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Abstract Non-negative tensor factorization models enable predictive analysis on
count data. Among them, Bayesian Poisson-Gamma models can derive full pos-
terior distributions of latent factors and are less sensitive to sparse count data.
However, current inference methods for these Bayesian models adopt restricted
update rules for the posterior parameters. They also fail to share the update in-
formation to better cope with the data sparsity. Moreover, these models are not
endowed with a component that handles the imbalance in count data values. In
this paper, we propose a novel variational auto-encoder framework called VAE-
BPTF which addresses the above issues. It uses multi-layer perceptron networks
to encode and share complex update information. The encoded information is
then reweighted per data instance to penalize common data values before aggre-
gated to compute the posterior parameters for the latent factors. Under synthetic
data evaluation, VAE-BPTF tended to recover the right number of latent factors
and posterior parameter values. It also outperformed current models in both re-
construction errors and latent factor (semantic) coherence across five real-world
datasets. Furthermore, the latent factors inferred by VAE-BPTF are perceived to
be meaningful and coherent under a qualitative analysis.
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1 Introduction

In this paper, we focus on improving the performance of Bayesian Poisson ten-

sor factorization (BPTF). In terms of BPTF, it imposes Gamma distributions as
priors over its latent factors. These factors then form the instance-wise rates for
a Poisson likelihood over data observations. BPTF adopts two types of inference
frameworks to compute the posterior shape and rate for its Gamma latent factors:
Gibbs sampling and variational inference. Both of them rely on the auxiliary variable

augmentation technique to facilitate their computation. This technique is based on
the Poisson-Gamma conjugacy. It exploits the fact that a sum of auxiliary Poisson
variables with respective rates is itself a Poisson with the rate equal to the sum of
the auxiliaries’ rates.

Despite its importance, the augmentation technique, however, increases the
computation overhead due to the additional sampling procedures/updates on the
auxiliary Poisson variables. Moreover, the updates on each latent factor are inde-
pendent and thus fail to utilize the information from each other. This limits the
performance of BPTF when it encounters sparse tensors. In this case, we want the
data information for latent factors to be shared to enhance the inference of their
posterior distributions.

A common strategy to share the data information is to treat the parameters
of the posterior distributions of latent factors as regression models. The regression
coefficients are learned to map similar data patterns into values in close proximity
in the latent space. Naturally, the mapping is non-linear. This motivates us to use
artificial neural networks, which can fit complex mapping functions, to estimate the
posterior distribution parameters for the latent factors. Variational auto-encoder

(VAE) (Kingma and Welling, 2014) provides the foundation to achieve all of the
above. It links variational inference of posterior distribution parameters with multi-
layer perceptron (MLP) networks.

In this paper, we propose a novel factorization framework that combines BPTF
with VAE. It conducts mean-field variational inference for latent factors under each
mode of a tensor using mode-specific MLP networks. These networks, acting as the
encoders, compute the posterior shapes and rates for Gamma latent factors under
each mode. Furthermore, the encoder network for a latent factor from a particular
mode takes in both its data and the latent factors from the other modes. This
encoding style differs from that of classifical VAE. In classifical VAE, only the
data is encoded but not the other latent factors that also contribute to generating
the data. Unlike VAE, our framework has instance-wise inputs, each comprising
a data instance and latent factors that generate the data instance. This allows
the input dimension of our framework to grow linearly with the number of modes
rather than the number of possible entries in the tensor as in the VAE.

Our framework estimates the posterior shape and rate for a Gamma latent
factor based on its associated instance-wise inputs. Each input may contribute
differently to the estimation. Thus, the estimation is done by summing softplus

activation of the outputs from the corresponding encoder. The softplus function
yields a value close to zero when an input contributes little to the estimation. The
sum-of-softplus operation balances the extent to which instance-wise contributions
are sparsified against numerical stability for which the shape and rate must be
greater than zero.
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Our framework also handles the data value imbalance problem for BPTF.
In a typical application with BPTF, word counts are collected from publication
databases as a four-way tensor. Its modes correspond to authors, words, years and
publication venues. Each entry of this tensor records the number of times a word
appears in a scholar’s articles published at a venue in a particular year. In this
case, the majority of non-zero entries in this tensor will be one (i.e. most words
occurred only once). BPTF is likely to be overwhelmed by the influence of such
imbalance in its inference.

To solve this issue, our framework further weighs each softplus activation by
how far their input data values are from the average (or most frequent) value.
A data value farther from the average tends to have more useful information
in revealing how its associated latent factors are distributed. Thus, more weights
should be given to its corresponding softplus activation to increase its contribution
in posterior parameter estimation.

Experimental results show that our framework outperforms several state-of-
the-art factorization techniques on predicting missing values for non-negative multi-
way tensors. Moreover, we show that our framework has more potential of learning
meaningful and coherent latent factor structures for the tensors.

2 Related Work

Real-world data is always generated as the outcomes of some events which can be
organized into multi-way tensors. Given the observed event outcomes as observed
data entries in a tensor, it is important to conduct predictive analysis for the
unobserved outcomes. They are presented as missing values in the tensor. The
core of the predictive analysis is to uncover the underlying latent structures that
have generated the observed data entries. It is then straightforward to predict
the missing values, assuming that they share the same latent structures with the
observed ones.

2.1 Non-negative Tensor Factorization

Tensor factorization (TF) techniques (Kolda and Bader, 2009) provide effective
means to uncover the latent structures. They decompose a tensor into latent factor
matrices specific to its modes. Latent factors represent the underlying character-
istics of each element within the corresponding mode.

A significant application of the TF techniques is the predictive analysis for
non-negative integer data. This type of data is widespread across many areas such
as recommendation, publication, and crowd-sourcing systems, etc. The two most
common forms in which this type of data are observed are the rating and count.
The former is of particular interest to the area of recommendation systems where
data takes the form of integers under small scales (e.g. 1-5). The latter does not
impose any scale constraint on data values.

Non-negative tensor factorization (NTF) (Welling and Weber, 2001; Shashua
and Hazan, 2005; Friedlander and Hatz, 2008; Chi and Kolda, 2012) was developed
to decompose non-negative integer data. Originally, it was formulated as a con-
strained minimization problem. The objective function can be constructed based
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on various measures of the discrepancy between the observed and predicted data
values. Typical choices of the measure are Euclidean distance (Shashua and Hazan,
2005; Kolda and Bader, 2009) and Kullback-Leibler (KL) divergence (Welling and
Weber, 2001; Chi and Kolda, 2012). Each prediction is based on latent factors
constrained to be non-negative. Classical NTF finds locally optimal point esti-
mates for the latent factors. In (Chi and Kolda, 2012), the authors used Poisson
likelihood to model sparse count data and maximized its logarithm which turns
out to be the KL divergence.

Unlike the previous non-Bayesian point estimation NTF, Bayesian NTF in-
fers the full posterior distributions of the latent factors. It mainly uses two types
of likelihood: Gaussian and Poisson, to model the data. The Gaussian likelihood
setting focuses on non-negative real-valued data. It usually imposes truncated
Gaussian as the prior on each latent factor (Hinrich et al., 2018). There has also
been work on imposing a hierarchical structure on the prior using conjugate dis-
tributions (Schmidt and Mohamed, 2009).

2.2 Bayesian Poisson-Gamma Tensor Factorization (BPTF)

Gaussian NTF, however, is not good at describing real-world tensor data whose dis-
tribution is typically concentrated on zeros (used to represent the missing values)
and long-tailed. Using multi-way publication data as an example, authors typically
use small fractions of the vocabulary to write their articles, causing counts of most
words to be zero. In their articles, words with larger counts are also less likely to
be observed.

The above issues prompted the following work (Schein et al., 2015, 2016) to
alternatively use the Poisson log-likelihood to fit the data. It normally yields a bet-
ter fit since it naturally ignores zero values and can capture the long tail of word
counts. In this case, each latent factor follows a Gamma distribution. This distri-
bution imposes the non-negativity constraint on the latent factors. Meanwhile, it
can induce sparsity on the factors, which means that most of them become close
to zero. This causes the Poisson distributions constructed by these latent factors
to become long-tailed.

For the Poisson distribution, both the mean and the variance are equal to the
rate. Some recent work (Hu et al., 2015) has also dealt with the case where the
variance is much larger than the mean, called the over-dispersion of count data.
In this case, the negative binomial distribution, whose variance is strictly larger
than the mean, is used to construct the likelihood (Zhou et al., 2012). Based on
this setting, Hu et al. (Hu et al., 2015) proposed a novel online inference algorithm
for handling massive tensors. In this paper, we adhere to the Poisson likelihood
modelling assumption and show that our proposed framework can still outperform
the negative binomial model.

2.3 Auxiliary Variable Augmentation

BPTF aims to infer the joint posterior distribution of the latent factors given the
data and the hyper-parameters. Since deriving this distribution is analytically in-
tractable, the previous work had to resort to approximation techniques such as the
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MCMC algorithms (e.g. Gibbs sampling) and the variational inference algorithms.
The prerequisite step for these algorithms is the auxiliary variable augmentation.
It adds a generative layer of latent counts between each observed data instance
and its associated Poisson distribution. The additional latent count layer endows
the factorization models with the Poisson-Gamma conjugacy. It allows the approx-
imation techniques to be conducted in closed forms.

2.4 Deep Learning for Matrix Factorization

In recent years, various deep learning models have been applied to matrix com-
pletion and factorization in recommendation systems1. They include multi-layer
perceptron (He et al., 2017; Xue et al., 2017), convolutional networks (Kim et al.,
2016; He et al., 2018), auto-encoders (Sedhain et al., 2015; Li et al., 2015) and
recurrent networks (Hidasi et al., 2016). Most of them embedded different combi-
nations of three types of vectors: user, item and their pair-wise interaction. The
vectors contain varieties of information regarding the three. Typically, for either
user or item vectors, they contain the IDs and ratings specific to the user/item.
They can also contain side information. For example, user vectors can contain
demographic features while item vectors contain content features. The interaction
vectors mostly contain pairs of user and item IDs. The user/item embedding vec-
tors reconstruct the rating matrix via decoding layers (Sedhain et al., 2015) or
traditional matrix factorization (Li et al., 2015; Xue et al., 2017). Alternatively,
they and their interaction vectors can be fed into the various deep neural net-
works (He et al., 2017; Kim et al., 2016; He et al., 2018; Hidasi et al., 2016) to
predict the ratings.

As for specifically extending the Poisson-Gamma factor models with neural
networks, Yu et al. (2019) proposed to integrate neural pairwise ranking into the
factor models for collaborative filtering on count data. It replaced the likelihood
objective of the Poisson factor models with a pairwise ranking function. This
function is modelled by a neural network instead of a traditional linear ranking
function. The network predicts rankings on pairs of items rated by the same user
based on non-linear transformation of the concatenated latent factors between the
user and each of the items. The new ranking objective is then regularized by the
Gamma priors imposed by the factor models over the latent factors of the users and
items. However, this model is user-oriented and thus cannot be directly applied to
non-user-oriented cases in matrix and tensor factorization.

Deep learning based matrix completion and factorization have achieved state-
of-the-art performance. However, most of them address the ad-hoc problem and
are not scalable to tensor factorization. Furthermore, many of them require side
information (e.g. user demographics and sessions, item content) to be contained by
the user/item feature vectors. This limits their general application. Finally, most
of these models tend not to fit count data well. This is because the probability
distributions they used for their output layers were either Gaussian or Categorical,
instead of the Poisson.

1 For a more comprehensive review on this subject, we refer readers to (Zhang et al., 2019).
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2.5 Deep Learning for Tensor Factorization

Generalized from matrices, tensors contain much sparser data and thus require the
factorization techniques to capture more complex underlying patterns of the in-
teractions among different entities. Recently, there starts to emerge research work
that leverages deep neural networks for constructing non-linear neural factoriza-
tion models. These models have been shown to generally outperform traditional
multilinear factorization models (e.g. CP decompoistion (Kolda and Bader, 2009))
for sparse tensor completion.

Wu et al. (2019) proposed a neural tensor factorization model which specifically
considers the temporal information of the interactions among different entities.
This model leverages an LSTM network (Hochreiter and Schmidhuber, 1997) to
encode the timestamps into corresponding time embeddings. They are then fed
into a MLP network, along with the embeddings from the other modes, to perform
rating and link prediction for tensors under different applications. However, due
to this blackbox LSTM component, this model is only ad-hoc to applications that
involve temporal information.

Liu et al. (2019) proposed to use convolutional neural networks (CNNs) (Krizhevsky
et al., 2012) to capture non-linear complex patterns of interactions among entities
inside tensors. The model is generalized enough to be applied to any tensor fac-
torization problem but meanwhile lacks dedicated design for handling imbalanced
count data. Furthermore, many of the factorization problems may not exhibit
(repeatable) local patterns of interactions among entities for the model to work
desirably.

Deng et al. (2017) proposed the factorized VAE (FVAE) for audience (fa-
cial expression) analysis. Its design is based on a specific graphical model for the
particular analysis. The model imposes informative priors, factorized over latent
audience and time factors, to sample some intermediate latent factors (which cor-
respond to samples drawn from the encoders of FVAE). The intermediate factors
then interact with the spatial factors of facial landmarks (which correspond to the
decoder) to generate the landmark locations. In comparison, our framework is de-
signed based on a general graphical model without any ad-hoc priors. FVAE infers
the posterior distributions of the intermediate latent factors to capture dynamic
audience reactions. It ignores the posterior inference for the latent factors from
each tensor mode. Our framework performs the latter inference which is a more
general case of Bayesian tensor factorization.

3 Problem Formulation

Suppose that there is a set of occurred events which can be generally described as
“user u interacted with item v at time t”. The counts of their occurrences can be
formally represented by a three-way tensor Y of size |U| × |V| × |T |. The symbols
U ,V and T respectively denote the sets of users, items and time steps involved in
the events. Most of the entries in this tensor are zero (for missing/non-occurred
events). The remaining entries record the counts of the events’ occurrences. In this
paper, we will build a tensor factorization framework which reconstructs Y with
multi-dimensional latent factor vectors zu,zv and zt, with u ∈ U , v ∈ V and t ∈ T .
The reconstruction aims to minimize the total difference between each entry yuvt
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in Y and their predictions ŷuvt. We use symbol X:,:,: to express the set of index
triplets corresponding to each non-zero entry in Y . Likewise, symbols Xu,:,:, X:,v,:

and X:,:,t denote the sets of index pairs for each non-zero entry specific to user u,
item v and time t respectively. In general, we use round brackets (·, ..., ·) to denote
tuples and angular brackets 〈·, ..., ·〉 to denote vectors.

3.1 Limitations of Auxiliary Variable Augmentation

A major limitation of the auxiliary variable augmentation resides in the up-
date rules it imposes on the Gamma rate and shape for the latent factors. More
specifically, consider zuk, the k-th component of the latent factor vector for user u.
In Gibbs sampling, its posterior distribution is the following Gamma distribution:

zuk ∼ Gamma(αuk, βuk) (1)

αuk = α+
∑

(v,t)∈Xu,:,:

cuvt,k (2)

βuk = β +
∑

(v,t)∈Xu,:,:

zvk × ztk (3)

In the above equations, α and β are the shape and rate of the Gamma prior over
zuk. Equation 2 computes the posterior shape αuk using the k-th auxiliary latent
counts {cuvt,k}(v,t)∈Xu,:,: . Equation 3 computes the posterior rate βuk using pairs
of item and time factors {(zvk, ztk)}(v,t)∈Xu,:,: . The auxiliary latent count cuvt,k is
drawn alternately with zuk, zvk and ztk from the following Poisson distribution:

cuvt,k ∼ Poisson(zuk × zvk × ztk) (4)

Variational inference algorithms have similar update procedures. They require
parameter updates for the additional multinomial distributions over the auxiliary
latent counts2.

In Equations 2 and 3, the latent variables (i.e. {(zvk, ztk, cuvt,k)}(v,t)∈Xu,:,:)
used to update the rate and shape parameters correspond only to the data of
user u. This means that these updates fail to utilize the data from other similar
users for calibration. Moreover, the update formulas shown in the two equations
were derived based on the Poisson-Gamma conjugacy. They do not necessarily
reflect the underlying mappings between the posterior parameters and the latent
variables. We want the update rules to have more flexibility to capture possibly
complex mappings.

2 For a more detailed mathematical description, we refer readers to (Gopalan et al., 2015).
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4 Proposed Framework: VAE-BPTF

We now describe our framework: Variational AutoEncoder based Bayesian Poisson-
gamma Tensor Factorization (VAE-BPTF). To make the description succinct, we
consider the three-way tensor Y and its factorized latent vectors zu,zv and zt
introduced in Section 3.

The central part of VAE-BPTF is the inference of the posterior Gamma dis-
tributions for the latent factors. VAE-BPTF adopts the mean-field variational
inference. It assumes that the latent factors are independent and estimates their
posterior Gamma rates and shapes. It does this by maximizing the evidence lower
bound (ELBO) Q for the Poisson likelihood over Y which is expressed as follows:

Q =
∑

(u,v,t)∈X:,:,:

(
yuvt lnλuvt − λuvt

)
−
∑
k∈K

[∑
u∈U

KL

(
Gamma

(
αuk, βuk

)
||

Gamma
(
α, β

))
−
∑
v∈V

KL

(
Gamma

(
αvk, βvk

)
||Gamma

(
α, β

))
−

∑
t∈T

KL

(
Gamma

(
αtk, βtk

)
||Gamma

(
α, β

))]
(5)

In Equation 5, the Poisson rate λuvt is specific to the entry yuvt and is computed
according to the CP decompoistion (Kolda and Bader, 2009) as follows:

λuvt =
∑
k∈K

zuk × zvk × ztk (6)

The KL divergence between the posterior Gamma (e.g. parameterized by αuk, βuk)
and prior Gamma distributions is calculated as follows:

KL

(
Gamma

(
αuk, βuk

)
||Gamma

(
α, β

))
=

(αuk − α)ψ(αuk)− logΓ (αuk) + logΓ (α) + α(log βuk − log β) + αuk
β − βuk
βuk

(7)

where Γ (·) and ψ(·) are respectively the gamma and digamma functions.

Classical BPTF relies on the auxiliary variable augmentation. As discussed
in Section 3.1, the augmentation enables closed-form posterior updates on the
Gamma rates and shapes for latent factors. However, the update formulas are
limited in their flexibility and expressive power. Furthermore, the updates fail to
share information across users (as well as items and time steps). They are suscep-
tible to the possible sparsity in the individuals’ data. This leads to an unreliable
estimation of the posterior Gamma rates and shapes.

Combining BPTF with VAE can solve both problems. VAEs gain their expres-
sive power via activation functions and depths. Meanwhile, the weights between
layers can map similar inputs to similar outputs. This exerts a smoothing effect
on noisy sparse data information of individuals.
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4.1 Basic Framework Structure

Figure 1 shows the architecture of the VAE-BPTF framework. It inherits the
encoder-decoder structure from the auto-encoders. Figure 1c shows the decoder
part of the framework. It reconstructs each observed data yuvt using the CP de-
composition. Figure 1a displays the encoder part. There are |K| encoders dedicated
to computing either the posterior shapes or rates specific to each mode of the tensor
Y . In this case, the total number of encoder networks in VAE-BPTF is 3× 2× |K|
as there are three modes in the tensor and two parameters in the Gamma distri-
bution. The k-th encoders that respectively compute the posterior shape αuk and
the rate βuk replace the conjugate updates in Equations 2 and 3 as follows:

αuk =
∑

(v,t)∈Xu,:,:

h(f
(U)
uvt,k,Lw

(U)
k,L+1 + b

(U)
k,L+1)

βuk =
∑

(v,t)∈Xu,:,:

h(g
(U)
uvt,k,Lφ

(U)
k,L+1 + γ

(U)
k,L+1)

(8)

For each pair (v, t) ∈ Xu,:,:, we have the following recursive equations:

f
(U)
uvt,k,L = q(f

(U)
uvt,k,L−1W

(U)
k,L + b

(U)
k,L)

. . .

f
(U)
uvt,k,1 = q(f

(U)
uvt,k,0W

(U)
k,1 + b

(U)
k,1 )

g
(U)
uvt,k,L = q(g

(U)
uvt,k,L−1Φ

(U)
k,L + γ

(U)
k,L)

. . .

g
(U)
uvt,k,1 = q(g

(U)
uvt,k,0Φ

(U)
k,1 + γ

(U)
k,1 )

f
(U)
uvt,k,0 = g

(U)
uvt,k,0 = 〈zvk, ztk, yuvt〉

(9)

In Equation 8, the set of input vectors fed to the two encoders’ output layers,

indexed by (L+ 1), are {f (U)
uvt,k,L, g

(U)
uvt,k,L}(v,t)∈Xu,:,: . The weight vectors of these

output layers are w
(U)
k,L+1 and φ

(U)
k,L+1 respectively. The scalars b

(U)
k,L+1 and γ

(U)
k,L+1

are the respective biases.

Equation 9 shows how f
(U)
uvt,k,L and g

(U)
uvt,k,L are computed recursively from their

corresponding input layers f
(U)
uvt,k,0 and g

(U)
uvt,k,0. Both the input layers take in each

vector associated with user u: {〈zvk, ztk, yuvt〉}(v,t)∈Xu,:,: . To compute f
(U)
uvt,k,L,

these vectors are fed into L MLP hidden layers. The l-th (1 ≤ l ≤ L) hidden layer

has a weight matrix W
(U)
k,l shared across all the users. Its number of rows equals

the number of neurons in the (l-1)-th hidden layer if l ≥ 2 or otherwise, the number
of input features. The number of columns equals the number of neurons in the l-th

hidden layer. Likewise, the encoder that computes g
(U)
uvt,k,L has L hidden layers

with each layer having a weight matrix Φ
(U)
k,l (1 ≤ l ≤ L).

Figure 1b illustrates the inner structure of the k-th encoder with one hidden
layer that computes αuk based on Equations 8 and 9. Figure 2 further illustrates
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(a) VAE-BPTF’s k-th en-
coders specific to mode
“User” that compute the
posterior shape αuk and
rate βuk for each user u ∈ U .

(b) Inside the k-th encoder
that computes αuk for u ∈
U . Nu inputs pass through a
series of non-linear transfor-
mation before summed up.

(c) VAE-BPTF’s decoder
that reconstructs each data
point yuvt. Blue dashed
lines show the chain of gra-
dients with respect to pa-
rameters of the k-th en-
coders specific to mode
“User”.

Fig. 1: The architecture of the VAE-BPTF framework.

Fig. 2: Example of the linear transformation performed by the encoder’s weights.
The input matrix first multiplies the hidden layer weight matrix. Then, the result-
ing matrix multiplies the output layer weight vector to obtain the instance-wise
contributions.

the linear transformation performed by the weights3 of the hidden and output
layers. The inputs are organized into user-specific batches. The size of the batch for
user u is Nu = |Xu,:,:|. The hidden layer in this case has five neurons with a 3×5

weight matrix W
(U)
k,1 . The output layer maps the hidden neuron outputs linearly

with its 5×1 weight vector w
(U)
k,2 . This yields a set of scalars {iu,n}1≤n≤Nu for the

batch of user u. The scalar iu,n indicates the importance of the n-th input vector
in the batch in predicting αuk.

Essentially, Equations 8 and 9 embody the inference of the following posterior
distribution:

p(zuk|{(zvk, ztk, yuvt)}(v,t)∈Xu,:,:) ∝ p(zuk)×
∏

(v,t)∈Xu,:,:

p(yuvt|zuk, zvk, ztk) (10)

3 For simplicity, we omitted the activation functions and the bias terms in between.
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Fig. 3: VAE-BPTF depicted as a graphical model. The solid lines show the data
generation. The dashed lines show that zuk is inferred using the other latent factors
and the generated data.

The above equation can be further described by the generative and inference pro-
cesses shown in Figure 3. It shows that data instances were generated by the latent
factors from each mode. In reverse, the posterior distribution of a latent factor un-
der a particular mode is inferred based on the latent factors under the other modes
and the data instances they together generated4.

4.2 Sparsity-inducing & Numerically Stable Activation Functions

The activation functions h(·) and q(·) provide the non-linear transformation for
the output and hidden layers respectively. In terms of h(·), it must not violate
the non-negativity constraint on αuk and βuk. Possible choices of h(·) include the
sigmoid function, the softplus function and the rectified linear (ReLU) function.

To choose h(·), we consider a trade-off: the sparsity-inducing ability of h(·)
against the numerical stability for which αuk > 0 and βuk > 0. For ReLU, i.e.
h(i)=max(0, i), we found in the experiments that it could induce sparsity across
the inputs. More specifically, it transformed inputs deemed unimportant in pre-
dicting αuk or βuk into zero. Meanwhile, it kept the values of important inputs.
On the other hand, however, we found that ReLU almost certainly failed to yield
positive shape and rate for some individuals. They became negative usually after
a few training iterations under random initialization on latent factors and network
parameters.

In comparison, we found that the softplus function, i.e. h(i)=ln(1+exp(i)),
never led to negative shapes and rates during training. However, its sparsity-
inducing ability is weaker than ReLU. This is also the case for the sigmoid func-
tion, i.e. h(i)=1/(1+exp(−i)). Empirically, we found that our framework using
the softplus function for both h(·) and q(·) overall yielded the best performance
compared to other combinations of activation functions5.

4 For simplicity, we omitted the prior shape α and rate β in Equation 10 and in Figure 3.
They are not directly used to compute αuk and βuk in Equations 8 and 9. Instead, they are
leveraged by the KL regularization in Equation 5.

5 The combinations include either softplus or sigmoid for h(·), and either them or ReLU for
q(·).
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Fig. 4: Counts of different ratings across Amazon Prime videos. This data is highly
imbalanced.

4.3 Handling Imbalanced Data

Imbalanced data values are prevalent in the tensors of discrete data. For example,
in text analysis, small count values are more likely to be found in an author-word-
year tensor as each author tends to write most words few times in an article.
In recommender systems, a user-item-time tensor is more likely to contain high
ratings as users tend to give such ratings to items that they like but unwilling
to rate those they dislike. Figure 4 illustrates the imbalanced ratings on Amazon
Prime videos. The imbalance problem has posed a significant challenge to Poisson
tensor factorization approaches for making reliable predictions.

In recommender systems, most matrix factorization models dedicate a global
variable µ to account for the users’ average rating. This variable mitigates the
imbalance effect by removing the population bias underneath. It allows the models
to fit (Y − µ1) rather than the imbalanced Y 6. Latent factors are now learned
solely based on the personal bias information contained by the deviations between
the ratings and the average. Poisson factorization models are not compatible with
a mean variable µ as (Y − µ1) can contain negative entries the models cannot
factorize. However, without a proper way of handling the population bias, the
training of the models will end up just learning the average rating.

To enable VAE-BPTF to address this issue, we need to reweigh activation
results from its encoders’ output layers. Our design of the reweighting scheme is
inspired by two lines of research. Ahn (2008) has proposed a pairwise metric to
measure the importance of every pair of ratings on the same items from two users
to their similarity. It states that when two users’ ratings on the same item are close
to the average rating of the item, the agreement between the two ratings might
not provide much information about the similarity. In contrast, if the two ratings
are close and also far from the average rating, it indicates a stronger similarity
of two users in their tastes. The above idea reflects that ratings farther from the
average tends to yield more information about the characteristics of users. Our
reweighting scheme is partially inspired by this idea but focuses on measuring the
importance of a single rating to each entity associated with it.

6 The symbol 1 denotes a matrix of the same size as Y and contains all ones.
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Fig. 5: The reweighting function with different parameter values varies across the
squared distance.

Hu et al. (2008) have proposed a reweighting scheme for matrix factorization
on implicit feedback data, which can be extended to tensors. Their scheme is
integrated into the objective function of maximum a posterior inference for the
latent factors of the entities (e.g. users):

log p
(
zu|{zv,zt, yuvt}(v,t)∈Xu,:,:

)
∝ log p(zu) +

∑
(v,t)∈Xu,:,:

∆uvt log p(yuvt|zu,zv,zt)

(11)
where ∆uvt is the reweighting term specific to the entry yuvt. The authors dealt
with binary data (e.g. click data) and therefore proposed a strictly increasing
reweighting function:

∆uvt = 1 + θyuvt (12)

where θ is a positive hyper-parameter. According to the authors, this function
down-weights the unobserved values in the binary matrix and helps amplify the
evidence for positive preference. Since we deal with explicit feedback data (i.e.
yuvt > 0), the reweighting function needs to be designed to suppress the average
or the most frequent observed value and amplify the evidence for both positive
and negative preference relative to such a value.

Motivated by the above work, our reweighting scheme is based on the deviation
of each data value from the most frequent count value ȳ. The smaller the deviation,
the smaller the weight becomes. Thus, common data values will have less influence
in predicting the posterior parameters. The reweighting function adopted by VAE-
BPTF is thus:

∆(y, ȳ) =
1

1 + η × exp(−θ × (y − y)2)
(13)

In Equation 13, the parameters θ > 0 and η > 0 is the slope and the intercept of
the function ∆(y, ȳ). Figure 5 shows the values of ∆(y, ȳ) over (y − ȳ)2 for count
data under different values for θ and η. It can be seen that θ is much more sensitive
to the change in (y − ȳ)2 than η for driving ∆(y, ȳ) towards 1.

We integrate the reweighting function with VAE-BPTF by changing Equation 8
as follows:
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Fig. 6: Example of how the reweighting function is integrated into VAE-BPTF’s
encoders. Here, the previously important contributions, indicated by the dark
colours, are penalized to become unimportant due to their associated data value
being close to the most frequent value.

αuk =
∑

(v,t)∈Xu,:,:

∆(yuvt, ȳuvt)× h(w
(U)
k,L+1f

(U)
uvt,k,L + b

(U)
k,L+1)

βuk =
∑

(v,t)∈Xu,:,:

∆(yuvt, ȳuvt)× h(φ
(U)
k,L+1g

(U)
uvt,k,L + γ

(U)
k,L+1)

(14)

Figure 6 illustrates reweighting the activation function values specific to user u.
The majority of the count values, i.e. count 1 in this case, have the least weight for
their activation values (or equivalently, the least importance in predicting αuk).
Meanwhile, count 3 has a larger weight as it is farther from count 1. Depending
on the extent of the imbalance, the reweighting function can be made different by
varying θ and η.

5 Gradient Reparametrization

For any framework that exerts variational inference, including VAE-BPTF, a key
problem is to compute gradients of randomly generated latent variables with re-
spect to their posterior parameters. This is not directly feasible due to the stochas-
tic nature of the variables with Markov Chain Monte Carlo (MCMC) methods. A
popular solution is called the reparameterization trick. It transforms the posterior
distributions of the variables into some differentiable functions in terms of the
posterior parameters. These functions make the posterior parameters independent
of the stochasticity by using auxiliary random noise to account for it instead.

A few distributions (e.g. the Normal distribution) have been proved to have
closed-form reparameterized functions. However, many other distributions, includ-
ing the Gamma distribution, fail to yield analytic forms for the functions. Instead,
numerical approximations of the functions have been leveraged in recent work (Fig-
urnov et al., 2018; Jankowiak and Obermeyer, 2018; Knowles, 2015).

In this paper, we employ the approximation techniques from (Jankowiak and
Obermeyer, 2018). More specifically, we first specify the gradients of the ELBO
function Q with respect to the posterior rate, e.g. βuk, as follows:

∇βukQ =
∂LL

∂zuk
× ∂zuk
∂βuk

− ∂KL(βuk)

∂βuk
(15)
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In Equation 15, the symbol LL denotes the Poisson Log-Likelihood and the term
∂LL
∂zuk

is calculated as follows:

∂LL

∂zuk
=

∑
(v,t)∈Xu,:,:

(
yuvtzvkztk∑

k′∈K zuk′zvk′ztk′
− zvkztk

)
(16)

The term ∂KL(βuk)
∂βuk

can be calculated from Equation 7 as follows:

∂KL(βuk)

∂βuk
= αβ−1

uk − βαukβ
−2
uk (17)

To calculate the term ∂zuk
∂βuk

, the scaling property of the Gamma distribution is uti-

lized. More precisely, zuk ∼ Gamma(αuk, βuk) is the same as β×zukβ ∼ Gamma(αuk, βuk),

and as (β×zuk) ∼ Gamma(αuk, 1). Using an auxiliary variable εuk ∼ Gamma(αuk, 1),
the term ∂zuk

∂βuk
can be calculated as follows:

∂zuk
∂βuk

=
∂(εuk/βuk)

∂βuk
= −β−2

uk × εuk (18)

Likewise, to compute the gradient ∇αukQ, the terms ∂KL(αuk)
∂αuk

and ∂zuk
∂αuk

need to
be calculated. The former term can be calculated from Equation 7 as follows:

∂KL(αuk)

∂αuk
= αukψ

′(αuk)− αψ′(αuk) + ββ−1
uk − 1 (19)

where ψ′(αuk) is the trigamma function. Both the digamma and trigamma func-
tions can be readily computed using any major numerical computation software.

For the latter term, we need to calculate it as:

∂zuk
∂αuk

= β−1
uk ×

∂εuk
∂αuk

(20)

Given that εuk follows a standard Gamma distribution, computing ∂εuk
∂αuk

involves
the following reparameterization:

∂εuk
∂αuk

=
∂P(εuk;αuk)

∂αuk
/
∂P(εuk;αuk)

∂εuk

=
∂P(εuk;αuk)

∂αuk
/p(εuk;αuk)

(21)

where P(εuk;αuk) is the cumulative distribution function (CDF) of the standard
Gamma distribution and p(εuk;αuk) is its probability density function (PDF). For
Gamma distributed latent variable εuk, its PDF has a closed form. However, its
CDF does not yield an analytically tractable derivative with respect to αuk in
Equation 21. Jankowiak and Obermeyer (2018) proposed the following approxi-
mation of the derivative7:

∂P(εuk;αuk)

∂αuk
=



∂ TE(εuk;αuk)
∂αuk

, εuk<0.8

∂
∂αuk

(√
εuk
αuk

)
, εuk>8

∂ exp

[
R
(
log(

εuk
αuk

),log(αuk)
)]

∂αuk
, otherwise

(22)

7 For more details about the exact formulas of TE(εuk;αuk) and R
(
log( εuk

αuk
), log(αuk)

)
, and

their derivation, we refer readers to the supplementary materials of (Jankowiak and Obermeyer,
2018).
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Algorithm 1: Inference Scheme of VAE-BPTF

1 Initialize encoder output layer parameters under each mode S = U ,V or T and

k ∈ K: {w(S)
k,L+1, b

(S)
k,L+1} and {φ(S)

k,L+1, γ
(S)
k,L+1} by sampling each element from

N (0, σ2) and N (0.1, σ2) respectively;
2 Initialize encoder hidden layer parameters under each mode:

{W (S)
k,l , b

(S)
k,l ,Φ

(S)
k,l ,γ

(S)
k,l }

S=U,V or T
k∈K, l=1 to L by sampling each of their elements from

N (0, 1);
3 Initialize latent factors under each mode: {zsk}k∈K,s∈U,V or T by sampling each of

them from Gamma(α, β);
4 Construct input batches for the k-th (k ∈ K) encoders for U ,V and T :

batches {〈zvk, ztk, yuvt〉}(v,t)∈Xu,:,: for u ∈ U , {〈zuk, ztk, yuvt〉}(u,t)∈X:,v,:
for v ∈ V

and {〈zuk, zvk, yuvt〉}(u,v)∈X:,:,t
for t ∈ T ;

5 Procedure Network Parameters Update(S):
6 For each k ∈ K and l = 1 to L, compute

∇
W

(S)
k,l

[
Q−H(W

(S)
k,l ;

1
σ2

)
]
=

∑
s∈S

[
∇αskQ×∇W

(S)
k,l

αsk
]
−∇

W
(S)
k,l

H(W
(S)
k,l ;

1
σ2

)

with Equations 19, 20, 21 and 22, and use it to update W
(S)
k,l ;

7 Update b
(S)
k,l , Φ

(S)
k,l and γ

(S)
k,l in the same way as W

(S)
k,l and the updates to Φ

(S)
k,l

and γ
(S)
k,l are based on Equations 15, 16, 17 and 18;

8 End Procedure

9 Procedure Latent Factors MCMC Sampling(S):
10 For each k ∈ K and s ∈ S, sample zsk ∼ Gamma(αsk, βsk) where αsk and βsk

are computed based on Equations 9 and 14;
11 End Procedure

12 Procedure Input Batches Reconstruction(S1, S2, S3):
13 For each k ∈ K, update the input batches for the k-th encoders specific to S2

and S3 with new samples of {zsk}s∈S1
;

14 End Procedure

15 Procedure Mode Specific Inference(S1, S2, S3):
16 Network Parameters Update(S1);
17 Latent Factors MCMC Sampling(S1);
18 Input Batches Reconstruction(S1,S2,S3);
19 End Procedure

20 For iter = 1, 2, ... do
21 Mode Specific Inference(U , V, T ); //Inference under mode “User”
22 Mode Specific Inference(V, U , T ); //Inference under mode “Item”
23 Mode Specific Inference(T , U , V); //Inference under mode “Time”

In the above equation, TE(εuk;αuk) is a Taylor series expansion of P(εuk;αuk).
Meanwhile, R

(
log( εukαuk

), log(αuk)
)

is a rational polynomial function of orders up
to 2 and 3 in coordinates log( εukαuk

) and log(αuk) respectively.

6 Inference Scheme of VAE-BPTF

In this section, we describe how the VAE-BPTF framework infers its parameters.
The inference scheme combines the Markov Chain Monte Carlo (MCMC) poste-
rior sampling and the autoencoded variational inference. Algorithm 1 describes
the inference scheme in details. In the algorithm, the function H(·; 1

σ2 ) performs
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regularization on the weights of the encoder networks and the precision 1
σ2 controls

its extent.
As for encoder initialization, Normal distributions N (0, σ2) and N (0.1, σ2) are

used to initialize the output layer weights specific to the posterior shapes and rates8

respectively. As for the hidden layer weights, we use a standard Normal distribution
for their initialization. The latent factors under each mode are initialized by the
Gamma distribution with the prior shape α and rate β.

The algorithm conducts inference under each tensor mode, i.e. mode “User”,
“Item” and “Time”. For each mode-specific inference, the encoder parameters
are first updated by the procedure “Network Parameters Update” with Adam op-
timization (Kingma and Ba, 2014). Then, the latent factors are sampled using
the procedure “Latent Factors MCMC Sampling” with the updated encoder pa-
rameters. Finally, the sampled latent factors under the current mode (e.g. mode
“User”) are used to reconstruct the input batches for the other modes’ encoders
(i.e. modes “Item” and “Time”). We leverage the ELBO function Q for testing the
convergence of Algorithm 1. If the standard deviation of Q values over 10 consec-
utive iterations is sufficiently small, then we deem the algorithm has converged.
Otherwise, we terminate the algorithm after 300 iterations.

7 Experiments and Results

The VAE-BPTF framework is evaluated on both synthetic and real-world datasets.
The synthetic data evaluation focuses on VAE-BPTF’s abilities to recover the
right number of latent factors and the posterior parameters. The real-world data
evaluation focuses on VAE-BPTF’s abilities to reconstruct tensors and generating
coherent latent factors.

7.1 Synthetic Data Evaluation

We evaluate the performance of VAE-BPTF using data generated by the frame-
work itself. In this case, we know the number of latent factors and the posterior
Gamma shapes and rates for the factors. Therefore, we can compare them with
the corresponding estimates from VAE-BPTF.

In particular, we set the number of latent factors to be 10 and the numbers
of users, items and time steps to all be 100. As a result, the size of the synthetic
tensor is 100×100×100. For each user u ∈ U , item v ∈ V or time step t ∈ T ,
we draw their k-th latent factors from their respective Gamma distributions as
follows: zuk ∼ Gamma(αu, βu), zvk ∼ Gamma(αv, βv), ztk ∼ Gamma(αt, βt). Here,
we have αu, αv, αt, βu, βv, βt ∼ Gamma(α, β) and set α = 2 and β = 0.25. Based
on the sampled latent factors, we draw each data entry from Poisson distributions
with rates computed using the CP decomposition. The resulting tensor has around
10% of its data greater than zero. Each MLP encoder of VAE-BPTF is set to have
one hidden layer. The parameters θ and η of the reweighting function are set to
be 1 and 5 respectively. Figure 7a shows that the negative data log-likelihood has
a sharp turn on the 10 latent factors. This confirms that VAE-BPTF can recover

8 We found that a small positive mean for the latter Normal distribution could stabilize the
algorithm right after the initialization compared to a zero mean.
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(a) (b)

Fig. 7: 7a shows the change of the negative log-likelihood of VAE-BPTF across dif-
ferent numbers of latent factors. 7b shows correlations between posterior Gamma
parameters and their estimates from VAE-BPTF trained on various percentages
of the synthetic data.

the optimal number of latent factors (given sufficient data). Figure 7b shows that
there are positive correlations between the posterior Gamma parameters and their
estimates from VAE-BPTF in terms of either Pearson or Spearman coefficient.
The positive correlations grow stronger as more data is used to train VAE-BPTF.

7.2 Real-world Data Evaluation

We use five real-world datasets to evaluate VAE-BPTF’s abilities of tensor recon-
struction and generating coherent latent factors. Their domains vary from topic
modelling for publication and product reviews, user behaviour modelling for online
games, to collaborative filtering on ratings. The following are the descriptions of
the datasets:

– DBLP publication data (DBLP): This is a four-way count-valued tensor of
size 4358 (authors) × 3308 (venues) × 4619 (words) × 52 (years). The data was
collected as a random subset of paper abstracts from Semantic Scholar Open
Research Corpus9. There are 1,444,222 non-zero word counts in the tensor.

– NIPS publication data (NIPS): This is a three-way count-valued tensor of
size 6427 (authors) × 4377 (words) × 14 (years). The tensor was constructed
from the abstracts of papers published at the NIPS conference in 2000s10. The
tensor contains 757,366 non-zero word counts in total.

– Online game data (Game): This data was collected and provided by Bei-
jing Shandesitong Technology11. A three-way count-valued tensor of size 14064
(users) × 74 (items) × 72 (days) was constructed from the data. The tensor
records the counts of each virtual item acquired by each user in a Chinese on-
line game on each day over two months. The total number of count values, in
this case, is 682,389.

– Amazon video review data (Video Review): This is a three-way count-valued
tensor of size 5130 (users) × 1685 (videos) × 4205 (words). The tensor was built

9 https://s3-us-west-2.amazonaws.com/ai2-s2-research-public/open-corpus/index.html
10 https://www.kaggle.com/benhamner/nips-papers
11 http://www.shandesitong.com/
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from reviews of Amazon Prime videos12. It contains 1,269,654 non-zero word
counts.

– Amazon video rating data (Video Rating): This is a three-way rating ten-
sor of size 22,088 (users) × 13,689 (videos) × 2,465 (days). The data contains
133,087 ratings on Amazon Prime videos13 over a decade.

7.2.1 Reconstruction Error Analysis

We first evaluate the performance of VAE-BPTF on predicting missing entries
in tensors. This is done by comparing VAE-BPTF against five state-of-the-art
baselines in terms of both mean absolute error (MAE) and log-likelihood (LL).
These baselines are:

– BPTF: We applied the version implemented in (Schein et al., 2015). It uses
variational inference to estimate the posterior shapes and rates of latent factors.

– Online-Gibbs BPTF: We used the beta-negative binomial version of the BPTF
proposed in (Hu et al., 2015). The model is inferred using an online Gibbs
sampling scheme.

– PTF-KL: We employed the non-Bayesian Poisson tensor factorization model
proposed in (Chi and Kolda, 2012). It is optimized over the KL divergence
using multiplicative updates.

– NTF-LS: We implemented the classical NTF model. The model minimizes the
sum of squared (Euclidean) distances using the Adam optimization.

– MLP-TF: We extended the MLP-based matrix factorization model (He et al.,
2017) into its tensor version. This new model employs the same objective func-
tion and optimization algorithm as the NTF-LS model.

We conducted 80-20 training-testing random splitting on each dataset. Then,
5-fold cross-validation was applied to optimize the hyper-parameters of both the
baselines and VAE-BPTF. For all the baseline methods, the number of latent
factors |K| is selected from the candidate set {5, 10, 15, 20, 50}. Specifically for
the BPTF model, the shape of the Gamma prior is selected from {0.1, 1, 10} and
the prior rate is calculated by the default heuristics adopted in its code14. For the
online-Gibbs BPTF model15, the common hyper-parameter (i.e. denoted by c in
the paper) for computing the shapes of the Beta distribution (as a hierarchical prior
over the negative binomial model) is selected from {0.1, 1, 10}; same as the shape
of the Gamma prior (i.e. denoted by gr) in the model. For the PTF-KL model, we
adopt the default CP decomposition version from the Tensor Toolbox for Matlab16.
For the NTF-LS model, we implement it with the learning rate selected from
{10−4,10−3,10−2} and the L2 regularization term selected from {10−3,10−2,...,10}.
Finally, for the MLP-TF model, its number of layers is selected between 1 and 3
and the number of neurons per layer is selected from {10, 20, 50}. Its learning rate
and L2 term are selected from the same candidate sets as NTF-LS.

12 http://jmcauley.ucsd.edu/data/amazon
13 The prediction targets in this case are the ratings from the Amazon Prime video review

dataset.
14 https://github.com/aschein/bptf/blob/master/code/bptf.py
15 https://github.com/ch237/BayesPoissonFactor/blob/master/PTF OnlineGibbs.m
16 https://www.tensortoolbox.org/cp apr doc.html
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Data |K| L dl h, q θ, η σ2

Full Data
DBLP 10 1 20 Softplus, Softplus 5, 10 1
NIPS 10 1 20 Softplus, Softplus 5, 10 5
Game 5 1 10 Softplus, Softplus 5, 10 1

Review 5 1 10 Softplus, Softplus 10, 50 1
Rating 15 2 20 Softplus, ReLU 3, 10 5

Sub-sampled Data
DBLP 3 to 5 0 to 1 10 Softplus, Softplus 5, 20 0.1/1
NIPS 3 to 5 0 to 1 10 Softplus, Softplus 5, 20 0.1/1
Game 3 0 to 1 10 Softplus, Softplus 5, 20 0.1

Review 3 to 5 0 to 1 10 Softplus, Softplus 10, 50 0.1/1
Rating 3 to 10 0 to 1 10 Softplus, ReLU 5, 10 1

Table 1: Hyper-parameter optimization results for VAE-BPTF over the five
datasets and their respective sub-sampled datasets. For the sub-sampled datasets,
the hyper-parameters can take multiple values (e.g. 3 to 5 for |K|) corresponding
to different sample percentages.

The hyper-parameters of VAE-BPTF include the number of latent factors |K|,
the number of encoder hidden layers L, the number of neurons per layer dl, the
selection of activation functions h and q, the reweighting parameters θ and η, and
the variance σ2. Table 1 shows the hyper-parameter optimization results for VAE-
BPTF over both the five datasets and their sub-sampled datasets. Note that the
optimized values for the prior shape α and the prior rate β are not included in
the table. We found that their values, which are both 1, are overall insensitive to
the datasets and the selection of the other hyper-parameters in terms of MAE and
LL. As for the value of ȳ, we used the most frequent target value of each training
dataset, that is 5 for the Amazon rating data and 1 for all the other datasets.
From Table 1, we can see that VAE-BPTF needs more latent factors and hidden
layers to fit the Amazon rating data. Moreover, it is the only dataset for which
VAE-BPTF uses the ReLU function in the hidden layers. It is also observed that
the reweighting parameter values for the Amazon review data are much higher
than those for the other datasets. This suggests sharper increases in the reweight
terms from the most frequent count value to less frequent values. As a result, data
instances with count values close to ȳ will still be considered important. Finally,
it can be observed that the values for the hyper-parameters are smaller when
VAE-BPTF fits the sub-sampled datasets. In addition, greater regularization (i.e.
greater values for 1

σ2 ) is also exerted by VAE-BPTF on the model parameters.

Tables 2 and 3 respectively show the mean absolute error and the log-likelihood
of different models on each dataset. It can be observed that VAE-BPTF has out-
performed the baseline models across all the datasets in terms of both metrics. Its
superiority over the other Poisson factorization models is obvious, especially with
an increase of one order of magnitude in the log-likelihood. This demonstrates
that VAE-BPTF is much better at inferring the posterior distributions of the la-
tent factors. As a result, there is much less uncertainty about its predictions being
closer to the ground-truth values as measured by the log-likelihood.

In addition, the online-Gibbs BPTF model, which focuses on modelling over-
dispersed count data with a beta-negative binomial construction, has failed to
outperform even the BPTF model on the three text analysis datasets which are
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Models
Video

DBLP NIPS Game Review Rating
VAE-BPTF 0.656 0.532 1.241 0.226 0.756

BPTF 0.798 0.914 1.558 0.454 1.447
Online-Gibbs

1.412 1.183 1.575 1.207 3.472
BPTF

PTF-KL 1.521 1.223 1.625 1.211 4.023
NTF-LS 1.144 1.343 1.896 1.217 3.443
MLP-TF 0.728 0.616 1.387 0.362 0.770

Table 2: The mean absolute error of each model on the different datasets (the best
performance shown in bold figures)

Models
Video

DBLP NIPS Game Review Rating
VAE-BPTF -3.05×105 -1.31×105 -3.84×104 -2.29×105 6.28×104

BPTF -8.47×105 -4.25×105 -1.43×105 -6.53×105 2.26×104

Online-Gibbs
-1.38×106 -5.87×105 -1.62×105 -2.17×106 -3.52×105

BPTF
PTF-KL -3.29×106 -7.26×105 -2.33×105 -2.64×106 -6.11×105

Table 3: The log-likelihood of each model on the different datasets (the best per-
formance shown in bold figures)

Data
VAE-BPTF without

VAE-BPTF Reweights
MAE LL MAE LL

DBLP 0.656 -3.05×105 0.697 -4.33×105

NIPS 0.532 -1.31×105 0.578 -2.10×105

Game 1.241 -3.84×104 1.274 -5.63×104

Review 0.226 -2.29×105 0.260 -3.52×105

Rating 0.756 6.28×104 0.772 5.48×104

Table 4: Ablation study results for VAE-BPTF on the different datasets

the DBLP, NIPS and Video Review. We conjecture that this is because the extent
of word burstiness (Buntine and Mishra, 2014) that causes over-dispersed word
counts is not significant enough in these datasets. This is also evidenced by the fact
that its performance is much worse on the DBLP dataset than on the NIPS dataset
as the former has one more tensor mode which diffuses the word burstiness even
more. On the other hand, VAE-BPTF appears to be least affected by the over-
dispersion, if there is any. This might be partially attributed to its reweighting
scheme that essentially penalizes high variance in word counts (as those down-
weighted low-count words can be viewed as being discarded from the bag of words).

The baseline closest to VAE-BPTF in performance is the MLP-TF model.
Its performance was optimized with 20 embedding dimensions17 (for each tensor
mode), 2 hidden layers with 50 ReLU neurons each and a negative sampling ratio
of 3:118. Nonetheless, the superiority of VAE-BPTF over MLP-TF is statistically
significant according to a one-tailed paired t-test where the p-value equals 0.025.

17 The embedding was done based on the entity IDs.
18 Three zero values per one non-zero values.
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(a) DBLP

(b) NIPS

(c) Game

(d) Amazon Review

(e) Amazon Ratings

Fig. 8: The mean absolute error and log-likelihood of each model on sub-sampled
datasets; The sample percentages are 1%, 5%, 10%, 20% and 30%.

The results also suggest that the efficacy of incorporating neural components into
traditional factorization models appears to outweigh the efficacy of intricate prob-
abilistic modelling. In addition, we did not compute the log-likelihoods for both
MLP-TF and NTF-LS. This is because their squared loss function does not include
a standard deviation term during its optimization.

Table 4 shows the result of the ablation study on VAE-BPTF in which its
reweighting scheme was taken away. Its performance was degraded accordingly
across all the datasets. This result suggests the importance of properly handling
the imbalanced data values. Furthermore, without the reweighting scheme, VAE-
BPTF still notably outperforms the other baselines. This indicates that despite
using the CP decomposition (as the other baseline models) as the decoder, VAE-
BPTF’s variational encoders are better at predicting the posterior parameters
for the latent factors. We also observed that without the reweighting scheme,
VAE-BPTF spent more iterations reaching its lowest MAE and highest LL on the
validation datasets.
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As a further evaluation, we would like to see how robust our framework is to-
wards the data sparsity issue, i.e., small numbers of count values per entity under
each mode. This problem is prevalent in the cold-start scenario (Rashid et al.,
2008). For the evaluation, we need to run each model on small to medium data
subsets and observe the corresponding trends in their performance. To obtain these
data subsets, we sub-sampled the original datasets by 1%, 5%, 10%, 20% and 30%
(irrespective of entities under different tensor modes). When the subsampling per-
centage is 1%, the number of observed entries left in the tensor of each dataset is
no less than thousands, which ensures that all the models have enough data to be
trained and validated properly. We ran VAE-BPTF on the resulting data subsets
with the 5-fold cross-validation for optimization of the hyper-parameters. The re-
sults are specified in Table 1. For the baseline models, their hyper-parameters were
optimized under the same validation strategy from the candidate values specified
at the beginning of this section.

Figure 8 shows that VAE-BPTF achieved overall lower MAE and higher LL19

than the other models. VAE-BPTF also exhibits smooth trends in both metrics
between 1% and 10% of each dataset. This suggests that the complexity of VAE-
BPTF’s network structure has been properly regularized by the validation strategy.
As a result, its network parameters can be reliably learned from the sparse data.

NPMI DBLP NIPS Video
Review

VAE-BPTF -0.161 -0.145 -0.202
BPTF -0.226 -0.174 -0.241

Online-Gibbs BPTF -0.245 -0.211 -0.249
PTF-KL -0.236 -0.198 -0.261
NTF-LS -0.247 -0.224 -0.267
MLP-TF -0.193 -0.206 -0.228

Table 5: The average NPMI scores of each model on the words from the corpus of
each dataset (the best performance shown in bold figures)

7.2.2 Latent Factor Coherence Analysis

We further evaluate the semantic coherence of latent factors specific to words.
We first computed the adjacency matrix of word latent factors in terms of the
Euclidean distance. According to this matrix, we found the top 10 words closest
to each word (including the word itself). Then, for each word, we used the Nor-
malized Point-wise Mutual Information (NPMI) (Aletras and Stevenson, 2013) to
calculate a coherence score for its top 10 words20. A higher score indicates greater
coherence among the top 10 words. We removed the scores of rare words (i.e. words
that occurred in less than 0.1% of the documents in the corpus of each dataset).
Finally, we averaged the scores across the remaining words and the results are

19 We show only the LLs of VAE-BPTF and BPTF as the other Poisson-based models are
significantly inferior to them in this aspect.
20 The NPMI scoring uses a large Wikipedia dump hosted by Palmetto:

http://palmetto.aksw.org.

http://palmetto.aksw.org
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(a) Latent factors of two authors on DBLP who
respectively specialize in neural networks and
information security

(b) The authors’ top 10 words in use

Fig. 9: Qualitative analysis of the latent factors generated by VAE-BPTF on the
DBLP dataset.

summarized in Table 5 21. It shows that VAE-BPTF achieved greater average
semantic coherence on words compared to the other models. Moreover, the coher-
ence degrees of the models are overall consistent with their tensor reconstruction
performance. This indicates that the tensors have been generated coherently and
VAE-BPTF explains this coherent generation more effectively.

7.2.3 Qualitative Analysis

We further inspect the latent factors generated by VAE-BPTF on the DBLP and
Amazon review datasets. Figure 9a shows the latent factors of two authors on
DBLP who specialize in different research areas. Different spikes in their latent
factors indicate that they prefer to use different (groups of) words that have the
corresponding latent factor patterns. This is reconfirmed by Figure 9b which shows
the authors’ respective top 10 words in use. To acquire these words, we first com-
puted the dot products between the samples of each author’s and each word’s
posterior mean latent factors. More specifically, the samples were collected as the
means of the posterior Gammas from the VAE-BPTF encoders over 50 iterations
after convergence. Then, the dot product results were averaged over the 50 sam-
ples and the averages were sorted in descending order per author. Finally, the top
10 words were selected per author according to the sorted values. Figure 9b also
shows the standard deviations of the dot product results across the samples. It can
be observed that the top 10 words inferred by VAE-BPTF are directly relevant to
the research areas of the two authors: neural networks and information security.

Likewise, Figure 10a shows the difference in the latent factors of two Ama-
zon users who prefer either crime dramas or (animated) comedies. Figure 10c
further displays the top 10 words in use in their respective reviews. In addition,

21 The Game data and the Amazon rating data are not text data, and thus NPMI is not
applicable.
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(a) Latent factors of two Amazon users who
respectively prefer crime dramas and animated
comedies

(b) Embeddings of latent factors of two video
genres: crime (green) and comedy (orange)

(c) The users’ top 10 words in use

Fig. 10: Qualitative analysis of the latent factors generated by VAE-BPTF on
Amazon video data

Figure 10b shows two-dimensional embeddings of the latent factors of crime and
comedy videos. To obtain the embeddings, we applied multi-dimensional scal-
ing22 (Cox and Cox, 2000) to the latent factors of videos with single tags that
are either crime or comedy. From the figure, a notable difference can be observed
in the scatters of the embeddings of two video genres. This is coherent with the
human perception that there should be some difference in the two genres.

7.2.4 Computational Complexity Analysis

The computational complexity of our framework is approximately O
(
N×M×K×∑L+1

l=0 dldl+1

)
, where N is the number of non-zero entries in the tensor, M is the

number of tensor modes and dldl+1 is the number of weights at the l-th hidden
layer. In theory, our framework is computationally more expensive than the BPTF
model whose complexity is O

(
N ×M ×K

)
. In practice, we found that the running

time of our framework was generally an order of magnitude slower than the BPTF
model, given that dldl+1, K and L can be directly obtained from Table 1 across
the experiment datasets.

We have also tried a lighter version of VAE-BPTF whose K encoders under the
same mode share the same set of weights. This variant has a computational com-
plexity of O(N ×M ×

∑L+1
l=0 dldl+1). However, this variant has performed notably

worse than the original framework across the experiment datasets. Nevertheless,
the computational complexity remains to be a limitation of our framework that
needs to be addressed in the future work.

22 We used the cmdscale function in R that implements the classical multi-dimensional scal-
ing.
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8 Conclusion and Future Work

In this paper, we proposed the VAE-BPTF framework which integrates non-
negative tensor factorization with variational auto-encoders. The encoder networks
compute the posterior Gamma parameters for each latent factor specific to entities
under each tensor mode. More specifically, a parameter is computed by summing
the softplus activation of the encoder outputs. Each output is computed via an
MLP network. An input to this MLP comprises a data value generated by the tar-
get entity and the corresponding latent factors of the other entities. Furthermore,
to deal with the imbalance problem in count data, VAE-BPTF downweighs the
softplus activation of those corresponding to common data values.

According to the synthetic data evaluation, VAE-BPTF could find the right
number of latent factors and accurately estimate the posterior parameters. More-
over, VAE-BPTF outperformed state-of-the-art tensor factorization models on five
real-world datasets in terms of reconstruction errors and latent factor coherence.
We conducted qualitative analysis on the inferred latent factors of different entities
and found that they tend to agree with the human.

For future work, we would like to experiment with reweighting schemes that
consider weighted errors. They assign more weights to softplus values correspond-
ing to data values that were predicted less accurately in previous rounds. Fur-
thermore, we can investigate whether ensemble learning can be incorporated into
VAE-BPTF. For example, boosting techniques can be applied to sequentially build
weak encoder networks. We expect the base network to account for the imbalance
of data values and the following networks to improve the fit on the residuals. An-
other research direction is to develop variants of VAE-BPTF that aim to reduce
the computational complexity and meanwhile, maintain comparable prediction
performance and degrees of coherence in generated latent factors.
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