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Abstract
Uplift modeling refers to individual level causal inference. Existing research on the
topic ignores one prevalent and important aspect: high class imbalance. For instance in
online environments uplift modeling is used to optimally target ads and discounts, but
very fewusers ever end up clicking an ad or buying.One common approach to dealwith
imbalance in classification is by undersampling the dataset. In this work, we show how
undersampling can be extended to uplift modeling. We propose four undersampling
methods for uplift modeling. We compare the proposed methods empirically and
show when some methods have a tendency to break down. One key observation is
that accounting for the imbalance is particularly important for uplift random forests,
which explains the poor performance of the model in earlier works. Undersampling
is also crucial for class-variable transformation based models.

Keywords High class imbalance · Undersampling · Uplift modeling · Heterogeneous
treatment effect

1 Introduction

High class imbalance is prevalent in e-commerce where conversion rates are typically
in the range of 0.1–5% (Diemert et al. 2018; Richardson et al. 2007). The rate depends
on whether the conversion event is e.g. a click, a visit, or a purchase, with the more
valuable events (the purchases) being at the lower end of this spectrum. High class
imbalance makes modeling difficult as observations contribute to a cost function in
proportion to their number, resulting in the cost function being easily minimized

Responsible editor: Johannes Fürnkranz

B Otto Nyberg
otto.nyberg@helsinki.fi

Arto Klami
arto.klami@helsinki.fi

1 Department of Computer Science, University of Helsinki, Pietari Kalmin katu 5, 00014 Helsinki,
Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00917-9&domain=pdf
http://orcid.org/0000-0002-8481-9325


Exploring uplift modeling with high class imbalance 737

when an algorithm largely ignores the minority class. A common way to deal with
this problem in classification tasks is by undersampling where observations from
the majority class are dropped to better balance the number of positive and negative
observations. However, models trained on undersampled data are not well-calibrated
in the original task. Usually this is not a problem as a simple threshold is enough to
decidewhich class an observation belongs to, and if needed themodel can be calibrated
afterwards using a calibrationmethod (e.g. Zadrozny and Elkan 2002). However, these
techniques do not directly translate to uplift modeling.

Uplift modeling is the art of modeling the causal effect of some treatment on
individual observations (Rzepakowski and Jaroszewicz 2010). More formally it is
defined as the difference between two probabilities

τ(x) = p(y = 1|x, do(t = 1)) − p(y = 1|x, do(t = 0)) (1)

where x are the features of an observation, y is the class-label, t is the treatment label
where t = 1 indicates treatment and t = 0 no treatment, and do(.) is the do-operator
(Pearl 2009).

As uplift is the difference between two probabilities, we need to be more careful in
accounting for the distortion of the probabilities caused by undersampling. Recently
Nyberg et al. (2021) proposed a method relying on stratified undersampling for uplift
estimation, but that solution relies on simplifying assumptions that are not always valid.
This paper explores different undersampling and calibration methods in the context
of uplift modeling, and in particular, proposes the first general method applicable
for improving uplift estimates for tasks with high class imbalance that makes no
simplifying assumptions on the dataset (in addition to the assumptions made by uplift
modeling). We present four undersampling methods (three of which are novel) and
three new calibration methods (one of which is novel) with theoretical foundations,
and empirically evaluate them on the largest available uplift datasets that exhibit high
class imbalance as well as on one synthetic dataset. We also demonstrate how the
results depend on data characteristics, such as the amount of imbalance and the base
conversion rate, and illustrate when specific methods can fail.

The main finding is that high class imbalance can be effectively addressed with
undersampling. All tested uplift models improved when the class imbalance was
accounted for when the datasets were large enough, and for some methods the
effect is dramatic. Methods based on the class-variable transformation (Jaskowski and
Jaroszewicz 2012; Lai 2006) do not work at all without undersampling but become
competitive when the imbalance is corrected for, and for uplift random forests (Guel-
man et al. 2015) we observe a 50–60% improvement in the standard performance
metric with undersampling. In some previous comparisons, such as Fernández-Loría
and Provost (2022), Semenova and Temirkaeva (2019) and Belbahri et al. (2021), ran-
dom forest -based methods have performed poorly and we postulate that accounting
for the imbalance by undersampling would have changed some of the conclusions of
these works. Another interesting observation is that we were able to reliably estimate
uplift when there were as few as 200 positive observations in the minority class. Even
though the exact number required naturally depends on the specific case, our result is
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encouraging in terms of practical applicability of uplift modeling for industries dealing
with problems with extremely small conversion rates and moderate amounts of data.

2 Related work

We build on two streams of previous work: class imbalance and uplift models. This
section provides the necessary background on both aspects for understanding the rest
of the paper.

2.1 Class imbalance

The term “imbalance” has been used to refer to multiple different aspects in uplift
modeling: Olaya et al. (2020) used it to describe an imbalance in treatment policy
usually referred to as “confounding effects” (Austin 2011), and Betlei et al. (2018)
used it to describe a setting where there is a large difference in the number of treated
and untreated observations. In contrast, this paper deals with the imbalance in class
labels (the outcomes), following the terminology ofNyberg et al. (2021). This problem
has been thoroughly studied in the context of classification and is commonly referred
to as “class imbalance” (Kaur et al. 2019), but remains understudied in uplift modeling.

There are two main techniques for dealing with high class imbalance in classifica-
tion: weighting and sampling, including oversamping, undersampling, and synthetic
sampling. Moreover, oversampling and undersampling are sometimes combined
(Chawla et al. 2002). In weighting, the minority class observations are given a larger
weight in the cost function to ensure that the algorithm will account for them appro-
priately, whereas in oversampling the observations of the minority class are resampled
so that there are multiple copies of them. Synthetic sampling generates new unique
observations based on the properties of existing observations (Chawla et al. 2002).
Undersampling, in turn, refers to techniques that discard some of the observations in
the majority class(es).

Even though bothweighting and sampling could potentially be used in the context of
uplift modeling, we specifically focus on undersampling because it maps so elegantly
to the typical use cases. Especially in e-commerce, one can easily collect a large
number of negative observations and e.g. datasets used in this paper contain more than
ten million observations. By undersampling the negative observations we can reduce
the size of the training dataset and hence also the computation time. In contrast,
oversampling in these cases would result in extremely large training sets.

2.2 Uplift models

In this work we consider only learning scenarios where the data has been collected
in a randomized trial so that the treated and untreated observations come from the
same underlying distribution p(x) and the choice of the treatment has been made
independently of x . With this assumption, the do-notation in Eq. (1) simplifies to
conditioning on t . There are also models that do not require this assumption, that
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work on observational data (e.g. Johansson et al. 2016) or on data where the treatment
policy is known (e.g. Austin 2011), but these include other assumptions that are often
hard to verify and including these in the experimentswould complicatematterswithout
bringing additional value.

Uplift modeling is an active research topic and numerous different principles and
practical models have been proposed; see Gubela et al. (2020) for a recent overview.
Our interest is in studying specifically the undersampling process as a means of
accounting for high class imbalance, largely in a method-agnostic manner. Basic
understanding of the modeling approaches is needed e.g. to understand which under-
sampling methods are compatible with what models, but we leave out the technical
details of the learning algorithms as they are not central for our work. We will evaluate
the different undersampling approaches in the context of a few models, selected as
representative examples of popular methods belonging to different families, and these
particular methods are explained briefly next.

The double classifier by Radcliffe and Surry (1999) is a classic model motivated
directly by Eq. (1). It is a type of T-learner (Künzel et al. 2019) as it uses two classifica-
tion models, one to model p(y|x, do(t = 1)) and another to model p(y|x, do(t = 0))
and simply estimates the uplift by computing the difference between the two probabil-
ities. We use the double classifier with logistic regression as base classifier, denoting
the model by DC-LR. Even though DC-LR has historically received little attention, in
part due to critique provided by Radcliffe and Surry (1999) and Guelman et al. (2015),
it performed best in a relatively recent comparison by Semenova and Temirkaeva
(2019).

The class-variable transformation (CVT) was proposed by
Jaskowski and Jaroszewicz (2012) and Lai (2006). In CVT, the outcome variable
y and treatment label t are used to create a new variable z so that zi = 1 when yi = 1
and ti = 1, or when yi = 0 and ti = 0. Otherwise zi = 0. With this transformation,
uplift becomes τ(x) = 2 · p(z|x)−1, i.e. the uplift problem is transformed into a clas-
sification problem. This way the uplift problem can be solved with one classifier rather
than two. CVT with logistic regression (CVT-LR) performed best in the comparison
of Nyberg et al. (2021) on one of the datasets we will use in our evaluation.

A somewhat related approach is the revert label (RL) proposed byAthey and Imbens
(2015). A similar class-transformation is performed so that the new variable is defined
as

ri = ti · yi
π(xi )

− (1 − ti )
yi

1 − π(xi )
(2)

where π(xi ) is the propensity score (the probability that an observation of type xi was
treated). When the training data is collected in a randomized controlled trial, this is
assumed to be a constant value for all xi . The big difference between CVT and RL is
that while the former transforms the learning problem into a classification problem,
the latter transforms it into a regression problem. The r in RL takes at least three
values and the uplift is the expectation of r . As the expectation is continuous, this is
best treated as a regression problem. This is also the same formulation later proposed
by Rudaś and Jaroszewicz (2018). As a practical method building on the RL concept,

123



740 O. Nyberg, A. Klami

a neural network that minimizes the mean-squared error between the revert label and
the output similarly to Belbahri et al. (2021) is included in the experiments. It can
be shown that this formulation is equivalent to the one presented by Gutierrez and
Gérardy (2017) where they showed that it is possible to minimize the mean-squared
error between the uplift estimate and the actual unobservable uplift.

Another interesting family of models are uplift random forests. The forest proposed
by Guelman et al. (2015) was included in the experiments instead of e.g. the causal
random forest by (Wager andAthey 2018) as the former is better suited for binary class
labels. In contrast to all the previous models, trees and forests try to directly model
what makes an observation susceptible to influence. This is accomplished by applying
a splitting criterion that maximizes heterogeneity in the resulting leafs, i.e. that results
in leafs where the treated observations have as different positive rate as possible from
untreated observations (given some constraints on leaf size etc.). Despite their recent
popularity, the empirical evidence has not been entirely convincing.

The experiments in this work consider only the four models described above, each
representing a common family of uplift models. The undersampling methods can also
be used with various other uplift models, such as the S- and X-learners (Künzel et al.
2019) and the model proposed by Lo (2002). These models would be compatible with
(some of) the proposed undersamplingmethods, but we leave their evaluation as future
work to keep the empirical experiments manageable.

3 Methods

The main goal of our work is to establish best practices for addressing high class
imbalance in uplift modeling problems using undersampling as the technical solution.
As mentioned earlier, undersampling has a long history in classification problems but
our recent preliminaryworkNyberg et al. (2021) remains thus far the only investigation
into the problem in uplift modeling. In this section we further develop the initial ideas
in that work to a comprehensive formulation. We start by defining the basic concepts
and notation used for addressing probabilities estimated from undersampled data, and
present four alternative undersampling strategies for uplift problems, three of which
are novel and one of which was previously presented in Nyberg et al. (2021). The
methods differ in terms of which observations are discarded and at what rate. We then
explain three methods for calibration of uplift estimates in Sect. 3.3.

3.1 The undersampling process

Undersampling refers to dropping randomly selected observations of the majority
class to better balance the ratio between treated and untreated observations. For all of
the proposed methods, we always keep all of the positive observations and drop some
of the negative observations and all formulas in this paper are formulated assuming
that y = 0 is the majority class. This way, the positive class y = 1 will have larger
prevalence in the undersampled data. We define undersampling using a factor k so that
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p∗(y = 1) = k · p(y = 1) (3)

where p(y = 1) denotes the probability of positive observations before undersampling
and p∗(y = 1) is the corresponding probability after undersampling.1 Here p(y = 1)
is estimated from data and equals the fraction of positive observations. That is, k tells
howmuch the probability of positive observations increases because of the undersam-
pling. To improve the balance we need to have k ≥ 1 (with equality corresponding to
no undersampling) but additionally the factor has a natural upper bound k < 1

p(y=1) .
This corresponds to dropping all negative observations.

In practical terms, the undersampling is carried out by looping over the negative
observations and independently keeping each one with the probability

s = 1/k − p(y = 1)

1 − p(y = 1)
. (4)

We have chosen to formulate the undersampling process using the factor k, rather than
the probability s, for several reasons: (a) it is directly interpretable as the change of
probability (Eq. (3)), (b) it leads to more clear and concise equations for the stratified
undersampling procedure introduced later in Sect. 3.2.3, and (c) it leads naturally to
one calibration method (Sect. 3.3.2).

The factor k defines the average change. The uplift as defined in Eq. (1), however,
depends on the conditional probabilities. Their distortion is characterized by

p∗(y = 1|x) = p(y = 1|x)
p(y = 1|x) + s · (1 − p(y = 1|x)) . (5)

This follows directly from the undersampling process that reduces the proportion of
negative observations, indicated by (1 − p(y = 1|x)), by a factor of s while keeping
all positive observations. Since s is in the denominator, this distortion is non-linear
in terms of the probability p(y = 1|x). This means that the quantities needed for
estimating uplift change because of the undersampling and this change needs to be
accounted for to obtain unbiased estimates.When p(y = 1|x) is small the relationship
is approximately linear and corresponds tomultiplication with k as in the average case,
but for larger probabilities this does not hold.

Figure 1 illustrates the effect of undersampling. Here we assume the probabil-
ities p(y = 1|x) are estimated using maximum likelihood (ratio of positive and
negative observations) in local neighborhoods of x , with the square indicating one
such neighborhood. When we set k = 2 for this data with high class imbalance
(p(y = 1) = 0.0083), we keep negative observations with probability s = 0.4958
(Eq. (4)). Since the true probability is small, we have s ≈ 1

k . In the local neighbor-
hood indicated by the square, the proportion of positive observations approximately
doubles when dropping approximately half of the negative observations. However, if
our data had a local neighborhood with high probability p(y = 1|x) this would not
be the case. For example, for p(y = 1|x) = 0.3 we would get p∗(y = 1|x) ≈ 0.46,

1 We follow this convention throughout the paper; all quantities marked with an asterisk ∗ refer to the
undersampled case.
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Fig. 1 Effect of undersampling. With high class imbalance very few observations are positive (orange). To
improve the situation we can double the average rate of positive examples with factor k = 2, corresponding
to dropping slightly more than half of the negative observations (blue). This changes the conditional prob-
abilities p(y = 1|x) in a non-linear way. If we estimate them using a local neighborhood (red rectangle)
then the change depends on the original number of positive and negative observations in the neighborhood
as characterized by Eq. (5)); see text for examples (Color figure online)

corresponding to slightly more than 50% increase in the positive rate. When k is large,
this non-linear distortion becomes significant also for smaller probabilities.

3.2 Undersampling for uplift modeling

The equations above hold for any undersampling method that drops negative obser-
vations. Next, we present four different undersampling methods that can be used for
improving class balance in uplift modeling. The methods differ in terms of what rate
treated and untreated negative observations are discarded. To indicate this we intro-
duce additional notation where the undersampling parameters k and s are replaced by
kt=1, kt=0, st=1, and st=0 as needed to indicate when the undersampling is applied
only to treated or untreated observations.

3.2.1 Undersampling for classification

The double classifier method (Radcliffe and Surry 1999) directly trains two models
for treated and untreated observations separately, and hence standard undersampling
for classification can be used to improve accuracy of these models independently. That
is, we can separately perform undersampling for the treated and untreated samples,
always dropping only negative observations. More formally, this is defined as
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p∗(y = 1|t = 1) = kt=1 · p(y = 1|t = 1)

p∗(y = 1|t = 0) = kt=0 · p(y = 1|t = 0)
(6)

where typically kt=1 �= kt=0 since the positive rates and hence the severity of class
imbalance differs in the treated and untreated observations. The factors kt=1 and kt=0
are chosen independently using hold-out validation on the validation set (see Sect. 4.2)
and a measure of classification performance, e.g. AUC-ROC. The model estimating
p∗(y = 1|t = 1) is evaluated on the treated observations in the validation set and the
model estimating p∗(y = 1|t = 0) on the untreated observations in the validation set.

As the undersampling process distorted the probabilities, the scores output by the
classifiers will not correspond to true probabilities. This distortion needs to be cor-
rected. For classifiers this can be done by calibration, the process of mapping scores to
empirical estimates, with several practical methods like isotonic regression (Zadrozny
and Elkan 2002), Bayesian binning into quantiles (Naeini et al. 2015), or platt-scaling
(Platt 1999) available. We used isotonic regression. After calibration, we can estimate
the uplift using Eq. (1) directly. The obvious drawback of this conceptually simple
strategy is that it is only compatible with the double classifier approach.

3.2.2 Naive undersampling

This is a method where negative observations are dropped with equal probability
regardless of whether they are treated or untreated. This corresponds to naively doing
undersampling as it has been done for classification without accounting for the differ-
ences between treated and untreated observations.

The treated and untreated observations typically have different average positive
rate resulting in different severity of class imbalance. In addition, as the treated and
untreated observations typically come fromdifferent underlying distributions, the opti-
mal undersampling rate will differ. Naive undersampling ignores this and is implicitly
based on the assumption that the underlying distributions and the severity of class
imbalance is similar in both treated and untreated observations. We define it using

p∗(y = 1) = k · p(y = 1), (7)

and the undersampling is carried out using a single s derived using Eq. (4). The
parameter k is found using hold-out validation. In contrast to the previous method,
we now need to use an uplift evaluation metric for selecting the optimal parameter.
We used AUUC that is also used as the main evaluation metric for uplift methods (see
Sect. 4.1).

This approach is conceptually simple, compatible with all uplift models and only
requires choosing one undersampling factor. However, it is biased whenever p(y =
1|t = 1) �= p(y = 1|t = 0), as will be explained in more detail in the next subsection.
Nevertheless, it can still improve the performance in some cases as will be shown in
Sect. 4.
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3.2.3 Stratified undersampling

Stratified undersampling was presented in our preliminary work Nyberg et al. (2021).
Similar to naive undersampling, it drops both treated and untreated majority class
observations using one common factor k so that

p∗(y = 1|t = 1) = k · p(y = 1|t = 1)

p∗(y = 1|t = 0) = k · p(y = 1|t = 0).
(8)

In contrast to the naive undersampling, however, we now use different s for the two
groups: We compute st=1 and st=0 separately for the two populations using Eq. (4),
now using the group-conditional probabilities p(y = 1|t = 1) and p(y = 1|t = 0)
instead of the overall rate.

As indicated by Eq. (5), the undersampling process changes the probabilities in a
non-linear manner. However, if both p(y = 1|x, t = 1) and p(y = 1|x, t = 0) are
sufficiently small for all x , then the change is approximately linear andwe have p∗(y =
1|x, t = 1) ≈ k · p(y = 1|x, t = 1) and p∗(y = 1|x, t = 0) ≈ k · p(y = 1|x, t = 0).
Then the uplift τ(x) will also be approximately linear in k so that τ ∗(x) ≈ k · τ(x).
Nyberg et al. (2021) explicitly relied on this linearity assumption.

In the rare case when p(y = 1|t = 1) = p(y = 1|t = 0), stratified undersampling
is equivalent to naive undersampling. To better understand the difference when this
is not the case, we can convert the common s used in naive undersampling back to
two separate factors kt=1 and kt=0 (using inverse of Eq. (4)). This means the naive
undersampling corresponds to using different undersampling factors despite using a
common s, and consequently we no longer have clear linear relation for the uplifts as
both terms are modified by different factors.

3.2.4 Split undersampling

The most comprehensive undersampling method we consider is split undersampling
which undersamples the treated and untreated observations with different factors kt=1
and kt=0. The equations are then

p∗(y = 1|t = 1) = kt=1 · p(y = 1|t = 1)

p∗(y = 1|t = 0) = kt=0 · p(y = 1|t = 0),
(9)

This is equivalent to the equations of undersampling for classification, but now fac-
tors kt=1 and kt=0 are chosen jointly. That is, an uplift model is now trained on the
undersampled dataset, and the combination of factors kt=1 and kt=0 is evaluated using
hold-out validation and an uplift metric. We again used AUUC as the criterion.

This approach is general in the sense that it puts no assumptions on the positive
rates or conditional probabilities present in the data. It is also general in that it includes
both stratified and naive undersampling as special cases. We obtain the former when
kt=1 = kt=0 and the latter when kt=1 = 1

st=0·(1−p(y=1|t=1))+p(y=1|t=1) . These equali-
ties are the result of these two methods aiming to control the distortion in probabilities
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so that they are easily manageable. In contrast, split undersampling requires no such
dependence between kt=1 and kt=0. As the treated and untreated observations usually
have different positive rates, and hence severity of class imbalance, the optimal under-
sampling parameters to deal with the class imbalance will also usually be different.
Hence split undersampling has the potential to find undersampling parameters that
better fit the problem.

As a consequence of freely choosing kt=1 and kt=0, the uplift estimates produced
by the model trained on the undersampled data will no longer produce well-ranked
predictions. The predictions might even have the wrong sign. This will need special
attention later in the calibration step. We also note that even though we only consider
binary uplift problems in this work, the split undersampling method directly general-
izes to multi-class uplift problems (Papangelou 2021) and provides the first solution
for addressing class imbalance for these. This will be elaborated on later in Sect. 3.3.3
when discussing calibration of split undersampling estimates.

3.3 Calibrationmethods

All of the undersampling methods distort the probabilities in a non-linear way (Eq.
(5)). When rank alone is sufficient for the intended use (Verbeke et al. 2012; Devriendt
et al. 2021; Gubela et al. 2020), both naive and stratified undersampling will produce
adequate results without calibration. However, this is not the case for undersampling
for classification and split undersampling. These two methods distort the probabilities
with and without treatment so that the difference between these, the uplift estimates,
will not be ranked in a meaningful way. This is further dealt with in Sect. 3.3.3.

Sometimes calibrated uplift estimates are needed for downstream processing. E.g.
in the case of using free delivery as treatment in an online store, both a calibrated uplift
estimate τ(x) and a calibrated probability estimate for p(y = 1|x, t = 1) are needed
for optimal targeting. Then the treatment should only be applied if τ(x) · prof i t ≥
cost · p(y = 1|x, t = 1), where prof i t refers to the profit of the sale excluding
delivery costs and cost refers to the cost of delivery. This is discussed in more detail
by Haupt and Lessmann (2020).

In the experiments, we calibrated all uplift estimates. With undersampling for clas-
sification the calibration is applied after model training but before combining the two
models to an uplift model. For the rest, the calibration can be performed as a separate
post-processing step using the methods described next.

3.3.1 Isotonic regression and �-isotonic regression

Isotonic regression produces a function g(s) that minimizes
∑

i (g(si ) − yi )2 under a
monotonicity constraint so that g(si ) ≤ g(s j ) for si < s j . When y is binary and si and
s j are scores outputted by some classification algorithm, this becomes a calibration
algorithm. This is commonly used as a post-processing step to transform the outputs
to well-calibrated probabilities (Zadrozny and Elkan 2002). Isotonic regression is in
this form used in this paper in undersampling for classification (Sect. 3.2.1).
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Nyberg et al. (2021) extended calibration with isotonic regression to uplift mod-
eling. We call this τ -isotonic regression to separate it from isotonic regression for
calibration. In the revert-label formulation E(r |x) = τ(x) (Athey and Imbens 2015),
hence by replacing yi with the revert-label ri , g(s) becomes an estimator for uplift.
Using τ -isotonic regression will ensure that the uplift estimates will match empiri-
cal estimates. In the experiments, this calibration method is used together with naive
undersampling to correct for the distortion introduced by undersampling. The method
itself places no requirements on the uplift model or the scores, but it enforces mono-
tonicity in the estimates.

3.3.2 Renormalization

Renormalization is a calibrationmethod specifically for calibrating estimates obtained
with stratified undersampling. For that case both of the probabilities p∗(y = 1|x, t =
1) and p∗(y = 1|x, t = 0) estimated from undersampled data are approximately k
times as large as the actual probabilities, and consequently so are the uplift estimates
τ ∗(x). This distortion can be corrected easily with division by k, thus renormalizing
the estimate. This correction is only applicable for stratified undersampling as it relies
on use of equal k factors, and as explained in detail byNyberg et al. (2021) it is accurate
only when the conversion rates are small. For larger rates the distortions are no longer
sufficiently linear.

3.3.3 Local neighborhood calibration

Local neighborhood calibration uses two input probabilities to produce one calibrated
uplift estimate. Using two input probabilities enables the calibration method to change
the rank of uplift estimates between observations. This is something that cannot be
accomplished by τ -isotonic regression or renormalization and it is necessary to correct
for the distortions introduced by split undersampling. This calibration method also
extends to multi-class problems. Denoting the probability that an observation of class
j is kept after undersampling by sy= j,t , the probability of observations of that class
in some local neighborhood of x is

p∗(y = j |x, t) = sy= j,t · p(y = j |x, t)
∑

l∈J sy=l,t · p(y = l|x, t) . (10)

No assumptions are made as to whether there is one class that is in majority in the
multi-class case, hence the class for sy,t is explicitly specified. Elsewhere in the paper
the majority class is assumed to be the negative class and the y is dropped from
the notation. By rearranging, the original probabilities before undersampling can be
calculated by solving the system of equations

{
p(y = j |x, t) = p∗(y= j |x,t)

sy= j,t ·(1−p∗(y= j |x,t)) · ∑
l∈J ,l �= j sy=l,t · p(y = l|x, t)

∑
l∈J p(y = l|x, t) = 1.

(11)
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Setting J = {0, 1} corresponds to the case with a binary class variable. Then the
notation can be simplified so that j = 0 ⇒ sy= j,t = st (Eq. (4)) and j = 1 ⇒
sy= j,t = 1 as all of the positive observations are kept. Solving the system of equations
then results in the maximum likelihood estimate (see “Appendix 1” for details)

p(y = 1|x, t) = st · p∗(y = 1|x, t)
1 − p∗(y = 1|x, t) · (1 − st )

. (12)

Assuming that the output of a model approximates p∗(y = 1|x, t), the distortion
introduced by undersampling can be corrected using the equation above. Note that
the equations cover the calibration of one probability. This calibration needs to be
done separately for the conversion probability with t = 1 and t = 0 with appropriate
parameters. Only then can a corrected uplift estimate be calculated as the difference
between these two.

4 Experiments and results

We illustrate and evaluate the newmethods using three experiments where each exper-
iment addresses a separate research question. Before presenting the experiments and
the results, we describe the metrics and datasets.

4.1 Metrics and hold-out validation

Themain evaluation metric used is the area under the uplift curve (AUUC) (Jaskowski
and Jaroszewicz 2012) commonly used for evaluating uplift models. It measures the
expected increase in positive rate due to targeting treatments rather than randomizing
them, averaged over all treatment rates. Hence it is the expected increase in posi-
tive rate due to your model if you have no preference on treatment rate. AUUC is
a general purpose metric for goodness of fit and is particularly suitable in academic
contexts where the use case is undefined. The absolute values of AUUC are often
small even when the relative improvements are large. For legibility, we will report
results as mAUUC (1000 · AUUC) but will additionally clarify in the text the relative
improvement.

As AUUC depends only on the rank of the observations and not the magnitude, we
additionally used the expected uplift calibration error (EUCE) (Nyberg et al. 2021)
as a metric to estimate how well the predictions match empirical rates. To estimate
EUCE, all observations are first sorted based on the uplift predictions into m bins
so that each bin contains C = N/m observations with the first bin containing the
observations with smallest predictions etc. N is the number of observations. For each
bin j, the empirical uplift is estimated as

b j =
∑

yi,t=1

N j,t=1
−

∑
yi,t=0

N j,t=0
(13)
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where the sum is over all observations i in bin j . N j,t=1 and N j,t=0 refer to the
number of treated and untreated observations in bin j , whereas yi,t=1 and yi,t=0 refer
to the labels of the treated and untreated observations in the bin. Further, denoting the

average uplift estimate for the observations in one bin u j =
∑

τ(xi )
C , EUCE can be

expressed as

EUCE = 1

m

∑

j

|u j − b j |. (14)

Following the original formulation, the number of bins m used for estimating EUCE
was set to 100 in the experiments.

For all methods we select the optimal undersampling factors k (or kt=1 and kt=0)
using simple hold-out validation. The datasets were randomly split into training sets
(50%), validation sets (25%), and testing sets (25%), where the training data is used
for learning the models, the validation data for selecting the undersampling factor,
and the final metrics are evaluated on the test data. This setup was deemed sufficient
for the tree largest datasets. For the two smaller ones, this procedure was repeated 10
times so that the observations were randomly re-asssigned to the sets for each run, and
the testing set metrics were averaged for the result tables.

In the experiments the values for kt=1 and kt=0 tested were {1, 2, 4, 8, 16, 32, 64,
128, 256}. In addition, in Experiment 1 the kt=0 values included all values for kt=1 ·
1.55. These choice were made because this includes stratified undersampling and
cases where p∗(y = 1|t = 1) = p∗(y = 1|t = 0). The second choice captures the
intuition that if both the treated and untreated observations have the same conversion
rate, the issues caused by undersampling should be of similar magnitude in both cases.
The best parameters were chosen using AUC-ROC on the validation set for classic
undersampling and AUUC on the validation set for all other models.

4.2 Datasets

Evaluating methods for correcting class imbalance requires data that exhibits high
class imbalance and is sufficiently large for evaluating the uplift reliably. We evaluate
the methods on the three largest publicly available datasets, and additionally on two
smaller datasets to illustrate the limitations of the methods. Details on the datasets are
provided in Table 1.

We used Criteo-uplift 2 (Diemert et al. 2018) as the main data, using it in
all experiments. The data originally has 13,979,592 observations, but for Experiments
1 and 2 we downsampled the data so that the ratio between treated and untreated
observations was 1:1.

We used Criteo-uplift 1 (Diemert et al. 2018) for the main experiment. The
dataset originally has 25,309,482 observations, but was downsampled for Experiment
1 so that the ratio between treated and untreated observations was 1:1. This data
combines multiple ad campaigns (randomized experiments) with varying conversion
rates, andhence amodel that is able to identifywhich campaign anobservation received
can obtain high uplift but such a model would not be useful for future campaigns. For
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Table 1 Statistics of the datasets as used in the experiments

Dataset Observations p(y = 1|t = 1) (%) p(y = 1|t = 0) (%)

Criteo-uplift 1 7,801,310 0.239 0.174

Criteo-uplift 2 4,193,874 0.309 0.194

Zhao 642,531 0.51 0.29

Starbucks 126,184 1.68 0.73

Hillstrom 42,613 1.25 0.57

With the exception of Starbucks, the datasets were modified from the original releases for the purposes
of our experiments as explained in the main text. All datasets have an approximate 1:1 ratio between the
number of treated and untreated observations

the purpose of comparing different undersampling approaches (or even uplift models)
this property is not important, but need to be kept in mind when interpreting the
absolute uplift estimates.2 Both datasets by Criteo comprise of click-stream data
for online marketing and they hence have high class imbalance as expected in this
common use case. Even though both datasets are provided by the same organization,
they are two independent datasets.

We used the synthetic dataset by Zhao (Zhao et al. 2022) for the main experiment.3

The dataset originally has 1,000,000 observations, but it does not have high class
imbalance. We modified the data by dropping positive observations resulting in a
dataset with high class imbalance. The resulting data has 642,531 observations, which
of 321,194 are treated observations and 321,337 untreated observations.

The Starbucks dataset (Rössler et al. 2021) was used for the main experiment
as is. It naturally exhibits high class imbalance.

The Hillstrom dataset (Radcliffe 2008) was used for the main experiment. The
dataset originally has 64,000 observations, but we discarded the observations with
treatment labelWomens E-Mail. We used the treatmentMens E-Mail for t = 1 and the
No E-Mail for t = 0. We used the conversion label as it exhibits high class imbalance.

4.3 Experiment 1: comparingmethods andmodels

Our main experiment evaluates and quantifies the effect of using different undersam-
pling approaches together with four different uplift models. As models we use:

1. DC-LR: double-classifier with logistic regression as the base classifier (Radcliffe
and Surry 1999), using the scikit-learn (Pedregosa et al. 2011) implemen-
tation for logistic regrssion with default parameters;

2. CVT-LR: class-variable transformation with logistic regression (Jaskowski and
Jaroszewicz 2012), again using scikit-learn for the base classifier;

3. Uplift RF: Uplift random forest by Guelman et al. (2015), using Kullback-Leibler
divergence as the split criterion; and

2 For more information, see https://ailab.criteo.com/criteo-uplift-prediction-dataset/.
3 Dataset available at https://doi.org/10.5281/zenodo.3653141.
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Table 2 Theoretically sound combinations of models, undersampling methods, and calibration methods
(checkmarks)

DC-LR CVT-LR Uplift RF Uplift NN

Baseline (no undersampling) � � � �
Undersampling for classification �
Naive und. + renormalization

Naive und. + τ -isotonic regression � � � �
Naive und. + local neighborhood (�) (�) (�) (�)

Stratified und. + renormalization � � � �
Stratified und. + τ -isotonic regression (�) (�) (�) (�)

Stratified und. + local neighborhood (�) (�)

Split und. + renormalization

Split und. + τ -isotonic regression (�) (�)

Split und. + local neighborhood � �

Combinations not studied experimentally are in parentheses

4. Uplift NN: Neural network with four hidden layers, each with 128 units, optimized
tominimizemean-squared error against revert label targets similar toBelbahri et al.
(2020).

The exact implementations and details are available as open software at https://github.
com/Trinli/uplift_modeling.

We combine all four uplift models with three undersampling approaches and the
most appropriate choices of calibration methods:

1. Baseline with no undersampling
2. Naive undersampling with τ -isotonic regression for calibration
3. Stratified undersampling with renormalization for calibration

In addition, we evaluate the results for the following combinations that can only be
applied in the context of specific uplift models:

1. DC-LR with undersampling for classification, which can only be used with DC,
2. DC-LR and Uplift RF with split undersampling and local neighborhood calibra-

tion.

Table 2 presents all theoretically sound combinations, including ones that were left out
since they are—in our opinion—not interesting in practice. E.g. stratified undersam-
pling with τ -isotonic regression would blatantly ignore the entire point with stratified
undersampling - to change the positive rates in a way that is easy to work with. It also
did not work particularly well in Nyberg et al. (2021) and is hence left out. Similar
considerations apply to the other methods left out.

Tables 3, 4 and 5 report the results for all models on Criteo-uplift 1,
Tables 6, 7 and 8 report the results on Criteo-uplift 2, and Tables 9, 10 and 11
report the results on Zhao. Tables 12, 13 and 14 report the results on the Starbucks
withmeasures of variability over 10 runs as the dataset is small. Similarly, Tables 15, 16
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Table 3 mAUUC on Criteo-uplift 1

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 0.403 −0.006 0.289 0.226

Classic undersampling 0.257 n/a n/a n/a

Naive undersampling 0.256 0.385 0.271 0.231

Stratified undersampling 0.387 0.391 0.425 0.406

Split undersampling 0.446 n/a 0.465 n/a

A larger value is better and the best results for every uplift model is highlighted with bold font

Table 4 EUCE on Criteo-uplift 1

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 0.00060 0.13441 0.00100 0.00136

Classic undersampling 0.00086 n/a n/a n/a

Naive undersampling 0.00177 0.00142 0.00140 0.00167

Stratified undersampling 0.00050 0.00080 0.00087 0.00575

Split undersampling 0.00047 n/a 0.00095 n/a

A smaller value is better. The best values for every uplift model is highlighted with bold font

Table 5 Optimal k-values on Criteo-uplift 1

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 1 1 1 1

Classic undersampling [32, 1] n/a n/a n/a

Naive undersampling 16 128 256 32

Stratified undersampling 4 256 16 2

Split undersampling [4, 12.4] n/a [64, 64] n/a

Whenever two separate values for kt=1 and kt=0 are needed, they are presented in brackets as [kt=1, kt=0]

and 17 report the results on Hillstrom over 10 runs. The Tables 3, 6, 9, 12, and 15
report the main metric of mAUUC.

The best mAUUC scores are small for the three first datasets, but still correspond to
significant practical improvements since the positive rates in these datasets are small.
To help interpretation, the mAUUC scores can be converted to expected increase in
the positive rate compared to the average positive rates: For Criteo-uplift 1 the
best mAUUC of 0.465 corresponds to a 23% improvement, for Criteo-uplift 2
the best mAUUC of 0.482 equals a 19% increase, and for Zhao the mAUUC of 0.908
corresponds to a 35% increase. On the smaller datasets the best mAUUC of 2.377
of Starbucks corresponds to a 20% increase, and on Hillstrom the change is
virtually zero.

To summarize the results, we next explain the most important observations sup-
ported by these results.
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Table 6 mAUUC on Criteo-uplift 2

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 0.482 −0.246 0.278 0.288

Classic undersampling 0.442 n/a n/a n/a

Naive undersampling 0.481 0.443 0.360 0.438

Stratified undersampling 0.460 0.445 0.300 0.468

Split undersampling 0.422 n/a 0.417 n/a

A larger value is better. The best result for every uplift model is highlighted with bold font

Table 7 EUCE on Criteo-uplift 2

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 0.00053 0.01707 0.00082 0.00865

Classic undersampling 0.00060 n/a n/a n/a

Naive undersampling 0.00183 0.00170 0.00177 0.00193

Stratified undersampling 0.00084 0.00102 0.00070 0.00118

Split undersampling 0.00064 n/a 0.00061 n/a

A smaller value is better. The best value for every uplift model is highlighted with bold font

Table 8 Optimal k-values on Criteo-uplift 2

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 1 1 1 1

Classic undersampling [128, 256] n/a n/a n/a

Naive undersampling 1 32 8 32

Stratified undersampling 4 32 2 32

Split undersampling [8, 16] n/a [32, 99.1] n/a

Where both kt=1 and kt=0 are needed, they are presented in brackets as [kt=1, kt=0]

Undersampling helps and there is a preferred undersampling method for every
uplift model. All four uplift models on the three larger datasets benefit notably from
addressing the class imbalance using undersampling, both in terms of AUUC and
EUCE. The more advanced stratified and split undersampling approaches provide
the best performance. Even though classic and naive undersampling also sometimes
improve the accuracy, most notably for CVT-LR, the two more advanced methods are
to be preferred in practice as they reliably provide good performance. For CVT-LR
and Uplift NN the recommendation is to always use stratified undersampling, whereas
for the other two methods the accuracy can often be improved further by considering
the computationally heavier split undersampling.

The methods differ in sensitivity to class imbalance. Correcting for class imbalance
is extremely important forCVT-LR,UpliftRFandUpliftNN.ThemAUUCon theorig-
inal data is below0.3 for bothCriteo datasets andCVT-LR fails to obtain even a positive
score, whereas with undersampling all reach an mAUUC in the range of 0.39–0.47.
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Table 9 mAUUC on Zhao

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 0.908 0.708 0.588 0.243

Classic undersampling 0.899 n/a n/a n/a

Naive undersampling 0.435 0.670 0.516 0.467

Stratified undersampling 0.908 0.782 0.604 0.733

Split undersampling 0.888 n/a 0.557 n/a

A larger value is better and the best results for every uplift model is highlighted with bold font

Table 10 EUCE on Zhao

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 0.00179 0.13820 0.00202 0.00268

Classic undersampling 0.00232 n/a n/a n/a

Naive undersampling 0.00378 0.00366 0.00381 0.00415

Stratified undersampling 0.00336 0.00294 0.00188 0.00214

Split undersampling 0.00354 n/a 0.00321 n/a

A smaller value is better. The best values for every uplift model is highlighted with bold font

Table 11 Optimal k-values on Zhao

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 1 1 1 1

Classic undersampling [4, 2] n/a n/a n/a

Naive undersampling 64 16 128 128

Stratified undersampling 1 32 8 128

Split undersampling [1, 32] n/a [8, 16] n/a

Whenever two separate values for kt=1 and kt=0 are needed, they are presented in brackets as [kt=1, kt=0]

Table 12 Mean mAUUC on Starbucks of 10 runs, standard deviation in parenthesis

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 1.973 1.557 2.147 0.579

(0.241) (0.422) (0.157) (0.576)

Classic undersampling 1.901 n/a n/a n/a

(0.250) n/a n/a n/a

Naive undersampling 1.919 1.847 2.043 1.902

(0.255) (0.215) (0.233) (0.272)

Stratified undersampling 1.988 1.836 2.217 1.773

(0.220) (0.205) (0.175) (0.405)

Split undersampling 1.954 n/a 2.377 n/a

(0.348) n/a (0.254) n/a

A larger value is better. The best result for every uplift model is highlighted with bold font
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Table 13 Mean EUCE on Starbucks of 10 runs, standard deviation in parenthesis

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 0.00928 0.01243 0.01007 0.03789

(0.00084) (0.00157) (0.00060) (0.03177)

Classic undersampling 0.01001 n/a n/a n/a

(0.00081) n/a n/a n/a

Naive undersampling 0.01055 0.01006 0.01013 0.01004

(0.00055) (0.00065) (0.00076) (0.00058)

K-undersampling 0.01255 0.01228 0.01022 0.01063

(0.00079) (0.00080) (0.00083) (0.00072)

Split-undersampling 0.00938 n/a 0.01015 n/a

(0.00094) n/a (0.00067) n/a

A smaller value is better. The best value for every uplift model is highlighted with bold font

Even the smallest increase in mAUUC (Uplift RF on Criteo-uplift 2) corre-
sponds to a 50% relative improvement. On Zhao the improvements were less striking,
but also here these methods improved by undersampling with the largest improve-
ment seen on the Uplift NN. DC-LR, however, is very robust to the class imbalance,
reaching similar mAUUC for the three larger datasets already without undersampling.
Importantly, undersampling does not seem to hurt either—for Criteo-uplift 1
we observe a small improvement and for Criteo-uplift 2 a small decrease in
mAUUC, but for the three larger datasets, the method mostly remains competitive also
with undersampling.

Split undersampling is presented in a bit more detail in Fig. 2. DC-LR and Uplift
RF were tested on Criteo-uplift 2 for these plots. The baseline with no under-
sampling is at the bottom left corner (indicated with an x). As can be seen in the
plots, DC-LR is better than Uplift RF on most selections of kt=0 and kt=1. The best
k-values were off-diagonal for both models (marked with a star). The plots show that
split undersampling might be better than stratified undersampling with these models,
although if computational complexity is an issue, the results on the diagonal show that
stratified undersampling might be a good compromise.

Datasets need to be large enough to benefit from undersampling. The improve-
ments in mAUUC were largest on the largest datasets and decreased with dataset
size. On Criteo-uplift 1 and Criteo-uplift 2 we saw sizeable improve-
ments, whereas on Zhao the improvementsweremoremodest. On the second smallest
dataset, Starbucks, we see clear improvements in mAUUC only for the neural net,
but even then the metrics do not exceed that of the basic benchmark of DC-LR.
On the smallest dataset, Hillstrom, all mAUUC-metrics are essentially zero and
slightly below the baselines. This seems to indicate slight overfitting. These results
on Hillstrom are in line with Rössler et al. (2021) who ran repeated experiments
with a double classifier on the same dataset and found no uplift. Further, while com-
paring EUCE-values for models with no uplift is pointless, Table 16 with EUCE for
Hillstrom is included for completeness. The effect of dataset size is investigated
in more detail in Sect. 4.4.
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Table 15 Mean mAUUC on Hillstrom of 10 runs, standard deviation in parenthesis

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 0.051 0.042 0.142 0.007

(0.446) (0.473) (0.431) (0.391)

Classic undersampling −0.181 n/a n/a n/a

(0.393) n/a n/a n/a

Naive undersampling −0.064 −0.240 0.010 −0.076

(0.444) (0.454) (0.421) (0.453)

Stratified undersampling −0.162 −0.258 0.047 −0.205

(0.371) (0.221) (0.472) (0.513)

Split undersampling −0.222 n/a −0.064 n/a

(0.454) n/a (0.664) n/a

A larger value is better. The best result for every uplift model is highlighted with bold font

Table 16 Mean EUCE on Hillstrom of 10 runs, standard deviation in parenthesis

DC-LR CVT-LR Uplift RF Uplift NN

No undersampling 0.01542 0.02503 0.01464 0.04051

(0.00109) (0.00199) (0.00140) (0.02624)

Classic undersampling 0.01547 n/a n/a n/a

(0.00105) n/a n/a n/a

Naive undersampling 0.01531 0.01532 0.01535 0.01538

(0.00096) (0.00127) (0.00109) (0.00091)

K-undersampling 0.01347 0.01292 0.01469 0.02006

(0.00102) (0.00084) (0.00129) (0.00772)

Split-undersampling 0.01550 n/a 0.01519 n/a

(0.00086) n/a (0.00181) n/a

A smaller value is better. The best value for every uplift model is highlighted with bold font

4.4 Experiment 2: reducing dataset size

The previous experiment indicates that improvement in AUUC decreased with dataset
size. In this experiment we inspect in more detail how the approaches work on smaller
datasets, which in class-imbalanced problems necessarily means having only a few
positive observations. For this study we retain only the better stratified and split under-
sampling methods. To create the smaller training datasets in a controlled manner we
randomly took subsamples of 100%, 50%, 25%, 10%, 5%, 2.5%, and 1.25% observa-
tions of the Criteo-uplift 2 data, but still use the large test set with 25% of the
4.2 million observations. Using the full test set ensures that we can reliably estimate
the final accuracy, and hence the results provide more direct evidence on how the
methods themselves can account for smaller sample size. As the dataset has 4063 pos-
itive untreated observations and we used the 50/25/25 split (training/validation/test),
roughly 1000 of thosewere in the testing set, 2000 in the training set, and the remaining
1000 in the validation set.
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Fig. 2 mAUUC for DC-LR and Uplift RF with split undersampling and different values of kt=1 and kt=0.
The best values are marked with a star. In the bottom left corner marked with an x is the baseline with
no undersampling (kt=1 = kt=0 = 1), on the diagonal marked with dots are cases where kt=1 = kt=0
(equivalent to stratified undersampling). On the off-diagonal marked with plus-signs are cases where kt=1
was selected so that p(y = 1|t = 1) = p(y = 1|t = 0). The squares in blue could not be trained within 24
hours (Color figure online)

Fig. 3 mAUUC on the tested models on Criteo-uplift 2 with reduced dataset size. CVT-LR was
left out as it was negative at all points. Both RF without undersampling and with stratified undersampling
performed particularly poorly, but this was largely corrected with split undersampling and local neighbor-
hood calibration. Most models performed well with 10% of the dataset (fraction 0.1). DC-LR and Uplift
RF plots are reproduced to the right for legibility
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Figure 3 plots mAUUC for the different models as a function of the data size,
dropping CVT-LR without undersampling as it always had an mAUUC below zero.
The plot is slightly cluttered, and hence we summarize here the main observations.
The main trend is that the accuracies decrease for smaller datasets, but importantly
the best methods retain very high mAUUC even when trained on extremely small
data. The performance of all models was still good with one tenth of the data (fraction
0.1) where there was only 200 positive untreated observations in the training data. One
tenth approximately corresponds to the size of Zhao. The fraction 0.025 of the dataset
roughly corresponds to the size of Starbucks. At this fraction, there was already
more variability, although the models still produce positive results. The performance
of some models were decent even with the smallest of the tested fractions (0.0125),
although at this point the models were quite unstable and some models even produced
negative mAUUC. This fraction is roughly equivalent to the size of Hillstrom.
Essentially the same pattern is seen here as in Experiment 1: large datasets clearly ben-
efit from undersampling, and the benefits of undersampling decreases with decreasing
dataset size.

A different observations was that even though DC-LR was in the previous experi-
ment found to be robust for class imbalance, using undersampling becomes important
also for that when trained on very small datasets.

4.5 Experiment 3: when is p(y = 1|t) small?

Stratified undersampling and renormalization calibration rely on the assumption that
p(y = 1|t = 1) and p(y = 1|t = 0) are both small and hence also similar. This
experiment investigates what small might actually mean in practice by changing the
positive rate p(y = 1|t = 1) in the dataset, building on the expectation that for
higher p(y = 1|t = 1) stratified undersampling might break down and reveal larger
advantage for split undersampling. To directly measure this, we only use the models
compatible with split undersampling.

We again use a semi-synthetic datasets, constructing a data of 734,000 observations
by sampling observations from Criteo-uplift 2 randomly to produce data with
the following properties: Half of the observations were treated, half untreated. The
positive rate among the untreated observations was kept constant at 0.19% (this is the
natural rate in the dataset) while the positive rate among treated observations was first
reduced to match 0.19%, and then doubled from that five times to get rates 0.39%,
0.78%, 1.55%, 3.1%, and 6.2%. The last one is roughly the upper bound for the con-
version rate for treated observations that could be generated from Criteo-uplift
2 without resampling.

The results are reported in Fig. 4 as relative to the metrics of DC-LR to make the
figure legible, and as absolute values inTable 18. The results confirmsomeof the earlier
findings: (a) DC-LR is robust to class imbalance as seen by different variants having
near identical performance except for at the smallest conversion rate, and (b) correcting
for class imbalance is crucial for Uplift RF. We also confirm the basic hypothesis
that stratified undersampling works well when the conversion rates are small—for
p(y = 1|t = 1) = 0.0019 we can correct Uplift RF also with that method—but when
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Fig. 4 The performance of DC-LR and Uplift RF with different undersampling strategies over semi-
simulated datasets where p(y = 1|t = 0) is kept constant and p(y = 1|t = 1) is adjusted (horizontal
axis). DC-LR with no undersampling is used as baseline (100%) and all other results are normalized by the
AUUC of this baseline

Table 18 AUUC on Criteo-uplift 2 for different p(y = 1|t = 1). p(y = 1|t = 1) is first dropped
to 0.0019, which is equal to p(y = 1|t = 0), and then increased by a factor of two up til 0.062 (6.2%)

p(y = 1|t = 1) 0.0019 0.0039 0.0078 0.0155 0.031 0.062

DC-LR 0.00018 0.00081 0.00258 0.00601 0.01171 0.02202

DC-LR (strat. und.) 0.00022 0.00080 0.00258 0.00601 0.01171 0.02202

DC-LR (split und.) 0.00015 0.00078 0.00258 0.00604 0.01183 0.02220

Uplift RF 0.00006 0.00058 0.00219 0.00496 0.00758 0.00760

Uplift RF (strat. und.) 0.00013 0.00062 0.00230 0.00438 0.00719 0.00442

Uplift RF (split und.) 0.00013 0.00073 0.00252 0.00605 0.01180 0.02222

the conversion rate grows we indeed need to use split undersampling. This is best seen
in Uplift RF that is more sensitive to the correction method, but also for DC-LR we
observe very good performance for stratified undersampling for low conversion rates.

Table 18 provides the exactAUUCnumbers and shows they are consistentwithwhat
we should expectwhenmodifying the underlying problem like this. Roughly speaking,
the uplift (AUUC) present in the data should approximately double as p(y = 1|t = 1)
doubles, and from the rate 0.0039 this indeed holds for all DC-LR variants tested and
Uplift RF with split undersampling. For the smallest conversion rate the AUUC is
lower than expected, possibly suggesting none of the models is finding a very good
solution.
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5 Discussion

Even though the problem of high class imbalance is prevalent in typical uplift model-
ing problems, especially in e-commerce, the aspect has been ignored in the literature.
In addition, the largest available datasets for training and evaluating uplift models,
Criteo-uplift 1 and 2, are known for being hard to reach any meaningful
improvements on. We believe this is precisely because the datasets exhibit high class
imbalance and there has not existed techniques for uplift modeling to deal with this.
Many of the methods fail miserably on these datasets if the imbalance is not cor-
rected for, and the same happens on Zhao as reported here. This implies that some
of the conclusions made in earlier works may be misguided—specific methods are
observed to perform poorly but could have been fixed fairly easily by the undersam-
pling techniques proposed here. For instance, Fernández-Loría and Provost (2022)
compared a classification model to an uplift random forest and claimed that a simple
classificationmodel performed better on uplift metrics based on empirical experiments
on Criteo-uplift 2. As shown here, uplift random forests are a weak baseline
for imbalanced datasets and for fair comparison the proposed method would need to
be contrasted either against a double classifier method robust to class imbalance, or
against uplift RF with undersampling. Even though the specific method and experi-
mental details differ, the 70% improvement in AUUC observed in our case strongly
suggests that the baseline in their case could have been improved easily. Similarly,
Semenova and Temirkaeva (2019) report poor performance for uplift random forests,
again on Criteo-uplift 2, and proceed to suggest DC-LR as the method of
choice. We believe this result is also because of not accounting for the class imbalance
and hence as such not a fault of the uplift random forest method itself. In addition to
uplift random forests, we highlight the importance of correcting for the imbalance also
for CVT-LR. In our experiments CVT-LR did not work at all when applied as is, even
though it is a useful method on more balanced datasets (Jaskowski and Jaroszewicz
2012).

Another important observation is that the benefit of undersampling was dependent
on dataset size. While we could see clear improvements for the three large datasets,
on the smaller Starbucks and Hillstrom we could not observe any reliable
differences. The key reason is that the mAUUC estimates themselves are very noisy
for datasets this small. Itmeans that potential improvements are difficult to differentiate
from the variability across runs, but more importantly it implies we lose the ability to
select the undersampling factor k well. All of the proposed methods rely on validation
set accuracy for the choice of k, and with small validation sets the choice becomes
largely random. Our main motivation for the work was in improving accuracy for
large-scale uplift problems where undersampling was shown to work well and has
the additional advantage of improving computational speed, and the results show that
it indeed is limited to these setups. For small datasets we would need alternative
solutions, since even the notion of discarding any of the limited samples (by dropping
them, or even by dedicating them to be used only for validation) is not a sensible
starting point. Methods based on oversampling, reweighting or synthetic sampling
might provide a better starting point, but would require dedicated effort to adjust for
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the needs of uplift modeling and with extremely small datasets the question of not
being able to accurately estimate the uplift is likely to remain a major challenge.

The observation that DC-LR is highly resilient to class imbalance is also important.
Even though Radcliffe and Surry (1999) and Guelman et al. (2015) discouraged use
of DC-LR based on theoretical arguments and many follow-up works refer to their
recommendations, the recommendations were not backed up by empirical evidence.
In light of the results of Semenova and Temirkaeva (2019) and our observation of
robustness to class imbalance, we explicitly recommend including DC-LR, one of the
easiest uplift models to use, as a baseline in method comparisons for tasks with strong
imbalance.We do not a have clear explanation of the particularly good performance of
DC-LR on the Criteo datasets, but speculate that it may relate to the input features
that are projections from real inputs to preserve anononymity; this may remove non-
linearities in the actual modeling problem that onlymore advancedmodels would have
thrived on. Regardless of whether DC-LR is particularly accurate on other datasets,
the robustness to class imbalance makes it an important baseline.

Considering the imbalance of Uplift RF, the results stem from some leafs often
containing just a handful of positive observations. In cases where we are interested
in conditional probabilities that are a fraction of a percent, changing the number of
positive treated or untreated observations by just one will already cause a sizeable
change in ranks between predictions. Undersampling makes the leaves more balanced
and removes this instability. A similar result might be achievable by some form of
regularization, but this is something that has not been deal with in the uplift random
forest literature. We leave this for future work.

Our results focus on showing the accuracy of the uplift models, not paying atten-
tion to the computational cost as we do not believe it to be a major factor in practical
use. The undersampling methods require selection of the undersampling factors by
cross-validation and split undersampling requires performing a sweep over two factors
jointly, but the computation of the alternative solutions parallelizes trivially. Further-
more, for larger undersampling factors the datasets become extremely small compared
to the original data and hence many of the alternatives will be fast to evaluate. Finally,
after selecting the undersampling factor it is faster to re-train the uplift model (e.g.
for newly arriving data), eventually compensating for the increased cost in initial
modeling.

We also want to highlight an observation that is valuable for practical use of uplift
models e.g. in industry. In Experiment 2 we showed that we were able to estimate
uplift accurately based on just a few hundred positive training observations. The cost
of obtaining positive observations may sometimes be high and knowing that already a
number this smallmay be enoughwill help in designing the data collection experiment.
Even though the exact number of required observations naturally depends on the
specific case, our results already provide a rough order of magnitude as a target.

Finally, we observe that only three of the datasets were large-scale datasets and
hence e.g. general conclusions on relative accuracy of specific methods cannot be
made based on these results. Instead, our main point is to highlight the importance
of accounting for the class imbalance and demonstrate that undersampling provides a
general solution to the problem. For further investigation of the methods on additional
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datasets, we refer you to our code at https://github.com/Trinli/uplift_modeling that
allows easily re-running the experiments with any data.

6 Conclusion

In this work we thoroughly investigated undersampling as pre-processing and calibra-
tion as post-processing for uplift modeling, considerably extending our preliminary
work Nyberg et al. (2021) providing the first practical solutions for addressing class
imbalance in uplift modeling. We showed how probabilities are distorted as a con-
sequence of undersampling, and provided alternative undersampling approaches and
calibration methods for addressing this distortion to produce valid uplift estimates
from undersampled data.

We demonstrated the different undersampling methods in context of several uplift
models on the largest available datasets with clear results: most uplift models need
undersampling to perform well if the data exhibits high class imbalance, and in par-
ticular uplift random forests and methods based on the class-variable transformation
are extremely sensitive to class imbalance. However, undersampling mitigates the
problem well. The proposed methods work reliably for sufficiently large datasets
(approximately 500,000 samples or more), but accounting for class imbalance based
on very small data sets requires further work. Based on our findings, we conclude
by making four concrete recommendations for both the research community and the
industry using uplift models:

1. If the data exhibits class imbalance, you need to account for it.
2. Accounting for the imbalance is particularly important for uplift models based on

random forests and class variable transformations.
3. The double classifier with logistic regression is robust to class imbalance and

should be included as a benchmark in method comparisons.
4. The best methods to account for the class imbalance are stratified and split under-

sampling.
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A Appendix: Local neighborhood correction

Equation (12) in Sect. 3.3.3 shows how estimates of p∗(y = 1|x, t) can be converted
into estimates of p(y = 1|x, t). Here we justify the expression.

Consider a case where the conditional probabilities are estimated from observations
in local neighborhood of x , denoting the counts of the original observations in the
neighborhood by Npos and Nneg and the corresponding counts after undersampling
by N∗

pos and N∗
neg . From the undersampled data we hence get the maximum likelihood

estimate p∗
ML(y = 1|x, t) = N∗

pos
N∗
pos+N∗

neg
. For the original data we have

pML(y = 1|x, t) = Npos

Npos + Nneg
= p∗

ML(y = 1|x, t)
p∗
ML(y = 1|x, t) + Nneg

N∗
,

where we are able to express some terms as a function of p∗
ML(y = 1|x, t) by dividing

the factors with N∗ = N∗
pos + N∗

neg because Npos does not change in the undersam-
pling.

Here Nneg is a randomvariable as it cannot be directly observed in the undersampled
data. The number of discarded observations Nneg − N∗

neg follows a negative binomial
distribution with parameters N∗

neg and 1 − st and hence the expectation of Nneg is
N∗
neg
st

and the mode is
N∗
neg−(1−st )

st
rounded down to an integer. By plugging in the

expectation, writing
N∗
neg
N∗ = 1 − p∗

ML(y = 1|x, y), and performing simple algebraic
manipulation we get

pML(y = 1|x, t) = p∗
ML(y = 1|x, t)

p∗
ML(y = 1|x, t) + N∗

neg
st N∗

= st · p∗
ML(y = 1|x, t)

1 − p∗
ML(y = 1|x, t) · (1 − st )

,

matching Eq. (12).
For the mode the rounding operation complicates the derivation, but in practical

terms the only difference is that in the denominator we need to subtract 1
N∗ from

p∗
ML(y = 1|x, t). Since we expect the estimators to be computed from sufficiently

large total N∗, this bias is negligible in practice and hence the relationship holds also
for the most likely estimators.
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