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Abstract
Time Series Classification (TSC) involves building predictive models for a discrete
target variable fromordered, real valued, attributes.Over recent years, a new set of TSC
algorithms have been developed which have made significant improvement over the
previous state of the art. The main focus has been on univariate TSC, i.e. the problem
where each case has a single series and a class label. In reality, it is more common
to encounter multivariate TSC (MTSC) problems where the time series for a single
case has multiple dimensions. Despite this, much less consideration has been given to
MTSC than the univariate case. The UCR archive has provided a valuable resource for
univariate TSC, and the lack of a standard set of test problems may explain why there
has been less focus on MTSC. The UEA archive of 30 MTSC problems released in
2018 hasmade comparison of algorithms easier.We review recently proposed bespoke
MTSC algorithms based on deep learning, shapelets and bag of words approaches. If
an algorithm cannot naturally handle multivariate data, the simplest approach to adapt
a univariate classifier to MTSC is to ensemble it over the multivariate dimensions.
We compare the bespoke algorithms to these dimension independent approaches on
the 26 of the 30 MTSC archive problems where the data are all of equal length. We
demonstrate that four classifiers are significantly more accurate than the benchmark
dynamic time warping algorithm and that one of these recently proposed classifiers,
ROCKET, achieves significant improvement on the archive datasets in at least an order
of magnitude less time than the other three.
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1 Introduction

Time series classification (TSC) is a form of machine learning where the features of
the input vector are real valued and ordered. This scenario adds a layer of complexity
to the problem, as important characteristics of the data can be missed by traditional
algorithms. Over recent years, a new set of TSC algorithms have been developedwhich
have made significant improvement over the previous state of the art (Bagnall et al.
2017).

The main focus has been on univariate TSC, i.e. the problem where each case has a
single series and a class label. In reality, it is more common to encounter multivariate
TSC (MTSC) problemswhere the time series for a single case hasmultiple dimensions.
Human activity recognition, diagnosis based on electrocardiogram (ECG), electroen-
cephalogram (EEG) and Magnetoencephalography (MEG), and systems monitoring
problems are all inherentlymultivariate. Despite this,much less consideration has been
given to MTSC than the univariate case. The UCR archive has provided a valuable
resource for univariate TSC, and its existence may explain the growth of algorithm
development for this task. Until recently, there were few resources for MTSC. An
archive of 30 MTSC problems released in Bagnall et al. (2018) has made comparison
of algorithms easier and will we hope spur further research in this field. We com-
pare recently proposed bespoke MTSC algorithms to simple adaptations of univariate
approaches on the 26 equal length problems in the UEA MTSC archive. We find that
dynamic time warping (DTW) is still hard to beat in MTSC, but that four algorithms
are significantly more accurate than this benchmark on this archive. It is dangerous
to infer too much from results achieved on 26 problems collected in an arbitrary way
across a wide range of problem domains. Nevertheless, some advice for practitioners
for a starting point in an analysis is always helpful. We conclude that one recently
published algorithm, ROCKET (Dempster et al. 2020), is our recommended choice
due to high overall accuracy and remarkably fast training time.

We provide an overview of MTSC and the classifiers we evaluate in Sect. 2, and the
datasets used in Sect. 3. The experimental and evaluation procedures are defined in
Sect. 4, along with the results of preparatory experiments into the data and benchmark
classifier definitions used throughout the main evaluation. We present an analysis of
the results in Sect. 5. Conclusions are drawn in Sect. 6. Comprehensive results and a
guide to reproducing them are provided on the accompanying website.1

2 Background

In univariate time series classification, an instance is a pair {x, y} with m obser-
vations (x1, . . . , xm) (the time series) and discrete class variable y with c possible
values. A classifier is a function or mapping from the space of possible inputs to a
probability distribution over the class variable values. In MTSC, the time series is
a list of vectors over d dimensions and m observations, X =< x1, . . . xd >, where

1 www.timeseriesclassification.com/mtsc_bakeoff.php.
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xk = (x1,k, x2,k, . . . , xm,k).We denote the j th observation of the i th case of dimension
k as the scalar xi, j,k .

The core additional complexity for MTSC is that discriminatory features may be
in the interactions between dimensions, not just in the autocorrelation within an indi-
vidual series. In univariate TSC features may or may not be phase-dependent, while
in MTSC features may or may not be simultaneously dimension-dependent. Further,
the sheer volume of data may obscure discriminatory features. Algorithms for MTSC
can be categorised in similar ways as algorithms for univariate TSC on whether they
are based on: distance measures; shapelets; histograms over a dictionary; interval
summarising; or deep learning/neural networks.

We have attempted to include a variety of algorithms in our evaluation: those of
different algorithm archetypes, some bespoke to the multivariate case, and others that
would be recognised from the univariate case. Ultimately though, the selection criteria
for classifiers was largely practical. We had to have access to the source code and be
be able to run the algorithm.

Distance based approaches are mainly based on dynamic time warping (DTW).
DTW has been a popular benchmark in TSC, at one time being the ‘gold standard’.
While it can now be beaten on average across arbitrary datasets it is still often used as
a baseline for comparison. Three proposed approaches to generalising dynamic time
warping to the multivariate case from Shokoohi-Yekta et al. (2017) are described in
Sect. 2.1. Adopting DTW as an initial benchmark for MTSC seems a clear choice.

Another obvious benchmark is to adapt univariate algorithms to the multivariate
case and leverage their relative advancement and familiarity. We can achieve this
simply by ensembling over dimensions and implicitly assume independence between
them. We elaborate on this in Sect. 2.2. In Sects. 2.3 to 2.8 we cover the range of
classifiers included in our study that are designed for the multivariate case, or have
been non-trivially converted from the univariate case.

2.1 Dynamic time warping

One of the most popular approaches for TSC is to use a 1-nearest neighbourhood
classifier in conjunctionwith a bespoke distance function that compensates for possible
confounding offset by allowing some realignment of the series. Dynamic timewarping
(DTW) is the most popular distance function for this purpose. DTW can be used with
unequal series, but for simplicity we describe it with reference to equal length series.
In DTW, the distance between two series of equal length a = (a1, a2, . . . , am) and
b = (b1, b2, . . . , bm) is calculated following these steps:

1. M is a m × m matrix where Mi, j = (ai − b j )
2

2. A warping path P = ((e1, f1), (e2, f2), . . . , (es, fs)) is a contiguous set of matrix
indexes from M , subject to the following constraints

– (e1, f1) = (1, 1)
– (es, fs) = (m,m)

– 0 ≤ ei+1 − ei ≤ 1 for all i < m
– 0 ≤ fi+1 − fi ≤ 1 for all i < m
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3. Let pi = Mei , fi , be the distance for a path is Dp = ∑m
i=1 pi

4. There are many warping paths but we are interested in finding one of the paths
that minimizes the accumulative distance P∗ = minp∈P Dp(a, b)

5. The optimal distance is obtained by solving the following recurrence relation

DTW (i, j) = Mi, j + min

⎧
⎪⎨

⎪⎩

DTW (i − 1, j).

DTW (i, j − 1).

DTW (i − 1, j − 1),

and the final distance is DTW (m,m).

There are several improvements to DTW to make it faster, such as, adding a parameter
r that limits deviation from the diagonal (warping window). Our interest lies primarily
in how best to use DTW for MTSC. There are two obvious strategies for using DTW
for multivariate problems, defined in Shokoohi-Yekta et al. (2017) as the independent
and dependent approaches.

2.1.1 Independent warping (DTWI)

The independent strategy treats each dimension independently, has a different point-
wise distance matrix M for each dimension, then sums the resulting DTW distances.

DTWI (xa, xb) =
d∑

k=1

DTW (xa,k, xb,k)

2.1.2 Dependent warping (DTWD)

Dependentwarping assumes that the correctwarping is the same across all dimensions.
For handling this case, the matrix Mi, j is redefined not as the distance between two
points on a single series but as the Euclidean distance between the two vectors that
represent all the dimensions. Thus warping occurs over all dimensions simultaneously
and the time point distance between steps i and j is given by

Mi, j (xa, xb) =
d∑

k=1

(xa,i,k − xb, j,k)
2

2.1.3 Adaptive warping (DTWA)

Shokoohi-Yekta et al. (2017) discuss the idea of selecting between independent and
dependent dynamic time warping. They proposed an adaptive solution, where the
decision about which distance to use is based on a threshold found from the training
data. This decision is made instance by instance basis based on the score function S(x)

S(x) = NNDTWD (x)

NNDTWI (x)
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where NNC is the distance of the nearest neighbour to x using the distance function
C . The final nearest neighbour to use for classification is based on the threshold T

NNDTWA (x) =
{
NNDTWI (x) if S(X) > T .

NNDTWD (x) if S(X) ≤ T .

The threshold value T is calculated from training data using cross validation. Each
instance x is classified using DTWI and DTWD . If the instance is classified correctly
using DTWI but incorrectly on DTWD , then is added to the set i Success. Otherwise,
if it is classified correctly on DTWD but incorrectly on DTWI , then is added to the
set dSuccess. On each set, the value stored is the score function defined in Eq. 2.1.3.
The threshold is calculated using information gain on i Success and dSuccess data.
Information gain calculates the split point where most of the i Success cases are on
one side and the dSuccess on the other. Using this variation, each instance will use the
distance function that maximises the probability of getting the correct classification
and minimise the error error(NNDTWA (x) ≤ min(NNDTWD (x), NNDTWI (x)).

2.2 Ensembles of univariate classifiers

One of the most straightforward techniques to adapt TSC algorithms to multivariate
is to ensemble over models built on each dimension independently. This approach
is a good baseline for assessing and contrasting bespoke MTSC classifiers which
can model dimension dependencies. One of the most accurate approaches to uni-
variate TSC is the Hierarchical Vote Collective of Transformation-based Ensembles
(HIVE-COTE). The latest version, HIVE-COTE v1.0 (referred to as simply HIVE-
COTE, Bagnall et al. 2020), combines Shapelet Transform Classifier, STC (Hills et al.
2014); Time Series Forest, TSF (Deng et al. 2013); Contractable Bag of Symbolic-
Fourier Approximation Symbols, CBOSS (Middlehurst et al. 2019) and Random
Interval Spectral Ensemble, RISE (Lines et al. 2018) using a weighted probabilistic
ensemble (Large et al. 2019). The simplest way to build a multivariate HIVE-COTE
is to build each component as an independent ensemble, then to combine the compo-
nents in the usual way. To clarify, each component builds a separate classifier on every
dimension, then combines the predictions from each dimension to produce a single
probability distribution for each of STC, TSF, CBOSS and RISE.

2.3 Generalized random shapelet forest (gRFS)

Shapelets (Ye and Keogh 2011) are discriminatory sub-series which are easily inter-
pretable. Early shapelet algorithms enumerated all possible shapelets and hence scaled
poorly. Karlsson et al. (2016) propose a shapelet based approach for MTSC. The algo-
rithm uses randomly selected shapelets within a forest of decision trees, modelled on
the random forest approach (Breiman 2001).

The Generalised Random Forest (gRFS) (illustrated in Algorithms 1 and 2) is an
ensemble of weak learners in which p generalized trees are grown. In order to intro-
duce variability amongst the constituent classifiers a bagging approach is employed.
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Algorithm 1 Random Shapelet Forest(A list of n cases of length m with dimension
d, T = (X, y))
Parameters: The training set, X , the number of trees, p, the lower and upper shapelet length, l and u, the

number of shapelets, r .
Return: An ensemble of generalised shapelet trees, R = ST1 …ST p
1: for i ← 1 to p do
2: I i ← sample(X)
3: ST i ← randomShapeletTree(X I i , l, u, r )
4: R ← R ∪ ST i
5: return R

Algorithm 2 works as follows. At each node in a generalised tree a dimension, k,
is randomly selected to proceed with (line 3). From this dimension r shapelets are
selected from the training set Z . Each shapelet has a randomly selected length (line 5)
between predefined upper and lower limits u and l. The shapelet selected at each node
corresponds to that which produces the most favourable split (line 6). The quality of
a shapelet is measured using information gain. The data is split by the information
gain threshold of the selected shapelet and a tree recursively is recursively built (lines
8 and 9) until the stopping condition is met (line 1 and 2).

Algorithm 2 Random Shapelet Tree(A list of n cases of length m with dimension d,
T = (X, y)
Parameters: The training set, X , of dimension d, the lower and upper shapelet length, l and u, the number

of shapelets, r .
Return: A random shapelet tree, ST
1: if isTerminal(X) then
2: return makeLeaf(X)
3: k ∈ [1, . . . , d]
4: for i ← 1 to r do
5: S ← S ∪ sampleShapelet(X , k, l, u, rand(l, u))
6: [t , S, k] ← bestSplit(X , y, S)
7: [XL , XR ] ← distribute(X , S, t , k)
8: STL ← randomShapeletTree(XL , l, u, r )
9: STR ← randomShapeletTree(XR , l, u, r )
10: return [[t , S, k, ST L ], [t , S, k, ST L ]]

2.4 WEASEL+MUSE

Originally a univariate time series classifier, Word Extraction for Time Series Classi-
fication, WEASEL (Schäfer and Leser 2017) was extended to include the Multivariate
Unsupervised Symbols and Derivatives, MUSE (Schäfer and Leser 2018) stage for
MTSC. Words in the form of unigrams and bigrams are extracted for all series and
dimensions using a sliding window for a range of window lengths. These words are
extracted using the Symbolic Fourier Approximation, SFA (Schäfer and Högqvist
2012) with equi-depth or equi-frequency binning. Words for the derivatives (differ-
ences between neighbouring points in the series) of each dimension are also taken and

123



The great multivariate time series classification bake off 407

treated as additional dimensions. The words for each dimension and window length
are concatenated into a single bag of words histogram for a series. As this process
produces a lot of words with a presumed amount of redundancy and to filter out
unproductive dimensions, a χ2 test is used for feature selection. The remaining words
are used to build a logistic regression classifier.

A 10-fold cross validation is performed to select parameters for the final
WEASEL+MUSE model. These are the word length l, the binning method b and
whether to normalise each window p. The WEASEL+MUSE build process is dis-
played in Algorithm 3. For simplicity, we will refer to this algorithm as just MUSE
forthwith.

Algorithm 3 WEASEL+MUSE(A list of n cases of length m with dimension d,
T = (X, y))
Parameters: the word length l, the alphabet size α, the maximal window lengthwmax , mean normalisation

parameter p, equi-depth or equi-frequency binning b
1: Let H be a collection of n histograms h
2: Let B be a matrix of l by α breakpoints found using b
3: X′ ← addDerivativesAsDimensions(X)
4: for i ← 1 to n do
5: for k ← 1 to 2d do
6: for w ← 2 to wmax do
7: for j ← 1 to m − w + 1 do
8: o ← x ′

i, j,k . . . x ′
i, j+w−1,k

9: q ← DFT(o, w, p) { q is a vector of the complex DFT coefficients}
10: r ← SFAlookup(q,B)
11: pos ←index(k,w, r)
12: hi,pos ← hi,pos + 1

13: h ← χ2(h, y) { feature selection using the chi-squared test }
14: fitLogistic(h, y)

2.5 Canonical interval forest (CIF)

The Canonical Interval Forest, CIF (Middlehurst et al. 2020) is an ensemble of time
series tree (Deng et al. 2013) classifiers built using the Canonical Time-Series Charac-
teristics, Catch22 (Lubba et al. 2019) features and simple summary statistics extracted
from phase dependant intervals. The time series tree uses a simplistic tree structure,
comparing all attributes at each node and performing no pruning. However, the tree
introduces a novel tie breaking measure in the form of entrance gain. Catch22 is a set
of 22 highly discriminative and low redundancy features extracted from the 7000+
time series features available in the Highly Comparative Time Series Analysis (hctsa)
toolbox (Fulcher and Jones 2017).

To create a diverse ensemble, a summary features of the 25 available are randomly
subsampled and k intervals of random length and start point are selected to build each
tree. CIF was extended for MTSC by randomly selecting the dimension each interval
is extracted from. The build process for the CIF ensemble is described in Algorithm 4.
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Algorithm4Canonical Interval Forest(A list of n cases of lengthm with d dimensions,
T = (X, y))
Parameters: the number of trees, r , the number of intervals per tree, k, and the number of attributes

subsampled per tree, a (default r = 500, k = √
d · √

m, and a = 8)
1: Let F = (F1 . . .Fr) be the trees in the forest
2: for i ← 1 to r do
3: Let S be a list of n cases (s1 . . . sn) with a · k attributes
4: Let U be a list of a randomly selected attribute indices (u1 . . . ua)

5: for j ← 1 to k do
6: b = rand(1,m − 3)
7: l = rand(b + 3,m)

8: o = rand(1, d)

9: for t ← 1 to n do
10: for c ← 1 to a do
11: if uc <= 22 then
12: st,a( j−1)+c = c22Feature(uc,Xt,o, b, l)
13: else
14: st,a( j−1)+c = ts f Feature(uc,Xt,o,b, l)
15: Fi .buildT imeSeriesTree([S, y])

2.6 The random convolutional kernel transform (ROCKET)

The Random Convolutional Kernel Transform, ROCKET (Dempster et al. 2020) uses
a large number of random convolution kernels in conjunction with a linear classifier
(ridge regression or logistic regression). Every kernel is applied to each instance.
From the resulting feature maps, the maximum value and a novel feature, proportion
of positive values (ppv), is returned.

For each of the 10,000 kernels generated, the parameters are selected from the
following spaces: The length, l, is selected such that, l ∈ {7, 9, 11}; the value of each
weight, wi , in the kernel is selected such that, wi ∼ N (μ, σ 2), where μ = 0 and
σ 2 = 1; dilation, d, is sampled from an exponential scale up to input length and the
binary decision to pad the series is chosen with equal probability, if true the series
is zero padded at the start and end equally such that middle element of the kernel is
applied to every point in the input series. The feature spaces for parameters were learnt
on a ‘development’ subset of 40 randomly selected datasets from the UCR univariate
time series classification archive.

The convolution of an instance and kernel can be interpreted as the dot product
between two vectors. The resulting feature map is then used to evaluate the max value
and ppv features. The ppv summarises the proportion of the series correlated to the
kernel. It was found to significantly improve classification accuracy. Each series is
subsequently transformed into a 20,000 attribute instance after all convolutions. This
transformed dataset is then used to train the ridge regression classifier.

An extension to the ROCKET approach to enable use on multivariate datasets has
recently been added to the sktime repository.2 For multivariate datasets, kernels are
randomly assigned dimensions. Weights are then generated for each channel. Con-
volution in this case can be interpreted as the dot product between two matrices as

2 https://github.com/alan-turing-institute/sktime/blob/master/sktime/transformers/series_as_features/
rocket.py.
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Fig. 1 A depiction of the MrSEQL classifier taken from Nguyen et al. (2017)

the kernel convolves ‘horizontally’ across the series. The max value and ppv is then
calculated across all dimensions for each kernel, producing a 20,000 attribute instance.

2.7 Themultiple representation sequence learner (MrSEQL)

The Multiple Representation Sequence Learner, MrSEQL (Le Nguyen et al. 2019)
extends previous adaptations of the SEQL classifier (Nguyen et al. 2017) in two ways.
Firstly, via the introduction of ensembling and secondly, via the addition of inte-
grating the SFA (Schäfer and Högqvist 2012) transform. In the resulting approach,
shown in Fig. 1, the data is transformed via either Symbolic Aggregate Approximation
(SAX) (Lin et al. 2007) or SFA before being used to train a SEQL classifier. The win-
dow length, l, is adjusted before each addition to the ensemble. During testing each
instance is transformed accordingly before being classified by the appropriate model.
The output probability distribution is then the per class mean over all models.

The SEQL learner was developed for classification of biological sequences such as
DNA and employs a tree based approach coupled with a pruning strategy to explore
the feature space. As a result, the SFA and SAX approaches are particularly well suited
as tools for transformation into the symbolic space. The SAX approach achieves this
conversion by:

1. Producing a piece-wise aggregated series;
2. Creating a look-up table from the new series, in which the domain is divided by

alphabet length a; and
3. Deriving the symbolic word, by looking up each aggregated value.

The process of aggregation and the creation of the look-up table is undertaken prior
to sliding a window of length l across the series. At each step a word of length w is
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derived and added to the symbolic representation. The SFA approach achieves this
conversion by:

1. Performing a discrete Fourier transform (DFT) on each window of the instance;
2. creating an a × w look-up table in which the alphabet boundaries are distinct for

each letter index; and
3. deriving the symbolic word, by looking up each aggregated value.

The process of deriving the lookup table is undertaken after the DFT. The alphabet
boundaries are then calculated per word position index. As a result there are effectively
w alphabets of size a. Although not described in the original publication, the sktime
version of MrSEQL classifier is implemented in such a way as it is capable of pro-
cessing multivariate data. During the prepossessing of data, dimensions are processed
sequentially and appended to one another creating n instances, each one of sizem×c.
The implementation used in this work can be found in sktime.3

2.8 Deep learning

Many of the approaches employed for MTSC are conversions of models originally
designed for univariate data to handle the multivariate case. Neural networks are a
natural example of this, in part due to the ease in which they can handle the extra
dimensionality in the model definition and implementation.

Despite their strength and popularity in handling 2D image data, a result of
AlexNet’s performance on the ImageNet dataset (Krizhevsky et al. 2012), deep learn-
ing approaches have only more recently been heavily studied in the 1D time series
domain. Knowledge gained from the former can be utilised on the latter, and can now
similarly be quickly transferred to the multivariate time series case. We include three
deep learning approaches in our evaluation.

While (Wang et al. 2017) started with a smaller comparison of originally pro-
posed architectures, Fawaz et al. (2019) provided the first standardised large-scale
comparative study of deep learning approaches for time series classification. Nine
architectures were evaluated on 85 datasets of the univariate UCR archive (Dau et al.
2019) and 13 datasets of the Baydogan multivariate archive.4 The Residual Network,
ResNet (Wang et al. 2017)was found to be significantly better than all other approaches
on the univariate datasets, and on all univariate and multivariate datasets combined.
For the multivariate datasets in isolation, no significant difference was found between
all approaches, mainly due the small sample size, but also due to a conservative adjust-
ment for multiple testing. The Fully Convolutional Neural Network, FCN (Wang et al.
2017) had a slightly better overall rank, however no definitive conclusions of superi-
ority could be drawn. We use this comparative study to take ResNet as a baseline deep
learning approach for MTSC moving forward.

Currently the state-of-the-art deep learning approach for univariate time series
classification is InceptionTime (Fawaz et al. 2020). To our knowledge, results

3 https://github.com/alan-turing-institute/sktime/blob/master/sktime/classification/shapelet_based/
mrseql/mrseql.pyx.
4 http://www.mustafabaydogan.com/.
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for InceptionTime on multivariate archives have not been published. An approach
developed specifically for multivariate timeseries classification is the Time Series
Attentional Prototype Network. TapNet (Zhang et al. 2020) uses an attentional proto-
type network to learn the latent features.

There are currently many new deep learning architectures being proposed for time
series classification. Publishing lag and difficulty in implementation or in recreating
results are all reasons that methods may not appear in this comparative study. We aim
for this to be a basis of easy comparison in the future rather than a final declaration
of the ‘best’ algorithm. We welcome and actively encourage authors to evaluate their
methods on these datasets and prove them better than those we have evaluated here.

2.8.1 Residual network (ResNet)

ResNet was first applied to time series classification in Wang et al. (2017). It is a
network of three consecutive blocks, each comprised of three convolutional layers,
which are connected by residual ‘shortcut’ connections that add the input of each
block to its output. Residual connections allow the flow of gradient directly through
the network, combating the vanishing gradient effect (He et al. 2016). The residual
blocks are followed by global average pooling and softmax layers to form features and
subsequent predictions.Wemaintain all hyperparameter settings andoptimiser settings
from the (Fawaz et al. 2019) evaluation, and the implementation in sktime-dl is
an interfacing of the implementation provided by that study.

2.8.2 InceptionTime

InceptionTime achieves high accuracy through a combination of building on ResNet
to incorporate Inception modules (Szegedy et al. 2015) and ensembling over five mul-
tiple random-initial-weight instantiations of the network for greater stability (Fawaz
et al. 2020). A single network out of the ensemble is composed of two blocks of three
Inception modules each, as opposed to the three blocks of three traditional convolu-
tional layers in ResNet. These blocks maintain residual connections, and are followed
by global average pooling and softmax layers as before.

An Inceptionmodule is summarised in Fig. 2. It takes an input multivariate series of
lengthm, dimensionality d, and first uses a bottleneck layer with length and stride 1 to
reduce the dimensionality to d ′ < d while maintaining output length m. This greatly
reduces the number of parameters to later learn. Convolutions of different lengths are
applied to the output of the bottleneck layer to find patterns of different sizes. The
outputs of these convolutions are combined with an additional source of diversity,
a Max Pooling followed by bottleneck (with the same value of d ′) applied to the
original time series, and all stacked to form the dimensions of the output multivariate
time series to be fed into the next layer.

Once more, we maintain all hyperparameter settings and optimiser settings from
the source article (Fawaz et al. 2020), and the implementation in sktime-dl is an
interfacing of the implementation provided by that study.
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Fig. 2 An Inception module with example parameters, figure from Fawaz et al. (2020). Three of these are
concatenated to form a block in InceptionTime

Fig. 3 TapNet architecture, figure from Zhang et al. (2020)

2.8.3 Time series attentional prototype network (TapNet)

A novel approach aimed at tackling problems in the multivariate domain, the TapNet
architecture draws on the strengths of both traditional and deep learning approaches.
Zhang et al. (2020) note that deep learning approaches excel at learning low dimen-
sional features without the need for embedded domain knowledge whereas traditional
approaches such as 1NN-DTW work well on comparatively small datasets. TapNet
combines these advantages to produce a network architecture that can be broken down
into three distinctmodules:RandomDimensionPermutation,Multivariate TimeSeries
Encoding and Attentional Prototype Learning.

Random Dimension Permutation is used to produce g groups of randomly selected
dimensions with the intention of increasing the likelihood of learning how combina-
tions of dimension values effect class value. The group size is defined as ϕ = 
m·α

g �,
where α is the scale factor, controlling the number of dimensions used over m, where
m is the number of dimensions. This process is illustrated in Fig. 3 where the six input
dimensions are reorganised into three groups of three. Experimentation exploring the
effect of thismodule found that in 22 out of 33 datasets in theUEAmultivariate archive

123



The great multivariate time series classification bake off 413

the accuracy was increased. However, it is unclear whether it has a significant effect
or whether the effect on accuracy is a function of dataset characteristics.

Encoding in the TapNet architecture is undertaken in g+1 stages before the output
features are concatenated and passed through two fully connected layers. Each group
produced in the dimension permutation module is passed through three sets of one-
dimensional convolutional layers followed by batch normalisation, Leaky Rectified
Linear Units and finally a global pooling layer. For the first of these three sets the
weights and bias are distinct for each group. In addition to the group encoding process,
the rawdata is passed through anLSTMand global pooling layer. The output fromeach
of the global pooling layers are then concatenated before being passed through two
fully connected layers. This process results in a low-dimensional feature representation
of the original series. The default filter values for the convolution layers are set as 256,
256 and 128 whilst the default kernel values are five, eight and three. The default value
for the LSTM layer is 128. It is intended that interaction between dimensions can be
learned more effectively by the Random Dimension Permutation process before the
encoding is then combined, producing features aligned with a datasets dimensions.
Furthermore, the inclusion of theLSTM layer is intended to learn longitudinal features.

Finally, for each class a prototype candidate is produced. Although the architecture
does allow for unlabelled test data to be included in the prototype derivation via
Semi-supervised Attentional Prototype Learning. This feature was not utilised. As a
result, the class prototypes are defined solely by the training data. The objective of the
candidate production is to minimise the distance to all members of the class which
the prototype is produced for whilst maximising the distance between the prototypes.
Probability of class membership is then assigned to test instances as a function of their
proximity to each class prototype. In this case the similarity is measured by way of
Euclidean distance.

3 The UEAmultivariate time series classification archive

Research into MTSC is in a position where univariate TSC research was a decade ago.
Algorithms are evaluated using very few datasets and claims of improvement are not
based on statistical comparisons. Recent research has improved somewhat because of
the assembly of an archive of datasets by Mustafa Baydogan.5 This archive is useful,
and appears many times in the literature e.g. Fawaz et al. (2019), Schäfer and Leser
(2018), Karlsson et al. (2016), Baydogan andRunger (2016), but it has limitations. The
data are generally small, are not independent, are mostly variable length and are not
representative of many important MTSC domains. The UEA MTSC archive (Bagnall
et al. 2018)was formed to overcome these problems. On release in 2018 it contained 30
multivariate datasets, of which four are not all equal length. To focus on classification
rather than preprocessing issues, we restrict our attention to the 26 equal length series.
The main characteristics of each problem are summarised in Table 1. Details can be
found on the associated website.6

5 http://www.mustafabaydogan.com/multivariate-time-series-discretization-for-classification.html.
6 https://www.timeseriesclassification.com/.
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Table 1 Summary of the 26 UEA datasets used in experimentation

Code Name Train size Test size Dims Length Classes

AWR ArticularyWordRecognition 275 300 9 144 25

AF AtrialFibrillation 15 15 2 640 3

BM BasicMotions 40 40 6 100 4

CR Cricket 108 72 6 1197 12

DDG DuckDuckGeese 50 50 1345 270 5

EW EigenWorms 128 131 6 17,984 5

EP Epilepsy 137 138 3 206 4

EC EthanolConcentration 261 263 3 1751 4

ER ERing 30 270 4 65 6

FD FaceDetection 5890 3524 144 62 2

FM FingerMovements 316 100 28 50 2

HMD HandMovementDirection 160 74 10 400 4

HW Handwriting 150 850 3 152 26

HB Heartbeat 204 205 61 405 2

LIB Libras 180 180 2 45 15

LSST LSST 2459 2466 6 36 14

MI MotorImagery 278 100 64 3000 2

NATO NATOPS 180 180 24 51 6

PD PenDigits 7494 3498 2 8 10

PEMS PEMS-SF 267 173 963 144 7

PS PhonemeSpectra 3315 3353 11 217 39

RS RacketSports 151 152 6 30 4

SRS1 SelfRegulationSCP1 268 293 6 896 2

SRS2 SelfRegulationSCP2 200 180 7 1152 2

SWJ StandWalkJump 12 15 4 2500 3

UW UWaveGestureLibrary 120 320 3 315 8

3.1 Electrical biosignals

Electrocardiograms (ECG), Electroencephalograms (EEG) and Magnetoencephalog-
raphy (MEG) are all techniques for measuring, directly or indirectly, actual or relative
changes in voltage throughout the body. They are also all inherently multivariate as
typically several readings are produced and used for interpretation. ECGs are typically
used to detect andmeasure the electrical activity of the heart. EEGs are used tomeasure
brain activity (brain waves), and are typically used in the diagnosis of epilepsy and
seizures. Both ECGs and EEGs measure voltage or the potential difference between
points directly. However, MEGs are designed to record the magnitude of the magnetic
field produced by the brain. As a result they can produce data with a high temporal
and spatial resolution. Many applications associated with electrical biosignal datasets
revolve around human/computer interfacing or autonomous anomaly detection.
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AtrialFibrilation (Goldberger et al. 2000)

This dataset of two-channel ECG recordings has been created from data used in the
Computers in Cardiology Challenge 2004, an open competition with the goal of devel-
oping automated methods for predicting spontaneous termination of atrial fibrillation
(AF). The raw instances were 5 s segments of atrial fibrillation, containing two ECG
signals, each sampled at 128 samples per second. Themultivariate data organises these
dimensions such that each is one dimension. The class labels are: n, s and t. Class n
is described as a non termination atrial fibrillation (that is, it did not terminate for at
least 1 h after the original recording of the data). Class s is an atrial fibrillation that self
terminates at least 1 min after the recording process. Class t is described as terminating
immediately, that is within 1 s of the recording ending.

FaceDetection

This dataset consists of MEG recordings.7 Whilst recording data participants were
shown either a scrambled picture or one showing a face. The raw data consists of 306
dimensions of 375 attributes. We use data with a reduced set of 144 dimensions which
is also provided on the competitionwebsite. The training set is comprised of recordings
from 10 individuals, whilst the test set is comprised of a separate 6 individuals. Each
participant contributed between 580 and 590 instances.

FingerMovements (Blankertz et al. 2002)

This dataset consists of 500ms intervals of EEG recordings 130ms prior to themoment
a key is pressed. A single subject, sat in a normal position at a keyboard was asked
to type characters using only the index and pinky fingers. The dataset consists of 28
dimensions of 50 attributes. The training set contains 316 instances while the test set
contains 100. There are two target classes: left and right.

HandMovementDirection

In this dataset two right handed subjects were recorded moving a joystick with their
hand and wrist only in one of four directions (right, up, down, left) of their choice after
hearing a prompt.8 Using the resulting MEG, the task is to classify the direction of
movement. Each recording represents an interval starting 0.4 s before the movement
and ending 0.6 s afterwards. Instances have a sample rate of 400 Hz.

MotorImagery (Lal et al. 2005)

This dataset consists of 64 dimension EEG data. The data was generated by a par-
ticipants imagined movement of either their little finger or tongue. An eight by eight
Electrocorticography platinum grid was placed over the right motor cortex during the

7 https://www.kaggle.com/c/decoding-the-human-brain/data.
8 http://bbci.de/competition/iv/.
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data generating process. Recordings were initiated 0.5 s after a visual cue had ended
and are three 3 s in duration. The train and test sets were recorded in the exact same
fashion. However, they were recorded 1 week apart.

SelfRegulationSCP1 (Birbaumer et al. 1999)

Healthy participants were asked to visualise moving a cursor either up or down on
a screen. The direction of travel was determined via their Slow Cortical Potential,
measured via EEG and fed back to the participant visually. The EEG data was taken
from 6 positions on the head. The object of this problem is to classify each instance as
positive (downward) and negative (upward) movement, based form the EEG readings.

SelfRegulationSCP2 (Birbaumer et al. 1999)

An artificially respirated ALS patient was asked to move a cursor either up or down
on a screen. The direction of travel was determined via their Slow Cortical Potential,
measured via EEG and fed back to the participant visually and audibly. The EEG data
was taken from seven positions on the head. The object of this problem is to classify
each instance as positive (downward) or negative (upward) movement, based form the
EEG readings.

StandWalkJump (Goldberger et al. 2000)

Short durationECGsignalswere recorded froma healthy 25-year-oldmale performing
different physical activities to study the effect of motion artifacts on ECG signals and
their sparsity. The raw data was sampled at 500 Hz, with a resolution of 16 bits before
an analogue gain of 100 and ADC was applied. A Spectrogram of each instance was
then created with a window size of 0.061 s and an overlap of 70%. Each instance
in this multivariate dataset is arranged such that each dimension is a frequency band
from the spectrogram. There are three classes: standing, walking and jumping, each
consists of nine instances.

3.2 Accelerometer/gyroscope

An accelerometer measures change in speed and typically devices are capable of
reporting information on all three axis of movement (x , y, z). They are useful in
measuring events such as impacts or vibration. Many datasets are used to investigate
whether the various vectors of acceleration produced during a variety of tasks produces
enough discriminatory information for classification. Gyroscopes measure angular
velocity and provide an indication to the extent a device has rotated about each axis.

BasicMotions

This dataset was collected by students at UEA. Data was generated by participants
performing four activities whilst wearing a smart watch. The watch collects 3D
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accelerometer and gyroscope data. The dataset consists of four classes: walking, rest-
ing, running and badminton. Participants were required to record each motion a total
of five times. The sample rate of both sensors was 10 Hz and activity was recorded
for 10 s.

Cricket (Ko et al. 2005)

Cricket requires an umpire to signal different events in the game to a distant scorer.
The signals are communicated with motions of the hands. For example, No-Ball is
signalled by touching each shoulder with the opposite hand, and TV-Replay (a request
for an off-field review of the video of a play) is signalled by miming the outline of a
TV screen.

This dataset consists of four umpires performing 12 signals, each with ten rep-
etitions. The data, recorded at a frequency of 184 Hz, was collected by placing
accelerometers on thewrists of the umpires. Each accelerometer has three synchronous
measures for three axes (x, y and z). Thus, we have a six-dimensional problem from
the two accelerometers.

Epilepsy (Villar et al. 2016)

Data was collected from six participants using a 3D accelerometer on the dominant
wrist. All examples of the four classses: walking, running, sawing and seizuremimick-
ing (whilst seated),were recorded for different lengths of time.The sampling frequency
was 16 Hz. Each participant performs each activity ten times at least. The mimicked
seizures were trained and controlled, following a protocol defined by amedical expert.

Some activities lasted about 30 s, others are 1 min long, others are about 2 min.
This data was truncated to the length of the shortest series retained prior to our policy
of retaining data as unequal length problems. We removed prefix and suffix flat series
and truncated to the shortest series (20 measurements, approx 13 s), taking a random
interval of activity for series longer than the minimum. A single case from the original
(ID002 Running 16) was removed because the data was not collected correctly. After
tidying the data we have a total of 275 cases. The train test split is divided into three
participants for training, three for testing, with the IDs removed for consistency with
the rest of the archive.

Handwriting (Shokoohi-Yekta et al. 2017)

Accelerometer data recorded whilst a subject writes all 26 letters of the alphabet. The
watch was worn on the same wrist as used to write. The dataset consists of 150 train
cases and 850 test cases.

NATOPS (Ghouaiel et al. 2017)

Adapted from the 2016 Advanced Analytics and Learning on Temporal Data chal-
lenge.9 This 24 dimension data was recorded via Xbox Kinect whilst participants

9 https://aaltd16.irisa.fr/challenge/.
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performed one of six gestures. Sensors attached to each: hand, elbow, wrist and thumb
recorded the position in 3D space throughout the gesture.

RacketSports

This dataset was collected by students at UEA. The dataset consists of data captured
whilst participants played one of two strokes whilst playing badminton or squash. The
data was captured via a smart watch (Sony Smart watch 35), worn on the dominant
hand. The watch relayed the x, y, z values for both the gyroscope and accelerometer at
a rate of 10 HZ over 3 s whilst the player played either a forehand/backhand in squash
or a clear/smash in badminton.

UWaveGestureLibrary (Liu et al. 2009)

This dataset consists of 3D accelerometer data captured during the performance of a
gesture. There are 8 gestures (classes) and 440 instances in total, each series is 315
long.

3.3 Coordinates

Typically recorded in Cartesian space, in these problems an objects location is tracked,
either relative to a start position or in the context of some larger environment. Many
of these examples revolve around gesture and digit recognition, but the data is distinct
to accelerometer/gyroscope data, since coordinates may be extracted from images or
bespoke hardware.

ArticularyWordRecognition (Wang et al. 2013)

An Electromagnetic Articulograph (EMA) is an apparatus used to measure the move-
ment of the tongue and lips during speech.Themotion trackingusingEMAis registered
by attaching small sensors on the surface of the articulators (e.g., tongue and lips).
Subjects are then seated within a calibrated magnetic field. As a result the changes in
sensor position can be measured. The spatial accuracy of motion tracking using EMA
AG500 is 0.5 mm. Data was collected from multiple native English native speakers
producing 25 words. Nine sensors were used in data collection, each providing x , y
and z positions with a sampling rate of 200 Hz. Four sensors were located along the
mid-line of the tongue, one sensor was located in the centre of the top lip and another
was located in the centre of the bottom lip. Of the total of 27 available dimensions,
this data set includes just nine.

LIBRAS (Dias and Peres 2016)

This dataset contains 15 classes each made up of 24 instances each. Each class ref-
erences a hand movement from the Brazilian sign language, LIBRAS. Each instance
represents a gesture extracted from a video and transformed to 2D coordinate space.
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The videos used contained four different subjects. Each 7 s video contained 1 hand
movement. From each video 45 frames were selected uniformly to extract the hand
positions from.

PenDigits (Alimoğlu and Alpaydin 2001)

This dataset contains bi-dimensional (x, y) coordinate data regarding pen location
during a writing task. 44 participants were asked to write the digits 0–9. The data
is normalised and from expert knowledge the data was spatially resampled such that
each consecutive attribute has a constant spatial step and variable time step. From
experimentation by the authors, the data was resampled to 8 spatial points, such that
each instance is 2 dimensions of 8 points.

3.4 Audio

Audio is a quintessential example of time series data and at the heart ofmany realworld
machine learning applications. Typically, we interact with audio data in its univariate
time domain form. Furthermore, it is commonly accepted that features extracted from
the spectral domain provide more predictive power than those from the time domain.
However, spectral features in this format are time agnostic and as a result approaches
are unable to leverage information on how the power of spectral coefficients changes
over time. For the purpose of this archive we present audio problems in a spectrogram
format. This format exposes the spectral decomposition of the data and expresses the
change in spectral power over time. This presents an opportunity to evaluate novel
approaches that can leverage this extra dimension.

DuckDuckGeese

This dataset was derived from recordings found on the Xeno Canto website.10 Each
recording was taken from either the A or B quality category. Due to the variation
in recorded sample rate all recordings were downsampled to 44,100 Hz using the
MATLAB resample function. Each recording was then center truncated to 5 s (length
of smallest recording), before being transformed into a spectogram using a window
size of 0.061 and an overlap value of 70%. The classes are as follows: Black-bellied
Whistling Duck (20 instances); Canadian Goose (20 instances); Greylag Goose (20
instances); Pink Footed Goose (20 instances); and White-faced Whistling Duck (20
instances).

Heartbeat (Goldberger et al. 2000)

This dataset is derived from the PhysioNet/CinC Challenge 2016.11 Heart sound
recordings were sourced from both healthy subjects and pathological patients and

10 https://www.xenocanto.org.
11 https://www.physionet.org/physiobank/database/challenge/2016/.
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recorded in a clinical environment. The heart sound recordings were typically col-
lected from one of four locations. The sounds were divided into two classes: normal
and abnormal. The normal recordings were from healthy subjects and the abnormal
ones were from patients with a confirmed cardiac diagnosis. Each recording was trun-
cated to 5 s. A Spectrogram of each instance was then created with a window size of
0.061 s and an overlap of 70%. Each instance in this multivariate dataset is arranged
such that each dimension is a frequency band from the spectrogram. The two classes
normal and abnormal consist of 113 and 296 instances respectively.

Phoneme (Hamooni and Mueen 2014)

This dataset is a multivariate representation of a subset of the data used in Hamooni
and Mueen (2014). Each series was extracted from the segmented audio collected
from Google Translate. Audio files collected from Google translate are recorded at
22,050 HZ. The speakers are male and female. After data collection, they segment
waveforms of the words to generate phonemes using the Forced Aligner tool from the
Penn Phonetics Laboratory. A Spectrogram of each instance was then created with
a window size of 0.001 s and an overlap of 90%. Each instance in this multivariate
dataset is arranged such that each dimension is a frequency band from the spectrogram.
The data consists of 39 classes each with 170 instances.

3.5 Other datasets

In the interest of brevity datasets produced using a technique novel to the archive
are collected here. These include datasets produced via spectrometry, photometry and
bespoke hardware. We hope that these domains will increase in size and encourage
users to either submit or suggest new sources of data.

ERing (Wilhelm et al. 2015)

This data is generated with a prototype finger ring, called eRing, that can be used to
detect hand and finger gestures. eRing uses electric field sensing rather than motion.
This data set is the D data set used for Finger Posture Recognition. There are six
classes for six postures involving the thumb, the index finger, and the middle finger.
The data is four dimensional. Each series contains 65 observations. Each series is a
measurement from an electrode which varies dependent on the distance to the hand.

EthanolConcentration (Large et al. 2018)

EthanolConcentration is a dataset of raw spectra taken of water-and-ethanol solutions
in 44 distinct, real whisky bottles. The concentrations of ethanol are 35%, 38%, 40%,
and 45%. The minimum legal alcohol limit for Scotch Whisky is 40%. Producers are
required to ensure that the contents of their spirits contain alcohol concentrations that
are tightly bound to what is reported on the labelling. The classification problem is to
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determine the alcohol concentration of a sample contained within an arbitrary bottle.
In this formulation, there are four classes, corresponding to the four concentrations.

The data has been arranged such that each instance is made up of three repeat read-
ings of the same bottle and batch of solution. Three solutions of each concentration
(batches) were produced, and each bottle+batch combination measured three times.
Each reading is comprised of the bottle being picked up, placed between the light
source and spectroscope, and spectra saved. The spectra are recorded over the maxi-
mum wavelength range of the single StellarNet BLACKComet-SR spectrometer used
(226–1101.5 nm with a sampling frequency of 0.5 nm), over a 1 s integration time.
Except for avoiding labelling, embossing, and seams on the bottle, no special attempts
were made to obtain the cleanest reading for each individual bottle, nor to precisely
replicate the exact path through the bottle for each repeat reading. This is to replicate
potential field-conditions in the future of an operative performing mass-screening of
a batch of suspect spirits.

LSST

The LSST dataset was adapted from the Photometric LSST Astronomical Time Series
Classification Challenge (PLAsTiCC).12 It consists of astronomical time series data.
Each time series is a ‘light curve’ and measures an object’s brightness as a function
of time. By measuring the photon flux in six different astronomical filters (commonly
referred to as passbands) the objective is to classify the class of astronomical object.

PEMS-SF (Cuturi 2011)

Made available by the Department of Transportation,13 this dataset represents
15 months worth of traffic data from various locations on the San Francisco bay area
freeway network. Data was recorded from each of 963 stations (dimensions) every
10 min. Each instance is 144 attributes long and equates to 1 day. The objective is to
classify which day of the week each instance was recorded on.

4 Methods

Our experiments are designed to assess the relative merits of the algorithms in terms of
performance and usability over a range of datasets. We take DTW as our benchmark
algorithm. In Sect. 4.1 we describe the algorithm implementations we have used.
All algorithms have been implemented either by, or in consultation with, the person
or group who originally proposed the method. The nature of the experiments and
performance metrics used are outlined in Sect. 4.3.

12 https://plasticc.org/.
13 www.pems.dot.ca.gov.
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4.1 Toolkits

One barrier to reproducible research is the incompatibility of software used to gen-
erate results across different projects. To overcome this problem, we help maintain
two toolkits that include time series classification functionality. sktime14 is an open
source, Python based, sklearn compatible toolkit for time series analysis. sktime is
designed to provide a unifying API for a range of time series tasks such as annotation,
prediction and forecasting. See Löning et al. (2019) for a description of the overar-
ching design of sktime and Bagnall et al. (2019) for an experimental comparison
of some of the classification algorithms available. The Java toolkit for time series
machine learning, tsml,15 is Weka compatible and is the descendent of the codebase
used to perform univariate TSC benchmarking (Bagnall et al. 2017). The two toolkits
will eventually converge to include all classifiers described. To reduce the number of
dependencies in the core package,sktime has subpackages for specific forms of clas-
sification. sktime-dl provides a range of deep learning approaches to time series
classification and sktime-shapelets-forest gives shapelet functionality.16

Themechanism for running an experiment for a combination of classifier, problem and
resample (‘single evaluation’, henceforth) are the same in both toolkits. Available clas-
sifiers are given in ClassifierLists.java and classifier_lists.py.
Usage with tsml Experiments.java is shown in code listing 1. The equivalent
with sktime class experiments.py is shown in listing 2.

1 ExperimentalArguments exp =
2 new ExperimentalArguments ();
3

4 exp.dataReadLocation = "Z:/Data/";
5 exp.resultsWriteLocation = "Z:/ Results/";
6 exp.classifierName = "DTW_D";
7 exp.datasetName = "ERing";
8 exp.foldId = 1;
9 exp.generateErrorEstimateOnTrainSet = false;

10

11 exp.run();

Listing 1 Using Experiments.java to run a single evaluation in tsml.

1 data_dir = "Z:/Data/"
2 results_dir = "Z:/ Results/"
3 classifier = "DTW_D"
4 dataset = "ERing"
5 resample = 1
6 tf = False
7

8 run_experiment (problem_path=data_dir ,results_path=
results_dir ,

9 cls_name=classifier , dataset=dataset ,
10 resampleID=resample , train_file=tf)

Listing 2 Using experiments.py to run a single evaluation in sktime.

14 https://github.com/alan-turing-institute/sktime.
15 https://github.com/uea-machine-learning/tsml.
16 https://github.com/sktime/sktime-shapelets-forest.
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The format of the results for a single evaluation is the same for both toolk-
its. Iterating over all classifier/problem/resample combinations will generate a test
results file containing test predictions and results for each single evaluation. If
generateTrainFiles is set to true, an external cross validation (or internal per-
formance estimation mechanism if available) on the train data for that resample will
be used to generate a train results file. The dimension independent ensembles can be
built in both toolkits using a dimension ensemble. In tsml this is can be done with, for
example, the RISE classifier as follows:

1 DimensionIndependentEnsemble dim =
2 new DimensionIndependentEnsemble(new RISE

());

In sktime it is called a ColumnEnsembleClassifier, and can be configured
thus:

1 ColumnEnsembleClassifier col =
2 ColumnEnsembleClassifier (
3 estimators =[("RISE", RISE(), range(0, ndims))])
4

It is possible to build HIVE-COTE from DimensionIndependentEnsemble
elements, but computational resources can likely be better utilised if each component
is built independently (with generate train files set to true) and then ensembled with
HIVE-COTE later from the results files.

1 HIVE_COTE hc=new HIVE_COTE ();
2 hc.setBuildIndividualsFromResultsFiles (true);
3 hc.setResultsFileLocationParameters ("Z:/ Results/","

ERing" ,0);
4 String [] components ={"TSF","RISE","cBOSS","STC"};
5 hc.setClassifiersNamesForFileRead (components);

Listing 3 Constructing HIVE-COTE to train from existing results files in tsml

Table 2 lists the algorithms and their availability in the toolkits. Where a classifier is
available in both toolkits, we run experiments in tsml, because it is generally faster.
TapNet is the only algorithm not yet ported to a toolkit. We are working to include it
in sktime-dl.

4.2 Evaluation and comparison of classifiers

For every classifier, we average performance measures over the thirty resamples
to present a single statistic for each dataset/classifier combination. We anal-
yse the results files using evaluation code in tsml. This code collates all the
results, summarises a large range of performance metrics (accuracy, AUC, F1
etc), conducts statistical tests to compare classifiers and draws comparative dia-
grams such as scatter plots and critical difference diagrams. The results collated by
MultipleClassifierEvaluation (MCE) (see Listing 4) include performance
metrics (accuracy, area under the ROC, balanced accuracy, F1, negative log likelihood,
Matthew’s correlation coefficient, recall/sensitivity, precision and specificity). When
stored in the problem files, it also collates memory usage and run time. By default,
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Table 2 Classifier availability in the two toolkits tsml and sktime

Algorithm tsml sktime sktime-dl sktime-shapelets

DTW_D X X

DTW_I X X

DTW_A X

MUSE X

gRFS X

MrSEQL X

ROCKET X

CIF X X

TapNet

ResNet X

InceptionTime X

CBOSS X X

STC X X X

RISE X X

TSF X X

HIVE-COTE X X

MCE compares pairs of classifiers using the Wilcoxon sign rank test, and presents the
relative results as scatter plots and critical difference diagrams generated in Matlab.
These graphs are explained in more detail when first used. In Sect. 5 we present a
selection of the results generated by MCE for brevity. However, all these results are
available on the associated website. Our main focus is on accuracy due to its ease of
motivation and interpretation on arbitrary datasets, but we also present the area under
the receiver operator curve (AUROC), balanced accuracy and F1 statistics.

1 int resamples = 30;
2 String [] classifiers ={"DTW_D","CIF","HIVE -COTE"};
3 String [] datasets=DatasetLists.fixedLengthMultivariate

;
4

5 MultipleClassifierEvaluation mce;
6 mce = new MultipleClassifierEvaluation(
7 "Z:/ Analysis/","AnalysisName",resamples);
8 mce.setBuildMatlabDiagrams(true);
9 mce.setDatasets(datasets);

10 mce.readInClassifiers (classifiers ,"Z:/ Results/");
11

12 m.runComparison ();
13

Listing 4 Using MultipleClassifierEvaluation to compare classifiers in tsml.

For pairwise comparison of two classifiers, by default we follow the standard machine
learning approach of using the non parametricWilcoxon sign rank test. For some tests,
we have also performed a paired t-test for contrast. To compare multiple classifiers
on multiple data sets, we adapt the approach from Demšar (2006) and use critical
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difference diagrams. These order classifiers by rank, and group classifiers together
into cliques, sets of classifiers between which there is no significant difference. Based
on the literature (Benavoli et al. 2016), we abandon the post hoc test used in Demšar
(2006) and instead form cliques with pairwise tests, making the Holm correction for
multiple testing. For the majority of diagrams we use the Wilcoxon sign rank test for
pairwise comparison. However, for completeness and as a basic sanity test, we also
show the results of paired t-tests for the most important results.

4.3 Experiments

Experiments with tsml, sktime and sktime-shapelets-forest were con-
ducted on the UEA high performance computing (HPC) cluster. The nature of the HPC
means that any one job (a single evaluation) runs on a single core and has a maximum
execution time of 7 days. For memory intensive algorithms, we reran with increasing
memory until successful completion, up to a maximum of 500 GB.

Experiments with sktime-dl and TapNet were performed on GPUs in desktops,
one with a Titan XP and one with four Titan X Pascals. All jobs were run on a single
GPU, and each GPU ran only one job at a time. There was no time limit for these jobs.
However, the jobs were limited by the GPU memory of 12 GB per card.

For each dataset, we perform thirty stratified resamples (maintaining the class dis-
tribution in the original train/test splits) and store all test predictions. The first resample
is always the original train/test split. The remaining splits are seeded by the resample
number and are reproducible. Therefore, all classifiers are given identical resamples
for all problems.

Table 3 summarises the set configurations used. All of these are the default settings
specified by the authors. Further details are available on the associated web page.
Some classifiers perform internal tuning as part of their original algorithm definition,
but we have done no external tuning unless it was explicitly preformed in the paper
proposing the algorithm and the code provided makes it possible to do so.

Another question to resolve is whether to normalise the data or not. The majority of
past research has assumed it is always best to normalise the time series. The reasoning
for this is two fold: firstly, it is claimed that if summary measures such as mean
and variance can be used to discriminate, then the problem is trivial. Secondly, not
normalising a series can distort comparisons of algorithms, some of which internally
normalise the data.Wehave sympathywith both arguments.However, particularlywith
multivariate data,wedonot think it so simple. Scale andvariance in one dimensionmay
be discriminatory factors without trivialising the problem. This is particularly relevant
to MTSC, where interactions in shape, level and variance may be needed to find the
best classifier.We think the best approach is to present the data to the classifiers with no
preprocessing, so we do not normalise all data prior to building a classifier. ROCKET,
gRSF, TapNet, InceptionTime, ResNet, CBOSS, STC and CIF all use some form of
internal normalisation, whereasMUSE treats normalisation as a parameter. Hence, the
danger of unfair comparison is real, particularly with the DTW algorithms. To assess
this problem, we have run the three DTW variants on normalised and unnormalised
data. Normalisation is performed independently on each dimension, so that the series
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Table 3 Classifier configuration

Algorithm Configuration

DTW_D Full warping window

DTW_I Full warping window

DTW_A Full warping window

MUSE χ = 2

gRFS Default (max depth: none, min sample split: 2, num shapelets: 10

Min size: 0%, max size: 100%, metric: Euclidean distance)

MrSEQL seql_mode: fs, symrep: [’sax’, ’sfa’]

ROCKET Ridge regression classifier, 10,000 kernels

CIF Default (trees: 500, intervals:
√

(m) × √
(d), 8 attributes per tree)

TapNet Default (Epochs: 3000, Learning rate: 1e−5, weight decay: 1e−3

Stop threshold: 1e−9, num filters: [256 256 128], kernels: [8 5 3]

Dilation: 1, dropout: 0%)

ArticularyWordRecognition (dilation: 10)

EthanolConcentration (dilation: 200, learning rate: 1e−6)

FaceDetection (filters: [64 64 32], learning rate: 5e−5)

Heartbeat (dilation: 200, learning rate: 1e−6, filters: [64 64 32])

PenDigits (kernels: [4 1 1], learning rate: 1e−3)

PhonemeSpectra (filters: [64 64 32], learning rate: 1e−3)

SelfRegulationsCP1 (learning rate: 1e−6)

SelfRegulationsCP2 (learning rate: 1e−9)

SpokenArabicDigits (filters: [128 128 64], learning rate: 1e−4)

ResNet Epochs: 1500, batch size: 16, learning rate: 1e−3 and halved after

No improvement for 50 epochs

Three residual blocks each with three conv layers with kernel sizes [8, 5, 3]

Filters per conv layer for each block [64, 128, 128]

InceptionTime Epochs: 1500, batch size: 64, learning rate: 1e − 3 and halved after no

Improvement for 50 epochs

Two residual blocks each with three Inception modules with kernel sizes

Per module [10, 20, 40]

Plus bottleneck filters for all conv layers 32

CBOSS Default, see Bagnall et al. (2020)

STC Default, see Bagnall et al. (2020)

RISE Default, see Bagnall et al. (2020)

TSF Default, see Bagnall et al. (2020)

HIVE-COTE Version 1.0 Bagnall et al. (2020)
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6 5 4 3 2 1

2.4348 DTWA
3 DTWD

3.0652 nDTWA3.7826nDTWD

4.1957nDTWI

4.5217DTWI

Fig. 4 Critical difference diagram for three versions of DTW, with the data normalised (prefix n) or not
normalised (no prefix). EigenWorms is not included in these results since DTWA did not complete the
problem

Table 4 Results of pairwise tests of significance for the normalised and not normalised DTW experiments

DTWA DTWD nDTWA nDTWD nDTWI DTWI

DTWA True True True False False False

DTWD True True True True False False

nDTWA True True True False True True

nDTWD False True False True True True

nDTWI False False True True True True

DTWI False False True True True True

A cell is labelled true if there is no significant difference using a paired Wilcoxon sign rank test, α = 0.05

have zero mean and unit variance. Figure 4 shows the critical difference diagram for
the DTW versions built using both normalised and unnormalised data on the default
train/test split. The number by each classifier indicates its average rank (lower is better)
and the solid lines indicate groups of classifiers within which there is no significant
difference in rank. These are formed by testing the highest ranked vs the next highest
(using a correction for multiple testing) until a difference is found. The process is
then repeated until the lowest rank classifier is either in a clique or on its own. There
are two cliques in these results: (DTWA, DTWD , nDTWA) and (nDTWD , nDTWI ,
DTWI ). Forming cliques with pairwise tests is the best procedure (Benavoli et al.
2016), but it can be deceptive when the classifiers are very similar. A clique contains
classifiers with no pairwise difference between them. However, that does not mean
there is always a significant difference between classifiers in different cliques. Table 4
shows the results of the pairwise tests used to formFig. 4,with the two cliques in bold. It
shows that, although in different cliques, there is, for example, no significant difference
between nDTWA and DTWI . Generally, normalisation makes DTW worse, but it is
always worth visualising the differences. Figure 5 shows the performance of DTWA

with and without normalisation. All three were worse after normalisation on average,
DTWD and DTWA significantly so. We also built HIVE-COTE and its components
on normalised series, and found no significant difference. We do not conclude that
normalisation is unnecessary, merely that, for these experiments, not normalising is
not going to bias against the baseline DTW classifiers.

123



428 A. P. Ruiz et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DTW_A ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
nD

TW
_A

 A
C

C

nDTW_A
is better here

DTW_A
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DTW_D ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nD
TW

_D
 A

C
C

nDTW_D
is better here

DTW_D
is better here

Fig. 5 Scatter plots of accuracy on 26 UEAMTSC problems for DTWA and DTWD built with normalised
(labelled nDTWA and nDTWD) and non normalised data. Normalisation was performed independently on
each dimension so that every series has zero mean and unit standard deviation

Finally, we need to determine whether to tune the DTW window size. For the
univariate archive, tuning the window parameter gives a small, but significant, overall
improvement over using the full window size Ratanamahatana and Keogh (2005). To
use DTW as a baseline, we need to assess whether this improvement is also observable
for MTSC. Tuning is time consuming, and in order to complete the large problems
we would need to include numerous known speed improvements (Tan et al. 2018)
which also come with a huge memory overhead. We ran a naive implementation
DTWD with all window sizes from 0 to 100% evaluated with cross validation. This
completed on 21 of 26 problems within our time limit. Figure 6 shows the scatter
plot of DTWD vs the tuned version DTWCVD on the unnormalised data. Untuned
DTWD is better on 14 of the 21, but overall there is no significant difference and no
observable benefit from tuning. As with normalisation, we are not claiming that tuning
is not worthwhile generally. We do claim that for the purposes of this study, there is
no reason to tune the baseline algorithm DTW, since it makes no practical difference
in terms of classification accuracy. Based on these results, we conclude that DTWD

should be the benchmark for comparison rather than DTWI , and that to do so without
normalisation or tuning is acceptable in this context.

5 Results

We could not obtain results for all algorithms on all datasets within our constraints.
DTWA did not complete Eigenworms within the 7 day limit, and InceptionTime
could not complete Eigenworms due to out-of-memory errors on the GPU. MrSEQL
failed to finish FacedDetection and PhonemeSpectra in time. TapNet completed on 23
datasets, but could not allocate enoughmemory for PhonemeSpectra, EigenWorms and
MotorImagery. The bottleneck for MUSE is memory. It failed to complete six prob-
lems: DuckDuckGeese; EigenWorms; FaceDetection; MotorImagery; PEMS-SF; and
PhonemeSpectra. We ran gRSF with default parameters on all datasets without prob-
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Fig. 6 Scatter plot for DTWD and DTWCVD on 21 of the 26 UEA MTSC problems

lems. However, tuning with the recommended parameter ranges (Karlsson et al. 2016)
proved infeasible. Only nine of the 26 experiments completed in 7 days.

It is possible we could have engineered these algorithms and their parameter spaces
to work on the problematic datasets. However, our goal is to test classifiers based on
the configuration recommended by the original authors. We do not want to bias our
results by optimising algorithms for particular datasets. All 16 classifiers completed 20
problems, 11 classifiers completed all 26 problems.Wecould havegiven the algorithms
more than 7 days to to run for the missing problems. However, none of these problems
are truly large by modern data standards (the biggest train file is 500 MB), and a 7 day
run with no external tuning seems a reasonable limit.

Table 11 in “Appendix 1” presents the accuracy results of all 16 classifiers on all
problems. Each data is the average statistic over 30 resamples. The default train/test
results are provided on the associated website. We split the detailed analysis into two
parts: a comparison of algorithms that complete all 26 problems (Sect. 5.1) and a
comparison of all classifiers on the reduced set of 20 problems (Sect. 5.2). We then
explore performance by dataset to assess the usefulness of the archive in Sect. 5.3.

5.1 Comparison of eleven classifiers on twenty six datasets

Figure 7 shows the critical difference diagrams for the 11 classifiers that completed
all 26 problems, with cliques formed with the rank based Wilcoxon tests. The top
clique is (ROCKET, HIVE-COTE, CIF, ResNet) and the top three classifiers are all
significantly more accurate than the baseline DTWD . The middle cliques indicate
that there is no significant difference between DTWD and any of the other classifiers
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Fig. 7 Critical difference diagrams for 11 classifiers on the 26 equal length UEA datasets using pairwise
Wilcoxon test to form cliques

except DTWI , which is significantly worse. Balanced accuracy and F1 give a very
similar pattern of results, indicating class imbalance is not a factor. DTWD and DTWI

cannot be judged by AUROC, since they do not provide probabilities with which to
order the instances. AUROC demonstrates that the top three algorithms in terms of
accuracy are significantly better than all others at ordering the data. We also compared
all classifiers using a paired Student’s t-test instead of Wilcoxon sign rank test. For
α = 0.05, there would only be two different decisions: STC is not significantly worse
than ROCKET with a t-test, but is with a sign rank test; and CBOSS is signifacntly
worse than STCwith a sign rank test, but not with a t-test. Critical difference diagrams
can sometimes mask differences between individual classifiers, because of the nature
of forming cliques. It is worthwhile, therefore, presenting p-values and summarising
accuracy distributions. Table 5 presents the pairwise p-values for all 11 combinations,
with the upper diagonal being sign rank and the lower diagonal the t-test. Note that
no adjustments for multiple testing have been made. The top clique using t-test would
now include STC, but there are few practical differences. The differences in accuracy
between the complete classifiers and DTWD are summarised in Fig. 8. Here we can
see some of the wide spread of relative performances by classifiers over the datasets.
STC has the widest distribution of difference in accuracies which explains the fact
that STC has the biggest difference in test results between sign rank and t-test shown
in Table 5.

Figure 9 demonstrates this further for the top clique of classifiers, and shows scatter
plots of test accuracies against the DTWD benchmark. ROCKET is better on 22 and
worse on 3, with a mean difference of 5.9% and median difference of 3.3%. HIVE-
COTE is better on 17 and worse on 9, with a mean difference of 5.8% and median
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Fig. 8 Box plots of the differences in accuracy relative to DTWD over datasets

difference of 3.28%. CIF is better on 19 and worse on 7 with a mean difference of
6.5% and a median difference of 3.18%. ResNet is better on 14 and worse on 12 with
a mean difference of 1.7% and a median difference of 0.45%.

Table 6 gives the detailed results for the three classifiers significantly better than
DTWD , including the standard error over resamples. This table demonstrates that there
will still be problems, such as HandWriting, where DTWD is the best approach but
that, lacking any extra information, the other algorithms will generally give signifi-
cantlymore accurate classifiers.While ROCKET andHIVE-COTE lose by a relatively
smaller margin when DTWD does outperform them, the HandWriting case shows that
CIF has a much clearer gap in the types of problem it can effectively handle.

Run times are hard to compare because of both software and hardware differences.
Nevertheless, to get some idea of the relative performance, we recorded run time for
all experiments. Table 7 gives the summary run time information, and Fig. 10 plots
accuracy against runtime.

ROCKET lives up to its name: it is by far the fastest algorithm and remarkably can
build a model for all 26 data sets in just over an hour. If it is set to be threaded, it
completes 30 re-samples of the 26 problems in less than 2 h. Given its accuracy, this
seems strong evidence to support it as a new baseline. CIF is much slower, requiring
about 6 days for all the problems, but it averages around 5 h per problem. HIVE-COTE
is by far the slowest and if run sequentially would take over a year to complete all
the problems. Strictly speaking, it would violate our run time constraints if we ran
it in this way. However, we include it here because we did not run it sequentially.
We ran each component/dimension combination independently and in parallel. The
nature of dimension independent ensembles makes this much easier to do than with
algorithms such as MUSE and TapNet. It is also noteworthy that STC is the slowest
component, but that is due to our parameter choice. STC is contracted, and defaults
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Table 6 Average accuracies with standard error over re-samples for DTWD and the three classifiers sig-
nificantly more accurate than DTWD

DTWD (%) ROCKET (%) CIF (%) HIVE-COTE (%)

AWR 98.87±0.05 99.56±0.13 97.89±0.15 97.99±0.10

AF 23.56±1.39 24.89±1.68 25.11±2.18 29.33±1.31

BM 95.25±0.23 99.00±0.00 99.75±0.14 100.0±0.84

CR 100.0±0.00 100.0±0.13 98.38±0.29 99.26±0.00

DDG 49.20±0.99 46.13±1.04 56.00±1.03 47.60±1.20

EW 64.58±0.53 86.28±1.21 90.33±0.54 78.17±0.62

EP 96.30±0.17 99.08±0.00 98.38±0.27 100.0±0.26

EC 30.15±0.54 44.68±0.43 72.89±0.56 80.68±0.50

ER 92.91±0.12 98.05±0.49 95.65±0.42 94.26±0.40

FD 53.28±0.23 69.42±0.30 68.89±0.27 69.17±0.14

FM 54.17±0.90 55.27±0.84 53.90±0.81 53.77±0.93

HMD 30.32±1.00 44.59±0.87 52.21±1.08 37.79±0.81

HW 61.21±0.42 56.67±0.42 35.13±0.40 50.41±0.42

HB 68.88±0.37 71.76±0.02 76.52±0.30 72.18±0.52

LIB 88.04±0.44 90.61±0.45 91.67±0.49 90.28±0.61

LSST 54.76±0.08 63.15±0.16 56.17±0.22 53.84±0.14

MI 52.10±0.73 53.13±0.78 51.80±1.03 52.17±0.74

NATO 82.04±0.32 88.54±0.44 84.41±0.32 82.85±0.32

PD 99.28±0.05 99.56±0.14 98.97±0.08 97.19±0.06

PEMS 77.05±0.58 85.63±0.38 99.85±0.09 97.98±0.59

PS 15.39±0.10 28.35±0.12 26.56±0.13 32.87±0.07

RS 85.64±0.26 92.79±0.45 89.30±0.51 90.64±0.37

SRS1 81.81±0.35 86.55±0.31 85.94±0.28 86.02±0.32

SRS2 53.69±0.49 51.35±0.59 48.87±0.56 51.67±0.67

SWJ 22.00±1.87 45.56±2.72 45.11±2.65 40.67±1.54

UW 92.28±0.21 94.43±0.35 92.42±0.32 91.31±0.23

Table 7 Total run time for a single re-sample of all 26 problems and mean difference in accuracy to DTWD
for 9 classifiers

Classifier Total time (h) Difference in accuracy to DTWD (%)

ROCKET 1.26 5.86

gRSF 9.27 1.0

ResNet 13.38 1.72

CIF 148.55 6.51

CBOSS 181.60 0.13

TSF 263.88 0.59

RISE 279.64 − 1.11

STC 7019.69 4.06

HIVE-COTE 12,172.44 5.98

123



434 A. P. Ruiz et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DTW_D ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

O
C

K
E

T 
A

C
C

ROCKET
is better here

DTW_D
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DTW_D ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
IV

E
-C

O
TE

 A
C

C

HIVE-COTE
is better here

DTW_D
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CIF ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
TW

_D
 A

C
C

DTW_D
is better here

CIF
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DTW_D ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

N
et

 A
C

C
ResNet
is better here

DTW_D
is better here

Fig. 9 Scatter plots of the accuracy of ROCKET, HIVE-COTE, CIF, and ResNet against DTWD

to 24 h compute time on each dimension. For high dimensional problems, this would
lead to huge run times if completed sequentially. However, it is hardly ever necessary
to search for shapelets for 24 h. Table 7 shows that, on average, STC is 4.06% more
accurate than DTW, but overall, it is not significantly better. This demonstrates that
there are problems where a specific representation is much better.

Memory usage is even harder to determine, since we are concerned with the maxi-
mum memory used during a run, not just the final memory footprint of the classifier.
We can record the maximum memory usage in tsml, but this capability is not yet
in sktime and its variants. Table 8 shows the maximum and total memory usage
of eight tsml classifiers. HIVE-COTE is the most memory intensive classifier, but
even HIVE-COTE required at most 3.5 GB (MotorImagery) and just 21 GB for all
problems. Memory is not a significant constraint for these classifiers.

To summarise, only three of the ten classifiers able to complete on all problems
are significantly more accurate than the baseline DTWD (ROCKET, CIF and HIVE-
COTE). Figure 11 shows the relative performance of ROCKET against CIF andHIVE-
COTE. These figures show that ROCKET consistently beats the other two, but that
when it fails, it tends to fail badly. This is demonstrated by the fact it is marginally
worse on average than both when looking at the mean difference, but better when the
median is considered. It is also highlighted with the p-values shown in Table 5. The
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Fig. 10 Average difference in accuracy to DTWD versus train time for 9 MTSC algorithms

Table 8 Memory usage (in MB)
for eight tsml classifiers

Classifier Max memory Total memory

DTWI 1883 5587

DTWD 1845 5952

RISE 2624 10,242

TSF 2670 10,632

CBOSS 2675 10,537

STC 2163 9778

CIF 2954 15,900

HIVE-COTE 3577 21,217

Max memory is the maximum memory on any single problem, total
memory is the agregated memory over all twenty six problems

non-parametric sign rank test p-values for ROCKET against CIF and HIVE-COTE are
much lower than the parametric t-test p-values. ROCKET performs at least as well as
HIVE-COTE and CIF and is by far the fastest, andwould be our recommended starting
point for an investigation of a new MTSC problem. The evidence of the occasional
large failure could help drive future design improvements.

5.2 Comparison of sixteen classifiers on twenty datasets

DTWA, MUSE, MrSEQL, TapNet and InceptionTime did not complete on all prob-
lems. Rather than a lengthy individual analysis, we present the results for the twenty
problems which all algorithms completed. For clarity, we remove the four worst per-
forming classifiers (DTWI , RISE, TSF and CBOSS). Figure 12 shows the critical
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Fig. 11 Scatter plots of accuracy on 26 UEAMTSC problems for ROCKET against CIF and HIVE-COTE.
ROCKET beats CIF on 17 problems, with mean andmedian difference in accuracy are−0.12% and 0.85%).
ROCKET beats HIVE-COTE on 17 problems with mean and median difference in accuracy are −0.66%
and 0.66%
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Fig. 12 Critical difference diagrams for the top 12 classifiers on the 20 equal length UEA datasets all
algorithms completed

difference diagrams for the top twelve classifiers on the twenty data sets that all algo-
rithms completed within our constraints.

MUSE is memory intensive. On these 20 problems it required an average of 8 GB,
compared to just 500 MB for HIVE-COTE. Fewer datasets make it harder to detect
significant differences. The top clique is now (ROCKET, InceptionTime,MUSE,CIF).
However, these cliques do not reflect the differences to the baseline. With a critical
value of α = 0.05, only ROCKET and CIF are significantly better than DTWD on
these 20 problems. With 25 problems, InceptionTime is also significantly better than
DTWD , as is HIVE-COTE with 26. Table 9 gives the p-value for the pairwise test on
the datasets completed by each algorithm.

123



The great multivariate time series classification bake off 437

Table 9 Performance relative to
the benchmark classifier DTWD

Algorithm Completed data P-value W/D/L

MUSE 20 0.1005 13/0/7

TapNet 23 0.9015 10/0/13

MrSEQL 24 0.0593 16/0/8

DTWA 25 0.6900 10/2/13

InceptionTime 25 0.0149 17/0/8

STC 26 0.1067 15/0/11

HIVE-COTE 26 0.0043 17/0/9

CIF 26 0.0092 19/0/7

ROCKET 26 0.0004 22/1/3

P-value is from the Wilcoxon sign rank test

MUSE does well, but is so memory intensive it will be hard to use for many
problems. MrSEQL is also promising, although not significantly better than DTW. It
is not clear why it failed to complete the two problems. InceptionTime, HIVE-COTE
and CIF all beat the baseline and have potential. However, the stand out classifier is
still ROCKET. It has the lowest average rank, beats the baseline on the most problems
and it is incredibly quick, especially when parallelised. We think it is the clear winner
of this experimental study.

5.3 Analysis by problem

Table 11 shows the average test accuracy by problem and Table 10 shows the perfor-
mance of the best classifier on each problem. Some problems are trivial, with most
algorithms getting close to perfect results. These are: BasicMotions (BM); Cricket
(CR); and Epilepsy (EP). Conversely, with other problems classifiers rarely do better
than randomguessing.Wewould put Heartbeat (HB) and SelfRegulationSCP2 (SRS2)
in this category.

On other problems, the majority of classifiers find little or no information, but one
or more algorithms fare much better. With AtrialFibrillation (AF), most classifiers
are no better than random guessing (25%) and are worse than predicting the majority
class (33%). MUSE alone finds useful information with an accuracy of 74%. The best
algorithm for EthanolConcentration (EC) is STC, with an accuracy of 82%, whereas
the three deep learning algorithms do little better than random guessing. These results
demonstrate the importance of the representation for time series classification and
highlight the need to find the right tool for the job.

Table 10 highlights another feature not immediately apparent from the aggregated
results. The three deep learning algorithms TapNet, ResNet and InceptionTime (IT)
are the most accurate approach on 9 of the problems. Neural networks tend to have
high variance over problems, often either doing verywell or very poorly on a particular
problem. Received wisdom would suggest that beyond any data-driven characteristics
that favour particular representations, deep learning approaches would have a compar-
ative advantage (or disadvantage) on problems with more (less) training cases. This
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Table 10 Best classifiers by problem

Problem Classes Default (%) DTWD (%) Best (%) Algorithm(s)

AWR 25 4.00 98.87 99.56 ROCKET

AF 3 33.3 23.56 74.00 MUSE

BM 4 25.0 95.25 100.0 IT, MUSE, HC, ResNet, gRSF, RISE

CR 12 8.33 100.0 100.0 ROCKET, DTWA , DTWD

DDG 5 20.0 49.20 63.47 IT

EW 5 42.0 64.58 90.33 CIF

EP 4 26.8 96.30 100.0 HC

EC 4 25.1 30.15 82.36 STC

ER 6 16.7 92.91 98.05 ROCKET

FD 2 50.0 53.28 77.24 IT

FM 2 50.0 54.17 56.13 IT

HMD 4 18.9 30.32 52.21 CIF

HW 26 3.8 61.21 65.74 IT

HB 2 72.2 68.88 76.52 CIF

LIB 15 6.7 88.04 94.11 ResNet

LSST 14 31.5 54.76 63.62 MUSE

MI 2 50.0 52.10 53.80 TSF

NATO 6 16.7 82.04 97.11 ResNet

PD 10 10.4 99.28 99.68 IT

PEMS 7 11.6 77.05 99.85 CIF

PS 39 2.6 15.39 36.74 IT

RS 4 28.3 85.64 92.79 ROCKET

SRS1 2 50.2 81.81 95.68 TapNet

SRS2 2 50.0 53.69 53.69 DTWD

SWJ 3 33.3 22.00 45.56 ROCKET

UW 8 12.5 92.28 94.43 ROCKET

would appear to hold weight in the cases of FaceDetection (5890 cases), PenDigits
(7494 cases) and PhonemeSpectra (3315 cases), but none of the others where a deep
learning approach wins are large datasets. In particular, InceptionTime wins on Duck-
DuckGeese, which only has 50 train cases but 1345 dimensions and 270 time points.
Here, it is likely the bottleneck operation that is successfully stripping down the large
and sparse spectogram dimension space while other classifiers are less able to find
sufficiently clean features.

5.4 Explanatory analysis case studies

Ultimately, we would like to form a rationale for why one algorithm does better than
another on a specific dataset. This would help improve our understanding of when
to use one approach over another, and would guide future algorithm development.
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Discriminatory 
Features

Fig. 13 Visualisation of the first instance of each class by colour for the EthanolConcentration data, with
dimension separated by line pattern

However, given the complexity of some of these algorithms, this is non trivial. We
examine two datasets where there is a wide variance in algorithm performance and
attempt to explain the characteristics of the data that confound certain classifiers.

Ethanol concentration

Ethanol Concentration has a wide range of performance results. The deep learning
approaches and the DTW variants do little better than random guessing. CIF, however,
achieves accuracy over 70% and STC gets over 80% accuracy. The key confounding
aspect of this data is that the discriminatory features lie only in a small region of the
series, and that the variation in this small region that allows the detection of the class
is much lower than the variation in the rest of the spectra, which is class independent.
CIF and STC are designed to mitigate this problem. CIF selects random intervals,
whereas STC finds phase independent subseries. A sample of series from each class
is shown in Fig. 13, with the discriminatory interval marked.

We take a deeper look into how both CIF and InceptionTime made their classifica-
tions using visualisation techniques for each. For CIF we can adapt the visualisation
mechanism (Middlehurst et al. 2020) for the multivariate case. We train a separate
CIF model with no attribute subsampling to allow for important feature and interval
combinations to be chosen more often. Figure 14 shows the CIF temporal importance
curves for the EthanolConcentration data. As shown the majority of information gain
in nodes throughout the forest is concentrated around the discriminatory interval. A
single fluctuation analysis feature appears as one of the top features for all 3 dimen-
sions. Using CIF we can also estimate the importance of individual dimensions by
looking at the number of times each dimensions is used in decision tree nodes. The
3 dimensions for EthanolConcentration have near identical importance, with each
occurring in just over 8000 nodes throughout the forest. While this shows that each
dimension contains useful information, it does not necessarily discount redundancy
between them.

Figure 15 displays theClassActivationMaps (CAM) (Wang et al. 2017; Fawaz et al.
2019) for a random selection of test cases of the EthanolConcentration data. These
highlight temporal areas that highly contributed towards the network’s prediction of
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Fig. 14 Temporal importance diagram generated by a CIF with no attribute subsampling on the Ethanol-
Concentration data. Legend displays the CIF feature followed by dimension index

Fig. 15 Class Activation Mappings for one network in the InceptionTime ensemble on 10 random test
instances of EthanolConcentration (only one dimension of each instance shown for clarity)
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Fig. 16 Visualisation of two sets of five dimensions for the PEMS-SF data

Fig. 17 Temporal importance diagram generated by a CIF with no attribute subsampling on the PEMS-SF
data. Legend displays the CIF feature followed by dimension index

an instance. It demonstrates that InceptionTime could not reliably isolate the infor-
mative interval, and found spurious mappings from the high-noise area of the series
to the labels. InceptionTime is an ensemble of five networks with different random
initialisations. All five have similar looking CAM representations.

PEMS-SF

PEMS-SF describes the occupancy rate, between 0 and 1, of different car lanes of
San Francisco bay area freeways from 963 different sensors (dimensions). The prob-
lem is to predict the correct day of the week. There is a wide range of performance
on this problem. The three DTW approaches do worst (77–80%) and the three deep
learning algorithms do not do much better (InceptionTime and ResNet (79–83%).
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Conversely, the interval techniques (CIF, TSF and RISE) and the shapelet based algo-
rithms (MrSEQL, STC a gRFS) all achieve over 90% and CIF is almost perfect with
an average accuracy of 99.84% and 100% accuracy on the default split. We suspect
that the confounding factor here is the number of dimensions. To explore this hypoth-
esis, we extract a case from the default test set where CIF gets the prediction correct.
The case is the second data in the test data set. The correct class is Tuesday (class
value 1). We cannot sensibly visualise all 963 dimensions. Figure 16 plots the two
sets of five dimensions. The data highlights another possible important characteristic:
the morning and afternoon rush hour peaks. It is possible that rush hour is much more
discriminatory for day of the week, and algorithms that can discard the less important
and possibly confounding periods do better. It is also possible that different times of
the day are important for different dimensions. This case is predicted incorrectly as
Thursday by InceptionTime, whereas both CIF and STC predict it correctly. Incep-
tionTime thinks Tuesday is very unlikely. It assigns Tuesday a probability of 0.041
and Thursday 0.723. CIF is also very confident about its prediction: it assigns Tues-
day a probability of 0.762. STC is less confident, in that it estimates the probability
of Tuesday to be 0.305, but that is still the highest probability. So why are CIF and
STC correct and InceptionTime wrong? Figure 17 shows the CIF temporal importance
curves for the PEMS-SF data. Three of the curves (blue, orange and green) peak at
the beginning and end of the series, covering a period prior to the first rush hour and
during the second. The remaining curve (red and purple) cover the first rush hour
period. Curves from both of these groups share summary statistics, implying that the
time interval importance may differ between dimensions. Looking at tree nodes for
dimension importance shows a few are repeatedly chosen when they appear, with only
nine dimensions having hundreds of nodes throughout the forest. On the other side 747
of the dimensions appear less than ten times, if at all. This ability to select dimension
and time intervals is likely an important factor to the success of CIF on the dataset.

Figure 18 shows the CAM of a network in InceptionTime for this problem case,
highlighting the areas that lead to its prediction of Thursday. It seemingly correctly
highlights the rush hour areas as important. However, in this case perhaps simply
could not disambiguate between the different weekdays. Three of the networks in the
ensemble strongly predicted Thursday, one predictedWednesday with equal certainty,
while the final member predicted Thursday while also giving Tuesday a probability
of 0.153.

6 Conclusions

This experimental analysis has demonstrated that MTSC is at an earlier stage of devel-
opment than univariate TSC. The standard TSC benchmark, DTW, is still hard to beat
and competitive with many more recently proposed alternatives. HIVE-COTE (with
components all built independently on each dimension), CIF, ROCKET and Incep-
tionTime are significantly better than DTW. Both CIF and ROCKET use some form
of dimension dependent feature extraction. The performance of CIF, an improvement
of the HIVE-COTE component TSF, suggests that introducing bespoke multivariate
algorithms to the other HIVE-COTE components will improve overall performance.
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Fig. 18 Class ActivationMap for a network in InceptionTime on the examined case of PEMS-SF. Inception
time predicted Thursday, while the true label was Tuesday. 20 Dimensions of the instance only are shown
for clarity

InceptionTime is the top performing algorithm on more problems than any other algo-
rithm and should be the starting point for future work with neural networks. However,
the real winner of this experimental analysis is ROCKET.We did not originally include
ROCKET in this study (an early iteration of this paper is available on ArXiv (Pasos-
Ruiz et al. 2020)) because multivariate capability is listed as future work in the related
publication (Dempster et al. 2020).However, the authors ofROCKETcontributed their
code to the sktime toolkit with multivariate functionality, so we could include it in
the study. This highlights the benefits of code sharing within a common framework.

ROCKET is the best ranked and by far the fastest classifier and would be our rec-
ommendation as the default choice for MTSC problems. Clearly, results on 26 data
sets do not generalise to all problems. No algorithm will outperform all others all the
time, and there is a place for a toolkit of approaches for the practitioner to drawn from.
However, benchmarking is important, particularly when assessing new algorithms.
Hence, we suggest that new algorithms in this domain be compared to DTWD and
ROCKET as benchmarks.Wemake all results and the code to generate the results pub-
licly available on the associated website and are happy to work with other researchers
to help move the field forward and find new applications. The UEA MSTC archive is
fairly new and needs more development. New data are being added and donations are
always welcome. An expanded version with at least 50 data sets is planned for 2021.
These experiments represent a platform for future development.Wewould expect that,
in the near future, algorithms that explicitly model interactions between dimensions
would outperform all of the algorithms presented here and advance the research field
of MTSC.
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