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Abstract
With the exponential growth of social media networks, such as Twitter, plenty of
user-generated data emerge daily. The short texts published on Twitter – the tweets
– have earned significant attention as a rich source of information to guide many
decision-making processes. However, their inherent characteristics, such as the infor-
mal, andnoisy linguistic style, remain challenging tomanynatural languageprocessing
(NLP) tasks, including sentiment analysis. Sentiment classification is tackled mainly
by machine learning-based classifiers. The literature has adopted different types of
word representation models to transform tweets to vector-based inputs to feed senti-
ment classifiers. The representations come from simple count-based methods, such as
bag-of-words, to more sophisticated ones, such as BERTweet, built upon the trendy
BERT architecture. Nevertheless, most studies mainly focus on evaluating those mod-
els using only a small number of datasets. Despite the progress made in recent years
in language modeling, there is still a gap regarding a robust evaluation of induced
embeddings applied to sentiment analysis on tweets. Furthermore, while fine-tuning
themodel fromdownstream tasks is prominent nowadays, less attention has been given
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to adjustments based on the specific linguistic style of the data. In this context, this
study fulfills an assessment of existing neural language models in distinguishing the
sentiment expressed in tweets, by using a rich collection of 22 datasets from distinct
domains and five classification algorithms. The evaluation includes static and contex-
tualized representations. Contexts are assembled fromTransformer-based autoencoder
models that are also adapted based on themasked languagemodel task, using a plethora
of strategies.

Keywords Sentiment analysis · Text representations · Language models · Natural
language processing · Twitter

1 Introduction

In recent years, the use of social media networks, such as Twitter1, has been growing
exponentially. It is estimated that about 500 million tweets – the short informal mes-
sages sent by Twitter users – are published daily.2 Unlike others text style, tweets have
an informal linguistic style, misspelledwords, the careless use of grammar, URL links,
user mentions, hashtags, and more. Due to these inherent characteristics, discovering
patterns from tweets represents a challenge and opportunities for machine learning
and natural language processing (NLP) tasks, such as sentiment analysis.

Sentiment analysis is the field of study that analyzes people’s opinions, sentiments,
appraisals, attitudes, and emotions toward entities and their attributes expressed in
written text (Liu 2020). Usually, one reduces the sentiment analysis task to find out
the polarity classification, i.e., whether they carry a positive or negative connotation.
One of the biggest challenges concerning the sentiment classification of tweets is that
people often express their sentiments and opinions using a casual linguistic style,
resulting in the presence of misspelling words and the careless use of grammar. Con-
sequently, the automated analysis of tweets’ content requires machines to build a deep
understanding of natural text to deal effectively with its informal structure (Pathak
et al. 2020). However, before discovering patterns from text, it is essential to define
a more fundamental step: how automatic methods can numerically represent textual
content.

Vector space models (VSMs) (Salton et al. 1975) are one of the earliest and most
common strategies adopted in text classification literature to allow for machines to
deal with texts and their structures. The VSM represents each document in a corpus as
a point in a vector space. Points that are close together in this space are semantically
similar, and points that are far apart are semantically distant (Turney and Pantel 2010).
The firsts VSM approaches are count-based methods, such as Bag-of-Words (BoW)
and BoW with TF-IDF (Term Frequency-Inverse Document Frequency) (Manning
et al. 2008). Although VSMs have been extensively used in the literature, they cannot
deal with the curse of dimensionality. More clearly, considering the inherent charac-
teristics of tweets, a corpus of tweets may contain different spellings for each unique

1 http://www.twitter.com.
2 https://www.dsayce.com/social-media/tweets-day/.

123

http://www.twitter.com
https://www.dsayce.com/social-media/tweets-day/


320 S. Barreto et al.

word leading to an extensive vocabulary, making the vector representation of those
tweets very large and often sparse.

To tackle the curse of dimensionality inherent from BOW-based approaches, in the
last years it has become a standard practice to learn dense vectors to represent words
and texts, the embeddings. Methods such as such as Word2Vec (Mikolov et al. 2013),
FastText (Mikolov et al. 2018), and others (Agrawal et al. 2018; Felbo et al. 2017; Tang
et al. 2014; Xu et al. 2018) have been used with relative success to address a plethora
of NLP tasks. Nevertheless, in general, the performance of such techniques are still
unsatisfactory to solve sentiment analysis from tweets, taking into account the dynamic
vocabulary used by Twitter users to express themselves. Specifically, in tweets, the
ironic and sarcastic content expressed in a limited space, regularly out of context
and informal, makes even more challenging to retrieve meaning from the words. Such
attributesmay degrade the performance of traditional word embeddingsmethods if not
handled properly. In this context, contextualized word representations have recently
emerged in the literature, aiming at allowing the vector representation ofwords to adapt
to the context they appear. Contextual embedding techniques, including ELMo (Peters
et al. 2018) and Transformer-based autoencoder methods, such as BERT (Devlin et al.
2019), RoBERTa (Liu et al. 2019), and BERTweet (Nguyen et al. 2020), are built
upon the concept of neural language model (Bengio et al. 2000) to capture not only
complex characteristics of word usage, such as syntax and semantics, but also how
the word usage vary across linguistic contexts. Those methods have achieved state-
of-the-art results on various NLP tasks, including sentiment analysis (Adhikari et al.
2019; Akkalyoncu Yilmaz et al. 2019; Chaybouti et al. 2021; Gao et al. 2019).

Much effort in recent languagemodeling research is focused on scalability issues of
existing word embedding methods. On this basis, inductive transfer learning strategies
and pre-trained embedding models have gained important application in the literature,
especially when the amount of labeled data to train a model is relatively small. With
that, models obtained from the aforementioned contextual embeddings methods are
rarely trained from scratch but are instead fine-tuned from models pre-trained on
datasets with a huge amount of texts (Howard and Ruder 2018; Peters et al. 2018;
Radford et al. 2018). Pre-trained models reduce the use of computational resources
and tend to increase the classification performance of several NLP tasks, sentiment
analysis included.

Despite the successful achievements in developing efficient word representation
methods in NLP literature, there is still a gap regarding a robust evaluation of existing
language models applied to the sentiment analysis task on tweets. Most studies are
mainly focused on evaluating those models for different NLP tasks using only a small
number of datasets(Lan et al. 2020; Liu et al. 2019; Peters et al. 2018; Xu et al. 2018).
Our main goal is to identify appropriate embedding-based text representations for
the sentiment analysis of English tweets in this study. For this purpose, we evaluate
distinct types of embeddings, including: i) static embeddings learned from generic
texts (Agrawal et al. 2018; Mikolov et al. 2018, 2013; Pennington et al. 2014); ii)
static embeddings learned from datasets of Twitter sentiment analysis (Araque et al.
2017; Bravo-Marquez et al. 2016; Felbo et al. 2017; Pennington et al. 2014; Tang et al.
2014; Xu et al. 2018); iii) contextualized embeddings learned from transformer-based
autoencoders with generic texts with no adjustments (Devlin et al. 2019; Liu et al.
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2019); iv) contextualized embeddings learned from Transformer-based autoencoders
with a dataset of tweets with no adjustments (Nguyen et al. 2020); v) contextualized
embeddings adapted to the tweets language with a second phase of pretraining the
language model (Gururangan et al. 2020); and vi) contextualized embeddings adapted
to the tweets sentiment language with a second phase of pretraining the language
model (Gururangan et al. 2020). In all assessments, we use a representative set of
twenty-two sentiment datasets (Carvalho and Plastino 2021) as input to five classifiers
to evaluate the predictive performance of the embeddings. To the best of our knowl-
edge, there is no previous study that has conducted such a robust evaluation regarding
language models of several flavors and a large number of datasets. In order to identify
the most appropriate text embeddings, we conduct this study to answer the following
four research questions.

RQ1 Which static embeddings are the most effective in the sentiment classification
of tweets? Our motivation to evaluate those models is that many state-of-the-art deep
learning models can require a lot of computational power, such as memory usage
and storage. Thus, running those models locally on some devices may be difficult
for mass-market applications that depend on low-cost hardware. To overcome this
limitation, embeddings generated by language models can be gathered by simply
looking up at the embedding table to achieve a static representation of textual content.
We intend to assess how these static representations work and which are the most
appropriate in this context. We answer this research question by evaluating a rich set
of text representations from the literature (Agrawal et al. 2018; Araque et al. 2017;
Bravo-Marquez et al. 2016; Devlin et al. 2019; Felbo et al. 2017; Mikolov et al. 2018,
2013; Nguyen et al. 2020; Pennington et al. 2014; Tang et al. 2014; Xu et al. 2018;
Zhu et al. 2015). To achieve a good overview of the static representations, we conduct
an experimental evaluation in the sentiment analysis task with five different classifiers
and 22 datasets.

RQ2 Considering state-of-the-art Transformer-based autoencoder models, which
are the most effective in the sentiment classification of tweets? Regarding recent
advances in language modeling, Transformer-based architectures have achieved state-
of-the-art performances in many NLP tasks. Specifically, BERT (Devlin et al. 2019)
is the first method that successfully uses the encoders components of the Transformer
architecture (Vaswani et al. 2017) to learn contextualized embeddings from texts.
Shortly after that, RoBERTa (Liu et al. 2019) was introduced by Facebook as an exten-
sion of BERT that uses an optimized training methodology. Next, BERTweet (Nguyen
et al. 2020) was proposed as an alternative to RoBERTa for NLP tasks focusing on
tweets. While RoBERTa was trained on traditional English texts, such as Wikipedia,
BERTweet was trained from scratch using a massive corpus of 850M English tweets.
In this context, to answer this research question, we conduct an experimental evalua-
tion of BERT, RoBERTa, and BERTweet models in the sentiment analysis task with
five different classifiers and 22 datasets to obtain a comprehensive analysis of their
predictive performances. By evaluating these models wemay obtain a robust overview
of the Transformer-based autoencoder representations that better fit tweet’s style.

RQ3 Can a second phase of continuous pretraining the Transformer-based autoen-
coder models using a large set of English tweets improve the sentiment classification
performance? One of the benefits of pre-trained language models, such as the
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Transformer-based models exploited in this study, is the possibility to adjust the lan-
guage model to a specific domain. We aim at assessing whether the sentiment analysis
of tweets can benefit from adapting BERT, RoBERTa and BERTweet language mod-
els to a vast, generic, and unlabeled set of around 6.7M English tweets from distinct
domains. To that, we employed a second phase of training the pre-trained language
model using the intermediate masked-language model task. Besides, considering that
the adaptation procedure can be a very data-intensive task that may demand a lot of
computational power, in addition to the large corpus of 6.7M tweets, we use in that
process nine other samples with different sizes, varying from 500 to 1.5M tweets. We
conduct an experimental evaluation with all models in the sentiment analysis task with
five different classifiers and 22 datasets as in the previous questions.

RQ4 Can Transformer-based autoencoder models benefit from a second phase of
adaptive pretraining procedure with tweets specific from sentiment analysis datasets?
Although using unlabeled generic tweets to adjust a language model seems to be
promising regarding the availability of data, we believe that the downstream senti-
ment taskmay benefit from the sentiment information that tweets from labeled datasets
contain. In this context, we aim at identifying whether adjusting the language mod-
els with positive and negative tweets can boost the sentiment classification of tweets.
We perform this evaluation by assessing three distinct strategies in order to simulate
three real-world situations, as follows. In the first strategy, we use a specific sentiment
dataset itself as the target domain dataset to adapt the language model. The second
strategy simulates the case where a collection of general sentiment dataset is avail-
able to adapt the language model. In the third and last strategy, we combine the two
previous situations. In short, we put together tweets from a target dataset and from
a collection of sentiment datasets in the adaptation procedure. Finally, we present a
comparison between the predictive performances achieved by these three evaluations
and the adapted models evaluated in RQ3. As in the previous questions, we conduct
the experiments with five different classifiers and 22 datasets.

In summation, given the large number of language models exploited in this study,
ourmain contributions are: (i) a comparative study of a rich collection of publicly avail-
able static representations generated from distinct deep learning methods, and with
different dimensions, vocabulary size, and fromvarious kinds of corpora; (ii) an assess-
ment of state-of-the-art contextualized language models from the literature, that is,
Transformer-based autoencoder models, including BERT, RoBERTa, and BERTweet;
(iii) an evaluation of distinct strategies for adapting Transformer-based autoencoder
languagemodels; and (iv) a general comparison over static, Transformer-based autoen-
coder, and adapted language models, aiming at determining the most suitable ones for
detecting the sentiment expressed in tweets.3

In order to present our contributions, we organized this article as follows. Section 2
presents a literature review related to the language models examined in this study. In
Sect. 3, we describe the experimental methodology we followed in the computational
experiments, which are reported in Sects. 4, 5, 6, and 7, responding the four research

3 The code and the detailed computational results from our investigation are publicly available at https://
github.com/MeLL-UFF/tuning_sentiment.
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question, respectively. Finally, in Sect. 8, we present the conclusions and directions
for future research.

2 Literature review

Sentiment analysis is an automated process used to predict people’s opinions,
sentiments, evaluations, appraisals, attitudes, and emotions towards entities such
as products, services, organizations, individuals, issues, events, topics, and their
attributes (Liu 2020). Recently, sentiment analysis has been recognized as a suit-
case research problem (Cambria et al. 2017), which involves solving different NLP
classification sub-tasks, including sarcasm, subjectivity, and polarity detection, which
is the focus of this study.

Pioneer works in the sentiment classification of tweets mainly focused on the polar-
ity detection task, which aims at categorizing a piece of text as carrying a positive or
negative connotation. For example, Go et al. (2009) define sentiment as a personal
positive or negative feeling. There, they used unigrams as features to train different
machine learning classifiers, using tweetswith emoticons as training data. The unigram
model, or Bag-of-Words (BoW), is the most basic representation in text classification
problems.

Over the years, different techniques have been developed in NLP literature in an
effort to make natural language easily processable by computers. Vector Space Mod-
els (VSMs) (Salton et al. 1975) are one of the earliest strategies used to represent
the knowledge extracted from a given corpus. Earlier approaches to build VSMs are
grounded on count-based methods, such as BoW with TF-IDF representation, which
measures how important a word is to a document, relying on its frequency of occur-
rence in a corpus (Manning et al. 2008).

The BoW model, which assumes word order is not important, is based on the
hypothesis that the frequencies of words in a document tend to indicate the relevance
of the document to a query (Salton et al. 1975). This hypothesis expresses the belief
that a column vector in a term-document matrix captures an aspect of the meaning of
the corresponding document or phrase. Precisely, Let X be a term-document matrix.
Suppose the document collection contains n documents and m unique terms. The
matrix X will then have m rows (one row for each unique term in the vocabulary) and
n columns (one column for each document). Let wi be the i-th term in the vocabulary
and let d j be the j-th document in the collection. The i-th row in X is the row vector
xi : and the j-th column in X is the column vector x: j . The row vector xi : contains
n elements, one element for each document, and the column vector x: j contains m
elements, one element for each term. Suppose X is a simple matrix of frequencies,
then the element xi j in X is the frequency of the i-th term wi in the j-th document
d j (Turney and Pantel 2010).

Such a simple way of creating numeric representations from texts have motivated
early studies in detecting the sentiment expressed in tweets (Barbosa and Feng 2010;
Go et al. 2009; Pak and Paroubek 2010). However, though widely adopted, this kind
of feature representation leads to the curse of dimensionality due to the large number
of uncommon words tweets contain (Saif 2015).
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Thus, with the revival and success of neural-based learning techniques, several
methods that learn dense real-valued low dimensional vectors to represent words have
been proposed, such as Word2Vec (Mikolov et al. 2013), FastText (Mikolov et al.
2018), and GloVe (Pennington et al. 2014). Word2Vec (Mikolov et al. 2013) is one
of the pioneer models to become popular taking advantage from the development of
neural networks over the years. Wor2Vec is actually a software package composed of
two distinct implementations of language-models, both based on a feed-forward neural
architecture, namely Continuous Bag-Of-Words (CBOW) and Skip-gram. TheCBOW
model aims at predicting a word given its surrounding context words. Conversely, the
Skip-gram model predicts the words in the surrounding context given a target word.
Both architectures consist of input, a hidden layer and an output layer. The input layer
has the size of the vocabulary and encodes the context by combining the one-hot
vector representations of surrounding words of a given target word. The output layer
has the same size as the input layer and contains a one-hot vector of the target word
obtained during the training. However, one of the main disadvantages of those models
is that they usually struggle to deal with out-of-vocabulary (OOV) words, i.e., words
that have not been seen in the training data before. To address this weakness, more
complex approaches have been proposed, such as FastText (Mikolov et al. 2018).

FastText (Mikolov et al. 2018) is based on the Skip-gram model (Mikolov et al.
2013), still it considers each word as a bag of character n-grams, which are contiguous
sequences of n characters from a word, including the word itself. A dense vector
is learned to each character n-gram and the dense vector associated to a word is
taken from the sum of those representations. Thus, FastText can deal with different
morphological structure of words that covers the words not seen in the training phase,
i.e., OOVwords. For that reason, FastText is also able to deal with tweets, considering
the huge number of uncommon and unique words in this kind of text.

Going to another direction, the GloVe model (Pennington et al. 2014) attempts at
making efficient use of statistics of word occurrences in a corpus to learn better word
representations. Pennington et al. (2014) present a model that rely on the insight that
ratios of co-occurrences, rather than raw counts, encode semantic information about
pair of words. This relationship is used to derive a suitable loss function for a log-
linear model, which is then trained to maximize the similarity of every word pair, as
measured by the ratios of co-occurrences. Given a probe word, the ratio can be small,
large or equal to one depending on their correlations. This ratio gives hints on the
relations between three different words. For example, given a probe word and two
others wi and w j , if the ratio is large, the probe word is related to wi but not w j .

In general, methods for learning word embeddings deal well with the syntactic role
of words but ignore the potential sentiment they carry. In the context of sentiment
analysis, words with similar syntactic role but opposite sentiment polarity, such as
good and bad, are usually mismapped to neighbouring word vectors. To address this
issue, Tang et al. (2014) proposed the Sentiment-Specific Word Embedding model
(SSWE), which encodes the sentiment information in the embeddings. Specifically,
they developed neural networks that incorporate the supervision from sentiment polar-
ity of texts in their loss function. To that, they slide the window of n-gram across a
sentence, and then predict the sentiment polarity based on each n-gram with a shared
neural network. In addition to SSWE, other methods have been proposed in order to
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improve the quality of word representations in sentiment analysis, by leveraging the
sentiment information in the training phase, such as DeepMoji (Felbo et al. 2017),
Emo2Vec (Xu et al. 2018), and EWE (Agrawal et al. 2018).

The aforementioned word embedding models have been used as standard compo-
nents in most sentiment analysis methods. However, they pre-compute the representa-
tion for each word independently from the context they are going to appear. This static
nature of these models results in two problems: (i) they ignore the diversity of mean-
ing each word may have, and (ii) they suffer from learning long-term dependencies
of meaning. Different from those static word embedding techniques, contextualized
embeddings are not fixed, adapting the word representation to the context it appears.
Precisely, at training time, for each word in a given input text, the learning model
analyzes the context, usually using sequence-based models, such as recurrent neural
networks (RNNs), and adjusts the representation of the target word by looking at the
context. These context-awareness embeddings are actually the internal states of a deep
neural network trained in an self-supervised setting. Thus, the training phase is carried
out independently from the primary task on an extensive unlabeled data. Depending on
the sequence-based model adopted, these contextualized models can be divided into
twomain groups, namelyRNN-based (Peters et al. 2018) andTransformers-based (Lan
et al. 2020; Liu et al. 2019; Nguyen et al. 2020).

Transfer learning strategies have also emerged to improve the quality of word
representation, such as ULMFit (Universal Language Model Fine-tuning) (Howard
and Ruder 2018). ULMFit is an effective transfer learning method that can be applied
to any NLP task, and introduces key techniques for fine-tuning a language model,
consisting of three stages, described as follows. First, the language model is trained on
a general-domain corpus to capture generic features of the language in different layers.
Next, the full language model is fine-tuned on the target task data using discriminative
fine-tuning and slanted triangular learning rates (STLR) to learn task-specific features.
Lastly, the model is fine-tuned on the target task using gradual unfreezing and STLR
to preserve low-level representations and to adapt high-level ones.

Fine-tuning techniques made possible the development and availability of pre-
trained contextualized language models using massive amounts of data. For example,
Peters et al. (2018) introduced ELMo (Embeddings from Language Models), a deep
contextualizedmodel forword representation. ELMocomprises aBi-directionalLong-
Short-Term-Memory Recurrent Neural Network (BiLSTM) to combine a forward
model, looking at the sequence in the traditional order, and a backward model, looking
at the sequence in the reverse order. ELMo is composed of two layers of BiLSTM
sequence encoder responsible for capturing the semantics of the context. Besides,
some weights are shared between the two directions of the language modeling unit
and there is also a residual connection between the LSTM layers to accommodate the
deep connections without the gradient vanishing issue. ELMo also makes use of the
character-based technique for computing embeddings. Therefore, it benefits from the
characteristics of character-based representations to avoid OOV words.

Although ELMo is more effective as compared to static pre-trained models, its
performance may be degraded when dealing with long texts, exposing a trade-off
between efficient learning by gradient descent and latching on information for long
periods (Bengio et al. 1994). Transformers-based language models, on the other hand,
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have been proposed to solve the gradient propagation problems described in (Bengio
et al. 1994). Compared to RNNs, which process the input sequentially, Transformers
work in parallel, which brings benefits when dealing with large corpora. Moreover,
while RNNs by default process the input in one direction, Transformers-based models
can attend to the context of a word from distant parts of a sentence and pay attention
to the part of the text that really matters, using self-attention (Vaswani et al. 2017).

The OpenAI Generative Pre-Training Transformer model (GPT) (Radford et al.
2018) is one of the first attempts to learn representations using Transformers. It
encompasses only the decoder component of the Transformer architecture with some
adjustments, discarding the encoder part. Therefore, instead of having a source and a
target sentence for the sequence transduction model, a single sentence is given to the
decoder. GPT’ objective function targets at predicting the next word given a sequence
of words, as a standard language modeling goal. To comply with the standard lan-
guage model task, while reading a token, GPT can only attend to previously seen
tokens in the self-attention layers. This setting can be limiting for encoding sentences,
since understanding a word might require processing the ones coming after it in the
sentence.

Devlin et al. (2019) addressed the unidirectional nature of GPTs by presenting
an strategy called BERT (Bidirectional Encoder Representations from Transformers)
that, as the name says, encodes sentences by looking them at both directions. BERT is
also based on the Transformer architecture but, contrary to the GPT, it is based on the
encoder component of that architecture. The essential improvement over GPT is that
BERT provides a solution for making Transformers bidirectional by applying masked
language models, which randomly masks some percentage of the input tokens, and
the objective is to predict those masked tokens based on their context. Also, in (Devlin
et al. 2019), they use a next sentence prediction task for predicting whether two text
segments follow each other. All those improvements have made BERT to achieve
state-of-the-art results in various NLP tasks when it was published.

Later, Liu et al. (2019) proposed RoBERTa (Robustly optimized BERT approach),
achieving even better results than BERT. RoBERTa is an extension of BERT with
some modifications, such as: (i) training the model for a longer period of time, with
bigger batches, over more data, (ii) removing the next sentence prediction objective,
(iii) training on longer sequences, and (iv) dynamically changing the masking pattern
applied to the training data.

Recently, Nguyen et al. (2020) introduced BERTweet, an extension of RoBERTa
trained from scratch with tweets. BERTweet has also the same architecture as BERT,
but it is trained using the sameRoberta pre-training procedure instead. BERTweet con-
sumes a corpus of 850M English tweets, which is a concatenation of two corpora. The
first corpus contains 845MEnglish tweets from the Twitter Stream dataset and the sec-
ond one contains 5M English tweets related to the COVID-19 pandemic. In (Nguyen
et al. 2020), the proposedBERTweetmodel outperformedRoBERTa baselines in some
tasks on tweets, including sentiment analysis.

As far as we know, most studies in language modeling focus on designing new
effective models in order to improve the predictive performance of distinct NLP tasks.
For example, Devlin et al. (2019) and Liu et al. (2019) have respectively introduced
BERT and RoBERTa, which achieved state-of-the-art results in many NLP tasks.
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Nevertheless, they did not evaluate the performance of such methods on the sen-
timent classification of tweets. Nguyen et al. (2020), on the other hand, used only
a unique generic collection of tweets when evaluating their BERTweet strategy. In
this context, we fulfill a robust evaluation of existing language models from distinct
natures, including static representations, Transformer-based autoencoder models, and
fine-tuned models, by using a significant set of 22 datasets of tweets from differ-
ent domains and sizes. In the following sections, we present the assessment of such
models.

3 Experimental methodology

This section presents the experimental methodology we followed in this article. We
begin by describing, in Sect. 3.1, the twenty-two benchmark datasets used to evaluate
the different language models we investigate in this study. In Sect. 3.2, we present the
experimental protocol we followed. Then, in Sect. 3.3, we describe the computational
experiments reported in Sects. 4, 5, 6, and 7.

3.1 Datasets

We used a large set of twenty-two datasets4 (Carvalho and Plastino 2021) to assess the
effectiveness of the distinct word representation models described in Sect. 2. Table 1
summarizes the main characteristics of these datasets, namely the abbreviation we use
when reporting the experimental results to save space (Abbrev. column), the domain
they belong (Domain column), number of positive tweets (#pos. column), proportion of
positive tweets (%pos. column), number of negative tweets (#neg. column), proportion
of negative tweets (%neg. column), and the total number of tweets (Total column).

Those datasets have been extensively used in the literature of Twitter sentiment
analysis and we believe they provide a diverse scenario in evaluating embeddings
of tweets in the sentiment classification task, regarding a variety of domains, sizes,
and class balance. For example, while datasets SemEval13, SemEval16, SemEval17,
and SemEval18 contain generic tweets, other datasets, such as iphone6, movie, and
archeage, contain tweets of a particular domain. Also, the datasets vary a lot in size,
with some of them containing only dozens of tweets, such as irony and sarcasm.
We believe that this diverse and large collection of datasets may help drawing more
concise and robust conclusions on the effectiveness of distinct language models in the
sentiment analysis task.

3.2 Experimental protocol

To assess the effect of different kinds of word representation models in the polar-
ity classification task, we follow the protocol of first extracting the features from the

4 The datasets are publicly available at https://github.com/joncarv/air-datasets.
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Table 1 Characteristics of the Twitter sentiment datasets ordered by size (Total column)

Dataset Abbrev. Domain #pos. %pos. #neg. %neg. Total

irony (Gonçalves et al. 2015) iro Irony 22 34% 43 66% 65

sarcasm (Gonçalves et al.
2015)

sar Sarcasm 33 46% 38 54% 71

aisopos5 ntu Generic 159 57% 119 43% 278

SemEval-Fig6 S15 Irony/Metaphors 47 15% 274 85% 321

sentiment140 (Go et al. 2009) stm Generic 182 51% 177 49% 359

person (Chen et al. 2012) per Towards a Person 312 71% 127 29% 439

hobbit (Lochter et al. 2016) hob Movies 354 68% 168 32% 522

iphone6 (Lochter et al. 2016) iph Products 371 70% 161 30% 532

movie (Chen et al. 2012) mov Movies 460 82% 101 18% 561

sanders7 san Business 570 47% 654 53% 1,224

Narr (Narr et al. 2012) Nar Generic 739 60% 488 40% 1,227

archeage (Lochter et al. 2016) arc Games 724 42% 994 58% 1,718

SemEval18 (Mohammad
et al. 2018)

S18 Equity Evaluation Corpus 865 47% 994 53% 1,859

OMD (Diakopoulos and
Shamma 2010)

OMD Presidential Debate 710 37% 1,196 63% 1,906

HCR (Speriosu et al. 2011) HCR Health Care Reform 539 28% 1,369 72% 1,908

STS-gold (Saif et al. 2013) STS Generic 632 31% 1,402 69% 2,034

SentiStrength (Thelwall et al.
2012)

SSt Generic 1,340 59% 949 41% 2,289

Target-dependent (Dong et al.
2014)

Tar Celebrities 1,734 50% 1,733 50% 3,467

Vader (Hutto and Gilbert
2014)

vad Generic 2,897 69% 1,299 31% 4,196

SemEval138 S13 Generic 3,183 73% 1,195 23% 4,378

SemEval17 (Rosenthal et al.
2017)

S17 Generic 2,375 37% 3,972 63% 6,347

SemEval16 (Nakov et al.
2016)

S16 Generic 8,893 73% 3,323 27% 12,216

several vector-based language5,6,7,8 representationmechanisms (BOW, static embed-
dings, contextualized embeddings). Next, those features compose the input attribute
space for five distinct classifiers, namely Support Vector Machine (SVM), Logistic
Regression (LR), Random Forest (RF), XGBoost (XBG), and Multi-layer Percep-
tron (MLP). We adopted scikit-learn’s9 implementations of those machine learning
algorithms. Although we have used the default parameters in most of the cases, it is

5 http://www.grid.ece.ntua.gr.
6 http://www.alt.qcri.org/semeval2015/task11.
7 https://www.github.com/karanluthra/twitter-sentiment-training.
8 https://www.cs.york.ac.uk/semeval-2013/task2.html.
9 https://scikit-learn.org.
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important to mention that we set the class balance parameter for SVM, LR, and RF
(class_weight = balanced). Also, for LR, we set the maximum number of iterations to
500 (max_iter = 500) and the solver parameter to liblinear. Moreover, for MLP, we set
the number of hidden layers to 100. We aim at determining which word representation
models are the most effective ones in Twitter sentiment analysis by leveraging differ-
ent types of classifiers, thus examining how they deal with the peculiarities of each
evaluatedmodel. Furthermore, it is important to note that we do not aim at establishing
the best classifier for the sentiment analysis task, which may require a specific study
and additional computational experiments.

Preprocessing is the first step in many text classification problems and the use
of appropriate techniques can reduce noise hence improving classification effective-
ness (Fayyad et al. 2003).As thismanuscript’smain goal is to evaluate the performance
of different models of tweet representation, the preprocessing step is simple so that
the focus is on the word representation models and classifiers. Thus, for each tweet
in a given dataset, we only replace URLs by the token someurl, user mentions by the
token someuser, and all tokens were lowercased.

In the experimental evaluation, the predictive performance of the sentiment classi-
fication is measured in terms of accuracy and F1-macro. Precisely, for each evaluated
dataset, the accuracy of the classification was computed as the ratio between the num-
ber of correctly classified tweets and the total number of tweets, following a stratified
ten-fold cross-validation. F1-macro was computed as the unweighted average of the
F1-score for the positive and negative classes. Moreover, all experiments were per-
formed by using a Tesla P100-SXM2 GPU within Ubuntu operating system, running
in a machine with Intel(R) Xeon(R) CPU E5-2698 v4 processor.

Lastly, as recommended by Demšar (2006), we ran the Friedman test followed by
the Nemenyi post-hoc test to determine whether the differences among the results are
statistically significant at a 0.05 significance level. Whenever applicable, we present
the results of the statistical tests immediately below each results table. We use the
symbol � to show that a word representation model x is significantly better than
another word representation model y, so that {x} � {y}.

3.3 Computational experiments details

In the next sections, we evaluate a significant collection of vector-based word repre-
sentation models attempting to answer the research questions introduced in Sect. 1.
Specifically, we conduct a comparative study of vector-based word representation
models fromdistinct natures, includingBagofWords, as a classic baseline, static repre-
sentations and representations induced from Transformer-based autoencoder models,
by including a second-phase training or not the intermediate masked language task,
in order to acknowledge their effectiveness in the polarity classification of English
tweets. These language representation models are incrementally evaluated throughout
Sects. 4, 5, 6, and 7.

In Sect. 4, we begin by analyzing the predictive performance of the static repre-
sentations, which include 13 pretrained embeddings from the literature, as shown in
Table 2, as well as the classical BOWwith TF-IDF representation schema. Regarding
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Table 2 Characteristics of the static pretrained embeddings ordered by the number of dimensions

Embedding |D| |V | Architecture Corpus

SSWE (Tang et al. 2014) 50 137K Feed-forward network Twitter (10M tweets)

Emo2Vec (Xu et al. 2018) 100 1.2M Convolutional network Twitter (1.9M tweets)

GloVe-TWT (Pennington
et al. 2014)

200 1.2M log-bilinear model Twitter (27B tokens)

DeepMoji (Felbo et al. 2017) 256 50K Recurrent network Twitter (1B tweets)

EWE (Agrawal et al. 2018) 300 183K Recurrent network Amazon reviews (200K
reviews)

GloVe-WP (Pennington et al.
2014)

300 400K log-bilinear model Wikipedia/Gigaword (6B
tokens)

FastText (Mikolov et al.
2018)

300 1M Feed-forward network Wikipedia/web pages/news
(16B tokens)

w2v-GN (Mikolov et al.
2013)

300 3M Feed-forward network Google news (100B tokens)

w2v-Edin (Bravo-Marquez
et al. 2016)

400 259K Feed-forward network Twitter (10M tweets)

w2v-Araque (Araque et al.
2017)

500 57K Feed-forward network Twitter (1.28M tweets)

BERT (Devlin et al. 2019) 768 30K Transformers BooksCorpus (Zhu et al.
2015)/Eng. Wiki (3.3B
words)

RoBERTa (RoB) (Zhu et al.
2015)

768 50K Transformers 5 datasets (Liu et al. 2019)
(161GB)

BERTweet (BTWT) (Nguyen
et al. 2020)

768 64K Transformers Twitter (850M tweets)

the static embeddings described in Table 2, we have selected representations trained on
distinct kinds of texts (Corpus column) and built from different architectures (Archi-
tecture column), from feedforward neural networks to Transformer-based ones. The
|D| and |V | columns refer to the dimension and vocabulary size of each pretrained
embedding, respectively. Although the most usual way of employing embeddings
trained from Transformer-based architectures is running the text through the model
to obtain contextualized representations, here we first investigate how these models
behave when the experimental protocol is the same as earlier embeddings models:
pretrained embeddings are collected from the embeddings layer and are the input of
the classifiers.

Next, in Sect. 5, we present an evaluation of state-of-the-art Transformer-based
autoencoder models, including BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019),
andBERTweet (Nguyen et al. 2020). To achieve a proper vector representation for each
sentence, first we get the last four layers of the model for each token of the sentence
and concatenate them, generating a 3072-dimension (4× 768) representation for each
token. Then, to build the sentence embedding, we take the average of these token
vector representations. For the sake of simplicity, the Transformer-based autoencoder
models assessed in this study are referred to hereafter as Transformer-based models.
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Lastly, in Sects. 6 and 7, we evaluate the effectiveness of adapting the aforemen-
tioned Transformer-based models regarding the intermediate masked-language task
in two different ways: (i) by using a huge collection of unlabeled, or non-sentiment,
tweets, and (ii) by using tweets from sentiment datasets.

In Sect. 6, regarding the non-sentiment adaptation approach, we adopted the general
purpose collection of unlabeled tweets from the Edinburgh corpus (Petrović et al.
2010), which contains 97M tweets in multiple languages. Tweets written in languages
other than English were discarded, resulting in a final corpus of 6.7M English tweets,
which was then used to adapt BERT, RoBERTa, and BERTweet. In addition to the
entire corpus of 6.7M tweets, we used nine other samples with different sizes, varying
from 500 to 1.5M tweets. Specifically, we generated samples containing 500 (0.5K),
1K, 5K, 10K, 25K, 50K, 250K, 500K, and 1.5M non-sentiment tweets.

Conversely, in Sect. 7, we evaluated the sentiment adaptation procedure using posi-
tive and negative tweets from the twenty-two benchmark datasets described in Table 1.
For this purpose, we used each dataset once as the target dataset, while the others were
used as the source datasets. More clearly, for each assessed dataset, referred to as
the target dataset, we explored three distinct strategies to adapt the masked-language
model: (i) by using only the tweets from the target sentiment dataset itself, (ii) by using
the tweets from the remaining 21 datasets, and (iii) by using the entire collection of
tweets from the 22 datasets, including the tweets from the target dataset.

4 Evaluation of static text representations

The computational experiments conducted in this section aimat answering the research
question RQ1, as follows:

RQ1. Which static embeddings are the most effective in the sentiment classification
of tweets?

We answer this question by assessing the predictive power of the 13 pretrained
embeddings described in Table 2. These embeddings were generated from distinct
neural networks architectures, with different dimensions and vocabulary size, and
trained on various kinds of corpora. Recall that by static embeddings we mean that
the features are gathered from the embeddings layer working as a look-up table of
tokens. In addition to the pretrained embeddings, we evaluate the BoW model with
the TF-IDF representation, which is the most basic text representation used in Twitter
sentiment analysis and text classification tasks in general. For all tweet representation,
we take the average of all tokens representation of the tweet.

We begin by evaluating the predictive performance of the static representations for
each classification algorithm. To limit the number of tables in themanuscript, we report
the computational results in detail for SVMas an example of this evaluation.10 Tables 3
and 4 show the results achieved by using each static representation to train an SVM
classifier, in terms of classification accuracy and unweighted F1-macro, respectively.
The boldfaced values indicate the best results, and the last three lines show the total

10 The detailed computational results for each classifier are publicly available at https://github.com/MeLL-
UFF/tuning_sentiment.
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number of wins for each static representation (#wins row), as well as a ranking of the
results (rank sums and position rows). Precisely, for each dataset, we assign scores,
from 1.0 to 14.0, to each assessed representation (each column), in ascending order
of accuracy (F1-macro), where the score 1.0 is assigned to the representation with
the highest accuracy (F1-macro). Thus, low score values indicate better results. When
two assessed representation has the same performance, we take an average of their
scores. If two assessed representations achieve the best performance, they will receive
a score of 1.5 ((1+2)/2). Finally, we sum up the assigned scores obtained in each
dataset for each assessed representation to calculate rank sums. With the rank sum
of each assessed representation, we rank the rank-sum result from the best (1) to the
worst (14), calculating the rank position.

As we can see in Tables 3 and 4, RoBERTa (RoBstatic column) achieved the best
performance in nine out of the 22 datasets in terms of accuracy, in 11 out of the 22
datasets in terms of F1-macro, and was ranked first in the overall evaluation (position
row). Regarding the number of wins (#wins row), we can note that Emo2Vec and
SSWE achieved the second best results, reaching the best performance in four out
of the 22 datasets for both accuracy and F1-macro. However, regarding the overall
evaluation (position row), w2v-Edin and w2v-GN were ranked among the top three
best static representations along with RoBERTa, in terms of accuracy. Regarding F1-
macro, the top three best static representations were RoBERTa, w2v-Edin and BERT
(BERT-static column). Finally, the Friedman test followed by the Nemenyi post-hoc
test detected that the top three best representations – RoBERTa, w2v-Edin, w2v-GN
in terms of accuracy, and RoBERTa, w2v-Edin, BERT in terms of F1-macro – are
significantly better than many of the other static representations, as shown below
Tables 3 and 4. Nevertheless, there is no significant difference between them.

Tables 5 and6 showa summaryof the results by evaluating each static representation
on the 22 datasets, for each classification algorithm. Each cell indicates the number of
wins, the rank sums, and the rank position achieved by the related static representation
(each line) used to train the corresponding classifier (each column). The Total column
indicates the total number of wins, the total rank sums, and the total rank position,
i.e., the sum of the rank positions presented in each cell for each assessed model.
Moreover, in the total column, we underline the top three best overall results in terms
of total rank position.

Regarding the overall evaluation (Total column), from Tables 5 and 6, we can see
that although Emo2Vec achieved the highest total number of wins (i.e., 27 wins in
terms of accuracy, and 29 wins in terms of F1-macro), w2v-Edin was ranked as the
best overall model, achieving the lowest total rank position for both accuracy (22.0)
and F1-macro (21.0). Nevertheless, considering each classifier (each column), we can
note that RoBERTa achieved the best performance when used to train LR, SVM, and
MLP, for both accuracy and F1-macro. Conversely, Emo2Vec achieved the best overall
results when used to train RF and XGB classifiers. Analyzing the overall results in
terms of the total rank position (Total column), we observe that Emo2Vec and w2v-
GN, along with w2v-Edin, are ranked as the top three best static representations.
These results suggest that w2v-Edin, Emo2Vec, and w2v-GN are well-suited static
representations for Twitter sentiment analysis.
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In the previous evaluations, we analyzed the predictive performance achieved by
each representation for one classification algorithm at a time, focusing on the individ-
ual contribution of the text representations in the performance on the final task. Next,
we investigate the classification performance of the final sentiment analysis process,
that is, the combination of text representation and classifier. Considering that the final
classification is a combination of both representation and classifier, an appropriate
choice of the classification algorithm may affect the performance of a text represen-
tation. For this purpose, we present an overall evaluation of all possible combinations
of text representations and classification algorithms, examining them as pairs {text
representation, classifier}. More clearly, we evaluate the classification effectiveness
of 70 possible combinations of text representations and classifiers (14 × 5) on the 22
datasets of tweets. Tables 7 and 8 present the top and the bottom ten results in terms
of the average rank position, respectively. Specifically, for each dataset, we calculate
a rank of the 70 combinations and then average the rank position of each combination
over the 22 datasets.

From Table 7, we can note that the best overall results were achieved by using
RoBERTa to train an SVM classifier for both accuracy and F1-macro. Also, w2v-Edin
+ SVM and RoBERTA + MLP appear in the top three results along with RoBERTa
+ SVM. From Table 8, we can notice that the RF classifier often appears among the
worst results.

Tables 9 and 10 show a summary of the results for each text representation and
classifier, respectively, from best to worst, in terms of the average rank position. As
we can observe, Emo2Vec, RoBERTa, and w2v-Edin appear in the top three, being the
representations that achieved the best overall performances. Among the classifiers, we
can note that SVM and MLP seem to be good choices in Twitter sentiment Analysis
regarding the usage of static text representations. Conversely, RF achieved the worst
overall performance across all evaluations.

Table 7 Top 10 results achieved by evaluating combinations of static word representation models and
classifiers

Accuracy F1-macro

Representation Classifier Avg. rank pos. Representation Classifier Avg. rank pos.

RoBERTa-static SVM 9.32 RoBERTa-static SVM 8.59

RoBERTa-static MLP 11.57 w2v-Edin SVM 9.39

w2v-Edin SVM 14.50 RoBERTa-static MLP 12.52

w2v-Edin MLP 15.36 BERT-static SVM 14.70

BERT-static MLP 16.68 w2v-GN SVM 14.95

w2v-GN SVM 17.80 w2v-Edin MLP 15.55

BERT-static SVM 19.02 RoBERTa-static LR 16.02

Emo2Vec XGB 21.23 BERT-static MLP 17.48

w2v-GN MLP 22.50 GloVe-TWT LR 17.91

FastText MLP 23.20 Emo2Vec SVM 18.05

123



340 S. Barreto et al.

Table 8 Bottom 10 results achieved by evaluating combinations of static word representation models and
classifiers

Accuracy F1-macro

Representation Classifier Avg. rank pos. Representation Classifier Avg. rank pos.

DeepMoji RF 51.41 EWE RF 56.86

BERTweet-static XGB 52.14 DeepMoji RF 57.43

FastText RF 52.75 BERTweet-static LR 57.45

GloVe-WP RF 54.11 w2v-GN RF 58.02

w2v-Araque RF 54.68 FastText RF 60.36

BERT-static RF 57.18 w2v-Araque RF 61.00

RoBERTa-static RF 57.95 GloVe-WP RF 61.16

BERT-static LR 60.86 BERT-static RF 63.91

BERTweet-static RF 61.02 RoBERTa-static RF 64.11

BERTweet-static LR 66.09 BERTweet-static RF 67.32

The top three static representations identified in the previous evaluation, i.e.,
RoBERTa, w2v-Edin, and Emo2Vec, are very different from each other. While w2v-
Edin and Emo2Vec were trained from scratch on tweets, RoBERTa was trained on
traditional English texts. However, among these, RoBERTa is the only Transformer-
based model, which holds state-of-the-art performance in capturing context and
semantics of terms from texts. Furthermore, regarding w2v-Edin, although it was
trained with a more straightforward architecture (feedforward neural network) as
compared to others, its training parameters were optimized for the emotion detec-
tion task on tweets (Bravo-Marquez et al. 2016), which may have helped determining
the sentiment expressed in tweets.

Surprisingly, as shown in Table 9, BERTweet achieved the worst overall perfor-
mance among all assessed text representations, despite having been trained using
the same state-of-the-art Transformer-based architecture as RoBERTa while yet using
tweets. One possible explanation for this behavior is that BERTweet training procedure
limits the representation of its training tweets to 60 tokens only, while RoBERTa uses a
limit of 512 tokens. For that reason, we believe that RoBERTa model is able to capture
more semantic information to the tokens from its training vocabulary as compared to
BERTweet when one collects the token representation from the embeddings layer.

In addition to the individual assessment of text representations and classifiers pre-
sented in Tables 9 and 10, Table 11 shows the best results achieved for each dataset.
We can see that RoBERTa achieved the highest accuracies in seven out of the 22
datasets, and highest F1-macro scores in nine out of the 22 datasets. Furthermore, as
highlighted in Table 7, RoBERTA + SVM achieved the best performances in six out
of the 22 datasets in terms of accuracy, and in eight out of the 22 datasets in terms of
F1-macro.

Finally, regarding research question RQ1, we can highlight and suggest that: (i)
disregarding the classification algorithms, Emo2Vec, w2v-Edin, and RoBERTa seem
to be well-suited representations for determining the sentiment expressed in tweets,
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Table 9 Summary of the results for each static word representation model, from best to worst, in terms of
the average rank position

Accuracy F1-macro

Representation Avg. rank pos. Representation Avg. rank pos.

Emo2Vec 26.35 Emo2Vec 25.34

RoBERTa-static 27.93 RoBERTa-static 29.06

w2v-Edin 29.55 w2v-Edin 30.05

w2v-GN 30.05 w2v-GN 31.04

GloVe-TWT 32.0 GloVe-TWT 31.55

EWE 34.5 SSWE 33.4

SSWE 34.78 EWE 34.15

DeepMoji 35.93 DeepMoji 34.98

TF-IDF 36.21 FastText 36.34

FastText 37.0 BERT-static 39.38

BERT-static 39.43 GloVe-WP 39.43

GloVe-WP 40.25 TF-IDF 40.25

w2v-Araque 43.15 w2v-Araque 42.85

BERTweet-static 49.88 BERTweet-static 49.18

Table 10 Summary of the
results for each classifier, from
best to worst, by evaluating the
static word representations, in
terms of the average rank
position

Accuracy F1-macro

Classifier Avg. rank pos. Classifier Avg. rank pos.

MLP 26.28 SVM 23.07

SVM 28.3 MLP 26.69

XGB 35.83 LR 31.27

LR 39.17 XGB 41.33

RF 47.92 RF 55.15

and (ii) considering the combination of text representations and classifiers, RoBERTa
+ SVM achieved the best overall performance, which may represent a good choice
for Twitter sentiment analysis in hardware-restricted environments, since the cost here
is most due to the classifier induction.

5 Evaluation of the transformer-based text representations

In this section, we address the research question RQ2, as follows:
RQ2.Considering state-of-the-art Transformer-based autoencoder models, which

are the most effective in the sentiment classification of tweets?
To answer that question, we conduct a thorough evaluation of the widely used

BERT and RoBERTa models and the BERT-based transformer trained from scratch
with tweets, namely, BERTweet. These models represent a set of the most recent
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Table 11 Best results achieved for each dataset by evaluating the static word representation models

Dataset Accuracy F1-macro

% Classifier Representation % Classifier Representation

iro 78.81 LR Emo2Vec 75.87 LR Emo2Vec

sar 87.5 LR SSWE 87.19 LR SSWE

ntu 95.3 MLP w2v-Edin 95.19 MLP w2v-Edin

S15 90.35 LR TF-IDF 78.48 SVM RoBERTa-static

stm 87.74 SVM w2v-Edin 87.67 SVM w2v-Edin

per 83.83 MLP w2v-GN 80.58 SVM w2v-GN

hob 94.82 MLP BERT-static 94.05 MLP BERT-static

iph 84.39 MLP GloVe-TWT 81.15 MLP GloVe-TWT

mov 88.78 XGB Emo2Vec 77.86 MLP FastText

san 84.71 MLP TF-IDF 84.56 MLP TF-IDF

Nar 89.0 LR SSWE 88.58 LR SSWE

arc 87.6 MLP RoBERTa-static 87.29 MLP RoBERTa-static

S18 86.5 SVM RoBERTa-static 86.4 SVM RoBERTa-static

OMD 85.1 SVM RoBERTa-static 83.85 SVM RoBERTa-static

HCR 80.24 SVM TF-IDF 74.55 SVM RoBERTa-static

STS 89.08 LR SSWE 87.7 LR SSWE

SST 85.06 LR Emo2Vec 84.77 LR Emo2Vec

Tar 84.42 SVM RoBERTa-static 84.42 SVM RoBERTa-static

Vad 89.32 SVM RoBERTa-static 87.8 SVM RoBERTa-static

S13 88.24 XGB Emo2Vec 85.59 LR Emo2Vec

S17 89.03 SVM RoBERTa-static 88.37 SVM RoBERTa-static

S16 86.0 SVM RoBERTa-static 83.18 SVM RoBERTa-static

Transformer-based autoencoder language modeling techniques that have achieved
state-of-the-art performance in many NLP tasks.While BERT is the first Transformer-
based autoenconder model to appear in the literature, RoBERTa is an evolution of
BERT with improved training methodology, due to the elimination of the Next Sen-
tence Prediction task, which may fit NLP tasks on tweets considering they are limited
in size and self-contained in context. Moreover, by evaluating BERTweet we analyze
the performance of a Transformer-based model trained from scratch on tweets.

In this set of experiments, we give an example tweet as input to the transformer
model and concatenate its last four layers to be the token representation and the tweet
representation is the average of the tokens representation. Next, those representations
collected from the whole dataset are given as input to the learning classifier method
together with the labels of the tweets. Finally, the learned classifier is employed to
perform the evaluation. In this way, we once again follow the feature extraction plus
classification strategy but now using the contextualized embedding from each tweet.

Table 12 presents the classification results when using the SVM classifier in terms
of accuracy and F1-macro, and Table 13 shows a summary of the complete evaluation
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Table 12 Accuracies and F1-macro scores (%) achieved by evaluating the Transformer-based language
models using the SVM classifier

Dataset Accuracy F1-macro

RoBERTa BERT BERTweet RoBERTa BERT BERTweet

iro 46.67 71.43 69.52 31.0 66.51 61.22

sar 57.86 76.07 61.96 46.23 75.63 59.24

ntu 78.45 87.02 91.03 78.18 86.73 90.86

S15 86.31 90.03 91.59 73.33 77.58 82.06

stm 84.12 89.14 90.25 84.04 89.11 90.23

per 72.66 83.13 83.14 71.18 80.73 81.34

hob 69.15 83.52 83.13 68.62 81.76 81.53

iph 75.96 81.58 83.65 74.65 79.63 81.97

mov 74.35 84.14 86.47 68.61 77.58 80.55

san 83.66 85.54 89.87 83.43 85.47 89.81

Nar 89.73 91.6 95.35 89.48 91.34 95.22

arc 88.18 87.25 90.16 88.0 87.02 89.99

S18 86.28 87.25 88.97 86.07 87.16 88.87

OMD 82.16 85.62 87.36 81.2 84.71 86.4

HCR 76.67 78.61 79.82 72.89 74.75 76.22

STS 89.48 90.46 93.56 88.11 89.16 92.65

SSt 84.01 85.19 86.76 83.83 84.87 86.53

Tar 84.83 85.64 86.93 84.81 85.62 86.92

Vad 87.73 89.63 90.56 86.24 88.18 89.28

S13 84.26 86.62 88.15 82.0 84.21 86.13

S17 90.61 91.54 92.56 90.08 91.03 92.08

S16 87.62 88.77 90.72 85.5 86.59 88.86

#wins 0 3 19 0 3 19

rank sums 65.0 42.0 25.0 65.0 42.0 25.0

position 3.0 2.0 1.0 3.0 2.0 1.0

{BERTweet} � {RoBERTa, BERT}
{RoBERTa} � {BERT}
Bold values indicate the best results

regarding all classifiers. As in previous section, to limit the number of tables in the
manuscript, we only report the computational results in detail for the SVM classifier
as an example of this evaluation. From Table 12, we can note that BERTweet achieved
the best results in 18 out of the 22 datasets for both accuracy and F1-macro. Precisely,
the Friedman and the Nemenyi tests detected that BERTweet is significantly better
than RoBERTa and BERT, while RoBERTa is better than BERT. Similarly, regarding
all classifiers, Table 13 shows that BERTweet outperformed BERT and RoBERTa by
a significant difference in terms of the total number of wins for both accuracy and F1-
macro.
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Table 13 Overview of the results (number of wins, rank sum, and rank position, respectively) achieved by
evaluating each Transformer-based model on the 22 datasets, for each classification algorithm

Model LR SVM MLP RF XGB Total

Accuracy

BERT 2/45.0/2.0 0/65.0/3.0 3/47.0/2.0 4/46.5/2.0 3/43.5/2.0 12/247.0/11.0

RoBERTa 2/60.0/3.0 3/42.0/2.0 2/57.0/3.0 5/52.5/3.0 0/63.0/3.0 12/274.5/14.0

BERTweet 18/27.0/1.0 19/25.0/1.0 17/28.0/1.0 15/33.0/1.0 20/ 25.5/1.0 89/138.5/5.0

F1-macro

BERT 2/45.0/2.0 0/65.0/3.0 3/47.0/2.0 3/48.0/2.0 3/44.0/2.0 11/249.0/11.0

RoBERTa 2/60.0/3.0 3/42.0/2.0 2/57.0/3.0 5/52.5/3.0 0/61.0/3.0 12/272.5/14.0

BERTweet 18/27.0/1.0 19/25.0/1.0 17/28.0/1.0 15/31.5/1.0 19/ 27.0/1.0 88/138.5/5.0

Bold values indicate the best results

Table 14 Overall analysis of using the Transformer-based models to train each classification algorithm,
examining them as pairs {language model, classifier}, in terms of the average rank position

Accuracy F1-macro

Model Classifier Avg. rank pos. Model Classifier Avg. rank pos.

BERTweet LR 2.55 BERTweet LR 2.32

BERTweet MLP 2.68 BERTweet MLP 3.0

BERTweet SVM 4.16 BERTweet SVM 3.55

RoBERTa MLP 5.05 RoBERTa LR 4.98

RoBERTa LR 5.68 RoBERTa MLP 5.39

BERT MLP 6.23 BERT SVM 5.75

BERT SVM 6.86 BERT MLP 6.61

BERTweet XGB 7.34 BERT LR 7.3

BERT LR 7.73 BERTweet XGB 8.36

RoBERTa XGB 9.57 RoBERTa XGB 10.18

BERT XGB 11.61 RoBERTa SVM 10.8

BERTweet RF 11.95 BERT XGB 11.77

RoBERTa SVM 12.05 BERTweet RF 12.48

RoBERTa RF 12.98 RoBERTa RF 13.55

BERT RF 13.57 BERT RF 13.98

Next, we present an overall analysis of using BERT, RoBERTa, and BERTweet
models to train each one of the five classification algorithms, examining them as pairs
{language model, classifier}. Table 14 presents the average rank position across all 15
possible combinations (3 language models × 5 classification algorithms), from best
to worst, as explained in Sect. 4. We can observe that BERTweet combined with LR,
MLP, and SVM classifiers achieved the best overall performances for both accuracy
and F1-macro. Conversely, usingRF to train theTransformer-based embeddings seems
to harm the performance of the models.
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Table 15 Summary of the
results for each
Transformer-based model, from
best to worst, in terms of the
average rank position

Accuracy F1-macro

Model Avg. rank pos. Model Avg. rank pos.

BERTweet 5.74 BERTweet 5.94

RoBERTa 9.06 RoBERTa 8.98

BERT 9.20 BERT 9.08

Table 16 Summary of the
results for each classifier, from
best to worst, by evaluating the
Transformer-based models, in
terms of the average rank
position

Accuracy F1-macro

Classifier Avg. rank pos. Classifier Avg. rank pos.

MLP 4.65 LR 4.86

LR 5.32 MLP 5.00

SVM 7.69 SVM 6.70

XGB 9.51 XGB 10.11

RF 12.83 RF 13.33

Tables 15 and 16 show a summary of the results for each model and classifier,
respectively, from best to worst, in terms of the average rank position. From Table 15,
we can see thatBERTweet achieved the best overall classification effectiveness andwas
ranked first. Also, RoBERTa and BERT achieved comparable overall performances
for both accuracy and F1-macro. Regarding the classifiers, as shown in Table 16, MLP
and LR achieved rather comparable performances and were ranked as the top two best
classifiers regarding the Transformer-based models, followed by SVM, XGB, and RF.

Regarding the results achieved for each dataset, Table 17 presents the best results in
terms of accuracy and F1-macro. As we can notice, BERTweet outperformed BERT
and RoBERTa in 17 out of the 22 datasets in terms of accuracy and in 18 out of the
22 datasets in terms of F1-macro. These results may confirm that Twitter sentiment
classification benefits most from contextualized language models trained from scratch
onTwitter data.UnlikeBERTandRoBERTa,whichwere trained on traditional English
texts, BERTweet was trained on a huge amount of 850M tweets. This fact may have
helped BERTweet on learning the specificities of tweets, such as their morphological
and semantic characteristics.

For a better understanding of the results, we present an analysis of the difference
between the vocabulary embedded in the assessed models. For this purpose, Table 18
highlights the number of tokens shared between BERT, RoBERTa, and BERTweet. In
other words, we show the amount of tokens (in %) embedded in the models presented
in each row that are also included in the models presented in each column, i.e., the
intersection between their vocabularies. For example, regarding BERT (first row),
we can see that 61% of its tokens can be found on RoBERTa (second column). The
information below each model name in the columns refers to their vocabulary size
(number of embedded tokens). It is possible to note that only 32% of the 64K tokens
from BERTweet vocabulary (i.e., about 20K tokens) can be found in BERT. It means
that, when compared to BERT, BERTweet contains about 44K (64 − 20) specific
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Table 17 Best results achieved for each dataset by evaluating combinations of Transformer-based models
and classifiers

Dataset Accuracy F1-macro

% Classifier Model % Classifier Model

iro 80.48 LR BERT 73.08 LR BERT

sar 76.07 SVM BERT 75.63 SVM BERT

ntu 91.03 LR BERTweet 90.86 SVM BERTweet

S15 92.23 LR BERTweet 83.33 LR BERTweet

stm 90.79 LR RoBERTa 90.75 LR RoBERTa

per 87.69 LR BERTweet 85.29 LR BERTweet

hob 87.93 LR RoBERTa 86.29 LR RoBERTa

iph 87.59 MLP BERTweet 84.72 MLP BERTweet

mov 89.47 MLP RoBERTa 82.12 LR BERTweet

sand 91.17 MLP BERTweet 91.11 MLP BERTweet

Nar 95.60 MLP BERTweet 95.43 MLP BERTweet

arc 90.74 MLP BERTweet 90.51 MLP BERTweet

S18 88.97 SVM BERTweet 88.87 SVM BERTweet

OMD 87.36 SVM BERTweet 86.40 SVM BERTweet

HCR 81.55 XGB BERTweet 76.77 LR BERTweet

STS 93.90 LR BERTweet 92.98 LR BERTweet

SSt 86.76 SVM BERTweet 86.53 SVM BERTweet

Tar 86.93 SVM BERTweet 86.92 SVM BERTweet

Vad 90.80 LR BERTweet 89.38 LR BERTweet

S13 89.61 LR BERTweet 87.37 LR BERTweet

S17 92.56 SVM BERTweet 92.08 SVM BERTweet

S16 91.03 LR BERTweet 89.05 LR BERTweet

Table 18 Percentage of
vocabulary’s tokens of the
Transformer-based model in the
row that are also in the
vocabulary’s tokens of the
Transformer-based model in the
column

BERT RoBERTa BERTweet
|V | = 30K |V | = 50K |V | = 64K

BERT − 61 62

RoBERTa 41 − 71

BERTweet 32 55 −

tokens extracted from tweets. Similarly, 55% of the tokens embedded in BERTweet
(i.e., about 35K tokens) can be found in RoBERTa, meaning that BERTweet holds
about 29K (64 − 35) specific tokens from tweets that are not included in RoBERTa.
As amatter of fact, analyzing the tokens embedded inBERTweet,wefind some specific
tokens, such as “Awww”, “hahaha”, “broo”, and other internet expressions and slang
that social media users often use to express themselves.While creating representations
for these tokens is straightforward in BERTweet, BERT and RoBERTa need to do
some extras steps. Specifically, when BERT and RoBERTa do not find a token in
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Table 19 Top 10 results achieved for combinations of language model and classifier by evaluating the
Transformer-based models and the static word representations, in terms of the average rank position

Accuracy F1-macro

Model Classifier Avg. rank pos. Model Classifier Avg. rank pos.

BERTweet LR 6.20 BERTweet LR 5.91

BERTweet MLP 6.32 BERTweet MLP 6.55

RoBERTa MLP 10.27 BERTweet SVM 9.14

BERT MLP 10.43 BERT SVM 10.00

BERTweet SVM 10.45 RoBERTa MLP 10.89

RoBERTa LR 12.23 RoBERTa LR 10.91

BERT LR 12.91 BERT MLP 10.91

BERT SVM 13.11 BERT LR 12.07

BERTweet XGB 17.02 RoBERTa-static SVM 17.32

RoBERTa-static SVM 18.66 W2V-Edin SVM 18.75

Table 20 Overall evaluation of the Transformer-based models and the static word representations, from
best to worst, in terms of the average rank position

Accuracy F1-macro

Model Avg. rank pos. Model Avg. rank pos.

BERTweet 14.84 BERTweet 17.38

BERT 20.86 BERT 23.42

RoBERTa 23.00 RoBERTa 24.94

Emo2Vec 37.49 Emo2Vec 36.09

RoBERTa-static 39.65 RoBERTa-static 40.37

w2v-Edin 41.50 w2v-Edin 41.54

w2v-GN 42.37 w2v-GN 43.02

GloVe-TWT 44.64 GloVe-TWT 43.55

SSWE 46.75 SSWE 44.78

EWE 47.21 EWE 46.17

DeepMoji 48.35 DeepMoji 46.79

TF-IDF 49.09 FastText 48.95

FastText 50.18 GloVe-WP 51.55

BERT-static 52.30 BERT-static 51.67

GloVe-WP 53.01 TF-IDF 53.00

w2v-Araque 56.25 w2v-Araque 55.45

BERTweet-static 63.52 BERTweet-static 62.34

their vocabularies, they split the token into subtokens until all of them are found. For
example, the token “hahaha” would be split into “ha”, “ha”, and “ha” to represent
the original token. This analysis points out that this particular vocabulary, combined
with a language model that was trained focused on learning the intrinsic structure of
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tweets, is the responsible for the BERTweet language model’s best performance on
tweet sentiment classification.

In this context, regarding RQ2, we believe BERTweet is an effective language
modeling technique in distinguishing the sentiment expressed in tweets. Also, regard-
ing the classifiers, in general, MLP and LR seem to be good choices when using
Transformer-based models.

Different from static representations, when we used only the embedding layer of
the language models, in this section, we use the whole language model: the tweet goes
from the embedding layer up to the last layer to be transformed into a vector represen-
tation. Attempting to understand the benefits from using the whole language model
(embedding layer and language model), we compare the predictive performance of
Transformer-based models evaluated in this section against all the static representa-
tions assessed in Sect. 4. Table 19 presents the top ten results across all 85 possible
combinations of models and classifiers (17 models × 5 classification algorithms), and
Table 20 shows an overall evaluation of the models, from best to worst, in terms of the

Table 21 Best results achieved for each dataset by evaluating combinations of language models and clas-
sifiers, regarding Transformer-based models and static word representations

Dataset Accuracy F1-macro

% Classifier Model % Classifier Model

iro 80.48 LR BERT 75.87 LR Emo2Vec

sar 87.50 LR SSWE 87.19 LR SSWE

ntu 95.30 MLP w2v-Edin 95.19 MLP w2v-Edin

S15 92.23 LR BERTweet 83.33 LR BERTweet

stm 90.79 LR RoBERTa 90.75 LR RoBERTa

per 87.69 LR BERTweet 85.29 LR BERTweet

hob 94.82 MLP BERT-static 94.05 MLP BERT-static

iph 87.59 MLP BERTweet 84.72 MLP BERTweet

mov 89.47 MLP RoBERTa 82.12 LR BERTweet

san 91.17 MLP BERTweet 91.11 MLP BERTweet

Nar 95.60 MLP BERTweet 95.43 MLP BERTweet

arc 90.74 MLP BERTweet 90.51 MLP BERTweet

S18 88.97 SVM BERTweet 88.87 SVM BERTweet

OMD 87.36 SVM BERTweet 86.40 SVM BERTweet

HCR 81.55 XGB BERTweet 76.77 LR BERTweet

STS 93.90 LR BERTweet 92.98 LR BERTweet

SST 86.76 SVM BERTweet 86.53 SVM BERTweet

Tar 86.93 SVM BERTweet 86.92 SVM BERTweet

Vad 90.80 LR BERTweet 89.38 LR BERTweet

S13 89.61 LR BERTweet 87.37 LR BERTweet

S17 92.56 SVM BERTweet 92.08 SVM BERTweet

S16 91.03 LR BERTweet 89.05 LR BERTweet
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average rank position. In addition, Table 21 shows the best results achieved for each
dataset.

From Tables 19 and 20 we can notice that the Transformer-based BERTweet model
outperformed all other models and was ranked first in both evaluations. Also, Table 20
shows that the Transformed-based models achieved the best overall results against
all static models and were ranked as the top three best representations. Furthermore,
from Table 21, the Transformer-based BERTweet model achieved the best overall
classification effectiveness in 16 out of the 22 datasets in terms of accuracy and in 17
out of the 22 datasets in terms of F1-macro.

These results point out that learning language model parameters is essential in dis-
tinguishing the sentiment expressed in tweets. Static representations may lose a lot
of relevant information considering they ignore the diversity of meaning that words
may have depending on the context they appear. In contrast, Transformer-based mod-
els benefit from learning how to encode the context information of a token in an
embedding.

6 Adapting transformer-basedmodels to a large collection of English
tweets

In this section, we aim at performing computational experiments in order to answer
the research question RQ3, stated as follows:

RQ3. Can a second phase of adaptive pretraining of Transformer-based autoen-
coder models using a large set of English tweets improve the sentiment classification
performance?

To answer this research question, we evaluate the classification effectiveness of
BERT, RoBERTa, and BERTweet language models adapted with tweets from a corpus
of 6.7M unlabeled, or generic unlabeled, tweets, as described in Sect. 3.3. Precisely,
we use this set of tweets to adapt the model weights using the intermediate masked
languagemodel task as the training objectivewith the probability of 15% to (randomly)
mask tokens in the input. We also compare the results of such adapted models against
those achieved by using the original weights of the Transformer-based models, as
presented in Sect. 5, in order to analyze whether the adjustment of the models via
a second phase of pretraining improves the predictive performance of the sentiment
classification.

In general, the performance of the adapted models is very sensitive to different
random seeds (Dodge et al. 2020). For that reason, all the results presented in this
section are the average of three executions using different seeds (12,34,56) to account
for the sensitivity of the adaptive process regarding different seeds.

The first part of the experiments reported in this section consists in determining
whether the predictive performance of the Transformer-based models are affected by
the adaptation procedure using tweets from corpora of different sizes. For this purpose,
in addition to the entire Edinburgh corpus of 6,657,700 tweets (around 6.7M tweets),
we used nine other smaller samples of tweets with different sizes, varying from 500 to
1.5M tweets. Specifically, we generated samples containing 0.5K, 1K, 5K, 10K, 25K,
50K, 250K, 500K, and 1.5M generic unlabeled tweets. In the adaptation processes,
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we performed three training epochs, except for the adaptation of models with 6.7M
tweets, when we used one epoch, as there was a degradation of some models, such
as BERTweet. In all adaptation process, all layers are unfrozen. Regarding the batch
size, we use the available hardware capacity of eight instances per device. We used
a learning rate of 5e-5 with a linear scheduler and Adam optmizer with beta1 equal
to 0.9, beta2, 0.999, and epsilon, 1e-8. We also use a max gradient of 1 and with no
weight decay.

Tables 22, 23, and 24 present the average classification accuracies and F1-macro
scores when adapting BERT, RoBERTa, and BERTweet, respectively, with the differ-
ent samples of tweets generated from the Edinburgh corpus. As in previous sections,
for space constraints, we only report the detailed evaluation using the SVM classi-
fier. Regarding the variance in performance across the different seeds, the mean and
maximum standard deviations are 0.05% and 0.5% for both accuracy and F1-macro,
respectively.

Note that BERT (Table 22) was benefited most when adapted with the sample of
250K tweets, being ranked first in the overall evaluation (position row), for both accu-
racy and F1-macro. Although these results are only significantly better than those
by adapting BERT with 6.7M tweets, they may be a piece of evidence that more
tweets does not necessarily means better performance for adapted models. RoBERTa
(Table 23) achieved the best overall results when adapted with the sample of 1.5M, for
both accuracy and F1-macro. However, these results are only significantly better than
those by adapting RoBERTa with the sample of 0.5K. On the other hand, BERTweet
(Table 24) benefited from smaller samples, achieving higher overall predictive perfor-
mances when adapted with the sample of 25K, for both accuracy and F1-macro, being
significantly better than the results achieved with samples of 0.5K, 1.5M, and 6.7M.
This is an expected result as BERTweet is already trained from scratch from tweets.
As we are adapting the language model, BERT and RoBERTa seems to require more
samples to accommodate the Twitter-based vocabulary into the weights’ model.

Next, we analyze the overall performance of the adapted Transformer-basedmodels
for each classification algorithm. Tables 25 and 26 summarize the results in terms of
accuracy and F1-macro, respectively.Regarding the variance across the different seeds,
the mean and maximum standard deviations are 0.2% and 0.7% in terms of accuracy,
and 0.26% and 0.98% in terms of F1-macro.

Interestingly, from Tables 25 and 26, we can note that when adapting a language
model to fit a specific type of text, such as tweets, applying large corpora does not
guarantee better predictive performances. Specifically, the best overall results (Total
column) were achieved when adapting BERT, RoBERTa, and BERTweet models with
samples of 250K, 50K, and 5K tweets, respectively, for both accuracy and F1-macro.

Regarding the results achieved for each dataset, Table 27 shows the best predictive
performances in terms of accuracy and F1-macro.We can see that BERTweet achieved
the best results formost datasetswhen the adaptive pretraining employs a fewer number
of tweets. More specifically, BERTweet outperformed the other models when adapted
with samples varying from 1K to 25K tweets in 14 out of the 22 datasets for both
accuracy and F1-macro.

As in previous sections, we also present an overall evaluation of combining all
adapted models and classifiers across the 22 datasets, in terms of the average rank
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Table 22 Average classification accuracies and F1-macro scores (%) achieved by adaptive pretraining of
BERT with different samples of generic unlabeled tweets, using the SVM classifier

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

Accuracy

Iro 73.81 74.05 72.38 66.19 76.43 73.57 76.67 61.19 62.07 56.74

Sar 68.93 70.18 74.46 67.32 73.04 77.32 74.46 70.36 71.31 63.69

Ntu 88.84 86.65 84.18 85.97 83.08 85.62 84.89 92.09 93.88 94.38

S15 90.35 89.4 90.02 90.64 88.78 90.03 87.22 87.23 85.96 87.13

Stm 89.14 89.14 88.29 89.41 89.13 88.86 89.13 88.3 88.57 87.01

Per 84.72 82.91 85.42 83.14 82.91 82.01 81.1 81.32 79.5 76.16

Hob 83.9 85.24 86.39 86.78 86.18 84.85 84.29 83.72 84.15 80.89

Iph 81.02 81.39 81.58 82.15 81.02 81.2 82.15 81.21 80.34 78.96

Mov 82.72 83.43 84.49 85.2 84.5 85.03 85.91 83.26 82.41 82.71

San 86.19 86.19 85.87 87.01 86.27 87.42 87.66 87.0 86.98 87.6

Nar 91.93 91.44 92.42 91.52 91.6 91.28 92.5 92.83 93.67 93.5

Arc 86.85 88.07 88.94 88.19 87.49 88.01 87.95 89.58 88.13 88.5

S18 87.25 86.82 86.45 86.45 86.5 86.61 86.5 86.82 87.09 86.0

OMD 85.68 85.99 85.26 85.15 84.73 84.31 85.79 84.84 85.43 84.58

HCR 78.56 78.82 78.4 78.35 78.35 79.5 78.82 77.98 77.32 76.56

STS 90.36 90.51 90.41 90.81 90.22 91.05 91.79 92.23 91.89 91.29

SSt 84.58 85.06 85.37 84.58 84.01 83.79 84.97 84.8 84.84 84.43

Tar 85.67 85.67 85.93 86.01 85.9 85.84 85.9 85.69 85.69 85.4

Vad 89.75 89.66 89.63 89.44 89.56 90.3 90.28 89.51 90.5 90.0

S13 86.52 86.66 87.64 87.05 87.39 86.96 87.23 86.98 87.07 86.32

S17 91.08 91.11 91.05 91.15 90.61 90.92 90.63 90.18 89.85 89.56

S16 88.45 88.34 89.24 88.83 88.83 88.82 88.9 88.29 88.01 87.93

#wins 1 1 4 5 0 2 3 2 2 1

Rank sums 125.5 112.0 101.0 101.5 132.5 117.0 88.0 132.0 129.5 171.0

Position 6.0 4.0 2.0 3.0 9.0 5.0 1.0 8.0 7.0 10.0

F1-macro

Iro 63.97 62.48 60.67 61.05 72.69 67.69 73.0 57.99 56.87 52.33

Sar 67.75 68.06 73.18 65.52 71.76 75.85 71.69 68.09 70.25 57.63

Ntu 88.5 86.2 83.84 85.64 82.51 85.44 84.69 91.89 93.69 94.23

S15 78.55 77.78 78.01 78.72 76.38 78.55 74.01 74.55 72.5 77.78

Stm 89.12 89.12 88.26 89.4 89.1 88.8 89.11 88.24 88.5 86.93

Per 82.78 80.57 83.3 80.77 80.39 79.59 78.69 79.28 77.47 74.41

Hob 82.21 83.57 84.87 85.22 84.89 83.11 82.78 82.33 83.06 79.7

Iph 79.28 79.56 79.6 80.16 79.2 79.02 80.27 79.42 78.52 77.48

Mov 75.81 76.51 78.12 77.69 77.73 77.92 79.22 76.36 75.66 76.16

San 86.13 86.1 85.81 86.96 86.22 87.36 87.57 86.93 86.9 87.51

Nar 91.67 91.17 92.18 91.27 91.35 91.01 92.28 92.59 93.47 93.31

Arc 86.62 87.86 88.72 87.97 87.26 87.77 87.72 89.35 87.91 88.33
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Table 22 continued

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

S18 87.15 86.71 86.33 86.36 86.38 86.48 86.37 86.7 86.97 85.82

OMD 84.72 85.1 84.28 84.18 83.72 83.42 84.81 83.84 84.47 83.63

HCR 74.84 75.06 74.66 74.58 74.54 75.78 75.05 74.23 73.4 72.72

STS 89.04 89.21 89.14 89.51 88.88 89.83 90.6 91.1 90.72 90.08

SSt 84.22 84.74 85.05 84.26 83.7 83.49 84.69 84.5 84.59 84.15

Tar 85.65 85.66 85.92 86.0 85.89 85.82 85.88 85.68 85.68 85.38

Vad 88.4 88.25 88.13 87.92 88.06 88.92 88.96 88.13 89.16 88.63

S13 84.14 84.25 85.24 84.61 85.12 84.67 84.9 84.6 84.83 84.08

S17 90.57 90.59 90.54 90.62 90.09 90.38 90.08 89.62 89.26 88.99

S16 86.23 86.14 87.08 86.6 86.63 86.6 86.74 86.07 85.78 85.72

#wins 1 1 4 5 0 2 4 2 2 1

Rank sums 127.0 113.0 99.5 104.5 131.0 115.0 92.0 132.0 129.5 166.5

Position 6.0 4.0 2.0 3.0 8.0 5.0 1.0 9.0 7.0 10.0

Accuracy: {5K, 10K, 250K} � {6.7M}
F1-macro: {5K, 250K} � {6.7M}
Bold values indicate the best results

Table 23 Average classification accuracies and F1-macro scores (%) achieved by adaptive pretraining of
RoBERTa with different samples of generic unlabeled tweets, using the SVM classifier

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

Accuracy

Iro 46.67 46.67 46.67 48.1 46.67 46.67 46.67 46.67 45.24 46.74

Sar 60.71 59.29 65.0 57.86 62.14 60.71 65.0 62.14 63.57 64.7

Ntu 81.69 81.31 79.15 81.34 82.06 85.63 87.08 90.67 91.75 90.41

S15 83.18 83.5 84.75 86.93 84.75 85.38 86.93 88.79 87.24 87.03

Stm 85.23 86.35 89.7 85.24 87.75 88.04 88.03 87.48 90.81 86.35

Per 69.92 69.68 70.38 68.33 71.74 71.28 72.66 74.26 76.32 77.0

Hob 73.76 71.44 73.56 74.32 72.41 77.4 77.38 77.2 77.97 77.82

Iph 78.41 78.41 77.46 78.96 78.78 79.71 79.89 80.09 79.15 79.02

Mov 71.14 76.84 81.64 80.76 78.44 78.09 79.52 80.4 81.12 81.05

San 84.39 84.23 85.21 85.78 85.13 86.27 85.86 87.17 88.23 86.16

Nar 91.04 92.18 92.58 92.25 91.2 92.58 92.74 92.83 93.07 93.88

Arc 88.88 88.53 89.0 87.72 88.48 89.23 88.59 89.64 89.47 88.57

S18 87.9 87.15 87.15 87.09 86.61 87.52 87.14 87.47 86.61 86.62

OMD 82.79 83.58 83.63 84.0 83.53 83.47 83.79 82.27 82.74 82.55

HCR 76.52 77.25 77.2 76.73 76.1 77.78 76.41 77.77 75.94 77.74

STS 89.62 90.71 91.39 90.95 91.84 92.08 92.08 92.52 92.92 92.0

SSt 84.67 86.28 85.93 85.98 85.67 86.06 85.8 86.02 86.02 85.22

Tar 85.43 85.67 86.36 85.78 85.95 85.41 85.52 85.23 85.98 84.33

Vad 88.25 89.56 89.82 89.73 89.3 89.63 89.85 90.4 91.11 89.87
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Table 23 continued

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

S13 85.59 85.54 86.18 86.57 85.68 85.93 86.23 85.54 87.03 85.89

S17 90.77 91.0 91.37 91.29 91.07 91.15 91.02 90.86 90.63 89.68

S16 88.37 88.4 88.85 89.01 88.96 88.26 88.74 88.96 89.01 87.95

#wins 1 1 3 2 0 1 0 3 7 2

Rank sums 174.0 161.0 111.0 124.0 148.0 105.5 101.5 92.0 78.5 114.5

Position 10.0 9.0 5.0 7.0 8.0 4.0 3.0 2.0 1.0 6.0

F1-macro

Iro 31.0 31.0 31.0 34.71 31.0 31.0 31.0 31.0 32.8 40.15

Sar 48.82 48.19 55.76 48.13 51.35 49.02 56.14 54.16 55.33 62.88

Ntu 81.4 80.78 78.72 80.73 81.56 85.3 86.71 90.45 91.49 90.2

S15 69.86 69.79 71.77 74.52 71.6 73.14 75.94 77.93 74.99 74.64

Stm 85.2 86.3 89.68 85.23 87.71 88.01 87.95 87.45 90.8 86.29

Per 68.73 68.78 69.53 67.39 70.46 70.22 71.47 73.03 74.56 75.72

Hob 72.9 70.88 72.58 73.58 71.59 76.21 76.46 75.94 76.62 76.34

Iph 77.11 77.09 75.99 77.36 77.52 78.38 78.5 78.72 77.93 77.66

Mov 65.1 71.47 75.5 74.47 72.33 72.09 73.4 74.05 74.71 73.74

San 84.25 84.07 85.05 85.65 85.02 86.11 85.73 87.02 88.11 86.03

Nar 90.8 91.96 92.38 92.03 90.97 92.39 92.56 92.64 92.9 93.72

Arc 88.68 88.33 88.81 87.52 88.28 89.04 88.42 89.45 89.28 88.38

S18 87.76 87.02 87.0 86.93 86.46 87.37 87.01 87.35 86.47 86.51

OMD 81.79 82.72 82.6 83.09 82.49 82.47 82.77 81.34 81.69 81.5

HCR 73.02 73.58 73.24 72.91 72.23 74.05 72.52 74.04 71.92 73.99

STS 88.37 89.55 90.26 89.8 90.71 90.97 91.02 91.41 91.91 90.87

SSt 84.43 86.05 85.69 85.69 85.42 85.86 85.55 85.83 85.8 84.98

Tar 85.41 85.65 86.34 85.76 85.94 85.39 85.5 85.21 85.97 84.31

Vad 86.81 88.22 88.49 88.38 87.91 88.38 88.49 89.16 89.93 88.51

S13 83.42 83.31 84.04 84.48 83.46 83.83 84.03 83.47 84.94 83.74

S17 90.24 90.5 90.87 90.77 90.57 90.64 90.51 90.34 90.09 89.09

S16 86.27 86.28 86.82 86.96 86.86 86.16 86.64 86.94 86.97 85.76

#wins 1 1 3 1 0 1 0 3 8 4

Rank sums 175.0 160.0 114.0 129.0 151.0 106.5 98.5 88.0 72.0 116.0

Position 10.0 9.0 5.0 7.0 8.0 4.0 3.0 2.0 1.0 6.0

{50K, 250K, 500K, 1.5M} � {0.5K}
{25K} � {1.5M}
{1K} � {0.5K, 1.5M}
Bold values indicate the best results

position. Table 28 shows the top ten results among all 150 possible combinations
(3 models × 10 samples of tweets × 5 classification algorithms). As we can see
in Table 28, adapted BERTweet embeddings achieved the best overall performances
when used to train LR, MLP, and SVM, mastering the top ten results. Also, note that
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Table 24 Average classification accuracies and F1-macro scores (%) achieved by adaptive pretraining of
BERTweet with different samples of generic unlabeled tweets, using the SVM classifier

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

Accuracy

Iro 68.81 68.1 71.19 73.81 74.76 79.76 71.67 70.48 67.78 66.43

Sar 64.82 69.11 67.68 73.21 73.21 68.93 70.36 70.36 72.26 71.79

Ntu 89.95 91.4 91.03 92.82 93.17 92.09 93.16 93.16 94.38 92.45

S15 90.34 92.22 90.04 92.53 92.23 91.6 90.03 90.04 89.4 89.09

Stm 90.52 91.92 93.04 91.36 91.07 91.9 92.19 93.02 91.45 90.52

Per 84.28 84.04 85.64 86.77 86.79 85.41 86.1 85.87 83.14 81.32

Hob 85.06 85.25 86.78 86.78 86.78 87.92 86.6 86.77 87.03 86.21

Iph 84.04 83.84 83.47 85.35 84.78 84.22 83.47 85.55 82.22 82.34

Mov 85.93 87.71 88.6 88.95 88.42 89.49 88.78 88.42 87.3 87.89

San 90.03 90.69 91.42 90.93 91.18 91.67 91.01 91.01 89.46 90.03

Nar 95.93 96.33 96.58 96.41 96.58 96.41 96.58 95.92 95.71 94.87

Arc 90.05 90.39 90.63 90.34 91.09 90.45 91.21 90.98 91.12 90.74

S18 89.99 89.78 90.26 90.48 89.89 89.83 89.94 89.03 88.26 87.9

OMD 88.09 88.93 88.99 87.67 88.25 88.51 88.88 88.09 87.84 86.88

HCR 80.24 80.5 81.23 81.18 81.24 80.6 80.61 78.98 78.25 78.09

STS 94.35 95.23 95.08 94.99 94.84 95.13 94.49 94.15 93.97 94.3

SSt 87.64 88.16 88.73 89.6 88.99 88.03 87.51 87.59 86.98 87.68

Tar 87.02 87.83 87.68 87.54 87.68 87.6 87.28 86.79 86.38 85.84

Vad 90.8 92.42 92.56 92.66 92.23 92.59 92.71 92.18 92.11 92.09

S13 89.4 90.0 90.25 89.84 90.0 88.88 89.38 88.85 88.76 88.44

S17 92.75 93.37 93.35 93.49 93.4 92.97 92.75 92.01 91.31 91.16

S16 90.7 91.38 91.98 91.35 91.54 91.36 91.18 90.6 90.38 89.55

#wins 0 2 4 4 2 4 2 1 1 0

Rank sums 165.0 116.5 84.5 82.0 70.0 94.5 103.5 135.0 169.0 190.0

Position 8.0 6.0 3.0 2.0 1.0 4.0 5.0 7.0 9.0 10.0

F1-macro

Iro 52.83 60.79 60.98 68.12 67.33 73.81 66.15 65.03 59.86 56.98

Sar 59.88 67.4 65.46 71.66 71.79 65.96 66.98 67.17 70.79 68.66

Ntu 89.77 91.23 90.85 92.69 93.0 91.95 93.01 93.02 94.26 92.3

S15 79.96 83.6 79.65 84.24 83.77 81.34 77.51 77.31 76.28 75.45

Stm 90.49 91.89 93.02 91.33 91.04 91.86 92.17 92.99 91.41 90.46

Per 82.51 82.16 83.63 84.86 84.83 83.3 83.97 83.86 81.12 79.22

Hob 83.54 83.59 85.3 85.27 85.36 86.59 85.0 85.09 85.29 84.63

Iph 82.45 82.18 81.7 83.75 82.88 82.46 81.64 83.75 80.39 80.6

Mov 79.52 82.05 83.35 83.48 82.66 84.0 82.67 82.06 79.87 80.2

San 89.96 90.6 91.35 90.84 91.09 91.61 90.94 90.94 89.35 89.91

Nar 95.78 96.2 96.45 96.28 96.44 96.27 96.45 95.78 95.55 94.69
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Table 24 continued

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

arc 89.88 90.24 90.46 90.16 90.91 90.28 91.04 90.8 90.94 90.56

S18 89.91 89.69 90.18 90.4 89.81 89.75 89.86 88.94 88.15 87.81

OMD 87.27 88.05 88.17 86.75 87.36 87.58 88.04 87.16 86.89 85.89

HCR 76.86 77.03 78.01 77.69 77.84 77.09 77.09 75.31 74.32 74.23

STS 93.51 94.52 94.36 94.23 94.08 94.38 93.66 93.3 93.02 93.42

SSt 87.39 87.92 88.49 89.36 88.75 87.78 87.23 87.35 86.73 87.45

Tar 87.01 87.82 87.68 87.53 87.68 87.59 87.28 86.78 86.37 85.83

Vad 89.54 91.33 91.5 91.6 91.13 91.48 91.6 91.06 90.98 90.96

S13 87.44 88.07 88.34 87.83 88.03 86.81 87.35 86.71 86.65 86.25

S17 92.29 92.94 92.92 93.07 92.97 92.52 92.28 91.5 90.77 90.62

S16 88.83 89.63 90.3 89.57 89.75 89.54 89.34 88.67 88.41 87.46

#wins 0 2 6 7 1 4 3 1 1 0

Rank sums 166.5 112.0 80.0 79.0 73.5 96.5 106.0 135.5 170.0 191.0

Position 8.0 6.0 3.0 2.0 1.0 4.0 5.0 7.0 9.0 10.0

{5K, 10K, 25K} � {0.5K, 1.5M, 6.7M}
Bold values indicate the best results

by using LR,MLP, and SVM, BERTweet outperformed all other models when adapted
with samples containing 50K tweets or less.

Tables 29 and 30 show the top ten results among all adapted models and a summary
of the results for each classifier, from best toworst, respectively, in terms of the average
rank position. From Table 29, we can notice that all BERTweet adapted models (0.5K,
1K, 5K, 10K, 25K, 50K, 250K, 500K, 1.5M, and 6.7M) were ranked in the top ten
results. Furthermore, neither BERT nor RoBERTa appear in the top results, even when
they are adapted with the entire corpus of 6.7M tweets. RoBERTa appears only in the
top 24 accuracy score with an average rank of 37.02 tuned with 50K tweets and
combined MLP classifier and in top 28 F1-macro score with an average rank of 37.27
tuned with 50K tweets and combined LR classifier. BERT appears only in the top 56
accuracy score with an average rank of 66.05 tuned with 1.5M tweets and combined
MLP classifier and in top 51 F1-macro score with an average rank of 60.77 tuned
with 6.7M tweets and combined LR classifier. Among the classifiers, as we can see in
Table 30, MLP and LR achieved the best predictive performances and were ranked as
the top two best classifiers. Conversely, RF was ranked as the worst classifier.

From all previous evaluations, we can note that as the size of the samples increases,
the adaptation procedure seems to be less effective. It may be due to the adjustment
of the weights of the models’ layers during the back-propagation process. Consid-
ering that the adaptation procedure consists in unfreezing the entire model obtained
previously and adjusting their weights with the new data, the original model and
the semantic and syntactic knowledge learned in its layers are changed. In that case,
we believe that after some training iterations, the adjustment of the weights starts to
damage the original knowledge embedded in the models’ layers. The aforementioned
conclusion may further explain why BERTweet achieved improved classification per-
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Table 25 Overview of the results (number of wins, rank sum, and rank position, respectively) achieved by
each classifier when adapting the Transformer-based models with different samples of unlabeled tweets in
terms of accuracy

Sample LR SVM MLP RF XGB Total

BERT

0.5k 3/127.5/5.5 1/125.5/6.0 1/129.0/7.0 1/153.0/10.0 5/108.0/2.0 11/643.0/30.5

1k 0/134.0/7.0 1/112.0/4.0 1/139.5/8.0 3/114.0/3.5 2/113.5/3.0 7/613.0/25.5

5k 3/115.0/4.0 4/101.0/2.0 3/114.5/5.0 1/120.5/6.0 1/128.0/8.0 12/579.0/25.0

10k 0/143.5/9.0 5/101.5/3.0 1/142.0/10.0 4/119.0/5.0 2/125.5/7.0 12/631.5/34.0

25k 0/136.0/8.0 0/132.5/9.0 0/141.0/9.0 1/134.0/8.0 2/146.0/10.0 3/689.5/44.0

50k 0/146.0/10.0 2/117.0/5.0 2/121.5/6.0 3/113.5/2.0 0/131.5/9.0 7/629.5/32.0

250k 0/127.5/5.5 3/88.0/1.0 3/101.5/1.0 2/73.5/1.0 2/97.5/1.0 10/488.0/9.5

500k 1/110.5/3.0 2/132.0/8.0 2/108.0/4.0 1/114.0/3.5 2/119.5/5.0 8/584.0/23.5

1.5M 4/96.0/2.0 2/129.5/7.0 3/107.0/3.0 1/131.5/7.0 1/122.0/6.0 11/586.0/25.0

6.7M 10/74.0/1.0 1/171.0/10.0 6/106.0/2.0 4/137.0/9.0 5/118.5/4.0 26/606.5/26.0

RoBERTa

0.5k 1/140.0/9.0 1/174.0/10.0 0/165.5/9.0 0/171.5/9.0 0/173.0/10.0 2/824.0/47.0

1k 2/137.0/8.0 1/161.0/9.0 2/143.0/8.0 0/165.0/8.0 2/130.5/7.0 7/736.5/40.0

5k 3/92.0/1.0 3/111.0/5.0 0/99.5/3.5 4/104.0/5.0 4/100.0/4.0 14/506.5/18.5

10k 1/125.0/7.0 2/124.0/7.0 4/111.5/6.0 1/120.0/7.0 3/118.5/6.0 11/599.0/33.0

25k 4/103.0/3.0 0/148.0/8.0 2/107.5/5.0 1/104.5/6.0 2/98.0/3.0 9/561.0/25.0

50k 4/100.5/2.0 1/105.5/4.0 3/85.5/1.0 4/85.0/2.0 1/97.0/2.0 13/473.5/11.0

250k 0/124.0/6.0 0/101.5/3.0 3/131.5/7.0 8/77.5/1.0 4/88.5/1.0 15/523.0/18.0

500k 3/113.5/5.0 3/92.0/2.0 2/99.5/3.5 3/100.5/4.0 2/109.5/5.0 13/515.0/19.5

1.5M 3/109.0/4.0 7/78.5/1.0 3/91.5/2.0 1/98.5/3.0 2/136.0/8.0 16/513.5/18.0

6.7M 0/166.0/10.0 2/114.5/6.0 2/175.0/10.0 0/183.5/10.0 1/159.0/9.0 5/798.0/45.0

BERTweet

0.5k 1/143.0/7.0 0/165.0/8.0 0/167.0/9.0 0/174.5/8.0 0/152.5/8.0 1/802.0/40.0

1k 5/78.5/2.0 2/116.5/6.0 3/95.0/4.0 0/99.0/4.0 4/76.5/2.0 14/465.5/18.0

5k 5/69.5/1.0 4/84.5/3.0 3/75.5/1.0 10/42.5/1.0 10/56.0/1.0 32/328.0/7.0

10k 2/92.0/3.0 4/82.0/2.0 4/95.5/5.0 2/72.5/3.0 4/81.0/3.0 16/423.0/16.0

25k 1/95.0/4.0 2/70.0/1.0 3/78.5/2.0 5/71.0/2.0 0/112.0/4.0 11/426.5/13.0

50k 2/110.0/5.0 4/94.5/4.0 6/91.0/3.0 2/117.0/5.5 3/119.5/6.0 17/532.0/23.5

250k 2/114.5/6.0 2/103.5/5.0 0/128.0/6.0 0/117.0/5.5 0/138.0/7.0 4/601.0/29.5

500k 0/162.0/8.0 1/135.0/7.0 0/150.0/7.0 2/138.0/7.0 1/117.0/5.0 4/702.0/34.0

1.5M 0/172.5/9.0 1/169.0/9.0 0/174.0/10.0 0/176.0/9.0 0/171.0/9.0 1/862.5/46.0

6.7M 1/173.0/10.0 0/190.0/10.0 3/155.5/8.0 0/202.5/10.0 0/186.5/10.0 4/907.5/48.0

Bold values indicate the best results
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Table 26 Overview of the results (number of wins, rank sum, and rank position, respectively) achieved by
each classifier when adapting the Transformer-based models with different samples of unlabeled tweets in
terms of F1-macro

Sample LR SVM MLP RF XGB Total

BERT

0.5k 3/128.0/6.0 1/127.0/6.0 1/132.0/7.0 0/155.0/10.0 3/105.5/2.0 8/647.5/31.0

1k 1/140.5/8.0 1/113.0/4.0 1/141.0/9.0 3/113.5/3.0 3/112.0/3.0 9/620.0/27.0

5k 2/120.0/4.0 4/99.5/2.0 3/115.5/5.0 1/118.5/5.0 1/129.5/8.0 11/583.0/24.0

10k 0/144.5/9.0 5/104.5/3.0 1/146.5/10.0 1/124.5/6.0 1/126.0/6.0 8/646.0/34.0

25k 0/140.0/7.0 0/131.0/8.0 0/139.0/8.0 1/136.5/8.0 2/146.5/10.0 3/693.0/41.0

50k 0/148.5/10.0 2/115.0/5.0 2/119.0/6.0 4/106.0/2.0 1/131.5/9.0 9/620.0/32.0

250k 0/122.0/5.0 4/92.0/1.0 3/96.5/1.0 6/68.0/1.0 3/95.5/1.0 16/474.0/9.0

500k 1/108.0/3.0 2/132.0/9.0 2/113.5/4.0 1/116.0/4.0 2/120.0/5.0 8/589.5/25.0

1.5M 4/87.5/2.0 2/129.5/7.0 3/104.0/3.0 1/135.0/7.0 0/128.0/7.0 10/584.0/26.0

6.7M 11/71.0/1.0 1/166.5/10.0 6/103.0/2.0 3/137.0/9.0 6/115.5/4.0 27/593.0/26.0

RoBERTa

0.5k 1/140.0/9.0 1/175.0/10.0 0/163.0/9.0 0/170.5/9.0 0/171.0/10.0 2/819.5/47.0

1k 3/132.5/8.0 1/160.0/9.0 2/142.0/8.0 0/165.0/8.0 2/132.0/7.0 8/731.5/40.0

5k 3/90.0/1.0 3/114.0/5.0 0/102.5/3.0 4/105.5/5.0 5/100.5/3.0 15/512.5/17.0

10k 1/125.5/6.0 1/129.0/7.0 3/112.0/6.0 1/118.5/7.0 3/118.5/6.0 9/603.5/32.0

25k 3/103.5/3.0 0/151.0/8.0 2/109.0/5.0 1/108.5/6.0 2/105.0/4.0 8/577.0/26.0

50k 4/99.0/2.0 1/106.5/4.0 4/85.5/1.0 4/83.0/2.0 1/92.5/2.0 14/466.5/11.0

250k 0/128.0/7.0 0/98.5/3.0 3/126.0/7.0 8/71.0/1.0 5/87.0/1.0 16/510.5/19.0

500k 2/115.0/5.0 3/88.0/2.0 1/104.0/4.0 4/102.0/4.0 1/110.5/5.0 11/519.5/20.0

1.5M 4/108.5/4.0 8/72.0/1.0 4/87.0/2.0 0/101.0/3.0 2/136.5/8.0 18/505.0/18.0

6.7M 0/168.0/10.0 4/116.0/6.0 2/179.0/10.0 0/185.0/10.0 1/156.5/9.0 7/804.5/45.0

BERTweet

0.5k 1/142.0/7.0 0/166.5/8.0 0/169.0/9.0 0/174.0/8.0 1/153.0/8.0 2/804.5/40.0

1k 7/79.5/2.0 2/112.0/6.0 3/89.0/3.0 0/99.5/4.0 4/74.0/2.0 16/454.0/17.0

5k 4/71.0/1.0 5/80.0/3.0 3/74.0/1.0 12/39.5/1.0 10/53.0/1.0 34/317.5/7.0

10k 3/89.5/3.0 5/79.0/2.0 4/95.0/5.0 1/76.5/3.0 3/83.0/3.0 16/423.0/16.0

25k 1/94.0/4.0 1/73.5/1.0 3/77.0/2.0 5/71.0/2.0 0/108.5/4.0 10/424.0/13.0

50k 2/110.5/5.0 4/96.5/4.0 6/94.0/4.0 2/117.0/6.0 3/122.5/6.0 17/540.5/25.0

250k 2/116.5/6.0 1/106.0/5.0 0/126.5/6.0 0/116.0/5.0 0/136.0/7.0 3/601.0/29.0

500k 0/163.0/8.0 0/135.5/7.0 1/151.5/7.0 2/135.5/7.0 1/121.0/5.0 4/706.5/34.0

1.5M 0/173.0/10.0 1/170.0/9.0 0/175.0/10.0 0/178.0/9.0 0/169.0/9.0 1/865.0/47.0

6.7M 2/171.0/9.0 0/191.0/10.0 2/159.0/8.0 0/203.0/10.0 0/190.0/10.0 4/914.0/47.0

Bold values indicate the best results
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Table 27 Best results achieved for each dataset by adapting the Transformer-based models with different
samples of generic tweets

Dataset Accuracy F1-macro

% Classifier Model % Classifier Model

Iro 82.30 MLP BERTweet-50K 75.87 LR BERT-500K

Sar 77.32 SVM BERT-50K 75.85 SVM BERT-50K

Ntu 94.38 SVM BERTweet-1.5M 94.26 SVM BERTweet-1.5M

S15 94.18 MLP BERTweet-1K 86.22 MLP BERTweet-1K

Stm 93.04 SVM BERTweet-5K 93.02 SVM BERTweet-5K

Per 89.51 LR BERTweet-10K 87.53 LR BERTweet-10K

Hob 89.83 MLP BERTweet-50K 88.30 MLP BERTweet-50K

Iph 88.16 MLP RoBERTa-25K 85.85 MLP RoBERTa-25K

Mov 93.29 MLP BERTweet-50K 88.27 LR BERTweet-50K

San 91.83 LR BERTweet-10K 91.77 LR BERTweet-10K

Nar 97.04 MLP BERTweet-1K 96.91 MLP BERTweet-1K

Arc 92.08 LR BERTweet-25K 91.92 LR BERTweet-25K

S18 90.48 SVM BERTweet-10K 90.40 SVM BERTweet-10K

OMD 88.99 SVM BERTweet-5K 88.17 SVM BERTweet-5K

HCR 82.18 XGB RoBERTa-1K 78.18 LR BERTweet-250K

STS 95.38 MLP BERTweet-50K 94.59 MLP BERTweet-50K

SSt 89.60 SVM BERTweet-10K 89.36 SVM BERTweet-10K

Tar 87.83 SVM BERTweet-1K 87.82 SVM BERTweet-1K

Vad 92.80 LR BERTweet-1K 91.64 LR BERTweet-1K

S13 90.70 LR BERTweet-5K 88.59 LR BERTweet-5K

S17 93.49 SVM BERTweet-10K 93.07 SVM BERTweet-10K

S16 91.98 SVM BERTweet-5K 90.30 SVM BERTweet-5K

Table 28 Top 10 results achieved for combinations of Transformer-basedmodels and classifiers by adapting
the Transformer-based models with different samples of generic tweets

Accuracy F1-macro

Model Classifier Avg. rank pos. Model Classifier Avg. rank pos.

BERTweet-5K LR 11.95 BERTweet-5K LR 11.18

BERTweet-5K MLP 14.05 BERTweet-25K SVM 13.43

BERTweet-25K MLP 14.64 BERTweet-10K SVM 13.95

BERTweet-25K LR 16.14 BERTweet-10K LR 14.2

BERTweet-50K MLP 16.43 BERTweet-25K LR 14.32

BERTweet-1K MLP 16.77 BERTweet-1K LR 15.11

BERTweet-10K LR 16.82 BERTweet-5K MLP 15.95

BERTweet-25K SVM 17.02 BERTweet-25K MLP 16.11

BERTweet-1K LR 17.68 BERTweet-50K LR 16.8

BERTweet-10K SVM 17.93 BERTweet-50K SVM 17.43
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Table 29 Top 10 results achieved by adapting the Transformer-based models with different samples of
generic tweets, in terms of the average rank position

Accuracy F1-macro

Model Avg. rank pos. Model Avg. rank pos.

BERTweet-5K 37.76 BERTweet-5K 40.13

BERTweet-10K 40.81 BERTweet-10K 43.27

BERTweet-25K 41.24 BERTweet-25K 43.8

BERTweet-1K 43.09 BERTweet-1K 44.78

BERTweet-50K 45.22 BERTweet-50K 47.42

BERTweet-250K 48.65 BERTweet-250K 50.19

BERTweet-500K 53.96 BERTweet-500K 55.59

BERTweet-0.5K 58.0 BERTweet-0.5K 59.59

BERTweet-1.5M 66.63 BERTweet-1.5M 66.48

BERTweet-6.7M 71.09 BERTweet-6.7M 70.46

Table 30 Summary of the
results for each classifier, from
best to worst, by adapting the
Transformer-based models with
samples of generic tweets, in
terms of the average rank
position

Accuracy F1-macro

Classifier Avg. rank pos. Classifier Avg. rank pos.

MLP 48.52 LR 48.71

LR 53.17 MLP 49.92

SVM 70.74 SVM 60.83

XGB 84.9 XGB 93.16

RF 120.18 RF 124.87

formance by using smaller samples of tweets as compared to BERT and RoBERTa.
Our hypothesis is that, considering that the weights in BERTweet’s layers are specifi-
cally adjusted to fit tweets’ language style, using more data to adapt the model means
only continue the initial training. It may be that lots of data may harm the learned
weights of the model. Thus, we suggest that when employ adaptive pretraining in
Transformer-based models, such as BERT, RoBERTa, and BERTweet, samples of dif-
ferent sizes may be exploited instead of adopting a dataset with a massive number of
instances.

Additionally, we present a comparison among all adapted Transformer-based mod-
els against their original versions. Tables 31, 32, and 33 report this comparison in
terms of the average rank position for BERT, RoBERTa, and BERTweet, respectively.
We can see that the adapted versions achieved meaningful predictive performances as
compared to their original models, which indicates that adaptive pretraining strategies
can boost classification performance in Twitter sentiment analysis. Moreover, from
Tables 31 and 32, we note that the adapted versions of BERT and RoBERTa benefited
most from samples containing a large amount of tweets. Conversely, as pointed out
before, BERTweet achieved better overall performances by using smaller samples, as
shown in Table 33.
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Table 31 Comparison among all adapted BERT models and BERT’s original version (no adaptation), in
terms of the average rank position

Accuracy F1-macro

Model Avg. rank pos. Model Avg. rank pos.

BERT-250K 25.62 BERT-250K 25.62

BERT-5K 26.95 BERT-1.5M 26.45

BERT-1.5M 26.96 BERT-6.7M 26.69

BERT-500K 27.09 BERT-500K 26.7

BERT-6.7M 27.67 BERT-5K 27.69

BERT-0.5K 28.16 BERT-50K 28.36

BERT-50K 28.38 BERT-0.5K 28.4

BERT-1K 28.46 BERT-1K 28.95

BERT-10K 29.52 BERT (original) 29.5

BERT (original) 29.52 BERT-10K 29.68

BERT-25K 29.66 BERT-25K 29.95

Table 32 Comparison among all adapted RoBERTa models and RoBERTa’s original version (no adapta-
tion), in terms of the average rank position

Accuracy F1-macro

Model Avg. rank pos. Model Avg. rank pos.

RoBERTa-50K 24.34 RoBERTa-50K 24.24

RoBERTa-500K 24.69 RoBERTa-1.5M 24.61

RoBERTa-1.5M 24.82 RoBERTa-500K 24.95

RoBERTa-5K 25.44 RoBERTa-5K 25.54

RoBERTa-250K 25.53 RoBERTa-250K 25.66

RoBERTa-25K 26.49 RoBERTa-25K 27.05

RoBERTa-10K 27.28 RoBERTa-10K 27.50

RoBERTa-1K 29.84 RoBERTa-1K 29.65

RoBERTa-0.5K 32.01 RoBERTa-0.5K 31.78

RoBERTa-6.7M 32.75 RoBERTa-6.7M 31.96

RoBERTa (original) 34.81 RoBERTa (original) 35.06

Addressing research question RQ3, we could see that adaptive pretraining of
Transformer-based models improves the classification effectiveness in Twitter sen-
timent analysis. Nevertheless, using large sets of tweets does not guarantee better
predictive performances, particularly for those models trained from scratch on tweets,
such as BERTweet. We could observe that BERTweet benefited most from samples of
tweets containing 50K tweets or less. Furthermore, regarding the classifiers, in general,
MLP and LR seem to be good choices of classifiers to be employed after extracting
the features from adapted Transformer-based models.
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Table 33 Comparison among all adapted BERTweet models and BERTweet’s original version (no adapta-
tion), in terms of the average rank position

Accuracy F1-macro

Model Avg. rank pos. Model Avg. rank pos.

BERTweet-5K 20.74 BERTweet-5K 21.38

BERTweet-25K 22.62 BERTweet-25K 22.94

BERTweet-10K 22.85 BERTweet-10K 23.10

BERTweet-1K 23.73 BERTweet-1K 23.93

BERTweet-50K 25.25 BERTweet-50K 25.55

BERTweet-250K 26.67 BERTweet-250K 26.66

BERTweet-500K 30.31 BERTweet-500K 30.48

BERTweet-0.5K 31.70 BERTweet-0.5K 31.72

BERTweet (original) 33.80 BERTweet (original) 33.35

BERTweet-1.5M 34.80 BERTweet-1.5M 34.05

BERTweet-6.7M 35.53 BERTweet-6.7M 34.85

7 Adapting transformer-basedmodels to sentiment datasets

The experiments conducted in this section aim at answering the research question
RQ4, stated as follows:

RQ4 Can Transformer-based autoencoder models benefit from a second phase of
adaptive pretraining procedure with tweets from sentiment analysis datasets?

Weaddress this research question by evaluatingwhether the sentiment classification
of tweets benefits from adapting language models to tweets from sentiment analysis
datasets. For this purpose, we use the same collection of 22 benchmark datasets pre-
sented in Sect. 3.1 (Table 1). We perform this evaluation by assessing three distinct
strategies to simulate three real-world scenarios. In addition, as done in Sect. 6, all
experiments were performed three times using different seeds (12, 34, 56), with all
the same hyperparameter and we report the average of the results.

The first adaptation strategy we investigate, referred to as InData, simulates the
usage of a specific sentiment dataset itself as the new domain dataset to adapt a pre-
trained languagemodel. Precisely, each one of the 22 datasets is used once as the target
dataset. For each of the 22 datasets, we use a 10-fold cross-validation procedure. In
each of the ten executions, we use the tweets from nine folds as the source data (i.e.,
the training data) used to adjust a language model, which is then validated on the one
remaining part of the data, referred to as the target dataset (i.e., the test data).

The second strategy, referred to as LOO (LeaveOne dataset Out), aims at simulating
the situation where a collection of general sentiment datasets is available to adapt the
language model. We use each dataset once as the target dataset while the tweets from
the remaining 21 datasets are combined to adjust the language model. Although the
target dataset contains sentiment labels for each tweet, these labels are not used in the
adaptation process as we leverage the intermediate self-supervised masked language
model task to tune the network parameters.
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The third and last strategy, referred to as AllData, is a combination of the two
others. Specifically, as for strategy InData, for each assessed dataset (target dataset),
and for each of the nine folds in the 10-fold cross-validation procedure, we combine
the tweets from the nine folds (i.e., the training data of the target dataset) with the
tweets from the remaining 21 datasets to adapt the language model. This last strategy
evaluates the benefits of combining the tweets from a specific sentiment target dataset
with a representative general sentiment dataset corpus in the adaptation process.

Tables 34, 35, and 36 present the predictive performances achieved by adapting
BERT, RoBERTa, and BERTweet, respectively, with strategies InData, LOO, and
AllData, one at a time, by using the SVM classifier. As in previous sections, for space
constraints, we only report the detailed evaluation using the SVM classifier.

From Table 34, we can observe that, although BERT seems to benefit most from
strategy InData, which uses only the target dataset itself to adjust the language models,
the Friedman and the Nemenyi tests did not detect any significant differences between
strategies InData, LOO, and AllData. Regarding RoBERTa and BERTweet models
(Tables 35 and 36, respectively), adapting them using strategies that combine tweets
from distinct sentiment analysis corpora achieved the best results for most datasets.
More clearly, AllData, which combines the tweets from the target dataset and tweets
from a collection of sentiment datasets, achieved the best overall results with both
RoBERTa and BERTweet. As a matter of fact, the Friedman and the Nemenyi tests
indicate that strategyAllDatawithRoBERTa outperformed strategy InDatawith statis-
tical difference between them. Similarly, strategies AllData and LOO with BERTweet
are significantly better than strategy InData. It is also noteworthy that smaller datasets
seem to have benefitedmost from adapting RoBERTa andBERTweet by using strategy
LOO.On the other hand, larger datasets achieved higher predictive performanceswhen
using strategy AllData to fine-tune RoBERTa and BERTweet. Tables 37 and 38 show a
summary of the complete evaluation regarding all classifiers in terms of classification
accuracy and F1-macro, respectively.

Regarding the overall results achieved for each dataset, Table 39 presents the
best results. We can note that when adapting the Transformer-based models with
tweets from sentiment datasets, BERTweet outperformed BERT and RoBERTa for
all datasets, except for datasets sarcasm (sar) and hobbit (hob). Interestingly, as men-
tioned before, while strategy LOO achieved the best results for smaller datasets, larger
datasets seem to benefit from strategy AllData. Precisely, strategy AllData achieved
the best overall performances in ten out of the 22 datasets in terms of accuracy and in
11 out of the 22 datasets in terms of F1-macro. Strategy LOO achieved the best results
in nine out of the 22 datasets for both accuracy and F1-macro. The better performance
of the AllData strategy for larger target datasets indicates that the significant amount
of information present in the target dataset is indispensable for the adaptation process,
while the information present in smaller datasets seems not to contribute to the adap-
tation process, making the LOO strategy adequate for datasets with a limited amount
of tweets.

Conversely, strategy InData did not achieve meaningful results. The inferior per-
formance of the InData strategy in almost all datasets shows that, regardless of the size
of the dataset, the use of external and more extensive data brings more information to
the adaptation process, improving the final performance.
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Table 34 Accuracies and F1-macro scores (%) achieved by evaluating BERT with adaptation strategies
InData, LOO, and AllData using the SVM classifier

Dataset Accuracy F1-macro

AllData LOO InData AllData LOO InData

Iro 74.40 78.81 67.90 65.40 70.55 59.60

Sar 71.0 70.18 64.10 68.50 68.58 60.20

Ntu 85.00 82.74 88.10 84.70 82.39 87.80

S15 89.70 88.14 89.80 77.50 77.11 77.80

Stm 88.80 90.25 89.90 88.70 90.24 89.80

Per 84.40 85.66 82.00 82.20 83.49 80.00

Hob 84.60 84.46 82.30 82.90 83.08 80.70

Iph 82.70 83.09 83.00 80.80 81.07 81.40

Mov 85.80 86.46 84.60 79.40 80.14 78.10

San 87.60 87.49 87.80 87.50 87.43 87.70

Nar 92.20 92.50 94.90 92.00 92.25 94.70

Arc 89.10 88.42 89.90 88.90 88.20 89.80

S18 87.70 87.36 89.70 87.60 87.26 89.60

OMD 85.90 85.73 87.30 85.00 84.74 86.40

HCR 79.30 79.03 79.60 75.70 75.25 75.90

STS 91.70 90.71 93.50 90.50 89.35 92.60

SSt 84.70 84.71 87.50 84.30 84.39 87.20

Tar 85.70 86.24 86.90 85.70 86.23 86.90

Vad 89.90 90.16 91.50 88.50 88.84 90.30

S13 87.50 87.60 88.70 85.20 85.31 86.60

S17 91.80 91.56 92.90 91.30 91.04 92.40

S16 89.50 89.07 90.70 87.40 86.93 88.80

#wins 2 5 15 0 6 16

Rank sums 49.0 49.0 34.0 51.0 48.0 33.0

Position 2.5 2.5 1.0 3.0 2.0 1.0

Bold values indicate the best results

Next, we present an overall evaluation of combining all adapted models and classi-
fiers across the 22 datasets, in terms of the average rank position. Table 40 reports the
top ten results among all 45 possible combinations (3 language models× 3 adaptation
strategies × 5 classification algorithms). We can observe that the LR classifier trained
with BERTweet embeddings adapted via strategy AllData achieved the best overall
predictive performances. Also, note that the fine-tuned BERTweet embeddings with
strategies AllData and LOO, combined with LR, MLP, and SVM, appear at the top
of the ranking (top six results). Another point worth highlighting is that BERTweet
masters the top ten results, appearing in eight out of the ten positions in terms of
accuracy and in nine out of the ten positions in terms of F1-macro.

Tables 41 and 42 show the results among all adapted models and a summary of the
results for each classifier, from best to worst, respectively, in terms of the average rank

123



364 S. Barreto et al.

Table 35 Accuracies and F1-macro scores (%) achieved by evaluating RoBERTa with adaptation strategies
InData, LOO, and AllData using the SVM classifier

Dataset Accuracy F1-macro

AllData LOO InData AllData LOO InData

Iro 46.70 46.67 46.70 31.00 31.00 31.00

Sar 64.00 65.00 64.00 52.90 53.49 54.20

Ntu 84.30 83.48 81.20 83.90 83.07 80.80

S15 87.20 86.31 86.20 74.90 74.28 72.40

Stm 90.00 90.25 87.60 89.90 90.21 87.60

Per 71.10 70.38 65.50 70.20 69.17 64.90

Hob 72.80 73.94 71.30 71.90 73.10 70.50

Iph 79.90 78.96 78.60 78.60 77.72 77.20

Mov 81.50 79.87 72.10 75.30 74.01 66.50

San 87.50 87.17 85.50 87.40 87.04 85.30

Nar 93.10 92.50 92.10 92.90 92.35 91.90

Arc 89.40 89.47 89.00 89.30 89.27 88.70

S18 88.40 88.54 88.00 88.30 88.44 87.80

OMD 85.60 84.58 85.70 84.50 83.60 84.70

HCR 76.90 76.04 78.10 73.20 72.59 74.20

STS 92.60 92.13 91.50 91.60 90.97 90.30

SSt 86.40 85.63 85.90 86.10 85.41 85.70

Tar 85.90 85.87 86.30 85.90 85.85 86.30

Vad 89.80 89.37 89.90 88.60 88.10 88.60

S13 86.60 86.41 86.10 84.60 84.41 83.90

S17 92.00 91.71 91.60 91.50 91.21 91.10

S16 89.50 89.71 89.30 87.60 87.75 87.40

#wins 12 6 5 13 4 5

Rank sums 33.0 44.0 55.0 32.5 45.0 54.5

Position 1.0 2.0 3.0 1.0 2.0 3.0

{AllData} � {InData}
Bold values indicate the best results

position. Once again, from Table 41, we can notice that all BERTweet adapted models
(InData, LOO, andAllData)were ranked in the top three results. Among the classifiers,
as we can see in Table 42, MLP and LR achieved the best predictive performances and
were ranked as the top two best classifiers. Conversely, RF was ranked as the worst
classifier.

To evaluate the effectiveness of adapting the Transformer-based models using
tweets from sentiment datasets, we present a comparison among all the adaptation
strategies assessed in this study for each language model. Specifically, we compare
the adapted models presented in this section, by using strategies InData, LOO, and
AllData, against the best adapted models identified in Sect. 6, i.e., BERT-250K,
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Table 36 Accuracies and F1-macro scores (%) achieved by evaluating BERTweet with adaptation strategies
InData, LOO, and AllData using the SVM classifier

Dataset Accuracy F1-macro

AllData LOO InData AllData LOO InData

Iro 74.60 83.10 66.70 66.50 77.24 60.10

Sar 68.60 67.50 61.80 65.50 64.32 56.40

Ntu 92.10 93.54 90.10 91.80 93.33 89.80

S15 90.70 92.84 90.20 80.00 84.76 78.60

Stm 92.70 92.75 90.50 92.60 92.73 90.50

Per 86.10 86.55 82.50 84.10 84.48 80.70

Hob 87.10 87.17 82.50 85.60 85.62 80.80

Iph 85.10 83.48 83.30 83.50 81.79 81.80

Mov 89.90 88.42 87.00 84.50 81.99 80.90

San 91.40 91.34 89.00 91.40 91.27 88.90

Nar 97.00 96.66 96.20 96.80 96.54 96.00

Arc 91.40 90.57 90.70 91.30 90.40 90.50

S18 90.90 90.26 90.60 90.80 90.19 90.50

OMD 89.20 89.77 88.40 88.40 88.99 87.50

HCR 81.50 81.27 80.40 77.90 77.79 76.70

STS 95.20 94.99 94.70 94.50 94.21 93.90

SSt 89.10 88.51 88.80 88.90 88.25 88.50

Tar 87.70 87.63 87.30 87.70 87.62 87.30

Vad 92.50 92.73 92.30 91.40 91.70 91.20

S13 90.00 89.52 89.40 88.00 87.49 87.40

S17 93.60 93.59 93.20 93.10 93.17 92.80

S16 91.80 91.62 91.50 90.10 89.90 89.80

#wins 14 8 0 13 9 0

Rank sums 30.0 39.0 63.0 31.0 39.0 62.0

Position 1.0 2.0 3.0 1.0 2.0 3.0

{AllData, LOO} � {InData}
Bold values indicate the best results

RoBERTa-50K, and BERTweet-5K. Table 43 reports these results in terms of the
average rank position for BERT, RoBERTa, and BERTweet.

Regarding BERT, as shown in Table 43, note that all the adaptation strategies using
tweets from sentiment datasets achieved better overall results than using the sample
of 250K generic tweets. Moreover, strategy InData appears at the top of the ranking as
the best adaptation strategy. It is worth mentioning that strategy InData uses only the
tweets from the target dataset itself to adjust the language model. This means that the
strategy InData used a number of tweets much smaller than the 250K tweets contained
in the sample. On the other hand, strategy InData did not achievemeaningful results for
RoBERTa and BERTweet models. Nevertheless, for these models, strategies AllData
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Table 41 Comparison among all adapted Transformer-based models using strategies InData, LOO, and
AllData, in terms of the average rank position

Accuracy F1-macro

Model Avg. rank pos. Model Avg. rank pos.

BERTweet-AllData 12.99 BERTweet-AllData 13.51

BERTweet-LOO 14.04 BERTweet-LOO 14.46

BERTweet-InData 19.59 BERTweet-InData 19.95

RoBERTa-AllData 22.76 RoBERTa-AllData 22.70

RoBERTa-LOO 24.46 RoBERTa-LOO 24.00

BERT-InData 24.53 BERT-InData 24.32

RoBERTa-InData 27.90 RoBERTa-InData 27.70

BERT-AllData 30.12 BERT-AllData 29.85

BERT-LOO 30.61 BERT-LOO 30.51

Table 42 Summary of the
results for each classifier, from
best to worst, by adapting the
Transformer-based models using
strategies InData, LOO, and
AllData, in terms of the average
rank position

Accuracy F1-macro

Classifier Avg. rank pos. Classifier Avg. rank pos.

MLP 14.83 LR 14.41

LR 15.73 MLP 15.28

SVM 22.42 SVM 19.77

XGB 25.70 XGB 28.13

RF 36.32 RF 37.41

and LOO, which also use tweets from sentiment datasets, achieved rather comparable
performances and were ranked as the top two best adaptation strategies.

To acknowledge the effectiveness of adapting the Transformer-based models to
tweets from sentiment datasets, i.e., using the strategies InData, LOO, and AllData,
we present an overall comparison among these strategies and the 47 models assessed
in this study (Sects. 4, 5, and 6). Tables 44 and 45 present, respectively, the ten best
and the ten worst combinations of models and classifiers, in terms of the average rank
position, regarding all 280 combinations of models and classifiers (56 models and five
classifiers). We note that BERTweet tuned with tweets from sentiment datasets and
combinedwith LR andMLP had the four best results, in terms of accuracy, and the two
best results, in terms of F1-macro. These combinations were followed by BERTweet
tuned with generic tweets. More specifically, combinations with the strategy AllData
and LOO achieved better overall results. Independently of the languagemodel, LR and
MLPwere themost frequent classifier in the top 10 results. Conversely, all the tenworst
combinations are static representations combined with RF, which was unanimous in
the worst model and classifier combinations.

Disregarding the classifiers, Tables 46 and 47 present the top ten and the bottom ten
models, respectively, by comparing all 56 word representations assessed in this study
(14 static representations + 3 Transformer-based models + 30 models adapted with
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Table 43 Comparison among the adapted models by using strategies InData, LOO, and AllData, against
the best adapted models with different samples of generic tweets

Accuracy F1-macro

Model Avg. rank pos. Model Avg. rank pos.

BERT

BERT-InData 8.04 BERT-InData 8.10

BERT-AllData 10.61 BERT-AllData 10.66

BERT-LOO 11.24 BERT-LOO 11.29

BERT-250K 12.12 BERT-250K 11.95

RoBERTa

RoBERTa-AllData 8.81 RoBERTa-AllData 8.85

RoBERTa-LOO 9.89 RoBERTa-LOO 9.84

RoBERTa-50K 11.61 RoBERTa-50K 11.52

RoBERTa-InData 11.68 RoBERTa-InData 11.80

BERTweet

BERTweet-AllData 9.00 BERTweet-AllData 9.11

BERTweet-LOO 9.76 BERTweet-LOO 9.76

BERTweet-5K 10.19 BERTweet-5K 10.20

BERTweet-InData 13.05 BERTweet-InData 12.93

samples of generic tweets + 9 models tuned with sentiment datasets). From Table 46,
we can acknowledge the good performance of adapting the Transformer-basedmodels
using tweets from sentiment datasets. Specifically, the adapted BERTweet models
using strategies AllData and LOO appear at the top of the ranking as the two best
models. We can also notice that adapting BERTweet with generic tweets results in
performance improvement to BERTweet. Regarding the bottom ten models, from
Table 47, we can see that all of them are static representations.

Lastly, regarding researchquestionRQ4,wecanhighlight that adaptingTransformer-
based models using tweets from sentiment datasets seems to boost classification
performance in Twitter sentiment analysis. As a matter of fact, the strategies AllData
and LOO exploited in this section, which use a collection of sentiment tweets to adjust
a language model, achieved better overall results than using samples of unlabeled, or
generic unlabeled, tweets. Although we do not use the labels of those tweets in the
adaptation procedure, theymay carry a lot of sentiment information as compared to the
tweets from the Edinburgh corpus, which originated the samples of generic unlabeled
tweets used in the experiments. Furthermore, BERTweet embeddings adapted with the
AllData strategy seems to be very effective in determining the sentiment expressed in
tweets, especially when used to train LR, MLP, and SVM classifiers.
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Table 46 Top 10 models among the 56 word representation models assessed in this study, in terms of the
average rank position

Accuracy F1-macro

Model Avg. rank pos. Model Avg. rank pos.

BERTweet-AllData 53.83 BERTweet-AllData 60.67

BERTweet-LOO 56.52 BERTweet-LOO 62.59

BERTweet-5K 60.56 BERTweet-5K 66.21

BERTweet-25K 65.38 BERTweet-25K 71.07

BERTweet-10K 65.51 BERTweet-10K 71.17

BERTweet-1K 68.59 BERTweet-1K 73.32

BERTweet-50K 72.31 BERTweet-50K 77.50

BERTweet-250K 78.13 BERTweet-250K 82.90

BERTweet-InData 83.80 BERTweet-InData 87.93

BERTweet-500K 86.10 BERTweet-500K 90.85

Table 47 Bottom 10 models among the 56 word representation models assessed in this study, in terms of
the average rank position

Accuracy F1-macro

Model Avg. rank pos. Model Avg. rank pos.

SSWE 209.69 w2v-GN 204.38

GloVe-TWT 215.62 GloVe-TWT 207.22

DeepMoji 217.13 DeepMoji 208.08

EWE 217.46 EWE 208.43

TF-IDF 220.83 GloVe-WP 215.45

BERT-static 224.61 FastText 218.05

GloVe-WP 225.94 BERT-static 218.40

FastText 227.80 w2v-Araque 222.85

w2v-Araque 230.56 TF-IDF 224.34

BERTweet-static 244.21 BERTweet-static 237.01

8 Conclusions and future works

In this article, we presented an extensive assessment of modern and classical word
representations when used for the task of Twitter sentiment analysis. Specifically, we
assessed the classification performance of 14 static representations, the most recent
Transformer-based autoencoder models, including BERT, RoBERTa, and BERTweet,
as well as different adaptation strategies of the language representation tasks in such
models. All models were evaluated in the context of Twitter sentiment analysis using a
rich set of 22 datasets and five classifiers from distinct natures. The main focus of this
study was on identifying the most appropriate word representations for the sentiment
analysis of English tweets.
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Based on the results of the experiments performed in this study, we can highlight
the following conclusions and recommendations:

– Considering a limited computing resource scenario where static representations
could play an important role, we noticed that Emo2Vec, w2v-Edin, and RoBERTa
models seem to be well-suited static representations for determining the sentiment
expressed in tweets. Although there is no significant difference between them,
they are significantly better than many of the other assessed static representations.
The good performance achieved by Emo2Vec and w2v-Edin indicates that being
trained from scratch with tweets can boost the classification performance of static
representations when applied in Twitter sentiment analysis. Although RoBERTa
was not trained from stratch with tweets, it is a Transformer-based autoencoder
model, which holds state-of-the-art performance in several NLP tasks. Regard-
ing the classifiers, we could see that SVM and MLP achieved the best overall
performances, especiallywhen used to trainRoBERTa’s static embeddings. Never-
theless, in such scenario,we acknowledge that there is no global optimum language
model. In that case, when implementing a classification system, we recommend
the user to perform an assessment of RoBERTa, Emo2Vec, andw2v-Edin language
models. Moreover, we suggest analyzing combinations of those language models
with SVM and MLP classifiers.

– Regarding the Transformer-based models, we observed that BERTweet is the most
appropriate language model to be used in the sentiment classification of tweets,
achieving significantly better results than RoBERTa and BERT. Specifically, the
particular vocabulary tweets contain, combined with a language model that was
trained focused on learning their intrinsic structure, can effectively improve the
performance of the Twitter sentiment analysis task. Considering the combination
of language models and classifiers, we can point out that BERTweet achieved the
best overall results when combined with LR andMLP. Furthermore, by comparing
the Transformer-based models and the static representations, we could notice that
the adaptation of the tokens’ embeddings to the context they appear performed
by the Transformer-based models benefits the sentiment classification task. In
this context, considering a scenario where the availability of computing resources
would not be an issue, we recommend BERTweet as the language model to be
adopted in aTwitter sentiment classification system, beingLRandMLP reasonable
choices of classifiers.

– When adapting the Transformer-based pre-trained models to a large set of English
unlabeled tweets, we noticed that although it improves the classification perfor-
mance, using as many tweets as possible does not necessarily mean better results.
Based on that, we presented an extensive evaluation of sets of tweets with dif-
ferent sizes, varying from 0.5K to 1.5M. These results have shown that while
BERT and RoBERTa achieved better predictive performances when tuned with
sets of 250K and 50K tweets, respectively, BERTweet outperformed all adapted
models using only 5K tweets. Although the Friedman and the Nemenyi tests did
not detect any significant difference among these results, we believe that models
trained from scratch with tweets, such as BERTweet, need fewer tweets to improve
their performance.Moreover, by comparing all adaptedmodels taking into account
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the classifiers, BERTweet combined with MLP, LR, and SVM achieved the best
overall performances. In this context, if adapting a language model is an option,
having enough computing resources at hand as well as a considerable amount of
English unlabeled tweets, we recommend that the user evaluate the performance
of a Twitter sentiment classification system by trying sets of tweets with different
sizes. Besides, we suggest the usage of BERTweet as the language model.

– Analyzing the adaption of the languagemodel based onTransformers autoencoders
with sentiment analysis datasets, i.e., with tweets that express polarity, we can see
that the adapted models’ performance is better than when adapted with generic
tweets. All adaption strategies with sentiment analysis datasets performed better
than the best-tuned models adjusted with generic tweets. We conclude then that
it is worth adapting a model based on Transformer autoencoders using a set of
sentiment tweets. Among the adaption strategies – using sentiment analysis tweets
– explored in the study, it was possible to perceive that each Transformer model
presented a better performance with different adjustment methods. The use of
only the target dataset, for example, was a good option to be used with BERT.
For RoBERTa and BERTweet, the combination of the target dataset with a set of
tweets from other datasets presented a good strategy for adapting the language
model. In a general comparison, we noticed that BERTweet tuned with the union
of the target dataset and the set of sentiment analysis tweets (BERTweet-AllData)
performed better than the other adjusted models. Besides, we could observe that
BERTweet-AllData presented a good performance when combined with LR and
MLP classifiers. Hence, considering a scenario where a specific dataset of English
tweets carrying positive and negative polarities is available for adapting a language
model, we recommend using BERTweet adapted with strategy AllData as the
language model of a sentiment classification system.

– After answering our research questions, we can briefly state that: (i) Transformer-
based autoencoder models perform better than static representation, (ii) Trans-
former autoencoder models adapted to English tweets behavior better than the
respective original models and, finally, (iii) it is worth adapting a language model
originally trained with generic English tweets with tweets from sentiment analysis
datasets. Considering all original and adaptedmodels, the best overall performance
for the English tweets sentiment analysis task was achieved by the Transformer-
Autoencoder model trained from scratch with generic tweets (BERTweet) when
adaptedwith tweets froma target sentiment dataset added by tweets froma large set
of other sentiment datasets. This strategywas calledBERTweet-AllData, whichwe
consider a good suggestion for sentiment classification of English tweets, mainly
when combined with MLP or LR classifiers.

For future work, we plan to investigate other methods for adjusting the language
models, mainly fine-tuning them to the polarity classification as the downstream tun-
ing task. Transformer-Autoencoder pre-trained models, like BERT, RoBERTa and
BERTweet, can have its weights adjusted looking for becoming more accurate in a
specific task, like sentiment analysis. This adjustment is made by adding an extra clas-
sification layer in the top of the model and back-propagating the error in the final task
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through languagemodels’weights.We intend then to compare the best results obtained
in this study with the ones achieved by this specific-task category of fine-tuning.
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