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Abstract
Decision trees are popular classification models, providing high accuracy and intuitive
explanations. However, as the tree size grows the model interpretability deteriorates.
Traditional tree-induction algorithms, such as C4.5 and CART, rely on impurity-
reduction functions that promote the discriminative power of each split. Thus, although
these traditional methods are accurate in practice, there has been no theoretical guaran-
tee that theywill produce small trees. In this paper,we justify the use of a general family
of impurity functions, including the popular functions of entropy and Gini-index, in
scenarios where small trees are desirable, by showing that a simple enhancement can
equip them with complexity guarantees. We consider a general setting, where objects
to be classified are drawn from an arbitrary probability distribution, classification can
be binary or multi-class, and splitting tests are associated with non-uniform costs. As
a measure of tree complexity, we adopt the expected cost to classify an object drawn
from the input distribution, which, in the uniform-cost case, is the expected number of
tests. We propose a tree-induction algorithm that gives a logarithmic approximation
guarantee on the tree complexity. This approximation factor is tight up to a constant
factor under mild assumptions. The algorithm recursively selects a test that maxi-
mizes a greedy criterion defined as a weighted sum of three components. The first
two components encourage the selection of tests that improve the balance and the
cost-efficiency of the tree, respectively, while the third impurity-reduction component
encourages the selection of more discriminative tests. As shown in our empirical eval-
uation, compared to the original heuristics, the enhanced algorithms strike an excellent
balance between predictive accuracy and tree complexity.
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1 Introduction

Decision trees are known to provide a good trade off between accuracy and inter-
pretability. However, when their size grows, decision trees become harder to interpret,
preventing their deployment in safety-critical applications and in domains where
model transparency is highly valued, such as disease diagnosis. As interpretabil-
ity still remains an ill-defined notion (Lipton 2018), in this paper we consider tree
complexity, a commonly-accepted proxy, to quantify interpretability (Freitas 2014;
Doshi-Velez and Kim 2017). In addition, low tree-complexity promotes cheaper and
faster evaluation. Note that post-pruning techniques, such as the standard minimal
cost-complexity pruning (Breiman et al. 1984), are heuristics performed mainly to
avoid overfitting. Therefore, in order to produce interpretable trees, we aim for an
integrated tree-induction algorithm that considers both the accuracy and complexity
of the inferred trees.

More concretely, given a set of labeled objects (examples) drawn from an arbitrary
probability distribution, our goal is to learn a decision tree that outputs the correct
class of a given input object. Each internal tree node is equipped with a single test,
e.g., a projection split along a feature, and each test is associated with a non-uniform
cost, i.e., the cost of evaluating the outcome of the test. For example, an input object
may represent a person, a test may correspond to a blood sugar test, and one possible
outcome can be “high.” Our aim is to learn trees that are accurate and have low
complexity. The latter complexity objective ismeasured by the expected cost to classify
an object drawn from the input distribution; if all tests incur the same cost, thismeasure
is simply the expected number of tests to classify an object. This complexity measure
reflects a form of “local” interpretability: the more tests are involved in an if-then
rule for a given object, the more obscure the rule becomes to a user (Freitas 2014).
Figure1 helps demonstrating this intuition by juxtaposing two decision trees with
different complexity. Note that non-uniform test costs may arise in different real-
world scenarios; for example, in a medical-diagnosis application some tests can be
significantly more expensive than others.

The problemofminimizing the expected cost of a tree for perfect class identification
has been extensively studied. Typically, the assumption of realizability (or consistency)
is being made, which states that for every two distinct objects there exists at least
one test that can distinguish them. Thus, one can always expand the tree until it
classifies every object in the training data perfectly. Then, the goal is to find the tree
with the minimum expected cost that classifies each object perfectly. Note that, in
practice, the realizability assumption can be easily fulfilled by data preprocessing, as
we demonstrate later in our experiments. When each object belongs to a distinct class,
the problem is referred to as entity identification (EI) (Gupta et al. 2017). Without
this restriction, the problem is called group identification (GI) (Cicalese et al. 2014).
A further generalization that is called adaptive submodular ranking (ASR) (Navidi
et al. 2020) characterizes the tree-building process as interaction among multiple
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(a)

(b)

Fig. 1 Decision trees for predicting if participants would like to see their date again after speed dating.
Each internal node includes the test used and the number of participants in parentheses. Leaf nodes make
a decision

submodular functions, one for each object, and achieves logarithmic approximation
by a greedy algorithm. The above-mentioned works (Gupta et al. 2017; Cicalese et al.
2014; Navidi et al. 2020) consider the problem of building trees for the purposes of
exact identification. They do not consider issues of accuracy and overfitting. In fact,
exact identification on a set of (training) data leads precisely to overfitting.
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The algorithm proposed for the ASR problem by Navidi et al. (2020) provides a
very elegant solution for the identification task it has been designed for. However, in
practice, it is not suitable for classification tasks in the context of statistical learning,
because the chosen tests are geared towards small expected cost and are not necessar-
ily discriminative. Discriminative power is generally measured by the homogeneity
of the target variable within a tree node, and is essential for the generalization of
model performance over unseen data. Their method selects splits that minimize the
number of heterogeneous pairs (also known as impure pairs) of objects (Golovin et al.
2010; Cicalese et al. 2014). In Section A we provide a simple example where the
criterion favors a non-discriminative (presumably random) test over a discriminative
one. While random tests lead to a balanced tree with bounded expected depth, they
are not “learning”, that is, no statistical dependence is captured between tests and the
target variable.

On the other hand, traditional decision-tree methods, such as CART (Breiman et al.
1984) and C4.5 (Quinlan 1993), rely on time-tested impurity-reduction heuristics that
yield decision trees with high discriminative power. Although trees produced by these
popular methods are accurate in practice, there has been no guarantee on the size, or
depth, of the resulting trees. Actually, despite the popularity of these methods, their
theoretical properties remain still poorly understood (Bellala et al. 2012; Brutzkus
et al. 2019; Blanc et al. 2020).

In this paper we propose a general family of methods that achieve the best of both
worlds: it produces decision trees having both high accuracy and bounded depth. Our
key discovery is that the ASR framework can be extended to effectively analyze a broad
range of impurity functions for tree induction.

More formally, we introduce the non-overfitting group identification (NGI) prob-
lem, which is a natural generalization of group identification (GI), where we further
allow early termination during tree expansion to avoid overfitting. We propose a novel
greedy algorithm that takes into consideration the impurity reduction andmaintains the
strong approximation guarantee on the complexity of the resulting tree. Specifically,
our greedy algorithm admits the use of a general family of decomposable impurity
functions, which is defined to be in the form of a weighted sum over impurity scores
in each class. This family includes the popular functions of entropy and Gini-index.
Therefore, our approach generalizes many traditional tree-induction algorithms such
as CART and C4.5 into a complexity-aware method.

In concrete, in this paper we make the following contributions.

• We extend the adaptive submodular ranking (ASR) framework of Navidi et al.
(2020) and we propose a novel greedy algorithm to select discriminative tests
for the non-overfitting group identification (NGI) problem. Our algorithm offers an
asymptotically tight approximation guarantee on the complexity of the inferred tree
under mild assumptions.

• We define a general family of decomposable impurity functions, which can be
used by our algorithm as a surrogate for discriminative power. As a result, our
algorithmgeneralizes traditional tree-induction algorithms, such as CART and C4.5,
into complexity-aware methods.
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• We provide a comprehensive experimental evaluation in which we show that the
enhanced C4.5 and CART strike an excellent balance between predictive accuracy
and tree complexity, compared to their corresponding original heuristics. Further-
more, the ASR formulation yields inferior predictive accuracy, compared to other
learning methods. Our implementation is publicly available.1

The rest of the paper is organized as follows. The related work is discussed in
Sect. 2. The necessary notation and the formal definition of the NGI problem are intro-
duced in Sect. 3. The main algorithm and its theoretical analysis follow in Sects. 4
and 5, respectively. Empirical experiments are conducted in Sect. 6, and we conclude
in Sect. 7.

2 Related work

Decision-tree induction. Mainstream algorithms such as C4.5 and CART embrace a
top-down greedy approach.Most of the greedy criteria proposed are essentially ad-hoc
heuristics for measuring the strength of dependence between tests and the class, with
no consideration for tree complexity (Murthy 1998). Theoretical understanding about
such greedy methods is still lacking in the literature. A lower bound on the expected
tree depth for C4.5 that depends on the shape of a given tree has been developed by
Bellala et al. (2012). There also exist some recent results in the field of learning theory
(Brutzkus et al. 2019; Blanc et al. 2020).
Tree complexity Popular measures include the number of nodes in the tree, the tree
height and the expected path length. The first kind of measures are closer to a notion
of “global” interpretability, in the sense that one could inspect the entire tree of a small
size, while the second kind of measures provide a notion of “local” interpretability, in
the sense that one could explain any given object using a small number of tests. Our
choice in the paper, the third kind of a measure, combines elements from both global
and local interpretability. First, it obviously enables a form of local interpretability,
i.e., a guarantee of a small expected number of tests when explaining a given object.
This choice is considered to bemore natural and less strict compared to worst-case tree
height, as it may not be possible to classify every object using a small number of tests.
Second, it also enables a form of global interpretability, as the global model knowledge
is acquired by understanding the decision for every example in the dataset, and also it
leads to smaller trees in general. Unfortunately, these complexity measures are proven
to lead toNP-hard tasks (Hancock et al. 1996; Laurent and Rivest 1976). In particular,
the expected path-lengthmeasurewith an arbitrary probability distribution over objects
does not admit sub-logarithmic approximation (Chakaravarthy et al. 2007).
Identification The entity identification (EI) problem has been investigated in different
contexts, including optimal decision trees, disease/fault diagnosis, and active learn-
ing (Adler andHeeringa 2008; Chakaravarthy et al. 2007; Dasgupta 2005; Garey 1972;
Guillory and Bilmes 2009; Gupta et al. 2017; Kosaraju et al. 1999). A class-based gen-
eralization, the group identification (GI) problem, where objects are partitioned into
groups (classes), has alsobeen studied (Bellala et al. 2012;Cicalese et al. 2014;Golovin

1 https://github.com/Guangyi-Zhang/low-expected-cost-decision-trees.
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et al. 2010). The state-of-the-art method achieves O(log n)-approximation in a gen-
eral setting with an arbitrary object distribution and non-uniform multi-way testing
costs (Cicalese et al. 2014). Our paper further generalizes the latter work by consid-
ering the discriminative power of the selected tests. To the best of our knowledge,
this is the first work to combine identification problems and traditional tree-induction
algorithms.
Stochastic submodular coverage (StoSC) Tree induction can be seen as a sample-
based stochastic submodular-coverage problem (Golovin and Krause 2011; Grammel
et al. 2016), by relating a realization of items in the StoSC problem to an object in
identification problems. The expected cost of a tree is then equivalent to the expected
cost in item selection.
Adaptive submodular ranking (ASR) The ASR problem, proposed by Navidi et al.
(2020), originates from the line of research of min-sum set cover (Feige et al. 2004;
Im et al. 2012), and turns out to generalize the above-mentioned identification prob-
lems (Bellala et al. 2012; Cicalese et al. 2014; Golovin et al. 2010). Our formulation
follows the framework of ASR, and extends its greedy criterion to incorporate an
impurity-reduction component.

3 Problem definition

In this section, we first formalize the non-overfitting group identification (NGI) prob-
lem, and then define a family of decomposable impurity functions for tree induction.

An instance of the NGI problem is specified by a set of objects X = {x1, ..., xn}, a set
of class labels L = {�1, ..., �k}, and a set of tests D = {d1, ..., dm}. The objects in X
are drawn from a probability distribution p, i.e., object x in X occurs with probability
p(x). Each object x ∈ X is associated with a class �(x) in L . A test d ∈ D performed
on an object x ∈ X returns a value d(x) ∈ {1, ..., νd}. We assume that employing test
d incurs cost c(d). For simplicity and without loss of generality, we also assume that
the cost function c takes integral values. A useful quantity in our later analysis is the
minimum object probability pmin = minx∈X p(x). Finally, we assume that a threshold
parameter θ ∈ [0, 1] is given as input, which determines a stopping condition for the
decision-tree construction, as we will see shortly.

We write T (X) to refer to a decision tree built to classify the objects in X . We omit
the reference to the set X when it is clear from the context and just write T . We also
write T (S) to refer to a subtree of the decision tree to classify objects in a node S of
the tree, where S ⊆ X is the subset of objects. Each internal node S is equipped with a
test d in D. Objects in S are partitioned by test d into multiple subnodes according to
their testing outcomes d(x). Using this convention we refer to the root of the decision
tree simply as X , that is, the complete set of objects to be classified by the tree. Finally,
we define p(S) = ∑

x∈S p(x).
We stop splitting a node S ⊆ X in the tree T when either (i) the node S is homo-

geneous, i.e., all objects in S belong to the same class, or (i i) the probability p(S) is
no greater than the threshold parameter θ , for instance, in the case of uniform p, the
node S has at most θn objects. As a surrogate for homogeneity, we adopt a function
φ over pairs of objects. We define φ(S) to be the number of heterogeneous pairs of
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objects in the node S, i.e., pairs of objects with distinct classes. Note that φ(S) = 0
when S is homogeneous.

As ameasure of complexity for a tree rooted at X , we adopt themeasure of expected
cost, which we denote by c(T (X)). In particular, we define c(T , x) as the cost of
evaluating an object x in T , which is the sum of costs of all tests that x goes through
in T . The expected cost of a tree T for a set of objects X is then defined as c(T (X)) =∑

x∈X p(x) c(T , x).
We are now ready to define the NGI problem.

Problem 1 (Non-overfitting group identification (NCI)) Given a problem instance I =
(X , L, D, �, p, c, θ), with set of objects X , set of class labels L , set of tests D, object
labels �, probability distribution p, cost function c, and a threshold θ , find a tree T (X)

that minimizes the expected cost c(T (X)) and for all leaf nodes S it satisfies either
φ(S) = 0 or p(S) ≤ θ .

TheNGI problemgeneralizes theGI problemby setting θ = 0, and as stated inSect. 2,
the GI problem isNP-hard. Thus,we aim tofind a tree T that is an approximate solution,
i.e., whose cost c(T ) is bounded with respect to the cost c(T ∗) of the optimal tree T ∗.

Our approach draws inspiration from the adaptive submodular ranking (ASR) prob-
lem (Navidi et al. 2020), which can be defined similarly, by replacing each object xi in
X with a non-decreasing submodular function fi : 2D → [0, 1] such that fi (∅) = 0
and fi (D) = 1; recall that D is the set of tests, and thus, each function fi takes as
input a subset of tests. We denote the set of non-decreasing submodular functions by
F = { fi | xi ∈ X}. We again consider a tree, which recursively partitions F . The tests
D and the probability distribution p apply to the set of functions F in the same way
that they apply to their corresponding objects. For example, a function fi evaluated
on a test d ∈ D returns a value d( fi ) = d(xi ), which determines the branch of the
tree that fi will follow. Given a tree T , a function f picks up all tests associated with
the nodes it goes through and is fully covered when it reaches its maximum function
value f (D). Let c(T , f ) be the cost of covering f in T , defined as the sum of costs
of all tests that f goes through in T before it is fully covered. Note that a function
is not necessarily covered in a leaf node, it may be covered in an internal node. The
expected cost of a tree T is defined in a similar manner as for the NGI problem. The
adaptive submodular ranking problem is defined as follows.

Problem 2 (Adaptive submodular ranking (ASR) (Navidi et al. 2020)) Given a prob-
lem instance I = (F, D, p, c), with set of submodular functions F , set of tests D, a
probability distribution p, and cost function c, find a tree T (F) that covers all functions
in F and minimizes the expected cost c(T (F)) = ∑

f ∈F p( f )c(T , f ).

Decomposable impurity functions When constructing decision trees for classifica-
tion tasks, in addition to having small expected cost, the discriminative power of the
selected tests is also vital. A number of different impurity measures have been widely
used in deciding a discriminative test in decision trees, such as entropy andGini index.
Such impurity measures are defined as functions h : [0, 1]k → R+, taking as input the
class distribution at a given tree node. Impurity functions are expected to satisfy cer-
tain conditions (Kearns and Mansour 1999), which capture the notion of “impurity.”
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All impurity functions mentioned in this paper satisfy the following conditions: (1)
they obtain the maximum value if the class distribution is uniform, and the minimum
value zero if a node is pure (i.e., homogeneous); (2) they are concave; and (3) they are
symmetric.

A typical splitting criterion compares the change in impurity before and after per-
forming a test d, defined as h(S) and h(S | d), respectively. The impurity reduction
of a test d on a tree node S is defined as d(S, d) = h(S) − h(S | d). A test that causes
larger impurity reduction is considered more discriminative. Based on the concavity
property of h, it is easy to show that d(S, d) ≥ 0 for any tree node S and test d. We
defer the proof of this claim to the Appendix, Section B.

Before we define a special family of impurity functions for our problem, we first
introduce some additional notation. For a node S of the tree, where S ⊆ X , we define
Sv
d as the child node of S by equipping S with test d and following the branch that takes

on a specific testing value v. In particular, we define S(i)
d = Sv=d(xi )

d . Likewise, we

define S(i)
D′ as the ending node of a path that starts at S ⊆ X and follows a sequence of

nodes each equipped with a test d in D′ ⊆ D by taking on a value of d(xi ). Note that
the order of tests in D′ does not matter in S(i)

D′ . Finally, we denote the total probability
of objects in a specific class � in S as p�(S) = ∑

x∈S:�(x)=� p(x).
We are now ready to define h(S) and h(S | d) for our problem. We require h to

be decomposable, i.e., to be a weighted sum over impurity scores in each class. We
define:

h(S) =
∑

�

p�(S)

p(S)
h�(S) = 1

p(S)

∑

x∈S
p(x)h�(x)(S), (1)

whereh�(S) canbe any function of p�(S)
p(S)

, the proportion of objects of class � in S,which
ensures that h satisfies the three requirements stated above (i.e., (1) being maximized
at uniform class distribution and minimized at homogeneity, (2) concavity, and (3)
symmetry).

A wide range of concave impurity functions adopt such a form. For example, h
becomes the entropy function when h�(S) = − log p�(S)

p(S)
, and it becomes the Gini

index when h�(S) = 1 − p�(S)
p(S)

. With the impurity of a node S defined, h(S | d) is
just a weighted sum of the impurity of all child nodes of S when split by test d, i.e.,

h(S | d) = ∑
v∈[νd ]

p(Sv
d )

p(S)
h(Sv

d ).
A useful quantity for our analysis is the maximum value of h�(x)(S), which we

denote by εh = maxS⊆X maxx∈S h�(x)(S).

4 Algorithm

The main idea of our approach is to cast the NGI problem as an instance of the ASR

problem (Navidi et al. 2020).We achieve this by defining a non-decreasing submodular
function for each object. The ASR problem is solved by a greedy algorithm that picks
tests to maximize the coverage of the submodular functions while encouraging a
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Algorithm 1 Greedy tree-induction algorithm
Input: An instance I = (S, L, D, �, p, c, θ), a set of tests D′ ⊆ D used so far, impurity function h,

trade-off parameter λ ≥ 0
Output: A decision tree T
1: Return a decision tree Tree(I ,∅) 
 A recursive call at the top level with D′ = ∅
2: function Tree(I , D′)
3: if S is homogeneous or p(S) ≤ θ then
4: Return a leaf node S, labeled with its majority class
5: end if
6: for d ∈ D \ D′ do
7: v∗ ← argmaxv∈[νd ] |Sv

d | 
 the largest child node by test value v∗

8: Let Z ′(d) = 1
c(d)

(
p(S) − p(Sv∗

d ) + ∑
i :xi∈S p(xi )

f̃i (D
′∪{d})− f̃i (D

′)
f̃i (D)− f̃i (D′)

)

9: Let Z(d) = Z ′(d) + 1
c(d)

λ p(S)(h(S) − h(S | d))

10: end for
11: d∗ ← argmaxd∈D\D′ Z(d)

12: for v ∈ [νd∗ ] do
13: Tv ← Tree((Sv

d∗ , L, D, �, p, c, θ), D′ ∪ {d∗})
14: end for
15: Return a tree rooted at S with children {Tv} by test d∗
16: end function

balanced partition. We further incorporate the impurity-reduction objective into the
greedy criterion to encourage the selection of discriminative tests, without losing the
approximation guarantee.

Our algorithm for the NGI problem is demonstrated in Algorithm 1. It is a greedy
algorithm, which, at each node S, selects a test d that maximizes a cost-benefit greedy
score Z(d) consisting of the following three terms:

Z(d) = 1

c(d)

⎛

⎜
⎝ B(d)

︸ ︷︷ ︸
balance

+ E(d)
︸ ︷︷ ︸

efficiency

+ λ D(d)
︸ ︷︷ ︸

discrimination

⎞

⎟
⎠ . (2)

The first term, B(d) = p(S) − p(Sv∗
d ), with v∗ = argmaxv∈[νd ] |Sv

d |, is the sum
of the branch probabilities except the largest-cardinality branch. Maximizing B(d)

encourages selecting a test d that yields a balanced split.
The second term,

E(d) =
∑

i :xi∈S
p(xi )

f̃i (D′ ∪ {d}) − f̃i (D′)
f̃i (D) − f̃i (D′)

,

is the re-weighted total sum of the marginal gain in each submodular function, which
we will define for our objects shortly. Maximizing E(d) accelerates the progress
towards termination.

The last term, D(d) = p(S) (h(S) − h(S | d)), is the impurity reductionwe defined
in Sect. 3, which improves the discrimination of the selected test. The user-defined
parameter λ ≥ 0 controls the trade-off between tree complexity and discrimination.
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Oneway to understand the greedy score Z(d) is to view the B and E terms as a regu-
larizer. Notice that maximizing only the first two terms, Z ′(d) = 1

c(d)
(B(d) + E(d))

at Step 8 of Algorithm 1, is exactly the greedy criterion used by Navidi et al. (2020)
to solve the ASR problem.

We finish the description of our method by showing how to define the submodular
function fi for each object xi . We start by defining two monotonically non-decreasing
submodular functions. For each object xi ∈ X , both submodular functions take as
input a subset of tests D′ ⊆ D and return a real value. The first function f pi (D′) is
defined as the scaled total probability of the objects that do not fall into S(i)

D′ , i.e., the
objects that disagree with xi in at least one test in D′ ⊆ D. Note that eventually, only
object xi itself stays in S(i)

D . Formally, we define f pi as

f pi (D′) = (1 − p(S(i)
D′ ))/(1 − p(xi )).

The second function f φ
i (D′) is defined as the number of heterogeneous pairs that

do not fall into S(i)
D′ . Eventually, no heterogeneous pair will exist in S(i)

D and the ending
node is homogeneous. We define

f φ
i (D′) = (φ(X) − φ(S(i)

D′ ))/φ(X).

The target (maximum) values for these two functions are both 1, for each object
xi . Thus, the functions f pi and f φ

i are fully covered for a subset of tests D′ ⊆ D for

which f pi (D′) = 1 and f φ
i (D′) = 1, respectively. It is easy to see that both functions

are submodular and monotonically non-decreasing. When the termination constraint
θ for minimum probability is in place, we use the fact that the monotonicity and
submodularity properties remain valid when truncated by a constant. The truncated
version of the f pi function is defined as

¯f pi (D′) = min
{
(1 − p(S(i)

D′ ))/(1 − max{p(xi ), θ}), 1
}

.

Next we define the disjunction function f̃i of ¯f pi and f φ
i , which remains monoton-

ically non-decreasing and submodular (Deshpande et al. 2016; Guillory and Bilmes
2011). We set

f̃i (D
′) = 1 −

(
1 − ¯f pi (D′)

) (
1 − f φ

i (D′)
)

.

It is easy to see that with a reasonable value of θ (e.g., a multiple of the greatest
common divisor of {p(x)}), the minimum positive incremental value of any element
and any f̃i is

� = min
i∈[n], D′⊆D,

d∈D: f̃i (D′∪{d})> f̃i (D′)

{
f̃i (D

′ ∪ {d}) − f̃i (D
′)
}

= �(pmin/n
2).
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Last, we examine the time complexity of Algorithm 1. The greedy score for a tree
node S with respect to a test can be computed in O(|S|) time. At each level of the
decision tree, the union of disjoint nodes has a total size n. Thus, the worst-case time
complexity isO(Hmn), wherem is the number of tests, n is the number of objects, and
H is the tree height, which is upper bounded by n. In practice, the algorithm is more
efficient than what this worst-case bound suggests; it has the same time complexity as
standard tree-induction algorithms, such as CART.

5 Approximation guarantee

In this section we establish the approximation guarantee of Algorithm 1 for the NGI

problem. Our main result is the following.

Theorem 1 Algorithm 1 provides anO(log 1/pmin+log n+λεh) approximation guar-
antee for the NGI problem.

As a practical consequence of Theorem 1, we have the following corollary, which
is a consequence of the fact that for the popular impurity functions the factor εh in the
approximation ratio of Theorem 1 can be effectively bounded. Note that in practice
pmin ≥ 1/n when given training data of n points, and thusO(log 1/pmin) = O(log n).
We omit the constant λ for simplicity.

Corollary 2 Algorithm 1 provides anO(log 1/pmin + log n) approximation guarantee
for the NGI problem when the impurity function h is either the entropy or the Gini index
function.

Proof In addition to the result of Theorem 1 we can show that εh is small, compared
to the other terms, or bounded by a constant. When h is the entropy function, we have

εh = max
S⊆X

max
x∈S

{
h�(x)(S)

} = max
S⊆X

max
x∈S

{

− log
p�(x)(S)

p(S)

}

≤ − log
minx∈X p(x)

p(X)
= log 1/pmin.

When h is the Gini index function, we have

εh = max
S⊆X

max
x∈S

{
h�(x)(S)

} = max
S⊆X

max
x∈S

{

1 − p�(x)(S)

p(S)

}

≤ 1.


�
Assuming P �= NP, the result given by Theorem 1 is asymptotically the best pos-

sible among instances where 1/pmin is polynomial in n. This follows directly from
the hardness result of the EI problem (Chakaravarthy et al. 2007), which in turn, is
proved via a reduction from the minimum set-cover problem. Recall that by speci-
fying θ to be zero, NGI problem degenerates into EI or GI problems. The constructed
EI instance in their reduction asks for a minimum object probability pmin such that
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1/pmin = 	(n3), and thus if NGI admits o(log 1/pmin) = o(log n) approximation, we
could solve the set-cover problemwith o(log n)-approximation, which is conditionally
impossible (Feige 1998).

Remark 1 The NGI problem does not admit an o(log n) approximation algorithm,
unless P = NP.

5.1 Proof of Theorem 1

Our analysis is similar to the one by Navidi et al. (2020), except that we need a new
proof of their key lemma for our new greedy selection rule (Eq. (2)). This is done
by leveraging the special structure in the family of impurity functions (Eq. (1)) we
employ.

In order to analyze the total cost along a path, we treat cost as discrete “time”— or
continuous time if we allow continuous cost — and we divide time geometrically. We
refer to the decision tree returned by Algorithm 1 as TA, while we refer to the optimal
decision tree as T ∗. We denote the set of internal (i.e., unfinished) nodes up to time t
in TA as C(t), and similarly as C∗(t) in T ∗.

We define Ck = C(γ 2k) and C∗
k = C∗(2k−1), for a constant γ to be defined shortly.

That is, we are interested in the set of unfinished nodes at the end of the k-th geo-
metrically increasing time interval. Notice that the interval length for C is stretched
by a factor of 2γ , compared to C∗. We define p(C(t)) = ∑

S∈C(t) p(S), i.e., the total
probability of unfinished nodes at time t . Note that p(C(t)) is non-increasing as t
grows, and in the case of integral costs we have p(C∗

0 ) = p(C∗(2−1)) = 1, i.e., no test
can be completed within a fractional cost.

The cost of some test may be truncated by the defined geometrical time intervals. To
denote the actual cost of a test within an interval, we first define a path πik in TA to be
the sequence of tests involvedwithin time (γ 2k ,∞) for each object xi . A test d selected
by object xi appears in path πik during time interval (γ 2k,∞) ∩ (ti,<d , ti,<d + c(d)],
where ti,<d is the total cost before test d for object xi . The truncated cost of a test
d ∈ πik within that intersection is denoted by cik(d). Note that cik(d) ≤ c(d). We
denote the set of tests before test d in path πik by πik,<d .

Our greedy algorithm is identical to the algorithm of Navidi et al. (2020) except
that their greedy-selection score Z ′ at Step 8 is replaced by the new score Z at Step 9,
in order to encourage impurity reduction of the selected tests. The key in the analysis
of Navidi et al. is to show that p(Ck+1) ≤ 0.2p(Ck) + 3p(C∗

k+1), which is proven via
an intermediate value Z ′

k defined below. We restate their technical result here.

Lemma 3 (Navidi et al. 2020, Lemma 2.4,2.5) If Algorithm 1 is executed using the
greedy score Z ′ at Step 8, then

Z ′
k ≥ (

p(Ck+1) − 3p(C∗
k+1)

)
γ ′/3, and

Z∞
k

′ ≤ p(Ck)γ ′/15,

where Z ′
k = ∑

γ ′2k<t≤γ ′2k+1
∑

S∈C(t) Z
′(d(S)), Z∞

k
′ = ∑

t>γ ′2k
∑

S∈C(t) Z
′(d(S)),

γ ′ = 15(1+ ln 1/� + log n), and d(S) is the greedy test for node S. Besides, the first
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inequality holds regardless of the value of γ ′ and holds as long as d(S) is a greedy test
with respect to an additive score Z ′ + D, where D can be any non-negative function;
the second inequality holds regardless of the choice of tests d(S) in the decision tree.

Our new greedy score Z is in an additive form required above for the first inequality.
Therefore, in our case, the difficulty mainly lies in the second inequality. We can prove
that a similar lemma holds for our new greedy score.

Lemma 4 Algorithm 1 ensures the following inequalities

Zk ≥ (
p(Ck+1) − 3p(C∗

k+1)
)
γ /3, and

Z∞
k ≤ p(Ck)γ /15,

where Zk = ∑
γ 2k<t≤γ 2k+1

∑
S∈C(t) Z(d(S)), Z∞

k = ∑
t>γ 2k

∑
S∈C(t) Z(d(S)), γ =

15(1 + ln 1/� + log n + λεh), and d(S) is the greedy test for node S.

Proof The first inequality is easy to show. Notice that compared to Z ′, Z introduces
a third term of impurity reduction D in Eq. (2), which is always non-negative (see
Sect. 3) and thus Z(d) ≥ Z ′(d). Thus, the first inequality in Lemma 3 also holds for
the tree generated by the new greedy score. Since the first inequality in Lemma 3 does
not depend on the value of γ ′, we replace it with the new γ , which completes the
proof.

The second inequality requires more work. We denote the sum of the D terms in
Z∞
k by

G = λ
∑

t>γ 2k

∑

S∈C(t)

p(S)

c(d(S))
(h(S) − h(S | d(S))) .

From Lemma 3 we know that Z∞
k − G ≤ γ ′ p(Ck)/15.

We now upper bound the additional term G. We omit S in d(S) when it is clear
from the context.

G = λ
∑

t>γ 2k

∑

S∈C(t)

p(S)

c(d)
(h(S) − h(S | d))

= λ
∑

t>γ 2k

∑

S∈C(t)

p(S)

c(d)

⎛

⎝h(S) −
∑

v∈[νd ]

p(Sv
d )

p(S)
h(Sv

d )

⎞

⎠

= λ
∑

t>γ 2k

∑

S∈C(t)

p(S)

c(d)

(
1

p(S)

∑

x∈S
p(x)h�(x)(S)

−
∑

v∈[νd ]

p(Sv
d )

p(S)

1

p(Sv
d )

∑

x∈Sv
d

p(x)h�(x)(S
v
d )

⎞

⎠

= λ
∑

t>γ 2k

∑

S∈C(t)

1

c(d)

⎛

⎝
∑

x∈S
p(x)h�(x)(S) −

∑

v∈[νd ]

∑

x∈Sv
d

p(x)h�(x)(S
v
d )

⎞

⎠
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= λ
∑

t>γ 2k

∑

S∈C(t)

∑

x∈S

p(x)

c(d)

(
h�(x)(S) − h�(x)

(
Sd(x)
d

))

= λ
∑

S∈Ck

∑

i :xi∈S
p(xi )

∑

d∈πik

cik(d)

c(d)

(
h�(xi )

(
S(i)
πik,<d

)
− h�(xi )

(
S(i)
πik,<d∪{d}

))
(3)

≤ λ
∑

S∈Ck

∑

i :xi∈S
p(xi )

∑

d∈πik

(
h�(xi )

(
S(i)
πik,<d

)
− h�(xi )

(
S(i)
πik,<d∪{d}

))
(4)

≤ λ
∑

S∈Ck

∑

i :xi∈S
p(xi ) h�(xi )(S) (5)

≤ λ
∑

S∈Ck

∑

i :xi∈S
p(xi ) εh

= λ p(Ck) εh,

where step (3) follows by enumerating the summands in a different order, step (4) is
due to cik(d) ≤ c(d), and step (5) follows by considering the telescoping series of the
impurity reduction along a path of an object. Putting everything together gives

Z∞
k = G + (Z∞

k − G) ≤ λp(Ck)εh + p(Ck)γ ′/15 = p(Ck)γ /15.


�
Next, we use another simple lemma that provides an upper bound on the expected

cost CA of TA, and a lower bound on the optimal cost C∗ of T ∗. This result is a
consequence of the geometrical division of time. For example, to obtain an upper
bound for CA, we assume that the set of unfinished nodes stays the same as C(γ 2k)
during the time interval (γ 2k, γ 2k+1]. Recall that p(C(t)) is a non-increasing function
of time t .

Lemma 5 (Navidi et al. 2020,Lemma2.2)The expected costCA of the tree TA produced
by Algorithm 1, and the cost C∗ of the optimal tree T ∗ for the NGI problem, satisfy the
following inequalities

CA ≤ γ
∑

k≥0

2k p(Ck) + γ, and

C∗ ≥ 1

2

∑

k≥0

2k−1 p(C∗
k ).

We are now ready to prove our main result, Theorem 1, stated in Sect. 5. The proof
relies on combining the results of Lemma 4 with the upper and lower bounds provided
by Lemma 5.

Proof (Theorem 1) From Lemma 4, we obtain

(
p(Ck+1) − 3p(C∗

k+1)
)
γ /3 ≤ Zk ≤ Z∞

k ≤ p(Ck)γ /15.
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By rearranging terms, we get

p(Ck+1) ≤ 0.2 p(Ck) + 3 p(C∗
k+1).

Define Q = γ
∑

k≥0 2
k p(Ck) + γ , i.e., the upper bound of CA. We have

Q = γ
∑

k≥1

2k p(Ck) + γ (p(C0) + 1)

≤ γ
∑

k≥1

2k
(
0.2 p(Ck−1) + 3 p(C∗

k )
) + γ (p(C0) + 1)

≤ γ
∑

k≥0

2k 0.4 p(Ck) + γ
1

2

∑

k≥1

2k−1 12 p(C∗
k ) + γ (p(C0) + 1)

= γ
∑

k≥0

2k 0.4 p(Ck) + γ
1

2

∑

k≥0

2k−1 12 p(C∗
k ) − 3 γ p(C∗

0 ) + γ (p(C0) + 1)

≤ γ
∑

k≥0

2k 0.4p(Ck) + γ
1

2

∑

k≥0

2k−1 12 p(C∗
k )

≤ 0.4 Q + 12 γ C∗,

where we note that p(C0∗) = 1 and p(C0) ≤ 1. Together with Lemma 5, we obtain

CA ≤ Q ≤ 12

0.6
γ C∗ = 20 γ C∗.


�

6 Experimental evaluation

In this section, we evaluate the performance of our enhanced decision-tree algorithms
by comparing themagainst strong baselines on a large collection of real-world datasets.
Some additional experimental results are presented in the Appendix, including fur-
ther experimental results for CART (Section C), further experimental results on tree
size (Section D), additional statistical tests (Section E), and more visual examples
(Section G). Our implementation and pre-processing scripts can be found in a Github
repository.2

Datasets We evaluate our methods on 20 datasets from the UCI Machine Learning
Repository (Dua and Graff 2017) and OpenML (Vanschoren et al. 2013). Information
about the datasets is shown in Table 1. We experiment with datasets containing up
to 0.6 million objects and 5 thousand features. We set the limit θ to be 0.005 for
all datasets except for small ones, whose θ are set accordingly so that the minimum
leaf size is 2. For all datasets, 70% of the data points are used for training, 10% for
validation and the rest for testing. Numerical features are categorized intomultiple bins

2 https://github.com/Guangyi-Zhang/low-expected-cost-decision-trees.
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Table 1 Datasets statistics;
n,m, k: number of data points,
binary features and classes

Dataset n m k

iris 150 20 3

ilpd 583 46 2

breast-w 699 45 2

tic-tac-toe 958 27 2

obesity 2111 58 7

bioresponse 3751 5333 2

spambase 4601 285 2

phoneme 5404 25 2

musk 6598 830 2

speed-dating 8378 733 2

phishing-websites 11,055 46 2

shoppers 12,330 454 2

letter 20,000 80 26

default 30,000 112 2

bank-marketing 45,211 76 2

electricity 45,312 42 2

firewall 65,532 55 4

dota2 92,649 394 2

diabetic 101,766 264 3

covertype 581,012 94 7

Numerical features are categorized into 5 bins by the k-means strategy

by the k-means strategy, which can adapt to uneven data distributions. All categorical
features are then binarized to avoid biases towards features with a large number of
levels (Strobl et al. 2007). All identical objects are coalesced into a single object, and
the sampling probability is set accordingly. To fulfill the realizability assumption, the
majority class is assigned to each identical data point in the training set, which may
have different classes otherwise, due to noise or feature discretization. Apart from the
original datasets with unit test cost, we additionally create more challenging scenarios,
where each test cost is independently drawn from the set {1, . . . , 10}.
Algorithms and baselines A summary of the algorithms is displayed in Table 2.
The algorithms that implement the proposed approach are denoted as enhanced C4.5
(EC4.5) and enhanced CART (ECART). Baselines include the following:

• The ASR method (Navidi et al. 2020), which is the greedy algorithm without the
newly-introduced impurity-reduction term.

• Impure Pairs (IP), which maximizes the reduction in the number of impure pairs
at each split, i.e., the unweighted edge cut among different classes (Golovin et al.
2010; Cicalese et al. 2014).

• BAL, which is an unsupervised balanced-tree algorithm that greedily selects the
test that splits the current node most evenly.

• The two traditional algorithms C4.5 and CART, and their cost-benefit versions that
select a test using a cost-weighted criterion (denoted with a prefix ‘C’).
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Table 2 Summary of competing algorithms

Algorithm Brief description

ASR Greedy without impurity reduction (Navidi et al. 2020)

IP Greedy in reducing the number of impure pairs (Golovin et al. 2010)

BAL Greedy in the most balanced split

[p][C]CART Traditional CART (Breiman et al. 1984)

[p][C]C4.5 Traditional C4.5 (Quinlan 1993)

[p]ECART Enhanced CART (proposed method)

[p]EC4.5 Enhanced C4.5 (proposed method)

Prefix ‘p-’ indicates a variant with post-pruning

To ensure ameaningful comparison,wemeasure performance for allmethods based
on the same stopping criteria. All algorithms perform two-way splitting. Splitting of
tree nodes stops if homogeneity is achieved or if the minimum-probability limit is
reached. We examine the performance of C4.5 and CART with post-pruning (denoted
with a prefix ‘p’) or without. We adopt the standard minimal cost-complexity pruning
approach (Breiman et al. 1984), which prunes a tree node having many leaves if its
impurity is no much larger than the total impurity of its leaves. The parameter that
controls the stringency of the pruning is determined by cross-validation over a logspace
from 10−5 to 1.

The only hyperparameter in our algorithm (λ) controls the trade-off between com-
plexity and discrimination. The effect of λ is summarized in Fig. 2. For large values of
λ our algorithms turn into the traditional tree-induction algorithms C4.5 and CART; on
the other hand, if λ is zero, our algorithms turn into the greedy algorithm for the ASR

problem. Aswe are workingwith a bi-criteria optimization problem, there is no golden
rule in deciding the best value of the hyperparameter. In this experiment, we aim to
decide a value of λ that preserves comparable accuracy while reduces the complexity
as much as possible. Thus, we tune the hyperparameter λ by starting with a large λ

and gradually decreasing it before a significant drop (larger than 1%) is seen in the
predictive accuracy over the validation set. Note also that λ is invariant to the data
size, as the greedy score only depends on the distributions before and after the split.
Results We evaluate all methods using ROC AUC as a measure of predictive power,
expected cost as a measure of tree complexity, and tree size (i.e., the number of tree
nodes) as an auxiliary measure of global tree complexity. A full result on tree size
is deferred to Section D in Appendix. Reported results, shown in Fig. 5, are averages
over 5 executions with random train-test splits. We conduct the Bonferroni-Dunn test
with significance level α = 0.05 for average ranks (Demšar 2006), and report the
critical difference diagram in Figs. 3 and 4, where the proposed method pEC4.5 (or
pECART) is tested against the other methods, and methods closer to the right end have
a better rank. We see that the predictive power and tree complexity of pECART and
pEC4.5 are statistically not significantly different from the respective best performer,
while it is significantly better than most other baselines. Two methods C4.5 and CART
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Fig. 2 The effect of the trade-off hyperparameter λ. ROC AUC is on validation data, and expected tree
height or tree size on training data

lead to similar behavior; we focus on C4.5 below and discuss its results in details. Full
results for CART and its enhancements are presented in the Appendix, Section C.

It can be seen that post-pruning has a noticeable positive effect on both the accuracy
and complexity for the C4.5 algorithm. However, even after post-pruning, pC4.5 is still
ranked closely to un-pruned EC4.5 in terms of the expected cost, and in some datasets,
the expected cost of pC4.5 is about two times larger than that of EC4.5 in Fig. 5. This is
reasonable because post-pruning mainly removes tree nodes near the bottom, but fails
to rescue early bad splits near the root. On the other hand, post-pruning is significantly
more beneficial than impurity reduction for the global tree size. Also note that post-
pruning has less effect on EC4.5 in terms of accuracy, which indicates that un-pruned
EC4.5 alone is robust to overfitting.

The decision tree produced by BAL is the worst in both aspects. This is expected
for predictive power as BAL is an unsupervised method, but it is quite surprising for
complexity. It turns out that BAL often has to keep expanding a balanced tree until the
minimum leaf size is reached, as tree nodes rarely achieve homogeneity. This behavior
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Critical difference for the Bonferroni-Dunn test on significance level α = 0.05 for average ranks of
algorithms among 20 tested datasets. Methods closer to the right end have a better rank. The method that
is compared with other methods is pEC4.5, and methods lying outside the thick interval are significantly
different from pEC4.5

reinforces the argument that discriminative tests help accelerating termination and
reducing expected cost.

The IP algorithmachieves better performance in both aspects than theASR algorithm.
However, IP has a too strong bias towards a balanced split, that it favors a random test
over a discriminative one in the example we provide in Section A. This bias is also
reflected in Fig. 5 where it falls behind ECART by more than 10% accuracy in some
datasets. By further statistical tests we conduct in Section E, the predictive power of
ASR and IP are statistically indistinguishable from the unsupervised BAL.

Finally, regarding running time, algorithm EC4.5 typically runs 3–4 times longer
than C4.5, but there are instances that the latter algorithm constructs very skewed trees
and it takes more time to complete (details in Appendix, Section F).

The benefit of the proposed method becomes more pronounced in non-uniform-
cost scenarios, shown in Fig. 6. It turns out that the cost-benefit traditional trees fail to
reduce the expected cost, which indicates the need for more sophisticated techniques
like ours to tackle non-uniform costs. Our algorithms obtain comparable predictive
power, while achieving up to 90% lower expected cost than the traditional trees.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Critical difference for the Bonferroni-Dunn test on significance level α = 0.05 for average ranks of
algorithms among 20 tested datasets. Methods closer to the right end have a better rank. The method that
is compared with other methods is pECART, and methods lying outside the thick interval are significantly
different from pECART

We conclude that our enhancement, given in the form of a regularizer, strikes an
excellent balance between predictive power and expected tree height.

7 Conclusion

In this paper, we proposed a novel algorithm to construct a general decision tree with
asymptotically tight approximation guarantee on expected cost under mild assump-
tions. The algorithm can be used to assimilate many existing standard impurity
functions so as to enhance their corresponding splitting criteria with a complexity
guarantee. Through empirical evaluation on various datasets and scenarios, we ver-
ified the effectiveness of our algorithm both in terms of accuracy and complexity.
Potential future directions include the study of different complexity measures, further
termination criteria, and incorporating a broader family of impurity functions.
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Fig. 5 Performance results with unit test costs. All plots in the same row share the same x- and y-axes.
Error bars are also shown
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Fig. 6 Performance results with non-uniform test costs

Acknowledgements This research is supported by the Academy of Finland projects AIDA (317085) and
MLDB (325117), the ERCAdvancedGrant REBOUND (834862), the ECH2020RIAproject SoBigData++
(871042), and theWallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.

Author Contributions GZ is responsible for the theoretical and experimental development. Both authors
contribute significantly to the design and writing of the work.

123



456 G. Zhang, A. Gionis

Funding Open access funding provided by Royal Institute of Technology. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data andmaterials All datasets we use are publicly available in the UCI Machine Learning
Repository (Dua and Graff 2017) and OpenML (Vanschoren et al. 2013).

Code Availability Our implementation is publicly available in the Github repository (https://github.com/
Guangyi-Zhang/low-expected-cost-decision-trees).

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of
this article.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Split criteria for adaptive submodular ranking (ASR)
methodmay lead to non-discriminative decision trees

We present a simple example demonstrating that the ASR method, used for the group
identification problem where the aim is to minimize the expected cost of a decision
tree, may not select discriminative splits, which in turn may lead to decision trees with
low predictive power. The splitting criterion of ASR consists of two terms (see Sect. 4
for more details). One term encourages balanced partitions and does not use label
information. For the other term, two criteria have been considered in the literature:
(1) maximize reduction in the number of heterogeneous pairs of objects after a split,
or (2) maximize the number of excluded objects in other classes. These two criteria
turn out to be equivalent up to a constant factor of 2 by a simple double counting.
Apparently, when the number of heterogeneous pairs drops to zero or each object
separates from all objects in other classes, we obtain perfect accuracy (in training
data). Note that even random splits can lead to perfect accuracy as long as the tree is
fully expanded. Here we discuss the second term, as random splits actually optimize
balance, on expectation.

Our example is shown in Fig. 7, where we demonstrate two possible splits on a
node. As we will see, ASR favors the non-discriminative split Fig. 7b over the more
discriminative split Fig. 7a. We assume two classes, and we write (x, y) to indicate the
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number of objects from the two different classes in a tree node. We now discuss the
first criterion. In the left tree Fig. 7a, the root, the left, and the right node have 50×50,
0, and 26 × 50 heterogeneous pairs, respectively. In the right tree Fig. 7b, there are
50× 50, 25× 25, and 25× 25 pairs, respectively. The left split decreases the number
of heterogeneous pairs by 50× 50− 0− 26× 50 = 24× 50. The right split decreases
the number of heterogeneous pairs by 50× 50− 25× 25− 25× 25 = 50× 25. Thus,
the ASR criterion will select the (non-discriminative) split Fig. 7b.

Appendix B Impurity reduction is non-negative

By the concavity property of h, it is easy to show that the impurity-reduction function
d(S, d) is non-negative, for any tree node S and test d. In particular, we have

d(S, d) = h(S) − h(S | d)

= h(S) −
∑

v∈[νd ]

p(Sv
d )

p(S)
h(Sv

d )

= h(pS) −
∑

v∈[νd ]

p(Sv
d )

p(S)
h(pSv

d
)

≥ h(pS) − h

⎛

⎝
∑

v∈[νd ]

p(Sv
d )

p(S)
pSv

d

⎞

⎠

= h(pS) − h(pS)

= 0, (B1)

where pS denotes the class distribution vector of S, and Inequality (B1) is by concavity.

Appendix C Further experimental results for CART

See Figs. 8 and 9.

(a) (b)

Fig. 7 A simple example demonstrating that ASR split criteria may lead to non-discriminative decision
trees
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Fig. 8 Performance results with unit test costs. All plots in the same row share the same x- and y-axes.
Error bars are also shown
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Fig. 9 Performance results with non-uniform test costs

Appendix D Further experimental results on tree size

See Figs. 10 and 11.
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Fig. 10 Performance results with unit test costs. All plots in the same row share the same x- and y-axes.
Error bars are also shown
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Fig. 11 Performance results with non-uniform test costs
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Appendix E Further statistical tests: pairwise Nemenyi

See Figs. 12 and 13.

(a) (b)

(c) (d)

(e) (f)

Fig. 12 Critical difference for the Nemenyi test on significance level α = 0.05 for average ranks of
algorithms among 20 tested datasets. Methods closer to the right end have a better rank. Any pair of
methodswhich are not connectedwith an horizontal line have an average rank that is different with statistical
significance
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 Critical difference for the Nemenyi test on significance level α = 0.05 for average ranks of
algorithms among 20 tested datasets. Methods closer to the right end have a better rank. Any pair of
methodswhich are not connectedwith an horizontal line have an average rank that is different with statistical
significance

Appendix F Running time

Note that algorithm BAL misses results over some datasets because its running time is
too long Fig. 14.

All experiments were carried out on a server equipped with 24 processors of AMD
Opteron(tm) Processor 6172 (2.1GHz), 62GBRAM, running Linux 2.6.32−754.35.1.
el6.x86_64. We use Python 3.8.5.

We also demonstrate the running time for two selected datasets with unit costs,
with a large number of data objects and features, to explore the impact of number of
objects and features to the running time. In general, as reflected in the worst-case time
complexity O(Hmn), the algorithms complete their computation quickly in the case
of a large number of data objects (n), or large number of features (m), but not both.
Furthermore, the dependency on n is slightly worse than on m, as the tree height H
typically has a logarithmic dependence on n (Fig. 15).
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(a) (b)

Fig. 14 Running time, average over all datasets

(a) (b)

Fig. 15 Running time on selected datasets

Appendix G Visual examples of real-life datasets

We visualize datasets that have meaningful features and whose trees are small enough
to be contained in the paper. We also adjust the minimum leaf size (1% of the data
size) to produce smaller trees.

G.1 Visualization of decision trees for shoppers dataset

See Figs. 16, 17 and 18.
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Fig. 16 Visualization of EC4.5 decision tree for shoppers dataset
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Fig. 17 Visualization of EC4.5 decision tree for shoppers dataset

Fig. 18 Visualization of ASR decision tree for shoppers dataset

G.2 Visualization of decision trees for breast-w dataset

See Figs. 19, 20 and 21.

123



Regularized impurity reduction: accurate decision trees… 467

Fig. 19 Visualization of C4.5 decision tree for breast-w dataset

Fig. 20 Visualization of EC4.5 decision tree for breast-w dataset
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Fig. 21 Visualization of ASR decision tree for breast-w dataset

G.3 Visualization of decision trees for obesity dataset

See Fig. 22, 23 and 24.

Fig. 22 Visualization of C4.5 decision tree for obesity dataset
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Fig. 23 Visualization of EC4.5 decision tree for obesity dataset

Fig. 24 Visualization of ASR decision tree for obesity dataset

G.4 Visualization of decision trees for spambase dataset

See Figs. 25, 26 and 27.
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Fig. 25 Visualization of C4.5 decision tree for spambase dataset
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Fig. 26 Visualization of EC4.5 decision tree spambase dataset
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Fig. 27 Visualization of ASR decision tree for spambase dataset

G.5 Visualization of decision trees for speed-dating dataset

See Figs. 28, 29 and 30.
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Fig. 28 Visualization of C4.5 decision tree for speed-dating dataset

Fig. 29 Visualization of EC4.5 decision tree for speed-dating dataset
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Fig. 30 Visualization of ASR decision tree for speed-dating dataset
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