Skip to main content
Log in

Irregularity in high-dimensional space-filling curves

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

A space-filling curve is a way of mapping the discrete multi-dimensional space into the one-dimensional space. It acts like a thread that passes through every cell element (or pixel) in the discrete multi-dimensional space so that every cell is visited exactly once. Thus, a space-filling curve imposes a linear order of the cells in the multi-dimensional space. There are numerous kinds of space-filling curves. The difference between such curves is in their way of mapping to the one-dimensional space. Selecting the appropriate curve for any application requires knowledge of the mapping scheme provided by each space-filling curve. Irregularity is proposed as a quantitative measure for the ordering quality imposed by space-filling curve mapping. The lower the irregularity the better the space-filling curve in preserving the order of the discrete multi-dimensional space. Five space-filling curves (the Sweep, Scan, Peano, Gray, and Hilbert) are analyzed with respect to irregularity. Closed formulas are developed to compute the irregularity in any dimension k for a D-dimensional space-filling curve with grid size N. A comparative study of different space-filling curves with respect to the irregularity is conducted and results are presented and discussed. We find out that for an application that is biased toward one of the dimensions, the Sweep or the Scan space-filling curves are the best choice. For high-dimensional applications, the Peano space-filling curve would be the best choice. For applications that require fairness among various dimensions, the Hilbert and Gray space-filling curves are the best choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel, D.J., Mark, D.M.: A comparative analysis of some two-dimensional orderings. Int. J. Geogr. Inf. Syst. 4(1), 21–31 (1990)

    Article  Google Scholar 

  2. Abel, D.J., Smith, J.: A data structure and algorithm based on a linear key for a rectangle retrieval problem. Comput. Vis. Graph. Image Process. 24, 1–13 (1983)

    Article  Google Scholar 

  3. Alber, J., Niedermeier, R.: On multi-dimensional Hilbert indexing. In: International Computing and Combinatorics Conference, COCOON, Aug. 1998, pp. 329–338 (1998)

    Google Scholar 

  4. Aref, W.G., Kamel, I.: On multi-dimensional sorting orders. In: Proc. of the International Conference on Database and Expert Systems Applications, DEXA, Sept. 2000, pp. 774–783 (2000)

    Google Scholar 

  5. Aref, W.G., El-Bassyouni, K., Kamel, I., Mokbel, M.F.: Scalable QoS-aware disk-scheduling. In: International Database Engineering and Applications Symposium, IDEAS, July 2002

    Google Scholar 

  6. Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmayer, P.: Space-filling curves and their use in the design of geometric data structures. Theor. Comput. Sci. 181(1), 3–15 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bartholdi, J.J., Platzman, L.K.: An O(n log n) traveling salesman heuristic based on space filling curves. Oper. Res. Lett. 1(4), 121–125 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bially, T.: Space-filling curves: their generation and their application to bandwidth reduction. IEEE Trans. Inf. Theory 15(6), 658–664 (1969)

    Article  Google Scholar 

  9. Bohm, C., Klump, G., Kriegel, H.-P.: XZ-Ordering: a space-filling curve for objects with spatial extension. In: Proceedings of the International Symposium on Advances in Spatial Databases, SSD, July 1999, pp. 75–90 (1999)

    Google Scholar 

  10. Breinholt, G., Schierz, C.: Algorithm 781: generating Hilbert’s space-filling curve by recursion. ACM Trans. Math. Softw. 24(2), 184–189 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using R-trees. In: Proceedings of the ACM International Conference on Management of Data, SIGMOD, May 1993, pp. 237–246 (1993)

    Google Scholar 

  12. Chen, S., Ooi, B.C., Tan, K.-L., Nascimento, M.A.: ST2B-tree: a self-tunable spatio-temporal B+-tree index for moving objects. In: Proceedings of the ACM International Conference on Management of Data, SIGMOD, June 2008, pp. 29–42 (2008)

    Google Scholar 

  13. Cole, A.J.: A note on space filling curves. Softw. Pract. Exp. 13(12), 1181–1189 (1983)

    Article  Google Scholar 

  14. Comer, D.: The ubiquitous B-tree. ACM Comput. Surv. 11(2), 121–137 (1979)

    Article  MATH  Google Scholar 

  15. Faloutsos, C.: Gray codes for partial match and range queries. IEEE Trans. Softw. Eng. 14(10), 1381–1393 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Faloutsos, C., Bhagwat, P.: Declustering using fractals. In: Proceedings of the International Conference on Parallel and Distributed Information Systems, Jan. 1993, pp. 18–25 (1993)

    Chapter  Google Scholar 

  17. Faloutsos, C., Rong, Y.: DOT: a spatial access method using fractals. In: Proceedings of the IEEE International Conference on Data Engineering, ICDE, pp. 152–159 (1991)

    Google Scholar 

  18. Faloutsos, C., Roseman, S.: Fractals for secondary key retrieval. In: Proceedings of the ACM Symposium on Principles of Database Systems, PODS, pp. 247–252 (1989)

    Google Scholar 

  19. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Inform. 4, 1–9 (1974)

    Article  MATH  Google Scholar 

  20. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.-L.: Private queries in location-based services: anonymizers are not necessary. In: Proceedings of the ACM International Conference on Management of Data, SIGMOD, June 2008, pp. 121–132 (2008)

    Google Scholar 

  21. Goldschlager, L.M.: Short algorithms for space-filling curves. Softw. Pract. Exp. 11(1), 99–100 (1981)

    Article  Google Scholar 

  22. Gray, F.: Pulse code communications. US Patent 2632058 (1953)

  23. Hilbert, D.: Ueber stetige abbildung einer linie auf ein flashenstuck. Math. Ann. 459–460 (1891)

  24. Jagadish, H.V.: Linear clustering of objects with multiple attributes. In: Proceedings of the ACM International Conference on Management of Data, SIGMOD, June 1990, pp. 332–342 (1990)

    Google Scholar 

  25. Jensen, C.S., Tiesyte, D., Tradisauskas, N.: Robust B+-tree-based indexing of moving objects. In: Proceedings of the IEEE International Conference on Mobile Data Management, MDM, May 2006

    Google Scholar 

  26. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based identity inference in anonymous spatial queries. IEEE Trans. Knowl. Data Eng. 19(12), 1719–1733 (2007)

    Article  Google Scholar 

  27. Kamel, I., Faloutsos, C.: On packing R-trees. In: Proceedings of the ACM International Conference on Information and Knowledge Managemen, CIKM, Nov. 1993, pp. 490–499 (1993)

    Chapter  Google Scholar 

  28. Kamel, I., Faloutsos, C.: Hilbert R-tree: An improved R-tree using fractals. In: Proceedings of the International Conference on Very Large Data Bases, VLDB, Sept. 1994, pp. 500–509 (1994)

    Google Scholar 

  29. Lawder, J.K., King, P.J.H.: Using space-filling curves for multi-dimensional indexing. In: Proceedings of the 17th British National Conference on Databases, BNCOD, July 2000, pp. 20–35 (2000)

    Google Scholar 

  30. Liao, S., Lopez, M.A., Leutenegger, S.: High dimensional similarity search with space-filling curves. In: Proceedings of the IEEE International Conference on Data Engineering, ICDE, Apr. 2001, pp. 615–622 (2001)

    Chapter  Google Scholar 

  31. Mokbel, M.F., Aref, W.G.: Irregularity in multi-dimensional space-filling curves with applications in multimedia databases. In: Proceedings of the ACM International Conference on Information and Knowledge Managemen, CIKM, Nov. 2001, pp. 512–519 (2001)

    Google Scholar 

  32. Mokbel, M.F., Aref, W.G.: On query processing and optimality using spectral locality-preserving mappings. In: Proceedings of the International Symposium on Advances in Spatial and Temporal Databases, SSTD, July 2003

    Google Scholar 

  33. Mokbel, M.F., Aref, W.G., Kamel, I.: Performance of multi-dimensional space-filling curves. In: Proceedings of the ACM Symposium on Advances in Geographic Information Systems, ACM GIS, Nov. 2002

    Google Scholar 

  34. Mokbel, M.F., Aref, W.G., Grama, A.: Spectral LPM: an optimal locality-preserving mapping using the spectral (not fractal) order. In: Proceedings of the IEEE International Conference on Data Engineering, ICDE, Mar. 2003

    Google Scholar 

  35. Mokbel, M.F., Aref, W.G., Kamel, I.: Analysis of multi-dimensional space-filling curves. GeoInformatica 7(3), 179–209 (2003)

    Article  Google Scholar 

  36. Mokbel, M.F., Aref, W.G., Elbassioni, K.M., Kamel, I.: Scalable multimedia disk scheduling. In: Proceedings of the IEEE International Conference on Data Engineering, ICDE, Mar. 2004

    Google Scholar 

  37. Moon, B., Jagadish, H., Faloutsos, C., Salz, J.: Analysis of the clustering properties of Hilbert space-filling curve. IEEE Trans. Knowl. Data Eng. 13(1), 124–141 (2001)

    Article  Google Scholar 

  38. Moore, E.H.: On certain crinkly curves. Trans. Am. Math. Soc. 72–90 (1900)

  39. Morton, G.M.: A computer oriented geodetic data base and a new technique in file sequences. IBM (1966)

  40. Orenstein, J.A.: Spatial query processing in an object-oriented database system. In: Proceedings of the ACM International Conference on Management of Data, SIGMOD, May 1986, pp. 326–336 (1986)

    Google Scholar 

  41. Orenstein, J.A., Merrett, T.: A class of data structures for associative searching. In: Proceedings of the ACM Symposium on Principles of Database Systems, PODS, Apr. 1984, pp. 181–190 (1984)

    Chapter  Google Scholar 

  42. Patrick, E.A., Anderson, D.R., Bechtel, F.K.: Mapping multidimensional space to one dimension for computer output display. IEEE Trans. Comput. 17(10), 949–953 (1968)

    Article  MATH  Google Scholar 

  43. Peano, G.: Sur une courbe qui remplit toute une air plaine. Math. Ann. 36, 157–160 (1890)

    Article  MathSciNet  Google Scholar 

  44. Sevcik, K.C., Koudas, N.: Filter trees for managing spatial data over a range of size granularities. In: Proceedings of the International Conference on Very Large Data Bases, VLDB, Sept. 1996, pp. 16–27 (1996)

    Google Scholar 

  45. Shepherd, J., Zhu, X., Megiddo, N.: A fast indexing method for multidimensional nearest neighbor search. SPIE, Storage Retr. Image Video Databases 3656, 350–355 (1998)

    Google Scholar 

  46. Thottethodi, M., Chatterjee, S., Lebeck, A.: Tuning Strassen matrix multiplication algorithm for memory efficiency. In: Proceedings High Performance Computing ad Networking, SC, Nov. 1998

    Google Scholar 

  47. Tropf, H., Herzog, H.: Multidimensional range search in dynamically balanced trees. Angew. Inform., 71–77 (1981)

  48. Velho, L., Gomes, J.: Stochastic screening dithering with adaptive clustering. In: Proceedings of the ACM Conference on Computer Graphics, pp. 273–276 (1995)

    Google Scholar 

  49. White, M.: N-Trees: Large ordered indexes for multi-dimensional space. Statistical research division. US Bureau of the Census (1980)

  50. Witten, I.H., Neal, M.: Using Peano curves for bilevel display of continuous tone images. IEEE Comput. Graph. Appl., 47–52 (1982)

  51. Witten, I.H., Wyvill, B.: On the generation and use of space-filling curves. Softw. Pract. Exp. 3, 519–525 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed F. Mokbel.

Additional information

Communicated by Hosagrahar Jagadish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokbel, M.F., Aref, W.G. Irregularity in high-dimensional space-filling curves. Distrib Parallel Databases 29, 217–238 (2011). https://doi.org/10.1007/s10619-010-7070-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-010-7070-7

Keywords

Navigation