Data Mining and Knowledge Discovery (2021) 35:1061-1086
https://doi.org/10.1007/s10618-021-00743-x

®

Check for
updates

Multi-label learning with missing and completely
unobserved labels

Jun Huang'® - Linchuan Xu? - Kun Qian3 . Jing Wang* - Kenji Yamanishi®

Received: 30 April 2020 / Accepted: 17 February 2021 / Published online: 12 March 2021
© The Author(s) 2021

Abstract

Multi-label learning deals with data examples which are associated with multiple
class labels simultaneously. Despite the success of existing approaches to multi-label
learning, there is still a problem neglected by researchers, i.e., not only are some of
the values of observed labels missing, but also some of the labels are completely
unobserved for the training data. We refer to the problem as multi-label learning with
missing and completely unobserved labels, and argue that it is necessary to discover
these completely unobserved labels in order to mine useful knowledge and make a
deeper understanding of what is behind the data. In this paper, we propose a new
approach named MCUL to solve multi-label learning with Missing and Completely
Unobserved Labels. We try to discover the unobserved labels of a multi-label data
set with a clustering based regularization term and describe the semantic meanings of
them based on the label-specific features learned by MCUL, and overcome the problem
of missing labels by exploiting label correlations. The proposed method MCUL can
predict both the observed and newly discovered labels simultaneously for unseen data
examples. Experimental results validated over ten benchmark datasets demonstrate
that the proposed method can outperform other state-of-the-art approaches on observed
labels and obtain an acceptable performance on the new discovered labels as well.

Keywords Multi-label learning - Missing labels - Completely unobserved labels -
Unseen labels - Discovering new labels

1 Introduction
1.1 Background and motivation

Multi-label learning (Gibaja and Ventura 2015; Herrera et al. 2016; Tsoumakas et al.
2010; Zhang and Zhou 2014) is a learning framework for learning in the presence of
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label ambiguity, where each instance can be associated with multiple possible class
labels simultaneously. Many well-established approaches have been proposed, such
as (Chu et al. 2019; Decubber et al. 2019; Liu 2019; Liu and Shen 2019; Masera and
Blanzieri 2019; Nguyen and Hiillermeier 2019; Park and Read 2019; Huang et al.
2018; Wydmuch et al. 2018; Zhang and Wu 2019). In multi-label learning, a common
assumption is that all the class labels and their values are observed before the training
process. However, in some real applications, not only are some of the values of the
observed labels missing, but also some of the labels are completely unobserved for
the training data. We summarized three possible reasons as follows.

1. The labeling process is complex and costly In the labeling process of multi-label
learning, a set of possible labels from a target set will be annotated for each data
example. This stage is very complex and time-consuming, especially for a large-
scale data set with millions of labels (Bhatia et al. 2016). It is inevitable to induce
errors and missing values, and even result in some labels totally unlabeled for all
the related data examples.

2. Some labels are intentionally omitted For example, in image annotation, people
may be only interested in the main objects of an image, and the background of
image may not be annotated, such as grass and land. However, in (Pham et al.
2015), it has been proved that the performance on observed labels can be improved
by discovering these labels.

3. Some labels are unknown For example, in disease diagnosis, complicated diseases
may exist but are unknown due to the limitation of human’s knowledge or the
shortage of examination (Zhang et al. 2018, 2020).

There are several lines of study that are related to the problem proposed in this
paper. In Fig. 1, we illustrate the differences between the learning scenario proposed
in the paper and other previous related learning problems, i.e., multi-label learning
with missing labels, and online or class-incremental learning. The detailed discussions
and analyses now follow.

First, in multi-label learning with missing labels, all the class labels are known
in advance, whereas some of labelling results are missing or unobserved. A lot of
approaches have been proposed for multi-label learning with missing labels, such
as (Huang et al. 2019; Sun et al. 2010; Xu et al. 2013; Yu et al. 2014; Zhu et al.
2018). However, to successfully apply these approaches, one essential precondition
is that each label has at least one positive data example. The problem setting on this
precondition is different from that of multi-label learning with completely unobserved
labels.

Second, class incremental or online learning approaches (Da et al. 2014; Mu et al.
2017; Qu et al. 2009; Zhu et al. 2018) can handle classification with novel labels
which are unseen in the training stage but appear in the test stage. The novel labels
are unobserved because of the corresponding data examples are unobserved. By con-
trast, in our problem setting, novel labels are unobserved but the data examples are
observed. Moreover, in multi-label learning, novel labels may not be mutually exclusive
with existing observed labels, but have correlations with each other. Therefore, these
approaches can not be applied to multi-label learning with completely unobserved
labels.
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Fig. 1 Differences between previous related learning problems

The problem of detecting unobserved labels has been studied under single-instance
single-label learning (Zhang et al. 2020) and multi-instance multi-label learning (Pham
et al. 2015; Zhu et al. 2017). In single-instance single-label learning, unobserved
labels are mutually exclusive with each other including the observed ones. In multi-
instance multi-label learning, each data example is represented by multiple instances.
Different from these two problems, for the proposed problem, each data example is
represented by a single instance and associated with multiple class labels (including
the unobserved labels) simultaneously which may have correlations with each other.
In addition, these approaches can not handle missing values of the observed labels.

We refer to the proposed problem as multi-label learning with missing and com-
pletely unobserved labels, and introduce a formal definition of it as follows.

Definition 1 (Multi-label learning with missing and completely unobserved labels.)
For a given multi-label learning dataset D = {(x;, y,-)};’zl, X € RY indicates the
feature space, and YV = {y1, ..., Y4, Yg+1, -.-, Yg+r} represents the full label space. In
the training stage, the first g labels are observed and the rest r labels are completely
unobserved. For the ¢ observed labels, some of the annotation results are missing,
but each label has at least one positive data example. While for the » completely
unobserved labels, the semantic meanings of them and their labelling results for the n

data examples are totally unknown.

The task of multi-label learning with missing and completely unobserved labels
is to build a robust multi-label classification model which can discover previously
unobserved labels and overcome the problem of missing values of the observed labels
in the dataset. Meanwhile, the model can predict both the observed and unobserved
labels simultaneously for unseen data examples. Besides, it would be better, if the
meanings of unobserved labels can be interpreted.
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1.2 Significance and contribution

Properly modeling the unobserved labels in multi-label learning can have positive
impacts from two aspects. First, it enables effective discovering of unobserved labels
and makes a deeper understanding of what is behind the multi-label data. Second, by
discovering and making good use of the information of the unobserved labels in the
multi-label data, we can better build a robust classification model for the observed
labels and improve the accuracy of prediction.

In this paper, we propose a novel approach named MCUL to solve multi-label
learning with Missing and Completely Unobserved Labels. MCUL is a robust multi-
label classification model which can discover the completely unobserved labels and
overcome the problem of partially missing values of the observed labels. In the test
stage, it can predict unseen data examples with both the observed and unobserved
labels simultaneously. The contributions of this paper are summarized as follows.

— We introduce the problem of multi-label learning with missing and completely
unobserved labels. To the best of our knowledge, this topic is firstly addressed in
multi-label learning.

— We propose a new approach named MCUL for the proposed problem, where a
clustering-based regularization term is utilized to discover the unobserved labels,
and label correlations are exploited to overcome the problem of missing values for
both the observed and new discovered unobserved labels. We try to describe the
semantic meaning of the new discovered labels based on the label-specific features
which are learned by MCUL.

— We present three new evaluation metrics for the evaluation on the completely
unobserved labels. Since the one-to-one correspondences between the ground-
truth and new discovered labels are unknown, the existing evaluation metrics can
not be applied directly. We propose to evaluate the results for the labels which are
best matched based on some existing evaluation metrics for multi-label learning,
such as ranking loss and coverage.

The advantages of the proposed framework are demonstrated by experiments on
observed label prediction and novel label discovering over ten real multi-label datasets.
The performance on observed labels can be improved by discovering and modeling
the completely unobserved labels. The label-specific features with high weights have
a strong semantic correlation with the name of the best-matched labels, and can be
used to describe the semantic meaning for the new discovered labels.

2 Related work

Multi-label learning (Gibaja and Ventura 2015; Herrera et al. 2016; Tsoumakas et al.
2010; Zhang and Zhou 2014) deals with data examples which are associated with
multiple class labels simultaneously. In the past decades, many advanced approaches
have been proposed to solve interesting problems in multi-label learning.

According to the popular taxonomy firstly proposed in (Tsoumakas et al. 2010),
existing multi-label learning approaches can mainly be divided into two categories:
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problem transformation (PT) strategy and algorithm adaption (AA) strategy. For the
problem transformation strategy, a multi-label classification problem is transformed
into one or more single-label classification problems that can be solved with a single-
label classification algorithm, such as (Boutell et al. 2004; Dembczyriski et al. 2010;
Read et al. 2008, 2009; Tsoumakas et al. 2011). For the algorithm adaption strategy,
traditional single-label classification algorithms are extended to solve multi-label clas-
sification problems directly, such as (Elisseeff and Jason 2001; Fiirnkranz et al. 2008;
Zhang and Zhou 2006, 2007). Nevertheless, existing approaches mainly assume that
all the class labels are observed before the training process and the set of target labels
is a closed set. Although the success has been made by existing studies on multi-label
learning, there is still a challenging problem that some of the class labels are com-
pletely unobserved during the training stage. There are several lines of study that are
related to the problem we proposed in this paper, such as multi-label learning with
missing labels, class-incremental learning and stream multi-label learning.

Many approaches have been proposed for multi-label learning with missing labels,
and can be mainly grouped into two categories. One strategy is to recover a full label
matrix based on the matrix completion or factorization techniques by exploiting label
or instance correlations, such as (Huang et al. 2019; Xu et al. 2013; Zhu et al. 2018).
Another strategy is assuming that we have known which entries are missing, and then
to calculate the classification loss without considering them, such as (Sun et al. 2010;
Tan et al. 2018; Yu et al. 2014). The essential precondition for these two strategies is
that each label has at least one positive data example. Nevertheless, these two strategies
both will not work if one label is completely unobserved.

Some approaches have been proposed for class-incremental learning (Da et al.
2014; Shi et al. 2014) and stream multi-label learning (Mu et al. 2017; Qu et al. 2009;
Read et al. 2011; Zhu et al. 2018). In these two problems, new labels are unobserved
during the training stage, but appear in the test stage. The labels are unobserved
because the corresponding data examples are also unobserved during the training
stage. While in our problem, the data examples are observed but some labels are
completely unobserved during the training stage. In addition, for class-incremental
learning and stream classification problems, if one label is unobserved in the training
stage and does not appear in the test stage, it will never be discovered.

There are several highly related studies with the purpose of discovering unobserved
labels for the training data. ExXML (Zhang et al. 2020) assumes that the unobserved
labels are wrongly annotated as observed labels, and examines and investigates the
training data set by actively augmenting the feature space to discover potentially unob-
served labels. However, it can not be applied to multi-label learning, and the problem
setting is also different from us. MIMLNC (Pham et al. 2015) is a probabilistic model
to identify novel instances for multi-instance multi-label learning, and it assumes that
all novel instances belong to a single new label. DMNL (Zhu et al. 2017) assumes that
there are k unobserved labels, and tries to discover multiple novel labels for multi-
instance multi-label learning with a clustering based regularization term. These two
approaches are hardly applied to general single-instance multi-label learning.

By surveying previous studies on multi-label learning, it is found that none of
existing approaches can directly address the potential problem of multi-label learning
with missing and completely unobserved labels. In this paper, we propose a novel
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Fig.2 The framework of the proposed method MCUL

approach named MCUL which can discover the completely unobserved labels and
overcome the problem of partially missing values of the observed labels, and predict
both the observed and unobserved labels simultaneously to the unseen data examples
in the test stage.

3 The proposed approach
3.1 Preliminary

To describe the new problem settings given in definition 1, we provide the following
formal notations.

X € R? indicates the d-dimensional feature space, and Y = {y1, ..., y4} represents
the label set of g observed labels. Assuming there are r different unobserved labels
which are indicated by Y= {¥g+1, s Yg+r)- As aresult, there are [ labels totally, and
the complete label set will be)> = YUy = (Y1 s Ygs Yg+1, --n Y1}, wherel = g +r.
X =[xy,..., X,,]T € R"*4 js yused to indicate the data matrix of a multi-label learning
training set, and Y = Y, S_(] € {0, 1}”Xl is used to indicate the full label matrix. Here,
Y € {0, 1}**7 indicates the label matrix for the ¢ observed labels and some entries of
it are missing. If y;; = 1, it indicates that the x; belongs to y;. If y;; = 0, it indicates
that the x; does not belong to y; or the value is missing. Y € {0, 1" indicates the
label matrix for the unobserved labels, and all the entries of it are missing during the
training stage, i.e., y;; =0,V1 <i <n, 1 <j <r.

For the proposed problem, we aim to construct a robust multi-label learning model
h : X — 2% which can predict unseen data examples with both the observed and
unobserved labels simultaneously. In this paper, we propose a new method MCUL
to solve multi-label learning with Missing and Completely Unobserved Labels. The
framework is shown in Fig. 2. The main idea is that we first transform the label matrix
from completed missing to partially missing with the help of unsupervised learning
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techniques, and then we learn a model from the feature space to the augmented label
space and try to recover the missing entries by exploiting label correlations. Specif-
ically, MCUL is composed of two parts, i.e., discovering the completely unobserved
labels and building a robust multi-label learning classifier for observed and unob-
served labels.

3.2 Discovering the completely unobserved labels

To construct a multi-label classification model / : X — 2Y , we need the full label
matrix Y = [Y, Y] for the training data. However, Y is completely unobserved and
unknown during the training stage. Therefore, we need resort to some unsupervised
learning techniques, such as clustering. In Ding et al. (2005), it is indicated that the
nonnegative matrix factorization (NMF) factorizing a symmetric similarity matrix S
into HH' is equivalent to the soft k-means clustering. The optimization objective
function of it is formulated as

min IS—HH"||%, s.2.H >0, 1)

where S € R"*" is the similarity matrix containing pairwise similarities or the kernels,
and H € R"*/ is the clustering indicator matrix. For a matrix A, ||A|| r indicates the
Frobenius norm of it, and ||A||2 = tr(ATA).

For the proposed problem, we have already obtained the labeling result for part
of the labels, i.e, Y € R"*? is known in advance. Therefore, part of the results of
H should be consistent with Y. It is noted that hih]T = an:l himh jm, where h;
indicates the i-th row of H. Changing of the order of the columns of H will not change
the value of HH . Without loss of generality, we assume that the results of the first ¢
columns of H should be consistent with that of the g observed labels. Consequently,
we extend the problem (1) to the following one

min IS—HH'||%, s..HP=Y,H € [0, 11", )

where P € {0, 1}/*? is a projection matrix with ones on the main diagonal and zeros
elsewhere.

In this paper, the similarity matrix S € R"*" is calculated by the Gaussian kernel
based on the feature and label spaces simultaneously. Each element s;; is defined as

—lI% — %113
Sij = exp (20—2/2 , 3)

where X; = [X;, yi], and o is set to be 1 in the experiment.
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3.3 Building a robust multi-label learning classifier

After obtaining the preliminary labeling results of the r unobserved labels, we can
construct a multi-label classifier for both of the g observed and r completely unob-

served labels simultaneously. Here, we learn a linear model for 4 : X — 2y , then the
optimization problem becomes

1 )
in —|[XW+1,b" —H||%+ =||S—HH'|>
nin 2|| +1, I+ 4|| 2

s.t. HP =Y, H € [0, 11", 4)

where W € R?*/ is the model coefficient matrix, b € R/ is the bias, and 1,, denotes
the vector of size n. For simplicity, the bias b can be absorbed into W by adding an
additional feature with all the values equal to 1 for the data matrix, i.e., X = [X, 1,].

As mentioned in the previous section, Y is observed but with some missing entries.
While the problem (1) is not designed for multi-label learning, and thus there will
be missing entries in H as well. In the problem (4), we have tried to recover the full
label matrix by exploiting the instance similarity, i.e., if two data instances x; and Xx;
are similar in the feature space X, their label vectors h; and h; will similar in the
label space 5) On the other hand, we can resort to reconstruct the missing entries
from the results of other labels by exploiting the label similarity. From the perspective
of the similarity of label, the assignment of one certain label to training instances
can be reconstructed from other labels, especially from its highly similar labels. The
fourth term of (5) is adopted to model label reconstruction, i.e., z;; ~ anzl RimCmj
where C € R/ represents the reconstruction coefficient matrix, and each element ¢;;
indicates the reconstruction coefficient that label y; is derived from y;.

In addition, we can reconstruct the missing entries in H by modeling label cor-
relations. In particular, we hope that highly correlated labels have similar outputs.
Specifically, if two labels y; and y; have a strong correlation, then their model param-
eters w; and w; will be similar, and thus the distance (i.e., |[w; — W; ||%) should be
small. Otherwise, the distance should be large. Since all the binary classifiers for each
label have the same input data X, if labels y; and y; are highly correlated, their cor-
responding classifiers will have similar outputs by adding the constraint. The fifth
term of (5) is adopted to model pairwise label correlation including both observed
and unobserved labels, where L represents the graph Laplacian matrix of the label
correlation matrix which is calculated by cosine similarity between label pairs of H.
Consequently, the objective function can be rewritten as

. 1 ) M
—IXW —HC||% + =2 IS—HH" |2 + = |HP — Y||2
Jin S 7+ IF+ 51 I+
Ao A3
5 IHC — H|3% + Etr(WLWT) + MW

s.t. H e [0, 17", 5)
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For the problem (see the definition 1) addressed in this paper, we are also interested
in what categories we have discovered and what their semantic concepts are. Motivated
by previous studies (Huang et al. 2016, 2019; Wei et al. 2019; Wu et al. 2019; Zhang
and Wu 2015) on learning label-specific features which have strong discrimination
capabilities to each label, we add the ¢{-norm regularization on the model coefficient
matrix W to learn the sparse label-specific features for each label, and expect to use
them to describe the semantic meaning for the new discovered labels, and the results
are provided in section 5.3.2.

It is noted that the formulation of the problem (5) is somewhat similar to the work
SLEEC (Bhatia et al. 2016) on extreme multi-label classification. SLEEC aims to
learn a low dimensional latent label space. While in our approach, we want to learn
an augmented label space where the new discovered labels are paralleled with the
observed labels, i.e., the new discovered labels have the same semantic level as the
existing observed labels.

4 Optimization
For the problem (5), it is convex but non-smooth, and there are three coefficient
parameters. We adopt the accelerated proximal gradient method (Beck and Teboulle

2009) to solve it, and update each parameter alternatively. We use 7 (¥) to represent the
empirical loss of (5), where ¥ = {H, W, C} indicates the set of the three parameters.

4.1 Solving H
By fixing W and C, the problem (5) becomes
.1 A0 M
—|IXW — HC||% + == IS —HH" |5 + = ||[HP — Y |3
min | 7+ I+ 51 IF
A
+72||HC—H||%, st H e [0, 11 ©)

We can obtain the gradient w.r.t H as

VaJ = (1 +1)HCCT —XWC' + 2 HH" —S)H + A (HP — Y)P'
+oH-H(C+C)). @)

According the proximal gradient descend algorithm (Beck and Teboulle 2009), H
can be updated by

1
H=H" - L—vaJ(H@, W, 0), ®)

where HO = H, + a’;—‘t_l (H; —H,_1). For a sequence «;, it should satisfy the condi-
tion of atz —oy < octzfl . Considering the non-negative constraint on H € [0, 1]"*", H
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should be further post-processed by H = max(H, 0) and the min-max normalization
over each column of it. As a result, for each label, it has at least one positive example.

In Eq. (8), L s indicates the Lipschitz constant. According to (Beck and Teboulle
2009), an approximate L ¢ can be obtained with a line-search strategy, where we
keep updating Ly = nLy, n > 1 until if it satisfies 7 (¥) < J(¥') + (VT (¥,
W — W) + 51w — W2 Here, W' = {(HO, WO, C)}.

4.2 Solving W

With H and C fixed, the problem (5) is simplified as
min 1||Xw —HC|% + Etr(WLwT). )
w 2 FTa
Then, we can obtain the gradient w.r.t W as

VwJ = X" (XW — HC) + A3XWL. (10)

Consequently, W can be updated by

W=W<”—iv H, W, C 11
L; wJ (H, , 0, (1D

where W) = W, + a’;—‘:l (W;—W,;_1). Considering the £1-norm over parameter W,
the result can be further updated by the element-wise soft-threshold operator which is

defined as

W = prox ;, (W), (12)
Ly

where prox, (a) is the element-wise operator which is defined as
prox, (a) = sign(a) max(|a| — €, 0). (13)
4.3 Solving C
With H and W fixed, the problem (5) reduces to
1 2 %) 2
min —||XW — HC||z + —[HC — H|| ;. (14)
c 2 2
Then, we can obtain the gradient w.r.t C as

VeJ =H HC — H'XW + 4, (H'HC — H'H). (15)
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Algorithm 1: Multi-Label Learning with Missing and Completely Unobserved
Labels

Input: Training data matrix X € R”*¢, label matrix Y € R"*9, and weighting parameters
AQ, A1, A2, A3, Ag; the number of unobserved labels r

Output: Model coefficient matrixes H*, W*, and C*.
1 Initialization: by, by < 1; ¢t < 1;
2 Initialize H, W and C with random values;
3 repeat
4 compute L s according to the line search strategy (Beck and Teboulle, 2009);
compute the graph Laplacian matrix L;
update H by solving the sub-problem (6);
update W by solving the sub-problem (9);
update C by solving the sub-problem (14);

[4p2

9 bt — #b'“;
10 t<—t+1;
11 until stop criterion reached,
12 H* < Hyyp, W* < Wiy, and C* < Cpy g
13 return H*, W*, and C*.

® 9 & w»n

Therefore, a closed-form solution to C can be obtained as
C=((k» + DH'H) " 'H"XW + 1, H H). (16)

According to the above optimization procedures, we can summarize all the opti-
mization steps of the proposed method in Algorithm 1.
5 Experiments
5.1 Experimental configuration
5.1.1 Dataset and configuration
The experiment is conducted over ten multi-label benchmark datasets, and the details
of which are summarized in Table 1. For each data set, a 5-fold cross validation is
adopted three times. To evaluate the performance on completely unobserved labels,
we set the first [90%I | labels as observed and the rest [10%!I] as unobserved labels,
where / indicates the number of all the labels. In addition, to imitate missing labels,
we randomly drop some of the labeling results of the |90%! | observed labels for the

training data of each dataset according to a predefined missing rate e.g., 10%, 15%
and 20%.

5.1.2 Comparison approaches

By surveying previous studies on multi-label learning, it was found that there is no
previous work on solving multi-label learning with missing and completely unobserved
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Table 1 Description of datasets

Data set #Instance #Feature #Label Cardinality Domain URL

bibtex 7395 1836 159 2.40 text URLL1
corel16k001 13,766 500 153 2.86 image URLI1
corel16k002 13,761 500 164 2.88 image URLLI
corel16k003 13,760 500 154 2.83 image URLLI
medical 978 1449 45 1.25 text URLLI
stackex-chess 1675 585 227 2.41 text URL2
stackex-cooking 10,491 577 400 2.23 text URL2
stackex-cs 9270 635 274 2.56 text URL2
stackex-philosophy 3971 842 233 2.27 text URL2
stackex-chemistry 6961 540 175 2.11 text URL2

URLI: http://mulan.sourceforge.net/datasets-mlc.html
URL2: http://www.uco.es/kdis/mllresources/

labels. To verify the effectiveness of our approach, we compare it with the following
state-of-the-art multi-label classification approaches in terms of their performance on
observed labels, and detailed configurations of them are summarized as below. The
two approaches LSML (Huang et al. 2019) and Glocal (Zhu et al. 2018) can handle
the problem of missing labels for multi-label learning. Parameter tuning for all the
comparison approaches is based on a 5-fold cross validation over the training data of
each dataset.

BR (Boutell et al. 2004): Binary relevance. Ridge Regression is utilized as the base
learner for each binary classifier of BR approach, and the regularization parameter
is tuned in {10|i = =2, ..., 2}.

ECC (Read et al. 2009): Ensemble of classifier chains (CC). Ridge Regression
is utilized as the base learner for each binary classifier of CC approach, and the
regularization parameter is tuned in {10/ |i = —2, ..., 2}. The ensemble size is set
to be 15, and the chain order for each CC is generated randomly.

MLANN (Zhang and Zhou 2007):! A lazy learning approach to multi-label learn-
ing. The number of nearest neighbors k is tuned in{7, ..., 17}.

LSML (Huang et al. 2019):? It learns label-specific features for multi-label classi-
fication with missing labels, classification and label matrix recovery are performed
jointly. All the parameters of it are searched in {107|i = —5, ..., 3}.

Glocal (Zhu et al. 2018):3 It can simultaneously recover the missing labels, train
the linear classifiers, explore and exploit both global and local label correlations.
Parameter A = 1, A to A5 are searched in {10i|i = =5, ..., 1}, k is tuned in
{0.1g,0.2¢q, ...,0.6q}, and g is tuned in {5, 10, 15, 20}.

MCUL: The proposed approach of this paper. MCUL-O is a simplified version of
MCUL without discovering the unobserved labels, i.e., k = 0. Parameters Ao and

I code: http://palm.seu.edu.cn/zhangml/files/ML-kNN.rar.
2 code: https://jiunhwang.github.io/.

3 code: http://www.lamda.nju.edu.cn/MainPage.ashx.
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hg are tuned in {107]i = —1, ..., 1}, Ay is tuned in {10?]i = 0, ..., 3}, A2 is tuned
in {107|i =0, ..., 2}, and A3 is tuned in {5'|i =0, ..., 3}.

— LSML-U and Glocal-U: Two different versions of LSML (Huang et al. 2019)
and Glocal (Zhu et al. 2018) with a preprocessing step by solving the problem
(2) to discover the unobserved labels for the training data. As a result, we can
train LSML-U and Glocal-U on the full label matrix H. It is worth noting that the
algorithm Glocal-U needs an observation matrix to indicate which entities in the
label matrix are observed (i.e., the value is not missing). Therefore, for Glocal-U,
the entities of H for the unknown labels are set as observed if the corresponding
values are greater than 0.5.

5.2 Evaluation metrics
5.2.1 Evaluation metrics for observed labels

The performance of the comparison algorithms on observed labels is evaluated in terms
of five common metrics (Gibaja and Ventura 2015; Herrera et al. 2016; Tsoumakas
et al. 2010; Zhang and Zhou 2014), i.e., One Error, Coverage, Ranking Loss, Average
Precision and Macro AUC.

5.2.2 Evaluation metrics for new discovered labels

To evaluate the performance on new discovered labels, we adopt Fy (Zhu et al. 2017)
and propose three new metrics.

Given a test dataset, for the unobserved labels, Y = [¥1, ¥2, ...y,] € {0, 1}*"
indicates the ground truth of it,Y = [¥1,¥2, ...¥,] € {0, 1} *" represents the predicted
label matrix, and A = [aj, ap, ..., a,] € R™*" indicates the predicted score matrix.

— Fy was proposed in (Zhu et al. 2017). It measures the average label-based Fi-
measure on newly discovered and the ground-truth labels that best matches.

1 o C
Fy=—) max({Fi(i.§)).j € {1, 71D (17)
i=1
where Fj(-) is the function to calculate the example-based F; score.

— RLy measures the average label-based Ranking Loss on newly discovered and the
ground-truth labels that best matches.

1 r
RLy = - Zmin({RankingLoss(ai, yi).je{l,...r}} (18)
r

i=1

where Ranking Loss(-) evaluates the fraction of reversely ordered label pairs, i.e.
an irrelevant label is ranked higher than a relevant label.
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— Covy measures the average label-based Coverage on new discovered and the
ground-truth labels that best matches.

Covy = %Zmin({Coverage(ai, yi).je{l,...r}} (19)

i=1

For a given output score a;, the function Coverage(-) evaluates how many steps are
needed, on average, to move down the ranked label list so as to cover all the relevant
labels of y ;. Consequently, the smaller the steps are, the better the performance is.

— LMy measures the average Label Matching proportion over all the evaluation
metrics.

1 - IS A Y
LMy = — _ 20
U m; " (20)

where m is the number of metrics which can return a set of matched labels, and S;
indicates the set of matched labels returned by the i -th metric. This metric indicates
the average proportion of ground-truth labels that we have discovered among the
new discovered labels.

For Fy and LMy, the bigger the values of them are, the better the performance is.
While for RLy and Covy, the smaller the values of them are, the better the performance
is.

5.3 Experiment results

As the compared approaches cannot solve multi-label learning with missing and com-
pletely unobserved directly, we evaluate the performance of them on observed and
completely unobserved labels respectively.

5.3.1 Results on observed labels

The experimental results of each comparison algorithm on the observed labels are
shown in Fig. 3. Moreover, we calculate the average results of each comparison
approach over the ten data sets in terms of different evaluation metrics under dif-
ferent missing rates respectively, and the results are shown in Fig. 5, where the symbol
1 ({) indicates the larger (smaller) the value is, the better the performance is.

To analyze the relative performance among the comparison algorithms systemat-
ically, Friedman test (DemsSar 2006) is employed to conduct performance analysis.
The missing rate of observed labels is varied in the range of {10%, 15% 20%}, and
as a result, there are 30 (3 x 10) data points totally. Table 2 summarizes the Friedman
statistics Fr and the corresponding critical value in terms of each evaluation metric.
As shown in Table 2, at significance level « = 0.05, the null hypothesis that all the com-
parison algorithms perform equivalently is clearly rejected in terms of each evaluation
metric. Consequently, we employ the Nemenyi test (DemsSar 2006) to test whether our
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Table2 Summary of the

Friedman Statistics Metric Fr Critical value (o« = 0.05)
Fp(k =9, N = 30) and the Average Precision 44.5073 1.9785
critical value in terms of each
evaluation metric (k: # One Error 17.5268
comparison algorithms; N: # Ranking Loss 98.4622
data points) Coverage 107.9839
AUC 104.4299

Critical Difference=2.1934
9 8 7 6 5 4 3

Critical Difference=2.1934
Q 8 7 6 5 3 2 1

MLKNN MCUL MLKNN
ECC LSML-U BR
BR LSML ECC
MCUL-O  Glocal-U
Glocal-U

MCUL
MCUL-O
LSML
LSML-U
Glocal

Glocal

(a) Average Precision (b) Ranking Loss

Critical Difference=2.1934 Ciitical Difference=2.1934
9 8 7 6 3 2 1 9 8 7 5 4 3 1 9 8 7 6 5 4 3 1

MLKNN I: McuL  MLKNN | | MCUL - N J» I:MCUL
BR i_‘ McuL-o  ECC LSmL BR MCUL-O

ECC LSML BR LSML-U ECC LSML-U
Glocal-U LSML-U  Glocal MCUL-O  Glocal LSML
Glocal Glocal-U Glocal-U

Critical Difference=2.1934

(C) Coverage (d) One Error (e) Macro AUC

Fig.4 Comparison of MCUL against the comparison approaches with the Nemenyi test. Groups of classi-
fiers that are not significantly different from MCUL (at p = 0.05) are connected

proposed method MCUL achieves a competitive performance against the comparison
algorithms, where MCUL is considered as the control algorithm. The performance
between two classifiers will be significantly different if their average ranks differ by

at least one critical difference CD = qa,/%. For Nemenyi test, g, = 2.948
at significance level « = 0.05, and thus CD = 2.1934 (k = 9, N = 30). Fig. 4
shows the CD diagrams on each evaluation metric. In each sub-figure of Fig. 4, any
comparison algorithm whose average rank is within one CD is connected. Otherwise,
any algorithm not connected is considered to have significantly different performance
between them. According to these experimental results, the following observations
can be made:

— AsshowninFig. 5, the performance of each approach decreases with the increasing
of missing rate. It verifies the importance of solving the problem of missing labels
for multi-label learning.

— The proposed method MCUL significantly outperforms all the comparison
approaches in terms of Ranking Loss, Coverage, and Macro AUC, and achieves
statistically superior performance to other comparison approaches in terms of
Average Precision and One Error. The superiority implies the effectiveness of the
proposed method on multi-label learning with missing labels.

— The proposed method MCUL achieves statistically superior or at least comparable
performance against its simplified version MCUL-O in terms of all the evaluation
metrics. The superior performance of MCUL against MCUL-O definitely verifies
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(¢) Coverage (d) One Error (&) Macro AUC

Fig. 5 Average results of each comparison approach over the ten data sets in terms of all the evaluation
metrics under different missing rates of observed labels

that discovering and modeling the unobserved labels can improve the performance
of our method on existing observed labels.

— LSML-U and GLocal-U outperform their original versions respectively in terms of
Average Precision and Macro AUC, and achieve comparable performance against
their original versions in terms of other evaluation metrics. This observation also
verifies that discovering and modeling the unobserved labels can improve the
performance on existing observed labels.

— MCUL achieves statistically superior performance to LSML and GLocal and their
two extended versions in terms of all the evaluation metrics. The superior perfor-
mance of MCUL demonstrates that our method can handle missing labels better
than them.

— MLANN achieves the worst performance on all the data sets. It is worth noting that
MLENN is constructed based on the information of k nearest neighbors of each
instance. When the data set is with missing labels, especially some of the labels
are completely unobserved, instances of the k nearest neighbors cannot provide
sufficient information for MLANN to learn reliable prior and posterior probabilities
for the prediction. It implies the importance of solving data set with missing and
completely unobserved labels.

5.3.2 Results on unobserved labels

In this section, we provide both the quantitative and qualitative analysis of the results
on unobserved labels.
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For the quantitative analysis, we compared MCUL with LSML-U, Glocal-U (For
detailed settings, please refer to Sect. 5.1.2), and BR. Since BR cannot discover unob-
served labels, we trained it based on the ground-truth of the unobserved labels, i.e.,

h : X — 2Y. Although this comparison is unfair, we can still make some observa-
tions according to the results. For MCUL, LSML-U, and Glocal-U, Y is unavailable
during the training stage, the prediction threshold of them is tuned according to the
result of example-based F; measure on observed labels respectively. Figure 6 shows
the results of them on discovered unobserved labels in terms of Fy, RLy, Covy, and
LMuy (Detailed definitions are provided in Sect. 5.2.2). According to these results, we
have the following observations:

— First, on most of the data sets, MCUL achieves a better performance than LSML-U
and Glocal-U in terms of the four evaluation metrics. One possible reason might
be that some of the labelling results of the unobserved labels for the training data
by a preprocessing step are incorrect, and these incorrect results cannot be well
optimized during the training stage of LSML-U and Glocal-U respectively.

— Second, MCUL achieves a better performance than BR in 40% cases in terms
of Fy and RLy. Besides, MCUL achieves a better performance than BR in 80%
cases in terms of Covy. These results indicate that MCUL can discover some of
the unobserved labels and the results of them are acceptable.

— Last, the results of LMy of MCUL are located in the range of [40, 49]. These
results clearly indicate that the proposed method can discover at least 40% of
the unobserved labels. In addition, according to Fig. 7f, MCUL will achieve a
better performance on the unobserved labels if we set a smaller value of r, i.e., the
number of unobserved labels. For example, the value of LMy can reach 85.6% for
stackex-cs dataset when r = 5.

For the qualitative analysis, we want to show what categories we have discovered
and what their semantic concepts are. As discussed in Sect. 3.3, we try to learn the
sparse label-specific features for each label, and expect to use them to describe the
semantic meaning of new discovered labels. In this section, we provide results of top
20 features and Fy of the five best matched labels (the criterion Fy is adopted) for three
datasets, e.g., stackex-cooking,stackex-cs, and stackex-philosophy. For each dataset,
the first | 90%! | labels are set as the observed labels and the missing rate is 10%, and
the rest [10%!I] labels are set as unobserved labels, where [ indicates the total number
of labels.

The name of top-five best matched ground-truth labels and their matched results Fy,
and top 20 features of each dataset are shown in Tables 3, 4 and 5, where the features
are arranged in a descending order according to the values of W. Specifically, if the
i-th newly discovered label is best matched with the j-th ground-truth label according
to Fy(i, j), then y; is the name of best matched ground-truth label, and the top 20
features are arranged in a descending order by sorting the values of [w(@+")|. As shown
in the Tables 3, 4 and 5, for each matched ground truth label, in most cases, the name
of it ranks in the first or second place among the corresponding top 20 label-specific
features. In addition, most of these features have a strong semantic correlation with it.

In Table 5, it is noted that the labels Theology and Stoicism do not appear in the top
20 features. We also find that the word Sroicism does not exist in the feature space.

@ Springer



1080 J.Huang et al.

Table 3 Top 20 features for the five best matched labels of stackex-cooking

Label name Fy Top 20 features (i.e., feature name (weight))

Tomatoes 0.602 tomato(0.504), supermarket(0.118), recent(0.110), meal(0.106),
includ(0.106), plastic(0.106), cool(0.101), told(0.100), process(0.098),
theyr(0.098), i11(0.097), stop(0.096), post(0.096), tonight(0.095),
bacon(0.094), past(0.093), reduc(0.092), lose(0.088), stuff(0.088),
skin(0.088)

Yeast 0.333 yeast(0.416), packag(0.121), microwav(0.110), mention(0.106),
fact(0.104), want(0.103), produc(0.098), onlin(0.097), ideal(0.096),
1et(0.094), figur(0.094), techniqu(0.093), raw(0.091), thaw(0.091),
possibl(0.089), life(0.086), 1left(0.086), cooki(0.085), solid(0.084),
remov(0.083)

Wine 0.315 wine(0.414), part(0.139), box(0.135), peopl(0.125), addit(0.116),
pretti(0.106), place(0.103), acid(0.103), book(0.102), simpl(0.102),
step(0.098), great(0.098), past(0.097), morn(0.095), term(0.094),
find(0.094), result(0.093), mix(0.091), smell(0.091), medium(0.090)

Sugar 0.301 sugar(0.481), pork(0.138), quick(0.126), true(0.121), duplic(0.114),
sticki(0.109), simmer(0.105), pound(0.101), purchas(0.101),
import(0.100), expens(0.100), worri(0.099), salad(0.098), knife(0.098),
alcohol(0.098), butter(0.098), fruit(0.094), juic(0.090), previous(0.089),
depend(0.087)

Vinegar 0.232 vinegar(0.437), turkey(0.129), orang(0.124), amount(0.120),
groceri(0.113), jar(0.112), creat(0.111), smell(0.104), frozen(0.103),
feel(0.101), batch(0.100), find(0.096), purchas(0.096), worri(0.094),
case(0.094), ground(0.093), number(0.092), state(0.091), color(0.090),
knife(0.090)

Besides, we extracted a brief introduction to these two topics Theology* and Stoicism®

from Wikipedia respectively. It is found that the top 20 features of these two labels
still have strong semantic correlations with the name of labels.

Therefore, we argue that the semantic meaning of the discovered labels can be
depicted by these label-specific features. For image data, if the features are extracted
based on the sub-area of images or high level features learned by some advanced
approaches, such as deep learning approaches, we think that this strategy can also
work well. Moreover, if we have the raw data, we can better describe the semantic
meaning. The proposed method MCUL can predict both the observed and unobserved

4 Theology is the systematic study of the nature of the divine and, more broadly, of religious belief. It is
taught as an academic discipline, typically in universities and seminaries.It occupies itself with the unique
content of analyzing the supernatural, but also deals with religious epistemology, asks and seeks to answer
the question of revelation. Revelation pertains to the acceptance of God, gods, or deities, as not only
transcendent or above the natural world, but also willing and able to interact with the natural world and,
in particular, to reveal themselves to humankind. While theology has turned into a secular field, religious
adherents still consider theology to be a discipline that helps them live and understand concepts such as life
and love and that helps them lead lives of obedience to the deities they follow or worship.

5 Stoicism is a philosophy of personal ethics informed by its system of logic and its views on the natural
world. According to its teachings, as social beings, the path to eudaimonia (happiness, or blessedness) for
humans is found in accepting the moment as it presents itself, by not allowing oneself to be controlled by
the desire for pleasure or fear of pain, by using one’s mind to understand the world and to do one’s part in
nature’s plan, and by working together and treating others fairly and justly.
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Table 4 Top 20 features for the five best matched labels of stackex-cs

Label name Fu Top 20 features (i.e., feature name (weight))

Turing-machines 0.484  ture(0.412), machin(0.366), tape(0.163), link(0.106), paramet(0.106),
count(0.103), wonder(0.101), cover(0.100), repeat.(0.098),
formul(0.096), infinit(0.094), author(0.093), 1et(0.093),
correspond(0.092), heurist(0.088), general(0.087), reason(0.087),
locat(0.087), simul(0.086), seri(0.086)

Trees 0.279  tree(0.533), figur(0.146), binari(0.133), vertex(0.126), refer(0.121),
topic(0.113), insert(0.099), level(0.098), sourc(0.097), point(0.097),
exam(0.096), reason(0.096), perform(0.095), belong(0.094),
store(0.094), constant(0.092), pars(0.091), compar(0.091),
contradict(0.090), suppos(0.090)

Strings 0.211 string(0.473), follow(0.131), natur(0.131), reason(0.104), text(0.102),
reduc(0.097), unit(0.096), semant(0.091), contradict(0.091),
mathemat(0.089), runtim(0.089), amount(0.088), statement(0.088),
recurs(0.088), bound(0.088), neq(0.088), optim(0.087), singl(0.086),
answer(0.085), group(0.085)

Undecidability 0.204  decid(0.354),undecid(0.148), verifi(0.134), degre(0.123), select(0.121),
file(0.119), make(0.108), determinist(0.107), deriv(0.107),
import(0.107), maximum(0.100), sort(0.098), mathemat(0.098),
normal(0.096), definit(0.094), fit(0.094), wonder(0.088), produc(0.085),
professor(0.084), index(0.082)

Time-complexity  0.189  time(0.536), complex(0.165), wrong(0.125), thought(0.125), hard(0.118),
subseteq(0.115), final(0.114), memori(0.113), decis(0.102), iter(0.101),
row(0.101), undecid(0.100), connect(0.099), number(0.098),
polynomi(0.097), undirect(0.096), prove(0.095), belong(0.094),
peopl(0.094), simpl(0.091)

labels for data examples. After the prediction, we will know the tentative labelling
results of the data examples.

5.3.3 Parameter analysis

The average results (i.e., Average Precision and One Error) of MCUL with different
values of Xg, A1, A2, A3, and A4 over stackex-cs are shown in Fig. 7a—e. It is noted
that the performance of MCUL is insensitive to the parameters, and also the optimal
performance is usually achieved at some intermediate values of the parameters.
Figure 7f shows the average results of MCUL over 15 repetitions with different num-
bers of unobserved labels. The result (i.e., One Error) on observed labels is improved
and then dropped down with the increasing of the number of unobserved class labels
(i.e., r), and MCUL obtains the best performance when r = [10%I] = 28, where
| = 274 for stackex-cs. As shown in Fig. 7f, the result (i.e., Fy) on unobserved labels
decreases with the growing of the number of unobserved class labels. Therefore, it is
reasonable that the difficulty of discovering the unobserved labels increases with the
growing of the number of unobserved labels, i.e, the larger the number of unobserved
class labels is, the more difficult it is to discover them. Therefore, we think that an
appropriate value of r could be searched by cross-validation according to the perfor-
mance of observed labels. This strategy is feasible for data set with a small number of
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Table 5 Top 20 features for the five best matched labels of stackex-philosophy

Label name

Fu

Top 20 features (i.e., feature name (weight))

Theology

Truth

Time

Stoicism

Wittgenstein

0.366

0.132

0.111

0.108

0.098

20d(0.600), free(0.117), anim(0.115), kind(0.113), subject(0.111),
modern(0.107), die(0.106), choic(0.102), thought(0.101), fact(0.101),
essenc(0.100), imposs(0.097), space(0.094), sentenc(0.093),
peopl(0.091), product(0.090), natur(0.087), term(0.086), justifi(0.085),
quot(0.085)

statement(0.454), truth(0.349), true(0.320), fals(0.188), interest(0.139),
histori(0.118), belief(0.117), clear(0.112), interact(0.105),
comput(0.105), contradict(0.100), give(0.096), thought(0.095),
proof(0.092), ontolog(0.091), simpli(0.090), paper(0.089),
sentenc(0.088), relev(0.085), thing(0.085)

time(0.623), life(0.134), materi(0.133), intuit(0.132), assum(0.130),
event(0.116), earth(0.110), posit(0.107), god(0.104), start(0.101),
energi(0.099), brain(0.094), proof(0.093), edit(0.092), happi(0.092),
begin(0.092), equal(0.089), properti(0.088), realism(0.086),
nietzsch(0.086)

govern(0.216), social(0.163), explain(0.121), talk(0.107), class(0.103),
proof(0.101), system(0.100), intuit(0.100), consist(0.099), major(0.097),
classic(0.088), contemporari(0.088), right(0.087), truth(0.087),
part(0.086), world(0.086), religi(0.085), 1et(0.083), design(0.082),
peopl(0.080)

philosoph(0.534), thought(0.135), fals(0.127), ration(0.118), realiti(0.116),
life(0.115), specif(0.111), religion(0.109), law(0.106), process(0.106),
wittgenstein(0.102), form(0.101), theori(0.100), issu(0.099),
possibl(0.099), axiom(0.098), correct(0.095), ontolog(0.093),
talk(0.091), believ(0.090)
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Fig.8 Examples of the convergence curve of MCUL

class labels. For a data set with extreme number of class labels, the parameter range
for r will be too large, and here we provide a possible way to run our model in real
application. Specifically, we can set a small step r; for the number of unobserved
labels, and run the model multiple times until the performance on the observed labels
becomes worse or unacceptable.

5.3.4 Complexity and convergence

For the proposed objective function (5), the most time-consuming step is to calculate
the second term ||S — HH” ||%p which leads to a time complexity of O(n*(d + [ + n))
and a memory complexity of O(n?), where n indicates the number of data instances,
d and [ represent the number of features and labels respectively.

Figure 8 shows the value (W) of the objective function (5) of MCUL w.r.t the
number of iterations over bibtex, corel16k001 and medical three datasets, respectively.
It is noted that the value of 7 (W) drops sharply around 30 iterations and then tends
to become stable. For the other experimental data sets, the proposed method MCUL
can converge within 100 iterations at most.

6 Conclusion

In this paper, we propose a new approach named MCUL to solve multi-label learning
with missing and completely unobserved labels. It can not only discover the unob-
served labels for the training data but also predict new data examples with the observed
and new discovered labels simultaneously. The experimental results demonstrate the
effectiveness of our method, and verify the importance of discovering and modeling
unobserved label for multi-label learning.

This work tentatively solves the problem of multi-label learning with missing and
completely unobserved labels. We think that this problem may have a long-term benefit
to the community of multi-label learning. There are a few issues to this method that
will be considered in a future study. First, how to automatically decide the number
of the unobserved labels. In real applications, there is no prior knowledge about it.
Second, how to describe the semantic meaning of the unobserved labels for various
types of data. Third, the proposed problem can be solved together with many other
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challenging problems in multi-label learning, such as online learning, semi-supervised
multi-label learning, feature selection, extreme multi-label learning, etc.
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