as an isolated system, which is inconsistent with the fact that many complex networks
are interrelated in a nontrivial way (Du et al. 2016). Analogously, the transportation
system has a variety of traffic manners, such as bus, subway, tram, high-speed train,
airline, ship, etc, hence a comprehensive study should cover many of such manners.
Early researches of traffic networks mainly focus on a single traffic way and ignore the
interactions between their counterparts (Calimente 2012; Chen et al. 2014). Du et al.
(2016) utilized a two-layered traffic network to study the distribution-based strategy
and improved the generating rate of passengers using a particle swarm optimization
algorithm. The multilayer network model utilized in this work is an idealized trans-
portation system, in which each layer has a different topology and supports different
traveling speeds. The passengers are allowed to travel along the path of minimal trav-
eling time and with the additional cost they can transfer from one layer to another to
avoid congestion. The research indicates that a degree centrality-based strategy is not
overly beneficial in enhancing the performance of the system. However, starting from
such a strategy and reassigning transfer costs using a particle swarm optimization algo-
rithm improve the capacity and several other properties of the system at a reasonable
computational cost. The research is rewarding to the selection of traffic manners and
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exemplifies how multilayer network models are applied in the urban transportation
system.

Inspired by the complex network theory and the multilayer network representation,
Hong and Liang (2016) analyze the Chinese airline transportation system with the
multilayer network framework, in which each layer is defined by a commercial airline
(company) and theweights of links are set by the number of flights, the number of seats
and the geographical distance between pairs of airports, respectively. By calculating
the clustering coefficient, average shortest path length, and assortativity coefficient
of the airports, the research has shown that the Chinese airline is of considerably
higher value of a maximal degree and betweenness than the other top airlines. Ding
et al. (2018) proposed a method for measurements in areas of Kuala Lumpur (i.e., the
national capital of Malaysia) to detect communities. The multilayer network model
employed in their research contains the railway layer and urban street layer, which
mainly focuses on detecting the changing structures of a rail network and mining in
urban network communities. The experimental results suggest that rail network growth
triggers structural and community changes, i.e., when an upper-layer rail network
grows from a simple tree-like network to a more intricate form, the network diameter
and average shortest path length decrease dramatically. The growth of the network
allows the remainder of the network to be easily visited, which provides suggestive
patterns for city development. Yildirimoglu and Kim (2018) analyzed the urban traffic
network by combing bus lines, passenger trajectories, and vehicle trajectories together
and formed a three-layered network. By applying the Louvain algorithm (Blondel et al.
2008) independently on the three layers, they found that aggerated patterns can shape
geographically well-connected communities in the urban traffic network. The spatial
structure is quite alike for the bus and passenger layers, which benefits transit authority
in making location decisions. The research is beneficial from a planning perspective
that sub-regional borders designate the influential areas around local centers, shopping
districts, school zones, etc., and cities can develop policies in order to improve the
accessibility to them and enhance network performance.

4.3 Social network analysis

Another hot-point of community detection research in multilayer networks is social
network analysis (Alhajj and Rokne 2014). Social networks have been studied fairly
extensively over the last couple of decades, mainly in the general context of analyzing
interactions between people in order to determine important structural patterns in such
interactions. With the utilization of plentiful data resources from online social media
such as Facebook, Twitter, and Flickr, there’s an increasing tendency in discovering
community structures in such time-varying social networks (Alimadadi et al. 2019;
Rozario et al. 2019; Zhou et al. 2007, 2016). The emergence of online social networks
has altered millions of web users’ behavior so that their interactions with each other
produce huge amounts of data on various activities. Facebook and Twitter, as the
top-two popular social media in our daily life, have been widely employed for social
network analysis in recent years (Alimadadi et al. 2019; Türker and Sulak 2018).
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The analysis of social networks is usually accompanied by various applications
such as information propagation, internal trades analysis, influential spreaders identi-
fication, and so on. Diffusion processes, like the propagation of information or the
spreading of diseases, are fundamental phenomena occurring in social networks.
While the study of diffusion processes in single networks has received a great deal of
interest from various disciplines for over a decade, diffusion on multilayer networks
is still a young and promising research area, presenting many challenging research
issues (Salehi et al. 2015). Numerous attempts have been made to uncover the com-
munity structures in international trades, typically represented as bipartite networks
in which connections can be established between countries and industries (Alves et al.
2019). Biondo et al. (2017) present amultilayer networkmodelwith contagion dynam-
ics, which is able to simulate the spreading of information and the transactions phase
of a typical financial market. In their two-layered network framework, the first layer
comprises the trading decisions of investors, and the second layer is constructed of the
information dynamics, which is fruitfully beneficial to explain the aggregate behavior
of markets. Basaras et al. (2017) proposed an effective method to detect influential
spreaders in multilayer networks based on the underlying community structures. The
experimental evaluation shows that the proposed method outperforms the major com-
petitors proposed so far for either single-layer or multilayer networks.

The above-mentioned applicationsmainly focus on a local structure or some certain
context-based community detection for the case of large volume and various dynamic
changes of networks. Thus, it is of great significance in designing some smart algo-
rithms to mine the valuable information among plentiful social network resources.

4.4 Research on biological systems

Biological systems, from a cell to the human brain, are intrinsically complex (Ma’ayan
2017). Multilayer networks, described by an intricate network of relationships across
multiple scales, are most widely employed in representing such systems. The majority
of the biological processes are constituted by a group of proteins that are connected
densely (Cui et al. 2012). The protein-protein interaction (PPI) network contains the
communications among the protein groups that communicate with each other closely,
which can be used to predict the complexity of the function of normal proteins (Srihari
et al. 2017). In general, there are two typical protein communities: protein complexes
andprotein functionalmodules. Protein complexes are sets of proteins that interactwith
each other to execute a single multimolecular mechanism. Protein functional modules
are sets of proteins that participate in a particular biological process, and interact with
each other at different time and places (Spirin andMirny 2003). Recently, several stud-
ies are highlighting how simple networks, i.e., obtained by aggregating or neglecting
temporal or categorical descriptions of biological data, are not able to account for the
richness of information characterizing biological systems (De Domenico 2018). Chen
et al. (2018a) proposed an MLPCD algorithm by integrating Gene Expression Data
(GED) and a parallel solution of MLPCD using cloud computing technology. They
reconstructed the weighted protein-protein interaction (WPPI) network by combining
PPI network and related GED, and then defined simplified modularity as the ratio of
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in-degrees and out-degrees of proteins in a community. By utilizing an improved Lou-
vain algorithm (Blondel et al. 2008), they have achieved the goal of detecting protein
complexes and protein function modules.

Although non-overlapping communities are more commonly studied in network
neuroscience, a model of community structure that allows for overlapping networks
offers a more realistic presentation of brain network organization (Wu et al. 2011).
Taking overlapping communities into consideration, Zhang et al. (2018a) propose a
central edge selection (CES) based community detection algorithms for PPI networks.
Experimental results on three benchmark networks and two PPI networks indicate
the excellent performance of the proposed CES algorithm. Kurmukov et al. (2017)
propose a framework to compare both overlapping and non-overlapping community
structures of brain networks within the machine learning settings. The performance
of the proposed framework is verified in the task of classifying Alzheimer’s disease,
mild cognitive impairment, and healthy participants. Pan et al. (2018) present an
aggregation approach to detect communities in multilayer biological networks, which
first constructs a consensus graph form multiple networks and then applies traditional
algorithms to detect communities. Inspired by the fact of few shared edges existed
among different networks, they merge the weights of edges from different layers
and cut off the nodes with low weights. The approach is simple but limited by the
application scenarios.

Another notable direction of biological research is about human brain networks.
Cantini et al. (2015) propose a multi-network-based strategy to integrate different lay-
ers of genomic information and use them in a coordinatedway to identify diving cancer
genes. The multi-networks they focus, combine transcription factor co-targeting,
microRNA, cotargeting, protein-protein interaction, and gene co-expression networks.
The combination of different layers benefits extracting from the multi-networks indi-
cations on the regulatory pattern and functional role of both the already known and the
new candidate diver genes. Sanchez-Rodriguez et al. (2019) introduce an approach
for the detection of a modular organization by considering the temporal scales of the
information flow over large-scale brain graphs, and several organizational patterns
existing in the brain anatomical and functional networks are found. The structures
may coexist together, in a dynamical way that is given by the temporal scales of the
activity they produce, guaranteeing functional independence and coordination.

In brief, discovering the underlying patterns in biological networks is experiencing a
blossom.With the development of network science, multi-biological networks provide
plentiful data resources than ever before, which requires us to dedicate more to this
promising field.

5 Outlook

As interdisciplinary research with a variety of prospective applications, complex net-
work has been receiving increasing attention from the scientific community. Inspired
by prosperous real-world scenarios such as social networks, biological networks, and
transportation networks, extensive researches have been dedicated to the extraction
of non-trivial knowledge from such networks. Along with the further study, scholars
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come to realize many systems are inherently represented by a multilayer network,
in which edges exist in multiple layers that encode differently but potentially related,
types of interactions, and it is important to uncover the interlayer community structures
in a complex system.

This paper first presents the various formats of multilayer networks and then
introduces the two basic mathematical models. Subsequently, the quality evaluation
measures and several typical community detection algorithms are introduced, includ-
ing label propagation-based algorithm, nonnegativematrix factorization, randomwalk
methods, andmulti-objective optimization methods, and so on. After a comprehensive
analysis of the above-mentioned methods, we conclude that most of the existing meth-
ods are designed formultiplex networks, i.e., the nodes in each layer are aligned, which
limits the research on universal multilayer network format. Besides, the algorithms
are with high computational complexity and can hardly obtain reasonable partitions
among large-scale multilayer networks. A great deal of works remain to be done in the
future, such as designing more efficient algorithms for temporal networks with numer-
ous layers and exploring the community structures in special formats of multilayer
networks.
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