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Abstract. When computationally feasible, mining huge databases pro-
duces tremendously large numbers of frequent patterns. In many cases,
it is impractical to mine those datasets due to their sheer size; not only
the extent of the existing patterns, but mainly the magnitude of the
search space. Many approaches have suggested the use of constraints to
apply to the patterns or searching for frequent patterns in parallel. So
far, those approaches are still not genuinely effective to mine extremely
large datasets.
We propose a method that combines both strategies efficiently, i.e. min-
ing in parallel for the set of patterns while pushing constraints. Using
this approach we could mine significantly large datasets; with sizes never
reported in the literature before. We are able to effectively discover fre-
quent patterns in a database made of billion transactions using a 32
processors cluster in less than 2 hours.

1 Introduction

Frequent Itemset Mining (FIM) is a key component of many algorithms which ex-
tract patterns from transactional databases. For example, FIM can be leveraged
to produce association rules, clusters, classifiers or contrast sets. This capability
provides a strategic resource for decision support, and is most commonly used
for market basket analysis.

One challenge for frequent itemset mining is the potentially huge number of
extracted patterns, which can eclipse the original database in size. In addition
to increasing the cost of mining, this makes it more difficult for users to find the
valuable patterns. Introducing constraints to the mining process helps mitigate
both issues. Decision makers can restrict discovered patterns according to spec-
ified rules. By applying these restrictions as early as possible, the cost of mining
can be constrained. For example, users may be interested in purchases whose
total price exceeds $100, or whose items cost between $50 and $100.

While discovering hidden knowledge in the available repositories of data is an
important goal for decision makers, discovering this knowledge in a “reasonable”
time is capital. Despite the increase in data collection, the rapidity of the pattern
discovery remains vital and will always be essential. Speeding up the process of
knowledge discovery has become a critical problem, and parallelism is shown to
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be a potential solution for such a scalability predicament. Naturally, paralleliza-
tion is not the only and should not be the first solution to speedup the data
mining process. Indeed, other approaches might help in achieving this goal, such
as sampling, attribute selection, restriction of search space, and algorithm or
code optimization [15]. Some of these approaches might be used in conjunction
with parallelism to achieve the desired speedup. A legitimate issue is whether
parallelism is needed in data mining. Efficiency is crucial in knowledge discovery
systems, and with the explosive growth of data collection, sequential data min-
ing algorithms have become an unacceptable solution to most real size problems
even after clever optimizations. To illustrate the complexity of the problem of
frequent itemset enumeration in today’s real data, assume a small token case
with only 5 possible items (i.e. a store that sells only 5 distinct products), the
lattice that represents all possible candidate frequent patterns has 25 − 1 = 31
itemsets. Applications that generate transactions with sizes greater than 100
items per transaction are common. In those cases, to find a frequent itemset
with size 100, it would take a search space of 2100 − 1 = 1.27 ∗ 1030 itemsets.
Adding the fact that most real transactional databases are in the order of mil-
lions, if not billions, of transactions and the problem becomes intractable with
current sequential solutions. With hundreds of gigabytes, and often terabytes
and thousands of distinct items, it is unrealistic for one processor to mine the
data sequentially, especially when multiple passes over these enormous databases
are required.

There are different design issues that affect building parallel frequent mining
algorithms [35, 34]. These design issues are significantly affected by the specifi-
cation of the problem that the system is trying to solve.

Constraint based mining is an ongoing area of research where two important
categories of constraints monotone and anti-monotone [20] are studied in this
work. Anti-monotone constraints are constraints that when valid for a pattern,
they are consequentially valid for any subset subsumed by the pattern. Mono-

tone constraints when valid for a pattern are inevitably valid for any superset
subsuming that pattern. The straightforward way to deal with constraints is to
use them as a filter post-mining. However it is more efficient to consider the
constraints during the mining process. This is what is refereed to as “pushing

the constraints” [24]. Most existing algorithms leverage (or push) one of these
types during mining and postpone the other to a post-processing phase.

1.1 Problem Statement

The problem of mining association rules over market basket analysis was intro-
duced in [1, 2]. The problem consists of finding associations between items or
itemsets in transactional data. The data is typically retail sales in the form of
customer transactions, but can be any data that can be modeled into transac-
tions. For example medical images where each image is modeled by a transaction
of visual features from the image [33], or text data where each document is mod-
eled by a transaction representing a bag of words [14], or web access data where
click-stream visitation is modeled by sets of transactions [19], all are well suited
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applications for association rules or frequent itemsets. Association rules have
been shown to be useful for other applications such as recommender systems
[29], diagnosis [10], decision support [11], telecommunication [21], and even su-
pervised classification [4, 3]. The main and most expensive component in mining
association rules is the mining of frequent itemsets. Formally, the problem is
stated as follows: Let I = {i1, i2, ...im} be a set of literals, called items. Each
item is an object with some predefined attributes such as price, weight, etc. and
m is considered the dimensionality of the problem. Let D be a set of transactions,
where each transaction T is a set of items such that T ⊆ I. A transaction T is
said to contain X, a set of items in I, if X ⊆ T . A constraint ζ is a predicate on
itemset X that yields either true or false. An itemset X satisfies a constraint ζ

if and only if ζ(X) is true. An itemset X has a support s in the transaction set
D if s% of the transactions in D contain X. Two particular constraints pertain
to the support of an itemset, namely the minimum support constraint and the
maximum support constraint. An itemset X is said to be infrequent if its support

s is smaller than a given minimum support threshold σ; X is said to be too

frequent if its support s is greater than a given maximum support Σ; and X is
said to be large or frequent if its support s is greater or equal than σ and less or
equal than Σ.

1.2 Contributions in this paper

In this paper we present a new parallel frequent mining algorithm that is based on
our previous work of BifoldLeap [13] that generates the set of frequent patterns
satisfying the user input constraints. We show that pushing the constraints while
parallelizing the mining task allows us to mine databases of sizes never reported
before, and in a reasonable time using a cluster of 32 processors.

The rest of this paper is organized as follows: In Section 2, we discuss the
types of constraints used in this work. Leap-traversal approach is illustrated
in Section 3. Pushing constraints in this approach is explained in Section 4.
Section 5 describes our proposed parallel approach ”Parallel Bifold Leap” where
we evaluate some strategies for load sharing. Section 6 presents performance
results on experiments assessing scalability and speed-up. Finally, we highlight
some related work in Section 7 and conclude the paper in Section 8.

2 Constraints

It is known that algorithms for discovering frequent patterns generate an over-
whelming number of those patterns. While many new efficient algorithms were
recently proposed to allow the mining of extremely large datasets, the problem
due to the sheer number of patterns discovered still remains. The set of dis-
covered patterns is often so large that it becomes useless. Different measures of
interestingness and filters have been proposed to reduce the number of discov-
ered patterns, but one of the most realistic ways to find only those interesting
patterns is to express constraints on the patterns we want to discover. However,
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monotone anti-monotone

min(S) ≤ v min(S) ≥ v

max(S) ≥ v max(S) ≤ v

count(S) ≥ v count(S) ≤ v

sum(S) ≥ v(∀a ∈ S, a ≥ 0) sum(S) ≤ v(∀a ∈ S, a ≥ 0)

range(S) ≥ v range(S) ≤ v

support(S) ≤ v support(S) ≥ v

Table 1. Commonly used monotone and anti-monotone constraints

filtering the patterns post-mining adds a significant overhead and misses the op-
portunity to reduce the search space using the constraints. Ideally, dealing with
the constraints should be done as early as possible during the mining process.

2.1 Categories of Constraints

A number of types of constraints have been identified in the literature [20]. In
this work, we discuss two important categories of constraints – monotone and
anti-monotone.

Definition 1 (Anti-monotone constraints)
A constraint ζ is anti-monotone if and only if an itemset X violates ζ, so does
any superset of X. That is, if ζ holds for an itemset S then it holds for any
subset of S.

Many constraints fall within the anti-monotone category. The minimum sup-
port threshold is a typical anti-monotone constraint. As an example, sum(S) ≤
v(∀a ∈ S, a ≥ 0) is an anti-monotone constraint. Assume that items A, B,
and C have prices $100, $150, and $200 respectively. Given the constraint ζ =
(sum(S) ≤ $200), then since itemset AB, with a total price of $250, violates the
ζ constraint, there is no need to test any of its supersets (e.g. ABC) as they also
violate the ζ constraint.

Definition 2 (Monotone constraints)
A constraint ζ is monotone if and only if an itemset X holds for ζ, so does any
superset of X. That is, if ζ is violated for an itemset S then it is violated for
any subset of S.

An example of a monotone constraint is sum(S) ≥ v(∀a ∈ S, a ≥ 0). Using
the same items A, B, and C as before, and with constraint ζ = ( sum(S) ≥ 500
), then knowing that ABC violates the constraint ζ is sufficient to know that all
subsets of ABC will violate ζ as well. Table 1 presents commonly used constraints
that are either anti-monotone or monotone. From the definition of both types
of constraints we can conclude that anti-monotone constraints can be pushed
when the mining-algorithm uses the bottom-up approach, as we can prune any
candidate superset if its subset violates the constraint. Conversely, the monotone

constraints can be pushed efficiently when we are using algorithms that follow
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the top-down approach as we can prune any subset of patterns from the answer
set once we find that its superset violates the monotone constraint.

3 The Leap Traversal Approach

Contrary to most existing parallel algorithms for mining frequent patterns, our
algorithm is not apriori-based. To mine for frequent patterns in parallel while
pushing constraints, we rely on a completely new and different approach and
use special structures that fit well a distributed or cluster environment. Before
elaborating on our parallel algorithm, we first present the data structures and
explain the general concepts. Our algorithm is based on our recent new lat-
tice traversal strategy HFP-Leap [31] and the approach for pushing constraints
presented in [13]. In our parallel approach, HFP-Leap still performs the actual
leap-traversal to find maximal patterns, then filter those patterns based on con-
straints that will be pushed during the mining process. We first present the idea
behind HFP-Leap then show how this idea can be used to push constraints using
the BifoldLeap algorithm. Finally the parallelization process for this algorithm is
explained highlighting our load sharing strategies. The Leap-Traversal approach
we discuss consists of two main stages: the construction of a Frequent Pattern
tree (HFP-tree); and the actual mining for this data structure by building the
tree of intersected patterns.

Support >= 4
Header Table
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2 5 3 2 3 1 2 5 0 3 2 0 3 1 0
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Fig. 1. Example of transactional database with its original FP-tree and Headerless
FP-tree.

3.1 Construction of the Frequent Pattern Tree: The sequential way

The goal of this stage is to build a compact data structure, which is a prefix tree
representing sub-transactions pertaining to a given minimum support threshold.
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This data structure, compressing the transactional data, is based on the FP-tree
by Han et al. [17]. The tree structure we use, called HFP-tree is a variation of
the original FP-tree. We will introduce the original FP-tree before discussing
the differences with our data structure. The construction of the FP-tree is done
in two phases, where each phase requires a full I/O scan of the database. A
first initial scan of the database identifies the frequent 1-itemsets. The goal is to
generate an ordered list of frequent items that would be used when building the
tree in the second phase.

After the enumeration of the items appearing in the transactions, infrequent
items with a support less than the support threshold are weeded out and the
remaining frequent items are sorted by their frequency. This list is organized in
a table, called a header table, where the items and their respective supports are
stored along with pointers to the first occurrence of the item in the frequent
pattern tree. The actual frequent pattern tree is built in the second phase. This
phase requires a second complete I/O scan of the database. For each transaction
read, only the set of frequent items present in the header table is collected and
sorted in descending order according to their frequency. These sorted transaction
items are used in constructing the FP-Tree.

Each ordered sub-transaction is compared to the prefix tree starting from
the root. If there is a match between the prefix of the sub-transaction and any
path in the tree starting from the root, the support in the matched nodes is
simply incremented, otherwise new nodes are added for the items in the suffix
of the transaction to continue a new path, each new node having a support of
one. During the process of adding any new item-node to the FP-Tree, a link is
maintained between this item-node in the tree and its entry in the header table.
The header table holds one pointer per item that points to the first occurrences
of this item in the FP-Tree structure.

Our tree structure is similar in principle to the FP-tree but has the following
differences. We call this tree Headerless-Frequent-Pattern-Tree or HFP-tree.
1. We do not maintain a header table, as a header table is used to facilitate the
generation of the conditional trees in the FP-growth model [17]. It is not needed
in our leap traversal approach;
2. We do not need to maintain the links within the same itemset across the
different branches (horizontal links);
3. The links between nodes are bi-directional to allow top-down and bottom-up
traversals of the tree;
4. All leaf nodes are linked together as the leaf nodes are the start of any pattern
base and linking them helps the discovery of frequent pattern bases;
5. In addition to support, each node in the HFP-tree has a second variable called
participation.
Basically, the support represents the support of a node, while participation rep-
resents, at a given time in the mining process, the number of times the node
has participated in already counted patterns. Based on the difference between
the two variables, participation and support, the special patterns called frequent-

path-bases are generated. These are simply the paths from a given node x, with
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participation smaller than the support, up to the root, (i.e. nodes that did not
fully participate yet in frequent patterns). Figure 1 presents the Headerless FP-
tree and the original FP-tree for the same transactional data. Algorithm 1 shows

Algorithm 1 HFP-Bifold: BifoldLeap Headerless FP-tree

Input: D (transactional database); P (); Q(); and σ (Support threshold).
Output: Maximal patterns with their respective supports.

Scan D to find the set of frequent 1-itemsets F1
Scan D to build the Headerless FP-tree HFP

FPB ← FindFrequentPatternBases(HFP )
PQ − Patterns ← Find-PQ-Patterns(FPB, σ)
Output PQ − Patterns

the main steps in our approach while pushing the two types of constraints which
are: The conjunction of all anti-monotone constraints that comprises a predi-
cate which we call P (). A second predicate Q() contains the conjunction of the
monotone constraints. After building the Headerless FP-tree with 2 scans of
the database, we mark some specific nodes in the pattern lattice using FindFre-

quentPatternBases. Using the FPBs, Bifold idea in Find-PQ-Patterns discovers
the frequent patterns that satisfy both types of constraints P () and Q(). Algo-
rithm 2 shows how patterns in the lattice are marked. The linked list of leaf
nodes in the HFP-tree is traversed to find upward the unique paths represent-
ing sub-transactions. If frequent maximals exist, they have to be among these
complete sub-transactions. The participation counter helps reusing nodes ex-
actly as needed to determine the frequent path bases. Algorithm 3 presents the
BifoldLeap idea which is Leap with constraints. This idea with its pruning algo-
rithms are explained in the details in next section.

3.2 Construction of the Frequent Pattern Tree: The parallel way

Constructing the parallel HFP-tree is done by allocating each processor to an
equal size-partition of the original dataset. The parallel way has a similar idea
of the two-phase sequential method described in the previous section, where
each processor finds its local candidate items and broadcasts them to generate
the global frequent 1-itemset in phase one. The second phase of building the
HFP-tree builds one HFP-tree for each processor based on the global Frequent 1-
itemset collected in the previous phase. Building those trees is an embarrassingly
parallel task, where each tree built is completely independent from others built
by different processors. Details on this process are highlighted in Section 5.

4 BifoldLeap: Leap with constraints

The algorithm COFILeap [12] offers a number of opportunities to push the mono-
tone and anti-monotone predicates, P () and Q() respectively. We start this pro-
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Algorithm 2 FindFrequentPatternBases: Marking nodes in the lattice

Input: HFP (Headerless FP-Tree).
Output: FPB (Frequent pattern bases with counts)

ListNodesF lagged ← ∅
Follow the linked list of leaf nodes in HFP

for each leaf node N do

Add N to ListNodesF lagged

end for

while ListNodesF lagged 6= ∅ do

N ← Pop(ListNodesF lagged) {from top of the list}
fpb ← Path from N to root

fpb.branchSupport ← N .support - N .participation
for each node P in fpb do

P .participation ← P .participation + fpb.branchSupport
if P .participation < P .support AND ∀c child of P , c.participation = c.support
then

add P in ListNodesF lagged

end if

end for

add fpb in FPB

end while

RETURN FPB

cess by defining two terms which are head (H) and tail (T ) where H is a frequent
path base or any subset generated from the intersection of frequent path bases,
and T is the itemset generated from intersecting all remaining frequent path
bases not used in the intersection of H. The intersection of H and T , H ∩ T ,
is the smallest subset of H that may yet be considered. Thus Leap focuses on
finding frequent H that can be declared as local maximals and candidate global
maximals. BifoldLeap extends this idea to find local maximals that satisfy P ().
We call these P-maximals. Although we further constrain the P-maximals to
itemsets which satisfy Q(), not all subsets of these P-maximals are guaranteed
to satisfy Q(). To find the itemsets which satisfy both constraints, the subsets
of each P-maximal are generated in order from long patterns to short. When
a subset is found to fail Q(), further subsets do not need to be generated for
that itemset, as they are guaranteed to fail Q() also. constraints can be pushed
while intersecting the frequent path bases, which is the main phase where both
types of constraints are pushed at the same time (Algorithm 3).There are two
high-level strategies for pushing constraints during the intersection phase. First,
P () and Q() can be used to eliminate an itemset or remove the need to evaluate
its intersections with additional frequent path bases. Second, P () and Q() can be
applied to the “head intersect tail” (H ∩ T ), which is the smallest subset of the
current itemset that can be produced by further intersections. These strategies
are detailed in the following four theorems.
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Algorithm 3 Find-PQ-Patterns: Pushing P () and Q()

Input: FPB (Frequent Pattern Bases); P (); Q(); and σ (Support threshold).
Output: Frequent patterns satisfying P(), Q()

PLM(PLMaximals) ← {P (FPB) and frequent}
InFrequentFPB ← notFrequent(FPB)
for each pair (A, B) ∈ InFrequentFPB do

header ← A ∩ B

Add header in PLM and Break IF (P (header) AND is frequent and not ∅)
Delete header and break IF (Not Q(header))
tail ← Intersection(FPBs not in header)
delete header and break IF (Not P (header ∩ tail))
Do not check for Q() in any subset of header IF (Q(header ∩ tail))

end for

for each pattern P in PLM do

Add P in PGM IF ((P not subset of any M ∈ PGM)
end for

PQ-Patterns ← GPatternsQ(FPB, PGM) (All subsets that satisfy both types of
constraints)
Output PQ-Patterns

Theorem 1: If an intersection of frequent path bases (H) fails Q(), it can be
discarded, and there is no need to evaluate further intersections with H.

Proof : If an itemset fails Q(), all of its subsets are guaranteed to fail Q() based
on the definition of monotone constraints. Further intersecting H will produce
subsets, all of which are guaranteed to violate Q().

Theorem 2: If an intersection of frequent path bases (H) passes P (), it is a can-
didate P-maximal, and there is no need to evaluate further intersections with H.

Proof : Further intersecting H will produce subsets of H. By definition, no P-
maximal is subsumed by another itemset which also satisfies P (). Therefore,
none of these subsets of H are potential new P-maximals.

Theorem 3: If a node’s H∩T fails P (), the H node can be discarded, and there
is no need to evaluate further intersections with H.

Proof : If an itemset fails P (), then all of its supersets will also violate P ().
Since a node’s H ∩ T represents the subset of H that results from intersecting
H with all remaining frequent path bases, H and all combinations of intersec-
tions between H and remaining frequent path bases are supersets of H ∩ T and
therefore guaranteed to fail P () also.

Theorem 4:If a node’s H ∩ T passes Q(), Q() is guaranteed to pass for any
itemset resulting from the intersection of a subset of the frequent path bases
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used to generate H plus the remaining frequent path bases yet to be intersected
with H. Q() does not need to be checked in these cases.

Proof : Q() is guaranteed to pass for all of these itemsets because they are
generated from a subset of the intersections used to produce the H ∩ T and are
therefore supersets of the H ∩ T .

Price No
1
2
3
4 1 S 2 S 3 S 4 S 5 S
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Fig. 2. Pushing P () and Q().

The following example, shown in Figure 2, illustrates how BifoldLeap works.
It this example a transactional database is made from five items, A, B, C,
D, and E, with prices $60, $450, $200, $150, and $100 respectively. Assume
this transactional database generates 5 frequent path bases, ACDE, ABCDE,
ABCD, ABCE, and ABDE, each with branch support one. The anti-monotone
predicate, P (), is Sum(Prices) ≤ $500, and the monotone predicate, Q(),
is Sum(prices) ≥ $100. Intersecting the first FPB with the second produces
ACDE which has a price of $510, and therefore violates P () and passes Q().
Next, we examine the H ∩ T , the intersection of this node with the remaining
three FPBs, which yields A with price $60, passing P () and failing Q(). None
of these constraint checks provide an opportunity for pruning, so we continue
intersecting this itemset with the remaining frequent path bases. The first inter-
section is with the third FPB, producing ACD with price $410, which satisfies
both the anti-monotone and monotone constraints. The second intersection pro-
duces ACE, which also satisfies both constraints. The same thing occurs with
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the last intersection, which produces ADE. Going back to the second frequent
path base, ABCDE, we find that the H ∩ T , AB, violates the anti-monotone
constraint with price $510. Therefore, we do not need to consider ABCDE or
any further intersections with it. The remaining nodes are eliminated in the same
manner. In total, three candidate P-maximals were discovered. We can generate
all of their subsets while testing only against Q(). Finally, the support for these
generated subsets can be computed from the existing frequent path bases.

5 Parallel BifoldLeap: Building the structures in parallel

and mining in parallel

The parallel BifoldLeap starts by partitioning the data among the parallel nodes,
where each node receives almost the same number of transactions. Each proces-
sor scans its partition to find the frequency of candidate items. The list of all
supports is reduced to the master node to get the global list of frequent 1-
itemsets. The second scan of each partition starts with the goal of building a
local headerless frequent patterns tree. From each tree, the local set of frequent
path bases is generated. Those sets are broadcasted to all processors. Identical
frequent path bases are merged and sorted lexicographically, the same as with
the sequential process. At this stage the pattern bases are split among the pro-
cessors. Each processor is allocated a carefully selected set of frequent pattern
bases to build their respective intersection trees, with the goal of creating similar
depth trees among the processors. This distribution is discussed further below.
Pruning algorithms are applied at each processor to reduce the size of the inter-
section trees as it is done in the sequential version [31]. Maximal patterns that
satisfy the P () constraints are generated at each node. Each processor then sends
its P-maximal patterns to one master node, which filters them to generate the
set of global P-maximal patterns and then find all their subsets that satisfy Q().
Algorithm 4 presents the steps needed to generate the set of patterns satisfying
both P () and Q() in parallel.

5.1 Load sharing among processors

While the trees of intersections are not physically built, they are virtually tra-
versed to complete the relevant intersections of pattern bases. Since each proces-
sor can handle independently some of these trees and the sizes of these trees of
intersections are monotonically decreasing, it is important to cleverly distribute
these among the processors to avoid significant load imbalance. A näıve and di-
rect approach would be to divide the trees sequentially. Given p processors we

would give the first 1

p

th
trees to the first processor, the next fraction to the second

processor, and so on. Unfortunately, this strategy eventually leads to imbalance
among the processors since the last processor gets all the small trees and would
undoubtedly terminate before the other nodes in the cluster. A more elegant and
effective approach would be a round robin approach taking into account the sizes
of the trees: when ordered by size, the first p trees are distributed one to each
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processor and so on for each set of p trees. This avoids having a processor deal-
ing with only large trees while another processor is intersecting with only small
ones. Although this strategy may still create imbalance among processors, it will
be less acute than the näıve direct approach. The strategy that we propose, and
call First-Last, distributes two trees per processor at a time. The largest tree
and the smallest tree are assigned to the first processor, then the second largest
tree and penultimate small tree to the second processor, the third largest tree
and third smallest tree to the third processor and so on in a loop. This approach
seems to advocate a better load balance as is demonstrated by our experiments.

Algorithm 4 Parallel-HFP-BifoldLeap: Parallel-BifoldLeap with Headerless
FP-tree

Input: D (transactional database); P (); Q(); and σ (Support threshold).
Output: Patterns satisfying both P () and Q() with their respective supports.

- D is already distributed otherwise partition D between the available p processors;
- Each processor p scans its local partition Dp to find the set of local candidate
1-itemsets LpC1 with their respective local support;
- The supports of all LiC1 are transmitted to the master processor;
- Global Support is counted by master and F1 is generated;
- F1 is broadcasted to all nodes;
- Each processor p scans its local partition Dp to build the local Headerless FP-tree
LpHFP based on F1;
- LpFPB ← FindFrequentPatternBases(LpHFP );
- All LpFPB are sent to the master node ;
- Master node generates the global FPB from all LpFPB;
- The global FPB are broadcasted to all nodes;
- Each Processor p is assigned a set of local header nodes LHD from the global
FPB; {this is the distribution of trees of intersections}
for each i in LHD do

LOCAL − P − Maximals ← Find-P-Maximals(FPB, σ, P (), Q());
end for

- Send all LOCAL − P − Maximals to the master node;
- The master node prunes all LOCAL−P −Maximals that have supersets itemsets
in LOCAL − P − Maximals to produce GLOBAL − P − Maximals;
- The master node generates frequent patterns satisfying both P() and Q() from
GLOBAL − P − Maximals.

5.2 Parallel Leap Traversal Approach : An Example

The following example illustrates how the BifoldLeap approach is applied in
parallel. Figure 3.A presents 7 transactions made of 8 distinct items which are:
A, B, C, D, E, F , G, and H with prices 10$, 20$, 30$, 40$, 50$, 60$, and
70$ respectively. Assuming we want to mine those transactions with a support
threshold equals to at least 3 and generates patterns that their total prices are
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between 30$ and 100$ (i.e P () : SumofPrices < 100, and Q()SumofPrices >

30, using two processors. Figures 3.A and 3.B illustrate all the needed steps
to accomplish this task. The database is partitioned among the two processors
where the first three transactions are assigned to the first processor, P1, and the
remaining ones are assigned to the second processor, P2 (Figure 3).

In the first scan of the database, each processor finds the local support for
each item: P1 finds the support of A, B, C, D, E, F and G which are 3, 2, 2, 2,
2, 1 and 2 respectively, and P2 the supports of A, B, C, D, E, F , and H which
are 2, 3, 3, 3, 3, 3, 2. A reduced operation is executed to find that the global
support of A, B, C, D, E, F , G, and H items is 5, 5, 5, 5, 5, 4, 2, and 2. The
last two items are pruned as they do not meet the threshold criteria (support
> 2), and the remaining ones are declared frequent items of size 1. The set of
Global frequent 1-itemset is broadcasted to all processors using the first round
of messages.

The second scan of the database starts by building the local headerless tree
for each processor. From each tree the local frequent path bases are generated.
In P1 the frequent-path-bases ABCDE, ABE, and ACDF with branch support
equal to 1 are generated. P2 generates ACDEF , BCDF , BEF , and ABCDE

with branch supports equal to 1 for all of them (Figure 3.B). The second set of
messages is executed to send the locally generated frequent path bases to P1.
Here, identical ones are merged and the final global set of frequent path bases
are broadcasted to all processors with their branch support. (Figure 3.C)

Each processor is assigned a set of header nodes to build their intersection
tree as in Figure 4.D. In our example, the first, third, and sixth frequent path
bases are assigned to P1 as header nodes for its intersection trees. P2 is assigned
to the second, fourth, and fifth frequent path bases. The first tree of intersection
in P1 produces 3 P-maximals (i.e. with total prices is less than 100$) BCD : 90$,
ABE : 80$, and ACD : 80$ with support equal to 3, 3, and 4 respectively. The
second assigned tree does not produce any P-maximals. P1 produces 3 local
P-maximals which are BCD : 90$, ABE : 80$, and ACD : 80$. P2 produced
BE : 70$, and AE : 60$ with support equal to 4 and 4 respectively. All local
P-maximals are sent to P1 in which any local P-maximal that has any other
superset of local P-maximals from other processors are removed. The remaining
patterns are declared as global P-maximals (Figure 4.E). Subsets of the Global
P-maximals that satisfy Q() which is prices > 30 are kept and others are pruned.
The final results set produces D : 40$, E : 50$, AC : 40$, AD : 50$, BC : 50$,
BD : 60$, CD : 70$, BE : 70$, AE : 60$, BCD : 90$, ABE : 80$, and
ACD : 80$

6 Performance Evaluations

To evaluate our parallel BifoldLeap approach, we conducted a set of different
experiments to test the effect of pushing monotone Q() and anti-monotone P ()
constraints separately, and then both in combination for the same datasets.
These experiments were conducted using a cluster made of twenty boxes, each
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Fig. 3. Example of Parallel BifoldLeap: Finding the pattern bases

box with Linux 2.4.18, dual processor 1.533 GHz AMD Athlon MP 1800+, and
1.5 GB of RAM. Nodes are connected by Fast Ethernet and Myrinet 2000 net-
works. In this set of experiments, we generated synthetic datasets using [18].
All transactions are made of 100,000 distinct items with an average transaction
length of 12 items per transaction. The size of the transactional databases used
varies from 100 million transactions to 1 billion transactions.

With our best efforts and literature searches, we were unable to find a par-
allel frequent mining algorithm that was reported to mine more than 10 million
transactions, which is far less than our target size environment. Due to this large
discrepancy in transaction capacity, we could not compare our algorithm against
any other existing algorithms, as none of them could mine and reach our target
data size.

We conducted a battery of tests to evaluate the processing load distribution
strategy, the scalability vis-à-vis the size of the data to mine, and the speed-
up gained from adding more parallel processing power. Some of the results are
portrayed hereafter.

6.1 Effect of load distribution strategy

We enumerated above three possible strategies for tree of intersection distribu-
tion among the processors. As explained, the trees are in decreasing order of size
and they can either be distributed arbitrarily using the näıve approach, or more
evenly using a round robin approach, or finally with the First-Last approach.
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Fig. 4. Example of Parallel BifoldLeap: Intersecting pattern bases

The näıve and simple strategy uses a direct and straightforward distribution.
For example if we have 6 trees to assign to 3 processors, the first two trees
are assigned to the first processor, the third and fourth trees are assigned to
the second processor, and the last two trees are assigned to the last processor.
Knowing that the last trees are smaller in size than the first trees, the third
processor will inevitably finish before the first processor. In the round robin
distribution, the first, second and third tree are allocated respectively to the
first, second and third processor and then the remaining forth, fifth and sixth
trees are assigned respectively to processor one, two and three. With the last
strategy of distribution, First-Last, the trees are assigned in pairs: processor one
works on the first and last tree, processor two receives the second and fifth tree,
while the third processor obtains the third and fourth trees.

From our experiments in Figure 5.B we can see that the First-Last distribu-
tion gave the best results. This can be justified by the fact that since trees are
lexicographically ordered then in general trees on the left are larger than those
on the right. By applying the First-Last distributions we always try to assign
largest and smallest tree to the same node. All our remaining experiments use
the First-Last distribution methods among intersected trees.
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6.2 Scalability regarding database size

One of the main goals in this work is to mine extremely large datasets. In this
set of experiments we tested the effect of mining different databases made of
different transactional databases varying from 100 million transactions up to
one billion transactions while pushing both type of constraints P () and Q().
To the best of our knowledge, experiments with such big sizes have never been
reported in the literature. We mined those datasets using 32 processors, with
three different support thresholds: 10%, 5% and 1%. We were able to mine one
billion transactions in 3700 seconds for a support of 0.1, up to 4300 seconds for a
support of 0.01. Figure 5.A shows the results of this set of experiments. While the
curve does not illustrate a perfect linearity in the scalability, the execution time
for the colossal one billion transaction dataset was a very reasonable one hour
and forty minutes with a 0.01 support and 32 relatively inexpensive processors.

6.3 Scalability regarding number of processors

To test the speed-up of our algorithm with the increase of Processors, we fixed
the size of the database at 100 million transactions and examined the execution
time on this dataset with one to 32 processors. The execution time is reduced
sharply when two to four parallel processors are added, and continues to de-
crease significantly with additional processors (Figure 6.A). The speedup was
significant: with 4 processors the speed doubled, with 8 processors it increased
four-fold, and with 32 processors we achieved a 13-fold increase in speed. These
results are depicted in Figure 6.B.
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7 Related work

In recent days we have witnessed an explosive growth in generating data in
all fields of science, business, military, and elsewhere. The processing power of
evaluating and analyzing the data has not grown to the same extent.

It has therefore become critical to design efficient parallel algorithms to
achieve the data mining tasks. Another reason that necessitates the parallel
solution is that most extremely large databases reside in different locations,
and the cost of bringing them into one site for sequential discovery can be pro-
hibitively expensive. In this section, we are mentioning the parallel environments
used in the literature and most of the existing parallel association rule mining
algorithms.

Parallel environment has been described either as either a single computer
with multiple processors sharing the same address space (i.e. Shared Memory) or
as multiple interconnected computers where each one has its own independent lo-
cal memory (i.e. Shared Nothing), or Distributed Memory [30]. The first platform
allows any processor to access the memory space directly, where synchronization
occurs via locks and barriers. Applications running on such a platform try to
achieve the following goals: reduce the synchronization points, achieve high data
locality by maximizing access to local cache, and avoiding false sharing. In the
latter approach, Shared Nothing, if a processor requires data contained in an-
other processor’s memory space, messages must be passed between them using
some function library routines like MPI, or PVM. The main objective of this
method is to reduce and optimize communication costs, and to have good de-
composition of data, because it is highly affected by the distribution of work
among nodes. While shared memory programming offers simplicity over the dis-
tributed one, using the common memory with a finite bus in shared memory
affects scalability. On the other hand, the distributed architecture solves the
scalability problem at the expense of programming simplicity.
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In the realm of association rules, existing parallel frequent itemset mining
algorithms are divided among the two parallel environments mentioned above.
Distributed algorithms are grouped into two main categories based on how can-
didate sets are handled. Some algorithms rely on replications of candidate sets
while others partition the candidate set.

Replication is the simplest approach. In this approach the candidate gener-
ation process is replicated and the counting step is performed in parallel where
each processor is assigned part of the database to mine. This method suffers
mainly from three problems. First, not all local frequent items are global fre-
quent items, the “false positive phenomenon.” Second, not all non-local frequent
items are non-global frequent items, the “false negative phenomenon.” Finally,
it depends heavily on the memory size. The main algorithms on this class are:
Count Distribution algorithm [26], Parallel Partition algorithm [27], Fast Dis-
tributed Mining algorithm [8], Fast Parallel Mining algorithm [8], and Parallel
Data Mining algorithm [22]. These algorithms mainly differ in the way they
compute the candidate patterns and the number of round of messages sent for
each phase.

Partitioning Algorithms are the second type of parallel algorithms that rely
on the concept of partitioning the candidate set among processors. Here, each
processor handles only a predefined set of candidate items and scans the entire
database, leading to prohibitive I/O costs. In cases of extremely large databases
these algorithms collapse due to excessive I/O scans required of them. In general
they are used to mine relatively small databases with limited memory band-
width. Some of these algorithms are Data Distribution algorithm, Candidate
Distribution algorithm [26], and Intelligent Data Distribution algorithm [16].
The first three algorithms suffer from the expensive communication due to the
ring based All-To-All broadcasting for the local portions of the data sets. The
later algorithm solve this issue by applying Point-To-Point communication be-
tween neighbors, thus eliminating any communication contentions. Most of the
above mentioned algorithms are based on the apriori algorithm[1], which requires
multi-scan of the database and a massive candidate generation phase. That is
why most of them are not fully scalable for extremely large datasets.

A parallelization of the MaxMiner [5] is presented in [9]. The algorithm in-
herits the effective pruning of MaxMiner but also its drawbacks. It is efficient
for long maximal patterns but not as capable when most patterns are short. It
also requires multiple scans of the data making it inefficient for extremely large
datasets.

A PC-cluster based algorithm proposed in [25], derived from the sequential
FP-growth algorithm [17], exhibits good load balancing. Being a non-apriori
based approach, the candidacy generation is significantly reduced. However,
node-to-node communication is considerable especially for sending conditional
patterns. The algorithm displays good speedup, but on the other hand it does not
scale to extremely large datasets as the larger the dataset, the more conditional
patterns are found, and the more node-to-node communication is required.
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Myriad shared memory-based parallel frequent mining algorithms are de-
scribed in the literature such as Asynchronous Parallel Mining [7], Parallel Eclat,
MaxEclat, Clique, MaxClique, TopDown, and AprClique algorithms all reported
in [23]. These algorithms are mainly apriori-based and suffer from expensive can-
didacy generation and communication costs. Multiple Local Frequent Pattern
tree Algorithm [32], which was among the first non apriori-based parallel mining
algorithm, was our first attempt parallelizing FP-growth. Such algorithms show
good performance while mining for frequent patterns, but due to the nature of
shared memory environments with limited bus and common disks, they are not
suitable to be scaled for extremely large datasets.

In a recent study [28] of parallelizing Dualminer which is the first frequent
mining algorithm that supports pushing the two types of constraints, the authors
showed that by mining relatively small, sparse datasets consisting of 10K trans-
actions and 100K items, the sequential version of Dualminer took an excessive
amount of time. Unfortunately, the original authors of Dualminer did not show
any single experiment to depict the execution time of their algorithm but only
the reduction in predicate executions [6].

What distinguishes our approach from the aforementioned algorithms is the
strategy for traversing the lattice of candidate patterns. Candidate checking is
significantly reduced by using pattern intersections, and communication costs
are condensed thanks to the self-reliant and independent processing modules.
Finally, the data structure we use and the approach of sharing tasks support a
realistic load balance.

8 Conclusion

Parallelizing the search for frequent patterns plays an important role in opening
the doors to the mining of extremely large datasets. Not all good sequential
algorithms can be effectively parallelized and parallelization alone is not enough.
An algorithm has to be well suited for parallelization, and in the case of frequent
pattern mining, clever methods for searching are certainly an advantage. The
algorithm we propose for parallel mining of frequent patterns while pushing
constraints is based on a new technique for astutely jumping within the search
space, and more importantly, is composed of autonomous task segments that can
be performed separately and thus minimize communication between processors.

Our proposal is based on the finding of particular patterns, called pattern
bases, from which selective jumps in the search space can be performed in par-
allel and independently from each other pattern base in the pursuit of frequent
patterns that satisfy user’s constraints. The success of this approach is attributed
to the fact that pattern base intersection is independent and each intersection
tree can be assigned to a given processor. The decrease in the size of intersection
trees allows a fair strategy for distributing work among processors and in the
course reducing most of the load balancing issues. While other published works
claim results with millions of transactions, our approach allows the mining in
reasonable time of databases in the order of billion transactions using relatively
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inexpensive clusters; 16 dual-processor boxes in our case. This is mainly credited
to the low communication cost of our approach.
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