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Abstract A wireless sensor network (WSN) can be construed as an intelligent, large-
scale device for observing and measuring properties of the physical world. In recent
years, the database research community has championed the view that if we construe
a WSN as a database (i.e., if a significant aspect of its intelligent behavior is that it
can execute declaratively-expressed queries), then one can achieve a significant re-
duction in the cost of engineering the software that implements a data collection pro-
gram for the WSN while still achieving, through query optimization, very favorable
cost:benefit ratios. This paper describes a query processing framework for WSNs that
meets many desiderata associated with the view of WSN as databases. The framework
is presented in the form of compiler/optimizer, called SNEE, for a continuous declar-
ative query language over sensed data streams, called SNEEql. SNEEq| can be shown
to meet the expressiveness requirements of a large class of applications. SNEE can
be shown to generate effective and efficient query evaluation plans. More specifically,
the paper describes the following contributions: (1) a user-level syntax and physical
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algebra for SNEEq|, an expressive continuous query language over WSNs; (2) ex-
ample concrete algorithms for physical algebraic operators defined in such a way
that the task of deriving memory, time and energy analytical cost-estimation models
(CEMs) for them becomes straightforward by reduction to a structural traversal of the
pseudocode; (3) CEMs for the concrete algorithms alluded to; (4) an architecture for
the optimization of SNEEqI queries, called SNEE, building on well-established dis-
tributed query processing components where possible, but making enhancements or
refinements where necessary to accommodate the WSN context; (5) algorithms that
instantiate the components in the SNEE architecture, thereby supporting integrated
query planning that includes routing, placement and timing; and (6) an empirical
performance evaluation of the resulting framework.

Keywords Query optimization - Wireless sensor networks - Distributed query
processing - Query languages - Continuous queries - Cost estimation models

1 Introduction

The sensor networks of interest to this paper are networks formed by wireless
links between immobile nodes that are energy-constrained and possess both sensing
and general-purpose computing capabilities. They offer the promise of direct, cost-
effective access to observations and measurements of the physical world. In commer-
cial settings, this can allow businesses to make their value-adding processes more
responsive to physical phenomena. For example, in precision agriculture [12], such
wireless sensor networks (WSNs) can inform finer-grained intervention tasks in re-
sponse to changes in soil conditions for the purposes, say, of irrigation, or of pest
control. In scientific settings, WSNs can act as intelligent data collection instruments
that obtain readings for longer periods and over larger areas at a finer-grain in time
and space than traditional data collection techniques are capable of achieving cost-
effectively. For example, in the environmental sciences, they are becoming an essen-
tial enabling technology [34].

From the viewpoint of this paper, WSNs are taken to be a platform for distrib-
uted computing and, viewed as such, WSNs are unique in being constrained to an
unprecedented extent compared to the predominant distributed computing platforms
(e.g., the Web over the Internet). The constraint we focus on in this paper is that
of depletable energy stocks for mote-level WSNs, i.e., WSNs whose nodes are low-
cost, battery-powered devices with short-range radio components and very limited
amounts of both volatile and persistent memory. This implies an optimization goal
of conserving energy in order to extend the lifetime of a deployment. Given that
wireless communication typically incurs a much greater energy cost than process-
ing [49], it is generally accepted that processing data inside the WSN is likely to lead
to longer lifetimes than simply sending that data unprocessed to a base station, where
all the processing would then take place. We refer to these approaches as in-network
processing and warehousing, respectively. The contributions reported pertain to the
former approach.
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In the in-network processing approach, the question arises as to how much
processing, roughly speaking, should take place inside the WSN. Broadly, one would
like to instrument the WSN to only emit to the base station information of significant
decision-making, or archival, value, i.e., information that is the outcome of process-
ing (e.g., filtering, aggregating, cleaning, etc.). We note that, in scientific applications,
many scientists prefer to pull all the raw data from the WSN for later analysis. How-
ever, we observe that, on the one hand, this option is not precluded by the in-network
processing approach and, on the other, such a preference may not be viable as it may
deplete energy resources prematurely.

A trade-off that arises in the context of this paper is the one between the hard-
ware and the software development costs associated with a WSN deployment. While
hardware costs continue to fall, developing software for distributed platforms is in
itself a complex endeavor, and the problem is far more acute in the case of mote-level
WSNs due to their inherent limitations and constraints. It is likely, therefore, that, in
the case of mote-level WSNs, bespoke software could incur such development costs
as to offset or annul the savings made in purchasing the platform in the first place.
This observation lies behind the challenge of reducing the cost of developing bespoke
executables that enact energy-efficient data collection tasks over mote-level WSNs.

A significant, and growing, literature (e.g., [7, 8, 28, 44, 62]) advocates that the
declarative query paradigm, which has facilitated the uptake of traditional database
technology, is likely to be effective in addressing the software development chal-
lenge posed by mote-level WSNs. In this case, the idea is, roughly speaking, to
equate in-network processing with declarative query processing. In this way, the
energy-conservation benefits of in-network processing are compounded with the cost-
reduction benefits of declarative query processing. Thus, this research programme, re-
ferred to as the network-as-database approach [31], aims to develop sensor network
query processors (SNQPs) that drastically reduce the need for bespoke development
while ensuring sufficient low levels of energy consumption as to deliver deployments
of great longevity.

This paper presents, within this research context, a comprehensive account of a
distributed query processing (DQP) framework for WSNs that accepts expressive
declarative queries and generates query evaluation plans (QEPs) that perform well
with respect to energy efficiency. The framework has been implemented as a com-
piler/optimizer, called SNEE [21, 22], for a continuous declarative query language
over sensed data streams, called SNEEq| [10, 11], and the code is available under
the New BSD open-source license at http://code.google.com/p/snee/.! SNEEq| can be
shown to meet the expressiveness requirements of a large class of applications. SNEE
is distinctive in extending to SNQP the classical two-phase approach to DQP [40].
Our goal in doing so has been to explore the hypothesis that this approach allows for
more expressive queries than other SNQP systems have supported to be efficiently
evaluated over WSNss.

The paper describes the following principal contributions:

1. a user-level syntax and physical algebra for SNEEq|, an expressive continuous
query language over WSNs;

INote that certain features described here may not yet have been made available in the latest stable release.
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2. example concrete algorithms for physical algebraic operators defined in such a

way that the task of deriving memory, time and energy analytical cost-estimation

models (CEMs) for them becomes straightforward by reduction to a structural
traversal of the pseudocode;

CEMs for the concrete algorithms alluded to;

4. an architecture for the optimization of SNEEq|, called SNEE, building on well-
established DQP components where possible, but making enhancements or re-
finements where necessary to accommodate the WSN context;

5. algorithms that instantiate the components in the SNEE architecture, thereby sup-
porting integrated query planning that includes routing, placement and timing;
and

6. an empirical performance evaluation of the resulting framework.

et

Our account starts with a consideration, in Sect. 2, of the technical background
and the research context for our contributions. Then, in Sect. 3, we briefly consider
the functional and non-functional requirements that such a framework must support
as elicited from the literature on WSN deployments and one detailed case study. Sec-
tion 4 consists of a description of the SNEEqI continuous declarative query language
including a discussion of its syntax, its underlying logical and physical algebras, and
of the analytical CEMs for energy, duration, and memory that are associated with the
physical operators. Section 5 is devoted to a comprehensive description of the SNEE
compiler/optimizer. We describe the functional decomposition of SNEE into a query
compilation/optimization stack that extends its classical counterparts in novel ways.
We also describe in detail the optimization strategies involved, we explain the cru-
cial role of the analytical CEMs described in Sect. 4, and we conclude the section
with a description of how SNEE uses code generation techniques to emit source code
in nesC/TinyOS, the de facto standard software runtime language/libraries for mote-
level WSNs [27, 41]. Section 6 is dedicated to presenting experimental evidence that
SNEE satisfies the most important non-functional requirements placed upon it for a
large collection of SNEEq| queries. Finally, in Sect. 7, we reflect on the contribu-
tions reported and we indicate the extensions and enhancements that we are currently
pursuing.

2 Related work
2.1 On sensor network query languages

One of the motivations behind SNEEq| was to provide more expressiveness than pre-
vious sensor network query languages, such as TinyQL [44], Cougar [18, 62], and
SNQL [8]. Our intention was to design a sensor network query language with ex-
pressiveness comparable to continuous query languages that have been proposed to
query data streams over relatively unconstrained infrastructures compared to WSNss,
e.g., [4, 13, 37]. To achieve this, we took CQL [4] as our starting point, primarily be-
cause it construes windows as resulting from type conversion of streams of tuples into
streams of bags of tuples, which enables greater reuse of classical techniques at the
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level of the logical and physical algebras prior to query plan fragmentation and dis-
tribution. As a result, compared to existing sensor network query languages, SNEEq|
has a richer data model and a clearer data definition language (closer to Cougar’s and
more convenient than TinyQL’s, in that the latter uses a universal relation approach to
model WSN data). Furthermore, SNEEq|I has flexible (but not overwrought) window
specifications comparable in expressiveness to those present in existing continuous
query languages for stream query processors. SNEEq|, like CQL, uses a window-
based approach to provide uniform support for blocking operators (such as joins and
aggregations). In contrast, TinyQL resorts to materialization points and only offers
relatively limited support for blocking operators since it does not allow window spec-
ifications (other then for aggregates). On the other hand, TinyQL offers support for
event specifications, which are, currently, unsupported in SNEEq|. Finally, none of
the other sensor network query languages in the literature has been described in as
much detail as SNEEq| (the closest being SNQL [8]). In Sect. 4, and in other publi-
cations [9—11] that complement this paper, we show that SNEEq| can be assigned a
formal syntax and semantics.

2.2 On sensor network cost estimation models

SNEEqI language constructs can also be cast as a set of well-defined logical and
physical algebraic operators. Such physical operators can be mapped to concrete al-
gorithms for which we have derived memory, duration and energy CEMs (in the
form of empirically-validated analytical expressions) that can guide decision mak-
ing by query optimizers. It is generally recognized that CEMs play an important role
in classical and distributed query optimization [15, 26, 50]. Their availability means
that a QEP can be assessed, in isolation and in comparison to alternative QEPs, in
terms of the extent to which it meets some non-functional property of QEPs (clas-
sically, the response time it delivers). Recently, the extension of query technology
to data streams has once more highlighted the relevance of CEMs: [16] describes
how they are used to inform the placement of a selection with respect to a join in
a multiple query setting, and [61] proposes a rate-based approach to CEMs rather
then the traditional cardinality-based one. The latest, and perhaps the most challeng-
ing, query optimization problem in which CEMs play a fundamental role is that of
optimizing declarative queries for execution over WSNs [6, 28]. Section 4 describes
how empirically-validated CEMs for the space, time and energy consumed by a QEP
over a WSN were methodically derived and validated for an expressive algebra for
continuous queries over acquisitional sensor-data streams.

2.3 On sensor network query processing

There have been many proposals for SNQPs (including [7, 8, 28, 44, 62]). Surpris-
ingly, none have fully described an approach to query optimization founded on a
classical DQP architecture. Cougar papers [28] propose this idea but no publication
describes its realization. SNQL [8] follows the idea through but no precise descrip-
tion (as provided by our algorithms) of the decision-making process has been pub-
lished. Indeed, few publications provide systematic descriptions of complete query
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optimization architectures for WSN query processors: the most comprehensive de-
scription found was for TinyDB [44], in which optimization is limited to operator
reordering and the use of CEMs to determine an appropriate acquisition rate given
a user-specified lifetime. Arguably as a result of this, WSN-as-database proposals
have tended to limit the expressiveness of the query language. For example, TinyDB
focuses on aggregation and provides limited support for joins. In many cases, as-
sumptions are made that constrain the generality of the approach (e.g., Presto [24]
focuses on storage-rich networks).

There has also been a tendency to address the optimization problem in a piecewise
manner. For example, the trade-off between energy consumption and time-to-delivery
is studied in Wave Scheduling [59]; efficient and robust aggregation is the focus of
several publications [42, 46, 58]; Bonlfils [6] proposes a cost-based approach to adap-
tively placing a join which operates over distributed streams; Zadorozhny [64] uses an
algebraic approach to generate schedules for the transmission of data in order to max-
imize the number of concurrent communications. However, these individual results
are rarely presented as part of a fully-characterized optimization and evaluation in-
frastructure, giving rise to a situation in which research at the architecture level seems
less well developed than that of techniques that might ultimately be applied within
such query processing architectures. In Sect. 5, and in other publications [21, 22] that
complement this paper, we have aimed to provide a comprehensive, top-to-bottom
approach to the optimization problem for expressive declarative continuous queries
over potentially heterogeneous WSNs. In comparison with past proposals, ours is
broader, in that there are fewer compromises with respect to generality and expres-
siveness, and more holistic, in that it provides a top-to-bottom decomposition of the
decision-making steps required to optimize a declarative query into a QEP.

Furthermore, much research in the area has also focused on energy preservation by
the use of probabilistic techniques that involve prediction and/or giving approximate
answers. For example, BBQ [19] addresses the trade-off between acquiring data often
and the cost of doing so. Other related approaches include the Ken approach [17] and
PAQ [60], in which only tuples that do not conform a statistical model are transmitted
to the gateway node. Proposals have also been made for joins in which the accuracy
of results are traded for the amount of data transmitted (e.g., [63]). Currently the
SNEE physical operators proposed in this paper work do not drop tuples, and aim to
give complete answers. However, such approaches are not precluded by the SNEE
architecture described in this paper, and could be implemented by the incorporation
of additional physical operators (with associated CEMs).

3 WSN application requirements

When environmental scientists use WSNss, it is often with a view to collecting time
series. Time series produced by live sensing devices are data streams [29]. Many of
the papers on stream systems and their query languages [1, 4, 14, 33, 51] are focused
on how they were implemented, without detailed motivation as to why the included
features are required.

This section examines user needs using three example WSN deployments de-
scribed in the literature. Our account of the example deployments has been slightly
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adapted to demonstrate what could potentially be done and not just what was de-
scribed as having actually been done. Note that in this section, we use examples
to introduce syntactic forms and constructs. A more formal account is provided in
Sect. 4. Note also that the current implementation of SNEE/SNEEq| does not yet sup-
port all the constructs we have identified as useful, although we have described their
semantics in detail in [10]. In particular, in [10] we have shown how SNEEq| has a
uniform semantics over any combination of push streams, pull streams and stored
extents, a feature that, we postulate, expands the applicability of continuous query
processing in a significant way.

3.1 Example deployments

We will motivate the features and constructs available in SNEEq| by reference to
three example deployments, as follows. The first deployment, as described in [47],
was at Crowden Great Brook, a small stream in the UK Peak District. The purpose
of the deployment was to assess the hydro-dynamics of surface water drainage. With
that goal, a team of environmental scientists deployed a small WSN in the region
surrounding a stretch of the brook. The second deployment, as described in [5, 12],
was on the Okanagan Valley, a wine-producing region in British Columbia, Canada.
The purpose of the deployment was to carry out a precision agriculture study in order
to find areas where WSNs can deliver valuable information and provide a return on
investment. The third deployment, as described in [45, 55, 56], was at Great Duck
Island, in the Gulf of Maine, which is home to the largest petrel colony in the eastern
coast of the USA. WSN technology was used to study the nesting patterns of the pe-
trels with respect to the weather conditions. We note that the deployments described
here all involve sensor nodes whose location is (expected to be) fixed as data is gath-
ered. The current version of SNEE is unsuitable for applications where the nodes are
mobile, e.g., as described in Zebranet [65].

The three example deployments provide compelling evidence for the usefulness of
the classical operations (viz., selection, projection, join and aggregation) on logical
extents that are classically expressible by declarative query languages. Of course, a
WSN is a source of acquisitional data streams (i.e., streams whose items do not enter
the system at unknown arrival rates but rather according to a user-specified acquisi-
tion, or sampling, rate) [43]. This means that queries over WSNs are continuous (and,
more specifically, reactively-reevaluated) queries [29]. As is well known [29], in this
case, blocking operations (such as join, sort and various forms of aggregation) only
have a well-defined semantics over a bounded subset of the stream, i.e., over so-called
windows over the stream. We now show how these query language constructs (i.e.,
logical extents, possibly with windows defined on them, over physical acquisitional
streams to which one can apply selection, projection, join and aggregations) capture
most of the functionality targeted by the example deployments above.

For example, in the Crowden Great Brook deployment, the scientists involved
were mostly concerned with generating a time series of robust measurements be-
cause their research aims were mostly speculative, in the sense of not being driven
by a hypothesis (i.e., the scientists’ main concern was to obtain representative data
for out-of-network exploration unframed by any preconceived assumptions as to the
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Fig. 1 Queries for example SELECT R.id, MAX(R.time), AVG(R.moisture), AVG(R.temp)
deployments FROM River R [FROM NOW TO NOW-2 HOURS]

GROUP BY R.id

(a) Crowden Great Brook

SELECT  MAX(V.time) AS time, COUNT(V.moisture) AS drySites
FROM Vineyard [NOW] V

WHERE V.moisture < 20;
(b) Okanagan Valley

SELECT B.time, B.id, B.temp, W.temp
FROM Burrow [NOW] B, Weather [NOW] W

WHERE B.temp > W.temp AND B.id = W.id;
(c) Great Duck Island

behavior of the underlying physical phenomena). The data of interest can therefore
be easily characterized as follows: every two hours, for each node id, take the per-
attribute average of the values observed in that node (e.g., moisture, temp) over
the last two hours, and timestamp it with the latest t ime value available in the node.
Figure 1(a) shows how SNEEq| can capture the data of interest. The fact that ag-
gregation is pushed into the WSN means that there is a certain amount of data re-
duction, thereby prolonging the lifetime relative to the alternative of warehousing
all the observed data back at base. However, because aggregation is irreversible, this
approach does mean that some observations are no longer directly available. If the
scientists wanted to retrieve all the measurements obtained, a SNEEqgl SELECT-star
query could be issued.

In the case of the Okanagan Valley deployment, one information of interest might
be how many sites are dry (i.e., have a moisture value less than a given threshold).
Figure 1(b) shows how this requirement can be expressed in SNEEq|. Note the use of
selection and projection as two strategies for data reduction that preserve all obser-
vations of interest. Projection prevents the transducers sensing for physical quantities
that were not relevant for the study, e.g., temperature, from firing in the first
place. Savings were also made by using selection to remove readings which are out-
side the range of interest.

Users will often be interested in associating values from different sources of data
(e.g., comparing them). Since different sources are represented as different logical
extents, such comparisons can often be captured using joins. This often requires, in
the case of queries over streams, the use of windows. For example, in the Great Duck
Island deployment, data collected from Burrow sites and Weather sites could be
associated by constructing tuples in which the temperature inside the burrow is higher
than in the nearby weather site. The SNEEq| query in Fig. 1(c) reports back this
information. For each point in time for which data is collected, this query creates
windows over both source streams containing only the values measured at that point
in time. It then joins the contents of the windows (using the equality predicate in the
WHERE clause), filters out the tuples that do not satisfy the selection predicate, and
projects out the attributes listed in the SELECT clause. It is also often useful to take
into account the natural delay in some temporally and spatially extended phenomena,
e.g., one could have the temperature in burrows be compared with that of a weather
station a few minutes previously depending on the distance between the sites and,
say, the direction of the prevailing weather fronts.
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The precision agriculture deployment also illustrates well how joins can be used to
detect associations between observations that trigger actions on the part of the users.
For example, an indication as to whether an area may be in need of watering may
be detected by associating the humidity readings at one period with the humidity
readings at the immediately preceding period, i.e., consistent falls in humidity at a
significant rate can be taken as an indication that watering may be required. Note
that, here too, the ability to compute and compare moving averages is useful.

3.2 A running example

In order to describe in more detail a greater range of issues and features, we will use a
running example that is closely inspired by the Crowden Great Brook deployment but
is not precisely accurate with respect to its description in the literature. Assume that
we are investigating a model of surface water drainage in the Crowden Great Brook
area of the Peak District in the UK. The site is hilly, with some areas covered with
peat. Water drains into a valley at the bottom of which flows a brook.

Assume that a WSN with ten nodes numbered {0, 1,2, 3,4, 5, 6,7, 8,9} has been
deployed to study the interaction of rainfall and river depth. Let River be one logi-
cal extent with sources at nodes 5, 6,7, 9 and let Hi 11 top be another logical extent
with a single source at node 4, with schemes as shown in Fig. 2. Assume that radio
connectivity is such that the following edges denote the pairs of nodes that can com-
municate with each other: {0:1, 0:2, 2:4, 1:4,1:3, 3:6, 3:5, 4:5, 5:7, 4:8, 7.8, 7.9, 89}, and
let the delivery point be node 0, as depicted in Fig. 3.

To illustrate the expressiveness of (the publicly-available implementation of)
SNEEGq|I using this scenario as an example, consider the queries in Fig. 4. The query
in Fig. 4(a) returns a stream of tuples (more precisely, pairs of t ime and depth val-
ues) that are filtered from the stream of sensor readings logically denoted by River,
emitting into the output only those that have a measured depth greater than 10.
Using window specifications, one can perform aggregations over specific time inter-
vals or over certain samples. The query in Fig. 4(b) is a variant on Fig. 4(a). Rather
than projecting out, the measured depth, it projects the average depth over the last
10 tuples in the stream. Windows also allow for joins to be expressed in the usual
manner. The query in Fig. 4(c) joins tuples from the River and Hilltop extents
provided that the rain measured now in the river is less than that measured on the
hilltop 15 minutes ago, and provided that rain measurement was above 5. The query
in Fig. 4(d) illustrates support for subqueries. It is a variant on Fig. 4(a) in which
tuples are only emitted into the result stream if the river depth now is larger than the
average depth over the last seven days.

The next section describes the SNEEq| language more formally. Section 5 de-
scribes in detail how SNEE compiles SNEEqgI queries into optimized QEPs.

Fig. 2 Example logical River: (id:int, time:int, rain:int, depth:int)
schemes Hilltop: (id:int, time:int, rain:int)
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Fig. 3 The example
deployment. Black circles
denote sources for the River
extent, and the white circle is a
source for the Hilltop extent

@
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SELECT R.time, R.depth SELECT R.time, AVG(R.depth)
FROM River R FROM River [RANGE 10 ROWS SLIDE 10 ROWS] R
WHERE R.depth > 10; WHERE R.depth > 10;

(a) A Select-Project Query (b) A Window-Based Aggregation Query.

SELECT R.time, H.rain, R.depth
FROM River [NOW] R, Hilltop [AT NOW-15 MINUTES] H
WHERE H.rain > 5 AND R.rain < H.rain

(¢) A Window-Based Join Query.

SELECT R1.id, Rl.time, R1l.depth
FROM River [NOW] R1,
(SELECT AVG(R2.depth) as avgDepth
FROM River [NOW-7 DAYS] R2) LastWeek

WHERE Rl.depth > LastWeek.avgDepth
(d) Query/Subquery Correlations.

Fig. 4 Example SNEEq| queries

4 The SNEEqI continuous declarative query language

This section describes the SNEEqI continuous query language. We begin, in Sect. 4.1,
by describing the underlying type system. In Sect. 4.2 we then briefly describe the
main syntactic constructs of the language. We show with an example how the sur-
face forms are translated (by the standard procedure for SQL-like languages) into a
logical-algebraic form (Sect. 4.3). We describe the physical algebra that we have de-
veloped for SNEEq]I (Sect. 4.4) and exemplify the concrete algorithms we have used
to instantiate the physical operators (Sect. 4.5). Finally, in Sect. 4.6, we give examples
of how we have derived CEMs for memory, duration and energy from the algorithmic
instantiation of the operators.

4.1 SNEEqI data model

The primitive types are integer, float, string and t ime. The compound types
are tuple and tagged tuple. A tuple type consists of a set of typed attributes,

@ Springer



Distrib Parallel Databases (2011) 29: 31-85 41

apty,...,anty, where each a; is an attribute name and each #; is a primitive type.
A tagged tuple type is a tuple type including two distinguished attributes:
one named tick of type integer, and another named index of type integer.
Values of type tick are drawn from a system-wide ordinal domain, those of type
index are ordered inside the collection in which they appear. A tick value de-
notes the timestamp in which a tagged tuple was created, an index value denotes
its position in a sequence where it was placed. The collection types are window
and stream. A window type is a pair whose first element is a distinguished at-
tribute, named tick, of type integer, denoting the timestamp in which the win-
dow was created, and whose second element is of type bag of tuples of the same
tuple type. A stream is a potentially infinite, append-only sequence of values
of the same tagged tuple or window type. Note that tick and index are
implicitly-defined attributes of tagged tuples, as is tick for windows.

In [10], we have described in detail how SNEEgI can associate to its logical ex-
tents, physical extents that can be pulled (or sensed), pushed or stored. In
this paper, however, we confine ourselves to sensed extents in order to keep as close
as possible to the publicly-released version of the SNEE framework. Sensed extents
are pull-based, i.e., associated with a declared acquisition rate (one tuple every fifteen
minutes per acquisition site, in our running example), and for this reason can also be
referred to as acquisitional. Streamed extents are push-based, i.e., associated with an
unknown, potentially variable, arrival rate. From the viewpoint of continuous SNEEq|
queries, both sensed and pushed extents are streams of tagged tuples, whereas stored
extents are streams of windows. As an example SNEEgI schema, consider the deploy-
ment described above and note that its logical schema can be specified as in Fig. 2.

4.2 SNEEq| syntax

This section introduces the main kinds of SNEEq| queries, viz., stream queries and
window queries.?
Stream queries are of the form

SELECT @y ...a, FROM s WHERE p 6))

where a .. .a, is a projection list, s denotes a stream of tagged tuples (i.e., the name
of an extent, or a subquery, of type stream of tuple), and p is a predicate. There
are semantic restrictions on stream queries, as follows: firstly, the FROM clause must
reference a single stream because cross product is not well defined over infinite col-
lections, and, secondly, the projection list elements a; cannot involve the application
of aggregation functions on values from s. Evaluating a stream query yields a stream
of tagged tuples.
Window queries are of the form

SELECT aj ...a, FROM w; ...w, WHERE p 2)

2An overview of the formal semantics of SNEEQq| queries is available in [10], and detailed, exhaustive
accounts of both their formal syntax and their formal semantics are given in [9].
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RSTREAM SELECT
River.time, Hilltop.rain, River.depth
FROM River [NOW],
Hilltop[AT NOW-15 MINUTES]
WHERE Hilltop.rain > 5
AND River.rain < Hilltop.rain;

QoS Ezpectations: ( Acquisition Rate = 15 Minutes, Delivery Time = 24 Hours )

Fig. 5 The example query and quality-of-service expectations in SNEEq|

where aj ...a, is a projection list, wy ... w,, is a list of window definitions, and p
is a predicate. Window queries can also contain GROUP BY and HAVING clauses in
the standard way. Evaluating a window query yields a stream of windows. Each w;
in the FROM clause specifies a window on the name of an extent, or a subquery, of
type stream of tuple, as follows. A window on a stream is of the form

s[FROM f; TO t, SLIDE int unif] 3)

where s denotes a stream of tagged tuples (i.e., the name of an extent, or a subquery,
of type stream of tuple), and both #; are either of the form NOW or NOW — inf unit,
where NOW denotes the current tick or index, int is a positive integer, and unit €
{SECONDS, MINUTES, HOURS, DAY S, ROWS}. The FROM and TO parameters define
a window that selects all tuples in s in the range relative to when the window is
created, while the SLIDE parameter determines how often a new window is created.
When t; = t», the shorthands AT #; and AT #; — int can be used instead of a FROM/TO
pair. The shorthand RANGE d is used to denote an interval from NOW — d to NOW.
Also, when t; = tp = NOW, the shorthand NOW can be used can be used instead of a
FROM/TO pair.

Finally, the result of a SNEEq| window query can be converted into a stream using
the CQL-inspired type-conversion functions RSTREAM (which emits all tuples in the
window), ISTREAM (which emits all tuples that have become part of the window
since the last evaluation) and DSTREAM (which emits all tuples that have ceased to
be part of the window since the last evaluation) [4].

Given the SNEEq| schema in Fig. 2, Fig. 5 shows the SNEEqI query whose compi-
lation and optimization we will describe in detail in Sect. 5. The process of compiling
and optimizing a SNEEq| query is informed by quality-of-service (QoS) expectations.
In the current implementation of SNEE, two QoS expectations can be provided (as
invocation-time parameters), viz., the acquisition (or sampling) rate, which we denote
by «, and the maximum delivery time, which we denote by §. The acquisition rate
determines how often the QEP causes data to be sensed. The delivery time denotes
the amount of time that passes between a value being sensed and it being delivered at
the root of the QEP.

4.3 Logical algebra

The logical algebra associated with SNEEq| is an extension of a classical select-
project-join-aggregation relational algebra. The extensions consist of, firstly, explicit
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RSTREAM w
= RSTREAM (w’)

(a) RSTREAM translation.

SELECT aj...an FROM wy ...wm WHERE p
= PROJECTIay ...an] (
SELECT[p] (
CROSS_PRODUCT (w}), ..., (w,) )

(b) Window query.

S[AT t timeUnit]
= TIME_WINDOW/[CONVERT(t,timeUnit),CONVERT(t,timeUnit),a] (
SP_ACQUIRE (*, true, s, «))

(¢) Window over an acquisitional stream.

Fig. 6 Example rules for translating SNEEqI syntax to logical algebra

acquisition and delivery operators that play the role of generating an acquisitional
stream of tuples and delivering results, and, secondly, type conversion operators that
generate a stream of windows from a stream of tuples, or vice-versa.

The translation of a SNEEq| query into its logical-algebraic form (LAF) is based
on the standard translation [25] of a SQL-like query into a select-project-product
algebraic expression to which optimizers then apply rule-based rewriting strategies.
To recall, the procedure consists of creating a Cartesian product of all the extents
in the FROM clause, applying the predicate expression in the WHERE clause to that
product, and, finally, from the tuples thus obtained retaining only those attributes
defined by the expressions in the SELECT clause. Some examples of the extensions
required in the case of SNEEq| for the query in Fig. 5 are captured by translation
rules presented in Fig. 6. Figure 6(a) presents the rule for translating the RSTREAM
clause, used to convert a stream of windows w into a stream of tuples. The result is the
RSTREAM operator with w’ (the translation of w) as an input. The subquery within
the RSTREAM in Fig. 5 has the form of a window query (as defined in Sect. 4.2)
and is translated according to the rule in Fig. 6(b). The time window in Fig. 5 is
translated using the rule in Fig. 6(c), using the CONVERT function to ensure that the
time interval is expressed in consistent units in the algebra. o denotes the acquisition
rate specified in the QoS.

The initial LAF is rewritten using standard equivalence-preserving transforma-
tions used in classical query processing, including pushing down projections and se-
lections, and collapsing a select and a Cartesian product into a join [25]. In addition,
transformations similar to those in CQL such as pushing a selection and projection
below a time window are performed [3]. If possible, selections are pushed into the
acquisition operator. In [9, 10], the translation and rewriting of a SNEEq| query is ex-
plained in detail. Figure 7 shows the translation of the SNEEq| query in Fig. 5 into the
LAF that results from this standard translation.> Definitions of the physical-algebraic
versions of the operators are given in Table 1.

3Note that the base time units in the algebra are milliseconds. To fifteen minutes, there correspond 900,000
milliseconds, but we use fifteen minutes (without unit) for legibility.

@ Springer



44 Distrib Parallel Databases (2011) 29: 31-85
Fig. 7 The example query in
logical-algebraic form -

JOIN
River.rain < Hilltop.rain

!

TIME_WINDOW
[t-15, t-15, 15]

SP_ACQUIRE
[time, rain, depth]
true

River

VERY 15 min

SP_ACQUIRE
[time, rain]
rain > 5

4.4 Physical algebra

Table 1 shows a comprehensive sample of the physical algebra underlying SNEE. It
describes the operators, grouped by their respective input-to-output collection types.
A signature has the form

OPERATOR_NAME[Parameters](InputArgumentTypes): OutputArgumentTypes,

where the argument types are denoted S and W, for stream and window, resp.,
and X indicates either of the types given. Note that operators can be flagged as
LocSen, denoting it to be location-sensitive or as AttrSen, denoting it to be attribute-
sensitive. These are semantic properties of the operators and constrain the set of
candidate nodes that the optimizer can assign them to when deciding where such
operators should execute. Roughly speaking, a location-sensitive operator (e.g., any
SP_ACQUIRE and any DELIVER®) has a user-specified site in which it can execute
by virtue of the WSN deployment (e.g., in our example, the DELIVER operator can
only execute at node 0, which is the delivery point, and the SP_ACQUIRE operators
can only execute at nodes 5, 6,7, 9, in the case of the River extent, and at node 4,
in the case of the Hi1l1ltop extent). Again, roughly speaking, an attribute-sensitive
operator must be placed at a node through which tuples from all the appropriate hor-
izontal partitions (on the relevant attribute) flow. For example, NL_JOIN is attribute
sensitive, i.e., it must be placed at a node through which input tuples with different
origins flow. We return to these notions and their consequences in the next section.
Note, finally, that since SNEE is a DQP framework, we make use of Volcano-inspired
EXCHANGE operators [32] which, in our case, encapsulate physical communication
capabilities. This is manifest in the physical-algebraic form (PAF) in the TRANSMIT

4Note that SP_ACQUIRE combines three logical operators (viz., SELECT, PROJECT and ACQUIRE) into
a single physical operator, and that the same happens with DELIVER and RSTREAM.
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Table 1 SNEEq] physical algebra

Stream-to-stream operators

SP_ACQUIRE[AttrList, PredExpr, ProjList,
AcqInt](S): S

DELIVER[ 1(S): S

Take a reading every Acglnt from sensors
in ArtrList and apply SELECT([PredExpr]
and PROJECT[ProjList] in that order on
the resulting tuple

Deliver the query results

Stream-to-window operators

LocSen.

LocSen.

TIME_WINDOW(startTime, endTime, slide](S): W

ROW_WINDOWT[startRow, endRow, slide](S): W

Define a time-based window on S from
startTime to endTime inclusive and re-
evaluate every slide time units

Define a tuple-based window on S from
startRow to endRow inclusive and re-
evaluate every slide rows

Window-to-stream operators

AttrSen.

RSTREAM[ [(W): §

ISTREAM[ [(W): S

DSTREAM[ [(W): S

Emit onto S all the tuples in W

Emit onto S the newly-inserted tuples in
W since the previous window evaluation

Emit onto S the newly-deleted tuples in
W since the previous window evaluation

Window-to-window operators

NL_JOIN[ProjList, PredExpr|(W, W): W

AGGR_INIT[AggrFunction, ProjList](W): W

AGGR_MERGE[AggrFunction, ProjList|(W): W

AGGR_EVAL[AggrFunction, ProjList](W): W

Using the nested-loop join algorithm,
emit onto the output the concatenation of
each tuple from the left to each tuple from
the right input (keeping only the attributes
in ProjList) if it satisfies PredExpr
Initialize incremental aggregation for at-
tributes in ProjList for type of aggrega-
tion specified by AggrFunction

Merge into the partial result the values
from input for attributes in ProjList for
type of aggregation specified by Aggr-
Function

Emit into the output the final result of in-
crementally aggregating the attributes in
ProjList for type of aggregation specified
by AggrFunction

Any-to-same-as-input-type operators

AttrSen.

AttrSen.

AttrSen.

SELECT[PredExpr](X): X

PROJECT[ProjList] (X): X

Emit onto the output every tuple from the
input that satisfies PredExpr

Emit onto the output a tuple formed with
the attributes from the input tuple that oc-
cur in ProjList

Exchange operators

TRANSMIT[ ](X):X

RECEIVE[ ](X):X

Pack input tuples into blocks up to the
maximum packet size and send them over
radio

Receive blocks of up to the maximum

packet size, unpack the tuples and emit
them
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Fig. 8 Example query:
the physical-algebraic form @

assigned by SNEE

NL_JOIN
River.rain < Hilltop.rain

TIME_WINDOW
[t-15, t-15, 15]

SP_ACQUIRE
[time, rain, depth]
true

River

VERY 15 min

SP_ACQUIRE
[time, rain]
rain > 5

Hilltop
EVERY 15 min

and RECEIVE operators shown in Fig. 17, since EXCHANGE operators are two-part
operators, consisting of a producer and a consumer component in the source and tar-
get sites, respectively. Figure 8 is the tree representation of the PAF corresponding to
the LAF in Fig. 7.

We now show how the operations in the SNEEq| physical algebra can be expressed
as concrete algorithms at a level in which it becomes possible to structurally derive
CEMs for memory, duration and energy for them.

4.5 Concrete algorithms

Due to lack of space, we illustrate our methodology with the SP_ACQUIRE and
TRANSMIT physical operators because these illustrate representative data process-
ing and movement capabilities. We have applied the same methodology to all other
operators in the physical algebra [9]. We define the SP_ACQUIRE and TRANSMIT
operators in the remainder of this section, and the CEMs derived for them in Sect. 4.6.

Broadly, the methodology is as follows: (1) we define, in pseudocode, the process-
ing logic of an operator that gets executed at an evaluation episode (i.e., the equiv-
alent to a getNext() in a classical physical operator that is designed for pipelined
execution; (2) we declare, in the pseudocode, the state kept by the operator to support
the processing logic in (1); (3) we fairly directly derive from (2) a CEM for mem-
ory; (4) we derive from the algorithmic structure of the operator (as revealed in the
pseudocode) a CEM for duration in the classical way, i.e., we take into account the
most expensive steps, using multipliers when the step is iterated; and, finally, (5) we
derive from the CEM for duration obtained in (4) a CEM for energy by multiplying
each addend in the former by the corresponding unit cost in energy. We have vali-
dated the analytical cost models thus obtained by means of an extensive empirical
study, as reported in [9, 11].

The main notational conventions we use are as follows: we set keywords in Ro-
man bold, comments and variable identifiers (such as i and j) in italic, the identifiers
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SP_ACQUIRE[AttrList, PredEzxpr, ProjList, _- |(tick)
1 dependencies > CPU: on; Sensor Board: on; Radio: off

2 state
3 sensedValues: array of float size length(AttrList)
result: array of float size length(ProjList)+1

4
5 i: int
6 > ACQUIRE
7 for i=1 to length(AttrList):
8 do sensedValues[i] < sense(typeof (AttrList[i]))
9 > SELECT
10 if apply(PredEzpr, sensedValues):
11 then > PROJECT

12 result[0] — tick

13 for j=1 to length(ProjList):

14 do result[j] < apply(ProjList|j], sensed Values)
15 return bagof (result)

16 else return bagof([])

Fig. 9 Pseudocode for SP_ACQUIRE

of auxiliary, lower-level functions in small lower-case sans-serif, and SYSTEM-WIDE
PARAMETERS in upper-case sans-serif font.

The SP_ACQUIRE physical operator (in Fig. 9) performs three operations from the
corresponding logical algebra: it acquires a tuple of sensed data as defined by A#trList,
then it performs a select operation using PredExpr, and finally, on those tuples that
satisfied the selection condition, it performs a project operation using ProjList. The
TRANSMIT physical operator (in Fig. 10) obtains (a pointer to) the results from its
child operator and then packs tuples into a block containing as many tuples as will
fit given the system-wide MAX_PACKET_SIZE parameter, making sure that the last
block is padded with null bytes if it is not full.

4.6 Derived cost estimation models

In this section, we show how the style of pseudocode used in Sect. 4.5 can be built
upon with a view to deriving memory, duration and energy CEMs for the correspond-
ing operator (see [11] for parameter values corresponding to the sensors we have used
in validating the CEMs). Note that when expressing an aggregation, e.g., Sum over a
set of values V = {vy, ..., v, }, rather than write ), _, (v), we write sum{v | v € V}.
Finally, we note that the energy CEMs contain cross-references to the correspond-
ing duration CEMs for the purposes of abbreviation only. Such references point to an
addend in one equation in the duration CEM and should be interpreted in terms of tex-
tual substitution, i.e., textually replacing the reference with the expression it is a ref-
erence to yields the non-abbreviated form of the CEM. The CEMs for SP_ACQUIRE
are collected in Fig. 11, those for TRANSMIT in Fig. 12.

Since the pseudocode declares the state kept in support of its processing logic,
deriving a CEM for memory is tantamount to writing a summation in which each
addend is the result of applying a primitive like sizeof to each scalar variable and
summing the scalar elements in collection variables. This process is illustrated in (4)
in Fig. 11, bearing Fig. 9 in mind.
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TRANSMIT] |(tick, child)

1 dependencies > CPU: on; Sensor Board: off; Radio: on

2 state

3 resultsFromChild > a pointer to

4 block: array of tuple size | (MAX_PACKET_SIZE/sizeof (tuple)) |
5 packet: array of byte size MAX_PACKET_SIZE
6

7

8

¢: int
resultsFromChild «— child.getNext(tick):
i —1
9 for ¢ € resultsFromChild:

10 do block[i] < t
11 7 — i+1
12 if ¢ = length(block)+1:
13 then > we have a full block
14 packet «— convert(block)
15 send(packet sizeof (block))
16 3 — 1
17 if 4 > 1:
18 then > the last block is not full, so pad it
19 for j=; to length(block):
20 do block[j] = NULL
21 packet — convert(block)
22 send(packet,sizeof (block))

Fig. 10 Pseudocode for TRANSMIT

M3p_ACQUIRE[AttrList,—. ProjList,] (tick) = (4)
Msp_a_oVERHEAD + sizeof (tick) +
sum{sizeof(s) | s € AttrList} + sum{sizeof(a) | a € ProjList}

DSP_ACQUIRE[AttrList,PredEzpr,ProjList,__](--),sensedValues = (5)
Dsp_a_overHeaD + (6)
(Sum{DSENSE(typeof(s)) ‘ s € AttT‘LiSt}) + (7)
(DappLy (A_P, sensedV alues) * count{p | p € PredExpr A atomic(p)}) + (8)
(sum{DappLy (A-E, sensedV alues) = count{e | a € ProjList A e € a A atomic(e)}) 9)

ESP-ACQUIRE[AttrList,PredE;rpT,PTojList,_](__) = (10)

(Esense * Addend[7].Eq(5)) +
Eprocess * (Addend[6]. Eq(5) + Addend[8].Eq(5) + Addend.[9].Eq(5) * sel(PredExpr))

Fig. 11 CEMs for SP_ACQUIRE

The derivation of a CEM for duration is similarly straightforward. The only addi-
tional concerns are: (a) to focus on steps which use processing more intensively (dis-
regarding, e.g., atomic steps that do not involve calls to potentially expensive func-
tions), and (b) to formulate the expressions that act as multiplicands on the processing
blocks that are iterated over and that quantify the number of passes in the iteration.
This process is illustrated in (5) in Fig. 11, bearing Fig. 9 in mind. Some parame-
ters of interest in (5) are, Dsenseypeof(s)), the time it takes to sense a value of a
given type, A_P and A_E, the time it takes to evaluate an atomic Boolean and an
atomic arithmetic expression, respectively. Finally, note that, for complex predicate
and arithmetic expressions, we abstract the workload involved in terms of the number
of atomic expressions the expression tree contains.
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MR ANSMIT]](tick,child) = (11)
MTRANS_OVERHEAD + sizeof (pointer) +
(sizeof (tuple) * | (MAX_PACKET_SIZE /sizeof(tuple))|) + MAX_PACKET_SIZE + sizeof ()

DTRANSMITY|(tick,child) = (12)
DTRANS_OVERHEAD + (13)
(Dehitd.getNext(tick)) + ( (14)

(DRrx_OVERHEAD + (15)
D1x_overHEAD + (16)
(D1x_yTE * sizeof (block))) 17)

[count{t € resultsFromChild} /length(block)])

ETRANSMIT]|(tick,chitd) = (18)
(Eprocess * Addend[13].Eq(12)) +
(Eprocess * Addend([14]. Eq(12)) + ((
((Eprocess + Erx) * Addend(15].Eq(12)) +
((EipLe + E1x) * Addend[16].Eq(12)) +
((EipLE + Erx) * Addend[17].Eq(12))) *
[count{t € results FromChild}/length(block)])

Fig. 12 CEMs for TRANSMIT

The derivation of a CEM for energy, given the corresponding duration CEM, is
also straightforward. If we bear in mind that sensor nodes consume different amounts
of unit energy for sensing, processing, receiving and transmitting, then the deriva-
tion of an energy CEM from a duration CEM essentially amounts to (1) classifying
each addend in the duration CEM by the types of energy being spent in its duration,
and (2) multiplying the durations thus obtained by the corresponding unit energy cost.
This process is illustrated in (10) in Fig. 11, bearing Fig. 9 in mind. In SP_ACQUIRE,
there is no use of radio, so the unit energy costs involved are Esgnsg, the unit energy
cost for sensing, and Eprocess, the unit energy cost for processing. Equation (10)
uses these two platform-specific parameters as multiplicands on the durations speci-
fied in the corresponding CEM, i.e., (5) in Fig. 11. Thus, energy is spent on sensing
for the duration computed by Addend [7] (5), i.e., the SP_ACQUIRE section (1l. 7-8
in Fig. 9). Additionally, energy is spent on processing for the duration computed by
Addend [8] and Addend [9] in (5), i.e., the SELECT and PROJECT sections (1. 10
and 11. 12-15, resp., in Fig. 9).

The CEMs for TRANSMIT are collected in Fig. 12. Due to lack of space, we do not
provide a detailed analysis but we stress that the methodology used to derive them
is the same as the one described above for SP_ACQUIRE. We have used the same
methodology to derive memory, duration and energy CEMs for all the operators in
Table 1. Table 2 gives values to the parameters used in the CEMs for Mica2/Avrora,’
and Table 3 presents the associated unit energy costs.®

5Note that, in Table 2, the values in parentheses are not needed in the CEMs but are given here for com-
pleteness.

61n Table 3, line 1, the first figure is for a Mica2 mote, but because in the Avrora emulator, the sensor board
cannot be switched off, we have used the figure in brackets in our validation, as it compensates for that
limitation.
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Table 2 Parameters for

Mica2/Avrora Parameter Memory Duration Energy
(bytes) (cycles) ()
SP_A_OVERHEAD 14 124 (0.376)
SENSE 3 2542 (2.39)
APPLY(A_P*) 0) 8 (0.024)
APPLY(A_E,*) 0) 8 (0.024)
TRANS_OVERHEAD 59 1215 3.680
RX_OVERHEAD n/a 14,353 (99.53)
TX_OVERHEAD n/a 62,446 (381.887)
TX_BYTE n/a 3072 (18.787)

Table 3 Unit energy costs for

Mica2/Avrora Parameter Energy per cycle
EsensE 0.0031826 (0.0009402) pJ
Eppocess 0.0030286 pJ
EpLe 0.0013100 pJ
ERx 0.0039061 pJ
Ex 0.0048054 pJ

CEMs will be shown to play a crucial role in the optimization of SNEE queries.
As examples, the memory CEM guides the selection of which fragment to place
on which execution site, and the duration CEM determines (along with the memory
CEM, the acquisition rate and the maximum delivery time) how much buffering can
take place in an execution site. Furthermore, in a forthcoming release of SNEE, the
energy CEM will be used to discriminate between QEPs on the basis of their energy
efficiency. The compilation/optimization process is described in detail in Sect. 5.

5 The SNEE compiler/optimizer

The SNEE compilation/optimization stack is illustrated in Fig. 13. SNEE takes in a
SNEEq! query coupled with QoS expectations (e.g., as shown in Fig. 5, our running
example). The query is compiled against a logical schema (the one for in Fig. 2, for
our running example) as well as a physical one. The physical schema associates logi-
cal extents to physical sources (i.e., sensor nodes). It also describes the WSN in terms
of its connectivity graph, i.e., the deployed nodes and the communication edges they
establish. In the case of the running example, this information is a textual representa-
tion of the graph in Fig. 3. Finally, for each sensor node used in the deployment, their
unit cost parameters are also provided (see the definition of the CEMs in Sect. 4.6
and Tables 2 and 3 for examples of actual values). The logical and physical schemes,
the connectivity graph and the cost parameters are collectively referred to in this pa-
per as metadata.

Recall that our goal is to explore the hypothesis that extensions to a classical DQP
optimization architecture can provide effective and efficient query processing over
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Fig. 13 The SNEE query <query, QoS expectations>,
compilation/optimization stack <logical schema,
physical schema(network, cost parameters):

abstract syntax tree

logical-algebraic form

aseyd ays-a|buis

4 [ routing ]
L routing tree i PAF
5 [ partitioning ] %
RT i fragmented—algébraic form ‘;’_
6 [ where-scheduling é_
RT i distributed—algibraic form e
7 [ when-scheduling
RT i iDAF iagenda /
8 [ code generation ] j

<N1, ..., Nm> nesC/TinyOS code

WSNs. Thus, the SNEE compilation/optimization process is structurally decomposed
into three phases. The first two are similar to those familiar from the two phase-
optimization approach to classical DQP, namely Single-Site (comprising Steps 1-3,
in darkest boxes, described in Sect. 5.1) and Multi-Site (comprising steps 47, in dark
boxes, described in Sect. 5.2). The Code Generation phase grounds the execution on
the concrete software and hardware platforms available in the network/computing
fabric and is performed in a single step, Step 8 (in a white box, and described in
Sect. 5.3), which generates executable code (in nesC/TinyOS [27, 41]) specifically
for each execution site based on the distributed QEP, routing tree and agenda. We
note that metadata are assumed to have been collected prior to query compilation and
to be globally available to all steps in Fig. 13.”

5.1 Single-site optimization

Single-site optimization is decomposed into components that are familiar from clas-
sical, centralized query optimizers [25]. We make no specific claims regarding the

7For real deployments, we have developed a program that collects metadata about the current state of the
sensor network in order to obtain this information.
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novelty of these steps, since the techniques used to implement them are well-esta-
blished. In essence: Step I checks the validity of the query with respect to syntax
and the use of types, and builds an abstract syntax tree to represent the query; Step 2
translates the abstract syntax tree into a LAF, the operators of which are reordered
to reduce the size of intermediate results; and Step 3 translates the LAF into a PAF,
which, e.g., makes explicit the algorithms used to implement the operators. In the
case of the example query in Fig. 5, the LAF emitted in Step 2 is the one in Fig. 7 and
the PAF emitted in Step 3 is the one in Fig. 8. The PAF is the main input to multi-site
optimization, which we now discuss in detail.

5.2 Multi-site optimization

For distributed execution, the PAF is broken up into QEP fragments for evaluation on
specific nodes in the network. In a WSN, consideration must also be given to routing
(the means by which data travels between nodes within the network) and duty cycling
(when nodes transition from being switched on and engaged in specific tasks, and
being asleep, or in power-saving modes). Therefore, for Steps 4-7, we consider the
case of robust networks and the contrasting case of WSNs.

For execution over multiple nodes in robust networks, the second phase is compar-
atively simple: one step partitions the PAF into fragments and another step allocates
them to suitably resourced sites, as in, e.g., [54]. One approach to achieving this is
to map the PAF of a query to a distributed one in which EXCHANGE operators [32]
define boundaries between fragments. An EXCHANGE operator encapsulates all of
control flow, data distribution and inter-process communication and is broken down
into two parts, referred to as producer and consumer, respectively. In our setting, the
former is implemented as a TRANSMIT physical operator and the latter as a RECEIVE
physical operator. A TRANSMIT is the root operator of an upstream fragment, and a
RECEIVE, a leaf operator of the downstream one. This approach has been successful,
e.g., in DQP engines for the Grid that we developed in previous work [30, 53].

However, for the same general approach to be effective and efficient in a WSN, a
response is needed to the fact that assumptions that are natural in the robust-network
setting cease to hold in the new setting and give rise to a different set of challenges, the
most important among which are the following: C1: location and time are both con-
crete: acquisitional query processing is grounded on the physical world, so sources
are located and timed in concrete space and time, and the optimizer may need to re-
spond to the underlying geometry and to synchronization issues; C2: resources are
severely bounded: sensor nodes can be depleted of energy, which may, in turn, ren-
der the network useless; C3: communication events are overly expensive: they have
energy unit costs that are typically an order of magnitude larger than the compara-
ble cost for computing and sensing events; and C4: there is a high cost in keeping
nodes active for long periods: because of the need to conserve energy, sensor node
components must run tight duty cycles (e.g., going to sleep as soon they become idle).

Our response to this different set of circumstances is reflected in Steps 4-7 in
Fig. 13, where rather than a simple partition-then-allocate approach (in which a QEP
is first partitioned into fragments, and these fragments are then allocated to specific
nodes on the network), we: (a) introduce Step 4, in which the optimizer determines a
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routing tree for communication links that the data flows in the operator tree can then
make use of, with the aim of addressing the issue that paths used by data flows in a
query plan can greatly impact energy consumption (a consequence of C3); (b) pre-
serve the query plan partitioning step, albeit with different decision criteria, which
reflect issues raised by C1; (c) preserve the scheduling step (which we rename to
where-scheduling, to distinguish it from Step 7), in which the decision is taken as to
where to place fragment instances in concretely-located sites (e.g., some costs may
depend on the geometry of the WSN, a consequence of C1); and (d) introduce when-
scheduling, the decision as to when, in concrete time, a fragment instance placed at
a site is to be evaluated (and queries being continuous, there are typically many such
episodes) to address C1 and C4. C2 is taken into account in changes throughout the
multi-site phase.

For each of the following subsections that describe Steps 4-7, we indicate how the
proposed technique relates to DQP and to TinyDB, the former because we have used
established DQP architectures as our starting point, and the latter because it is the
most fully characterized proposal for a WSN query processing system. The following
additional notation is used throughout the remainder of this section. Given a query
0, let Pg denote the corresponding PAF. Throughout, we assume that: (1) operators
(and fragments) are described by properties whose values can be obtained by accessor
functions written in dot notation (e.g., Pg.Sources returns the set of sources in Pg);
and (2) the data structures we use (e.g., sets, graphs, tuples) have functions with
intuitive semantics defined on them, written in applicative notation (e.g., for a set S,
ChooseOne(S) returns any s € S; for a graph G, EdgesIn(G) returns the edges in G);
Insert((v1, v2),G) inserts the edge (vy, v2) in G.

5.2.1 Routing

Step 4 in Fig. 13 decides which sites to use for routing the tuples involved in eval-
uating Pgp. The aim is to generate a routing tree for Py which is economical with
respect to the total energy cost required to transmit tuples. Let G = (V, E) be the
connectivity graph for the target WSN (e.g., the one in Fig. 3). Let Pp.Sources C
G.V and Pg.Destination € G.V denote, resp., the set of sites that are data sources,
and the destination site, in Pg. The aim is, for each source site, to reduce the total
cost to the destination. We observe that this is an instance of the Steiner tree problem,
in which, given a graph, a tree of minimal cost is derived which connects a required
set of nodes (the Steiner nodes) using any additional nodes which are necessary [38].
Thus, the SNEEq|-optimal routing tree Ro for Q is the Steiner tree for G with Steiner
nodes Pp.Sources U { Pp.Destination}.

The problem of computing a Steiner tree is NP-complete, so the heuristic algo-
rithm given in [38] (and reputed to perform well in practice) is used to compute an
approximation. First, the algorithm (see Fig. 14) makes the destination site a vertex
in the Steiner tree. Then, it removes the remaining Steiner points one by one after
finding the shortest path between the removed point and some point already in the
tree, adding to the tree all the sites in the computed path and stopping once all Steiner
points appear in the tree. For the PAF in Fig. 8, given the network topology in Fig. 3,
the routing algorithm computes the overlay routing tree depicted in Fig. 15 by arrows
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Fig. 14 An algorithm for ROUTING(Pg, @)
computing a routing tree ’ . .
1 > Compute the approximate Steiner tree (rtV, rtE)

> for (@,Pq.Sources U { Pg.Destination} ).

2 1tV « {Pg.Destination}

3 rtE — 0

4 remainingV «— Pg.Sources

5 while remainingV # 0

6 do from < ChooseOne(remainingV)
7 to «— ChooseOne(rtV)

8 path <« Shortest-Path(from, to, @)
9 rtE «— rtE U Edgesln(path)
10 rtV «— rtV U VerticesIn(rtE)
11 remainingV «— remainingV \ rtV
12 return (rtV,rtE)

Fig. 15 Example query: the
routing tree chosen by SNEE

between the nodes. Note that nodes 2 and § are not in the routing tree (i.e., have no
incoming or outgoing data flows), and therefore, do not participate in any way in the
query. This allows conservation of their resources.

Relationship to DOQP  The routing step has been introduced in the WSN context due
to the implications of the high cost of wireless communications, viz., that the paths
used to route data between fragments in a query plan have a significant bearing on
its cost. Traditionally, in DQP, the paths for communication are solely the concern
of the network layer. In a sense, for SNEEq|, this is also a preparatory step to assist
where-scheduling step, in that the routing tree imposes constraints on the data flows,
and thus on where operations can be placed.

Relationship to related work In TinyDB, routing tree formation is undertaken by a
distributed, parent-selection protocol at runtime. Our approach aims, given the sites

where location-sensitive operators need to be placed, to reduce the distance traveled
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by tuples. TinyDB does not directly consider the locations of data sources while form-
ing its routing tree, whereas the approach taken here makes finer-grained decisions
about which depletable resources (e.g., energy) to make use of in a query. This is
useful, e.g., if energy stocks are consumed at different rates at different nodes.

5.2.2 Partitioning

Step 5 in Fig. 13 defines the fragmented form Fp of Pgp by breaking up selected
edges (child, op) € Pg into a path [(child, ep), (e, op)] where e), and e. denote,
resp., the producer and consumer parts of an EXCHANGE operator. The edge selec-
tion criteria are semantic, in the case of location- or attribute-sensitive operators in
which correctness criteria constrain placement, and pragmatic in the case of an op-
erator whose output size is larger than that of its child(ren) in which case placement
seeks to reduce overall network traffic. Let Size estimate the size of the output of
an operator or fragment, or the total output size of a collection of operator or frag-
ment siblings. The algorithm that computes Fg is shown in Fig. 16. Figure 17 depicts
the distributed-algebraic form (DAF) (i.e., the output of where-scheduling) given the
routing tree in Fig. 15 for the PAF in Fig. 8. The EXCHANGE operators that define
the four fragments shown in Fig. 17 are placed by this step. The fragment identifier
Fn denotes the fragment with number n. The assigned set of sites for each fragment
(in curly brackets in Fig. 17) are determined subsequently in where-scheduling. EX-
CHANGE has been inserted between the NL_JOIN and each of its children, because
the join predicate involves tuples from different sites, and therefore data redistribu-
tion is required. Note also that an EXCHANGE has been inserted below the DELIVER,
because the latter is (as is SP_ACQUIRE) location sensitive, i.e., there is no leeway
as to where it may be placed.

Relationship to DOP  This step differs slightly from its counterpart in DQP. In our
context, EXCHANGE operators are inserted more liberally at QEP edges where a re-
duction in data flow will occur. This produces a mapping of the QEP onto the routing
tree that causes radio transmissions to take place along such QEP edges whenever
possible, whereas in DQP over robust networks (e.g., in [30]) there is normally not
nearly as strong a need for awareness on the part of the optimizer as to the physical
route that tuples take across the network.

FRAGMENT-DEFINITION(Pg, Size)
1 Fg < Pg
2 while > post-order traversing Fg,
> let op denote the current operator
3 do for each child € op.Children
4 do if Size(op) > Size(op.Children) or op.LocationSensitive = yes
5 or op.AttributeSensitive = yes
6 then Delete((child, op), Pg) ; Insert((child, e,), Pg)
7 Insert((ep, ec), Pg) ; Insert((e. <, op), Pg)
8 return Fg

Fig. 16 The partitioning algorithm
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Fig. 17 Example query: the partitioning of the QEP into fragments decided by SNEE, and their assign-
ment to sites in the routing tree

Relationship to related work Unlike SNEEQI/DQP, TinyDB does not partition its
QEPs into fragments. The entire QEP is shipped to sites which are required to partic-
ipate in it, even if they are just relaying data. Instead, the TinyDB optimizer tries to
decide in which nodes the QEP needs to execute at all.

5.2.3 Where-scheduling

Step 6 in Fig. 13 decides which QEP fragments are to run on which routing tree nodes.
This results in the DAF of the query. Creation and placement of fragment instances is
mostly determined by semantic constraints that arise from location sensitivity (in the
case of SP_ACQUIRE and DELIVER operators) and attribute sensitivity (in the case
NL_JOIN and aggregation operators, where tuples in the same logical extent may
be traveling through different sites in the routing tree). Provided that location and
attribute sensitivity are respected, the approach aims to assign fragment instances to
sites, where a reduction in result size is predicted (so as to be economical with respect
to the radio traffic generated).

Let G, Pg and Fg be as above. Let Rg = ROUTING(Pp, G) be the routing tree
computed for Q. The where-scheduling algorithm computes Dy, i.e., the DAF cor-
responding to the query, by deciding on the creation and assignment of fragment
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instances in F to sites in the routing tree R. If the size of the output of a fragment
is expected to be smaller than that of its child(ren) then it is assigned to the deep-
est possible site(s) (i.e., the one with the longest path to the root) in Rg, otherwise
it is assigned to the shallowest site for which there is available memory, ideally the
root. The aim is to reduce radio traffic (by postponing the need to transmit the result
with increased size). Semantic criteria dictate that if a fragment contains a location-
sensitive operator, then instances of it are created and assigned to each corresponding
site (i.e., one that acts as source or destination in F). Semantic criteria also dictate
that if a fragment contains an attribute-sensitive operator, then an instance of it is
created and assigned to what we refer to as a confluence site for the operator.

To grasp the notion of a confluence site in this context, note that the extent of
one logical flow (i.e., the output of a logical operator) may comprise tuples that, in
the routing tree, travel along different routes (because, ultimately, there may be more
than one sensor feeding tuples into the same logical extent). In response to this, in-
stances of the same fragment are created in different sites, in which case EXCHANGE
operators take on the responsibility for data distribution among fragment instances
(concomitantly with their responsibility for mediating communication events). It fol-
lows that a fragment instance containing an attribute-sensitive operator is said to
be effectively-placed only at sites in which the logical extent of its operand(s) has
been reconstituted by confluence. Such sites are referred to as confluence sites. For a
NL_JOIN, a confluence site is a site through which all tuples from both its operands
travel. In the case of aggregation operators, which are broken up into three physical
operators (viz., AGGR_INIT, AGGR_MERGE, AGGR_EVAL), the notion of a conflu-
ence site does not apply to an AGGR_INIT. For a binary AGGR_MERGE (such as for
an AVG, where AGGR_MERGE updates a (SUM, COUNT) pair), a confluence site is a
site that tuples from both its operands travel through. Finally, for an AGGR_EVAL, a
confluence site is a site through which tuples from all corresponding AGGR_MERGE
operators travel. The most efficient confluence site to which to assign a fragment in-
stance is considered to be the deepest, as it is the earliest to be reached in the path to
the destination and hence the most likely to reduce downstream traffic.

Let Pp and Ry be as above. Let s A op be true iff s is the deepest confluence site
for op. The algorithm that computes D is shown in Fig. 19. The resulting D¢ for the
example query is shown in Fig. 17 as an operator tree and in Fig. 18 as an overlay on
the routing tree in Fig. 15. It can be observed that instances of F3 have been created at
multiple sites, as these fragments contain location-sensitive SP_ACQUIRE operators,
whose placement is dictated by the deployment depicted in Fig. 3. Although this
was not the decision for this query, the optimizer might have created instances of
different fragments to execute in the same site too. Note that a single instance of
attribute-sensitive F'1 has been created and assigned to site 3, the deepest confluence
site in the case of F2 and F3 (as it is a non-location-sensitive fragment and has been
placed according to its expected output size, to reduce communication). Note also the
absence of site 1 in Fig. 17 w.r.t. Fig. 15. This is because site 1 is only a relay node
in the routing tree, as indicated in Fig. 18.

Relationship to DQP Compared to DQP, here the allocation of fragments is con-
strained by the routing tree, and operator confluence constraints, which enables the
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Fig. 18 Example query:
the QEP-fragment-to-node
allocation decided by SNEE

relay node

FRAGMENT-INSTANCE-ASSIGNMENT(Fg, R, Size)
1 Dg « Fq
2 while > post-order traversing Dg
> let f denote the current fragment

3 do if op € f and op.LocationSensitive = yes

4 then for each s € op.Sites

5 do Assign(f.New, s, Dg)

6 elseif op € f and op.AttributeSensitive = yes

7 and Size(f) < Size(f.Children)

8 then while > post-order traversing R,
> let s denote the current site

9 doif s A op

10 then Assign(f.New, s, Dg)

11 elseif Size(f) < Size(f.Children)

12 then for each c € f.Children

13 do for each s € c.Sites

14 do Assign(f.New, s, Dg)

15 else Assign(f.New, Rg.Root, Dg)

16 return Dg

Fig. 19 The where-scheduling algorithm

optimizer to make well-informed decisions (based on network topology) about where
to carry out work. In classical DQP, the optimizer does not have to consider the net-
work topology, as this is abstracted away by the network protocols. As such, the
corresponding focus of where-scheduling in DQP tends to be on finding sites with
adequate resources (e.g., memory and bandwidth) available to provide the best re-
sponse time (e.g., Mariposa [54]).
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Relationship to related work Our approach differs from that of TinyDB, since its
QEP is never fragmented. In TinyDB, a node in the routing tree either (i) evaluates
the QEDP, if the site has data sources applicable to the query, or (ii) restricts itself to
relaying results to its parent from any child nodes that are evaluating the QEP. Our
approach allows different, more specific workloads to be placed in different nodes.
For example, unlike TinyDB, it is possible to compare results from different sites in
a single query, as in Fig. 17. Furthermore, it is also possible to schedule different
parts of the QEP to different sites on the basis of the resources (memory, energy or
processing time) available at each site. The SNEEq| optimizer, therefore, responds
to resource heterogeneity in the fabric. TinyDB responds to excessive workload by
shedding tuples, replicating the strategy of stream processors (e.g., STREAM [2]).
However, in WSNs, since there is a high cost associated with transmitting tuples,
load shedding is an undesirable option. As the query processor has control over data
acquisition, it seems more appropriate to tailor the optimization process so as to select
plans that do not generate excess tuples in the first place.

5.2.4 When-scheduling

Step 7 in Fig. 13 stipulates execution times for each fragment. Doing so efficiently is
seldom a specific optimization goal in classical DQP. However, in WSNs, the need
to co-ordinate transmission and reception and to abide by severe energy constraints
make it important to favor duty cycles in which the hardware spends most of its time
in energy-saving states. The approach adopted by the SNEEq| compiler/optimizer to
decide on the timed execution of each fragment instance at each site is to build an
agenda that, insofar as permitted by the memory available at the site, and given the
acquisition rate « and the maximum delivery time § set for the query, buffers as many
results as possible before transmitting. The aim is to be economical with respect to
both the time in which a site needs to be active and the amount of radio traffic that is
generated.

The agenda is built by an iterative process of adjustment. Given the memory avail-
able at, and the memory requirements of the fragment instances assigned to, each site,
a candidate buffering factor 8 is computed for each site. This candidate 8 is used,
along with the acquisition rate «, to compute a candidate agenda. If the delivery time
of the candidate agenda (i.e., the time at which the last fragment to execute finishes
executing) exceeds the smallest of the maximum delivery time § specified by the user
and the length, in time, required by one evaluation episode of the candidate agenda
to complete (i.e., the product of « and B), the buffering factor is adjusted downwards
and a new, shorter, candidate agenda is computed. The process stops when the deliv-
ery time of the candidate agenda meets the above criteria. Let Memory, and Duration,
be, resp., the coded functions that implement the CEMs for memory and duration
derived as described in Sect. 4.6 and exemplified in Figs. 11 and 12.% They return,

8The current implementation of SNEE does not use the Energy CEM directly. For example, decisions about
fragment placement are taken heuristically, on the basis of whether the fragment is cardinality-reducing. In
ongoing work to make SNEE more responsive to QoS expectations, we are using the Energy CEM directly
to decide on placement.
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WHEN-SCHEDULING(Dq, Rg, a, §, Memory, Duration)

1 while > pre-order traversing R,
> let s denote the current site
do regMem, «— regMemy — 0
for each f € s.AssignedFragments
do z «— Memory(f.EXCHANGE)
regMemy; «— + Memory(f) - =
reqgMem, «— + «
Bls] — | s.AvailableMemory—reqMem; |

reqMem,
B — min(8*)
9 while agenda.DeliveryTime > min(a * (3,0)
10 do agenda <+ BUILD-AGENDA(Dq, Rq, «, 3, Duration)

11 decr(p3)
12 return agenda

0 O Uk Wi

Fig. 20 Computing a SNEEqI execution schedule

resp., the memory required by, and the execution time of, an operator or fragment.
The algorithm that computes the agenda is shown in Figs. 20 and 21.

The agenda can be conceptualized as a matrix, in which the rows, identified by a
relative time point, denote concurrent tasks in the sites which identify the columns.
For Fig. 17, the computed agenda is shown in Fig. 22. Thus, a non-empty cell (z, s)
with value a, denotes that task a starts at time ¢ in site s. In an agenda, there is a
column for each site and a row for each time when some task is started. Thus, if
cell (¢,s) = a, then at time ¢ in site s, task a is started. A task is either the evalua-
tion of a fragment (which subsumes sensing), denoted by Fn in Fig. 22, where n is
the fragment number, or a communication event, denoted by tx n or rx n, i.e., resp.,
tuple transmission to, or tuple reception from, site n. Note that leaf fragments F2
and F3 are annotated with a subscript, as they are evaluated § times in each agenda
evaluation. Blank cells denote the lack of a task to be performed at that time for the
site, in which case, a TinyOS power management component is delegated the task of
deciding whether to enter a energy-saving state.

In SNEE (unlike TinyDB), tuples from more than one evaluation time can be trans-
mitted in a single communication burst, thus enabling the radio to be switched on for
less time, and also saving the energy required to power it up and down. This re-
quires tuples between evaluations to be buffered, and results in an increase in the
time-to-delivery. Therefore, the buffering factor is constrained by both the avail-
able memory and by user expectations as to the delivery time. For the example
query and QoS expectations (i.e., « = 15 min and § = 24 h), the agenda shown
in Fig. 22 has a computed buffering factor § of 29 with a corresponding delivery
time 25,226,372 ms ~ 7 hours. This is calculated by summing the duration of tasks
in the agenda (taking into account whether each task has been scheduled sequen-
tially, or concomitantly, in relation to other tasks). Therefore, the maximum delivery
time specified (i.e., 24 h) is amply met by the agenda computed by SNEE. Thus,
the acquisition rate « dictates when an SP_ACQUIRE executes; o and the buffer-
ing factor B dictate when a DELIVER executes. Note that, query evaluation being
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BUILD-AGENDA(Dq, Rq, a, (3, Duration)

> schedule leaf fragments first
1 for;<—1top
2 do for each s € R .Sites
3 do nextSlot[s] — a* (i — 1)
4 while D> post-order traversing Dg
> let f denote the current fragment
do if f.IsLeaf = yes
then s.f.ActAt « [ ]
for each s € f.Sites
do s.f.ActAt.Append neztSlot[s]
nextSlot[s] < + Duration(s.f)
> schedule non-leaf fragments next
10 while ©> post-order traversing R,
> let s denote the current site

© 00 3 & Ot

11 do while D> post-order traversing Dg
> let f denote the current fragment
12 do if f € s.AssignedFragments
13 then f.ActAt — nextSlot[s]
14 nextSlot[s] < + Duration(f)*3
> schedule comms between fragments
15 5. TX.ActAt «— max(nextSlot[s],nextSlot[s.Parent])
16 s.Parent.RX(s).ActAt «— s. TX.ActAt
17 nextSlot]s] «— + Duration(s.TX)
18 nextSlot[s.Parent]) «— + s.Parent.RX

19 return agenda

Fig. 21 The agenda construction algorithm

continuous, the agenda repeats. The period with which it does so is p = af, i.e.,
p =15 min*29 =7 h 15 min for the example query. In this example, the sensor
nodes are asleep for (900,000 — 34)/900,000 ~ 99.996% of the first 8 — 1 epochs,
and for (26,100,000 — 25,226,372)/900,000 =~ 97.070% of the final epoch, of the
agenda evaluation episode. Overall, this means that nodes are asleep for 99.896% of
the time.

Relationship to DQP The time-sensitive nature of data acquisition in WSNis, the
delivery time requirements which may be expressed by the user, the need for wireless
communications to be co-ordinated and for sensor nodes to duty-cycle, all make the
timing of tasks an important concern in the case of WSNs. In DQP this is not an issue,
as these decisions are delegated to the OS/network layers.

Relationship to related work In TinyDB, cost models are used to determine an ac-
quisition rate to meet a user-specified lifetime. The schedule of work for each site
is then determined by its level in the routing tree and the acquisition rate, and tu-
ples are transmitted downstream following every acquisition without any buffering.
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. Sites
Time (ms) 6 9 7 4 5 3 1 0
0 F31 F31 F31 F2; F31
34 sleeping
900000 F3o F3o F3o F2o F3o
900034 sleeping
1800000 F33 F33 F33 F23 F33
1800034 sleeping
2700000 F34 F34 F34 F24 F34
2700034 sleeping
24300034 sleeping
25200000 F329 F329 F329 F2o9 F329
25200034 tx3 re6
25200940 tx7 rr9
25201846 txh ra’7
25203602 txh T4
25204508 tr3 red
25207963 F1
25208020 trl res
25211475 tx0 rel
25214930 FO
25226372 sleeping
26100000 End.

Fig. 22 Example query: the agenda computed by SNEE

In contrast, our approach allows the optimizer to determine an appropriate level of
buffering, given the delivery time constraints specified by the user, which results in
significant energy savings as described in Sect. 6 without having to compromise the
acquisition rate. Note that this differs from the orthogonal approach proposed in
TiNA [52], which achieves energy savings by not sending a tuple if an attribute is
within a given threshold with respect to the previous tuple. It would not be difficult
to incorporate such a technique into the SNEE optimizer for greater energy savings,
although such a policy changes the semantics of a query (e.g., with respect to ag-
gregates). Zadorozhny [64] addresses a subset of the when-scheduling problem; an
algebraic approach to generating schedules with as many non-interfering, concurrent
communications as possible, is proposed. It is functionally similar to the proposed
BUILD-AGENDA algorithm, although it only considers the scheduling of communi-
cations, and not computations as we do.

5.3 Code generation

Step 8 in Fig. 13 generates executable code for each site based on the distributed QEP,
routing tree and agenda. The current implementation of SNEE generates nesC [27]
code for execution in TinyOS [35], a component-based, event-driven runtime envi-
ronment designed for WSNs. nesC is a C-based language for writing programs over a
library of TinyOS components (themselves written in nesC). Physical operators, such
as those described in this and the previous section, are implemented as nesC tem-
plate components. The code generator uses these component templates to translate
the task-performing obligations in a site into nesC code that embodies the computing
and communication activity depicted in abstract form by diagrams like the one in
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receive v putTuples

7777777 . putTuples
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Radio
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getTuples
F1 Output Tray

Fig. 23 TinyOS component diagram for site 3 in Fig. 22

putTuples

Fig. 23. The figure describes the activity in site 3, where the join (as well as sensing)
is performed. In the figure, arrows denote component interaction, the black-circle
end denoting the initiator of the interaction. The following kinds of components are
represented in the figure: (i) square-cornered boxes denote software abstractions of
hardware components, such as the sensor board and the radio; (ii) dashed, round-
cornered boxes denote components that carry out agenda tasks in response to a clock
event, such as a communication event or the evaluation of a QEP fragment; (iii) ovals
denote operators which comprise fragments; note the correspondence with Fig. 17
(recall that an EXCHANGE operator is typically implemented in two parts, referred
to as producer and consumer, with the former transmitting to the upstream fragment,
and the latter receiving from the downstream one); and (iv) shaded, round-cornered
boxes denote (passive) buffers onto which tuples are written/pushed and from which
tuples are read/pulled by other components.

Figure 23 corresponds to the site 3 column in the agenda in Fig. 22 as follows.
Tuples are received from sites 5 and 6, and are placed in the F2 output tray and F3
output tray accordingly. Inside fragment F1, an exchange consumer gets tuples from
F2 and another one gets tuples from F3 for the join. The results are fetched by a
producer that writes them to the F1 output tray. Finally, tx1 transmits the tuples to
site 1.

Each node in a component diagram, such as the one in Fig. 23, maps one-to-one
to a nesC/TinyOS component. These components are generated in the form of source
nesC files. Each one of these files instantiates a code template that realizes a physical-
algebraic operator described in Table 1. The code generator connects the components
that correspond to QEP tasks to one another and to the TinyOS-supplied components
that act as a hardware abstraction layer (e.g., in Fig. 23, the radio component) as
indicated by the dependencies implicit in Fig. 17. Finally, the code generator then
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Fig. 24 Top-level controller EXECUTE- AGENDA-TASK (site, agenda)

1 > site is the sensor node where the code is running

2 D> agenda is a two-dimensional array

3 while true > asleep waiting for timer interrupt
4 do t < now() > woken up by timer

5 if agenda[t] not null

6 then activeColumns «— agenda.columns(t)
7 if site € activeColumns

8 then task — agendalt][site]
9 if task not null

0
1

1 then task.execute()
1 sleep()

emits nesC code that acts a top-level controller for executing the tasks assigned for
the site in the agenda, if any. Figure 24 describes, in pseudocode, the basic semantics
of the site-specific top-level controller. The code generator connects the component
corresponding to the top-level controller to the components that correspond to agenda
tasks executed in the site.

Relationship to DOP In classical DQP, typically each site has an interpreter which
evaluates the QEP fragment(s) assigned to it. In contrast, SNEEgenerates site-specific
binaries. This is motivated by the need to avoid being profligate with a scarce re-
source. Moreover, classical DQP assumes an underlying hardware/software layer
managed by operating systems that project virtual memory abstractions, whereas the
equivalent layers for mote-level hardware lack such abstractions.

Relationship to related work  SwissQM [48], a WSN virtual machine specialized for
data processing (which is query language independent, so this step could alternatively
target it) occupies 33 kB program memory for the interpreter and instruction-set code.
In contrast, our approach generates nesC code (and is therefore at a lower level of
abstraction) with only the specific functionality required at each site, allowing it to
be more economical, as discussed in the experimental section. The approach taken by
TinyDB is, as in classical DQP, for each site to interpret the QEP, but to conditionally
execute only those parts of it that are semantically valid for the site. This means
that in the TinyDB approach, by default, more program memory is consumed than
in the SNEE approach, where the binary sent to each site only contains code that is
pertinent to the site. On a Mica2 mote, TinyDB requires 65 K (approximately 50%)
program memory for the query evaluator, including code for all the operators and
the supporting TinyOS libraries. In Sect. 6, we show that the binaries generated by
SNEE are much more parsimonious than this. For our running example, the largest
site-specific binary generated by SNEE occupies only approximately 16% program
memory.

6 Experimental evaluation

The goal of this section is to present experimental evidence we have collected in sup-
port of our overall research hypothesis, viz., that the extensions (described in Sect. 5)
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to DQP techniques that are proven in the case of robust networks lead to effective and
efficient DQP over WSNs. The experiments are analytical, i.e., aimed at collecting ev-
idence as to the performance of the code produced by the SNEE compiler/optimizer,
since, to the best of our knowledge, no other publicly-available comparable platform
can be experimented with in as detailed a manner. For example, while TinyDB is still
publicly available, the code base has not kept up with more recent software and hard-
ware developments and, in spite of significant effort, it proved infeasible to carry out
comparative experiments between it and SNEE.

The experiments fall into two groups. The first group, comprising the experiments
reported in Sects. 6.1-6.3, used emulation (of Mica2 motes via the Avrora cycle-level
emulator [57]) in order to enable systematic experimentation and detailed evidence
gathering. Their overall aim is to characterize the energy and lifetime performance of
SNEE-generated QEPs for a range of inputs (i.e., queries, QoS expectations, logical
and physical schemes) over different WSN deployments. The second group, com-
prising the experiments in Sect. 6.4, describes experiments that aim to characterize
one aspect of the robustness of SNEE-generated QEPs on real sensor node hardware
(viz., Tmote Sky motes).

Throughout the experiments, we assume that all metadata (such as join selectivity,
node resources, and the network connectivity graph) has been collected beforehand,
and that it is accurate. Our measurements therefore exclude the resource expenditure
for the collection of such metadata. We note, however, that this is a one-off cost that
can be expected to be relatively small in the context of a long-running continuous
query. The CEMs used (and that have been validated by extensive experimentation
in [9]) are also assumed to be accurate. Furthermore, we note that at present, QEPs
generated by SNEE do not as yet have mechanisms to respond adequately to disrup-
tive changes in the environment (e.g., a node failure). As such, the simulations in
Sects. 6.1-6.3 currently assume the absence of any hardware or communication fail-
ures. However, in the experiment in Sect. 6.4, with real hardware, mote failure is of
course a possibility. Since it is well-known that the likelihood of failure is substan-
tially higher in a fragile distributed computing platform such as a WSN than tradi-
tional query processing platforms [39], we are currently working on making SNEE
QEPs more robust and resilient to failure. We are currently implementing an initial,
somewhat rudimentary, approach, based on the proposal in [20] to making SNEEmore
resilient. This involves, on detection of a critical failure, the collection of fresh meta-
data about the state of the network, and recompilation of the query against the new
metadata. A new QEP is then generated and disseminated throughout the network.
Although disseminating a new QEP over-the-air is an energy intensive process, we
envisage that this would be a relatively infrequent occurrence, as the experiments in
Sect. 6.4 show that we have been able to run QEPs on a small scale and for short
lifetimes without the need for such mechanisms.

6.1 Per-node/per-component breakdown of performance metrics on an example
query

This section aims at providing detailed insight into the QEP generated for the running
example query, with performance breakdowns at a per-node/per-component level.
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Q1: RSTREAM SELECT River.time, River.depth
FROM River [NOW];

Q2: RSTREAM SELECT AVG(River.depth)
FROM River [NOW];

Q3: RSTREAM SELECT River.time, Hilltop.rain, River.depth
FROM River [NOW], Hilltop[AT NOW - 15 MINUTES]
WHERE Hilltop.rain > 5
AND River.rain < Hilltop.rain;

Q*: RSTREAM SELECT x*
FROM  Sensors[NOW];

Fig. 25 SNEEq| queries used in experiments 1-4

6.1.1 Experimental design

Our experimental design involves executing the SNEE-generated QEP for Q3 in
Fig. 25 and measuring the following performance indicators: lifetime, and energy
and memory consumption. The motivation for this experiment stems from the fact
that SNEE targets mote-level WSNs, i.e., WSNs whose nodes are low-cost, battery-
powered devices with short-range radio components and very limited amounts of
both volatile and persistent memory. The fact that the nodes are powered by batteries
means that energy stocks are depletable and the replacement cost can be high, e.g.,
in WSNs deployed by environmental scientists, as their location may be remote and
difficult/costly to access. This assumption of depletable energy stocks therefore im-
plies an optimization goal of conserving energy in order to extend the lifetime of a
deployment. Most other SNQP proposals [8, 18, 44, 62] have concerned themselves
with studying performance with respect to resource consumption and implications
for network lifetime. In this section (and in Sects. 6.2 and 6.3), the experiments were
carried out using the Avrora [57] platform. The sensor node hardware we emulated
was the Mica2 mote.’ The executables were compiled from TinyOS 1.1.15. Energy
was measured by using the Avrora energy monitor, which gives per-node and per-
component breakdowns of energy consumption by emulation at CPU cycle accuracy.
Measurements were taken for a single agenda evaluation episode and scaled, in linear
proportion, to a period of six months in order to make the figures more meaningful.
In all our experiments in this paper, we have assumed the selectivity of every pred-
icate to be 1, i.e., every predicate evaluates to true for every tuple. We note that is
the worst-case scenario in terms of the dependent variables we are measuring, viz.,
lifetime, and energy and memory consumption, as it causes the maximum amount of
data to flow through the QEP (and hence through the routing tree formed for it over
the underlying network). Results are reported in Figs. 26-28.

9This hardware has the following specification: CPU = 8-bit 7.3728 MHz AVR, RAM = 4 kB, Program
Memory = 128 kB, Radio = CC1000, Energy Stock = 31320 J (2 Lithium AA batteries). Detailed speci-
fications can be found at http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA.pdf.
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The following can be observed:

1. Figure 26(a) shows that the sensor component is the dominant energy consumer
(84%), but this is a consequence of our experimental set-up, insofar as the emula-
tor we have used does not allow the sensor component to be sent to sleep mode. In
practice, with duty-cycling, the energy expended by the sensor component would
fall back in line with that of the other components. This effect is general to all the
experiments in this section.

2. Per-site energy consumption, as shown in Fig. 26(a), is roughly the same for all
nodes in the network. This is confirmed by Fig. 27, which shows that all the sites
have very similar predicted lifetimes. This is a result of the current version of the
SNEE code generator sending all the nodes to sleep at the same time. Note that,
in the agenda in Fig. 22, blank cells indicate that the CPU is in idle mode. It only
powers down to a sleep mode when explicitly stated in the agenda.'” In future
releases of SNEE, we will optimize this on a per-node basis, and we expect that
the energy consumption of each node will reflect its workload more.

3. According to Fig. 26(a), other than that expended by the sensors (explained
above), most of the energy (15% in average) is expended by CPU being asleep.
This shows that SNEE can generate plans that behave well with respect to duty-
cycling for the purpose of conserving energy.

4. Even though the emulator platform prevents savings generated by duty-cycling
the sensor component, the QEP generated by SNEE is economically viable: 2 AA
batteries would last approximately 4.5 months, as shown by the horizontal line in
Fig. 26(a).

5. The detailed analysis of energy expenditure by the radio component (in Fig. 26(b))
shows that the per-site expenditure reflects the routing tree structure and the gen-
erated agenda. However, even for the most expensive site (i.e., site 0), the ra-
dio consumes, over six months, only 1% of the energy stock. At its maximum
transmission power, the radio consumes 0.0645 W, and the CPU in sleep mode
consumes 3.3 x 10~* W. However, in the agenda in Fig. 22, the radio is on for
only 0.101%, and the CPU is in sleep mode for 99.9%, of the agenda evaluation
episode. Therefore, although the Mica2 radio consumes much more power than
the CPU, it is on for a negligible period of time, compared to duration of the CPU
sleep tasks, which explains why, albeit unexpectedly, the energy consumption of
the CPU during sleep mode alone is significantly greater than that of the radio.

6. Figure 28(a) shows that SNEE-generated QEPs can make the most of available
RAM to buffer data and avoid over-frequent use of radio. In this case, because
the QoS expectation regarding delivery time is generous, the data resulting from
29 consecutive sensing episodes can be held in RAM before communication takes
place. Should the hardware used have more RAM than the Mica2 used here, SNEE
would take advantage of that. Note that site 3 is the one with the largest propor-
tion of its memory being used because it is the site where the join was placed. The
SNEE buffering policy contrasts with TinyDB (which, essentially, has a hardwired

10We tried to implement optimizations in the SNEE code generator that would enable nodes to sleep
independently of one another, but this caused problems with the Avrora simulator.
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Fig. 27 Predicted lifetime 160 T T T T T T T T
(days) per-node for 7 of the
nodes in the routing tree of 140 + E
query Q3 in Fig. 25 on an
energy stock of 31,320 Joules
(i.e., approximately two AA
batteries). The gateway is not
shown here as it is assumed to
be a tethered node
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buffering factor of 1 for all queries) and results, in comparison with TinyDB, in
higher levels of RAM utilization in order to incur smaller expenditure in commu-
nication.

7. Figure 28(b) shows that SNEE-generated QEPs allocate program memory in site-
specific manner and, in doing so, is very economical with that resource. The
amount of program memory allocated is never larger than 20 kB for this query,
which represents around 15% of the program memory available in a Mica2 mote.
Although currently not supported, this provides scope for multiple queries to be
executed simultaneously. In contrast, TinyDB uses 65 kB (around 50%) in every
site.

6.2 Network-wide energy and lifetime response to varying QoS expectations

This section studies the effects of varying the QoS expectations on network lifetime
and network-wide energy consumption for the queries in Fig. 25.

6.2.1 Experimental design

Our experimental design involves executing the SNEE-generated QEPs for all queries
in Fig. 25 and measuring the following performance indicators: lifetime and energy
consumption. The motivation for this experiment is threefold: (a) we aim to aggre-
gate per-site measurements into network-wide totals; (b) we aim to vary the queries
and QoS expectations used; and (c) we aim to draw some comparisons with a con-
trol query (Q* in Fig. 25) which does no filtering of tuples or columns, is written
against a universal relation Sensors and is constrained to use a buffering factor
of 1 (our motivation being that, with respect to the last two characteristics, this is
close to how TinyDB approached SNQP). As before, the experiments were carried
out emulating the Mica2 mote using the Avrora [57] platform running TinyOS 1.1.15
executables. Again, data for a single agenda evaluation episode was scaled to a period
of six months. Note that Q3, the running example query that we have used throughout
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the paper, has the window specification for the Hi11top extent adjusted to be [AT
NOW-«] where « is the acquisition rate used. This is done so that for varying QoS
expectations, the query effectively remains fixed, insofar as data from the previous
epoch of the Hilltop extent is correlated with data from the current epoch of the
River extent.!! Results are reported in Figs. 29-31.

The following can be observed:

1. Figure 29(a) shows that intense rates of acquisition (i.e., very short intervals be-
tween consecutive acquisition/evaluation episodes) can lead to infeasibility. Note
that, for an acquisition rate of 1 s, only Q2 is feasible. This means that results for
the other queries, at this acquisition rate, were not plotted because SNEE returns
an infeasible QoS expectation result for those queries. The infeasibility stems from
the fact that one is asking data to be acquired faster than it can processed and trans-
ported through the QEP. This typically is addressed in push-based query proces-
sors by load-shedding policies. However, in acquisitional query processing, where
the rate at which the data enters the system is set by the user, one tends to take that
declaration as a validity constraint, blocking the way, all other things being equal,
to adaptations that would inevitably lead to approximate answers. In this inter-
pretation, it would be for the user to adjust the acquisition rate. Having said that,
unlike the current version of SNEE, TinyDB, an acquisitional query processor, has
implemented load-shedding policies, and so could SNEE.

2. As shown in Fig. 29(a), even when they do not lead to infeasibility, for all queries,
intense rates of acquisition lead to a steep increase in energy consumption. Thus,
for query Q2, an acquisition rate of 2 s uses 38% of the energy used for an ac-
quisition rate of 1 s. However, this effect wears out very quickly, in that as the
acquisition rate slows down eightfold (from 2 to 16 s) but the energy consumed in
the latter case is still 76% of that consumed in the former.

3. The pattern of behavior described above is also behind the lifetime measurements
in Fig. 29(b). The reason why lifetimes are significantly lower for very frequent
acquisition rates is because there is little possibility of duty-cycling. As the acqui-
sition rate slows down, more energy can be saved by duty-cycling. However, this
is bounded by constant costs at the electronic level, in particular, by the CPU being
in sleep mode, which becomes the component that dominates energy consumption
at higher acquisition intervals.

4. We note that Fig. 30(a) indicates that the energy consumption behavior of SNEE-
generated QEPs did not vary from the experiments on a 10-node network to
those in a 30-node-network. The same is true for network lifetime as shown in
Figs. 29(b) and 30(b). This is a (limited) indication that their performance is not
overly sensitive to network size.

5. With respect to how network lifetime responds to different QoS expectation for
maximum delivery time, we note that Figs. 31(a) and 31(b) indicate the buffering
approach adopted by SNEE delivers benefits. This is observable in the fact that,
for aggregation query Q2 in Fig. 31(b) (where the effect is most marked because

VIIf this adjustment was not made, no results may be produced by the window operator over the Hi11ltop
extent. This would result in energy consumption results for different QoS expectations not being directly
comparable with one another.
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the least amount of data is transported), the network lifetime increases by 32%
when the maximum delivery time is relaxed from 16 to 32 s.

6. Query Q*, conceived of as a simple baseline, generates the most network activity
per agenda evaluation episode among the queries in Fig. 25. This means that it is
infeasible for less intense acquisition rates than those that cause the others queries
to be infeasible. However, when it is feasible, Q* has only slightly worse perfor-
mance than the others in the smaller, 10-node network. Q* scales more poorly
than Q1-Q3 on network size. Thus, a comparison of the performance of Q* in
Fig. 29(a) (the 10-node case) and in Fig. 30(a) (the 30-node case) shows greater
performance degradation than Q1-Q3. For an acquisition rate of 16 s, the join
query Q3 uses 77% more energy in the 30-node case than in the 10-node case,
whereas Q* uses around 180% more.

6.3 Performance on randomly-generated scenarios

So far in this section, we have studied the performance of SNEE-generated QEPs for
a fixed set of queries chosen to exercise a specific set of language constructs, QoS
expectations, and WSN deployments. In this section we aim to study whether the
results obtained in Sects. 6.1 and 6.2 are likely to generalize beyond those specific
choices.

6.3.1 Experimental design

We present performance figures for SNEE under a broad range of randomly-generated
scenarios. By scenario, in this context, we mean the following inputs passed on to
SNEE: the query, the QoS expectations placed on it and the physical schema (i.e., the
assignment of logical extents to sites in the WSN and the connectivity graph formed
by the sites). For a given logical schema and a fixed WSN size (in terms of number of
nodes), the scenario generator emits a given number of arbitrary scenarios. We gen-
erate 15 scenarios with the number of nodes set to 30, and another 15 scenarios with
the number of nodes set to 200, in order to study the scalability of the system. The
scenario generator works broadly as follows. Firstly, an arbitrary!? network density is
chosen in order to locate the nodes. Given the chosen network density, the nodes are
then located arbitrarily provided that their chosen locations ensure a connected graph.
The next step generates a query with an arbitrary choice of logical extents (in arbi-
trary numbers), in which there occur, with arbitrary probability, joins, aggregations
and subqueries. Given the query constructed in this way, the generator then emits a
suitable physical schema that arbitrarily assigns logical extents to sites. These four
steps completely specify an arbitrary scenario for the purposes of these experiments.

Our experimental design involves running SNEE on the 30 scenarios emitted by
the generator described. As before, the experiments were carried out emulating the
Mica2 mote using the Avrora [57] platform running TinyOS 1.1.15 executables.
Again, data for a single agenda evaluation episode was scaled to a period of six

12Here, and elsewhere in this section, by arbitrary we mean chosen at random within a predefined range
of values that are sensible for the parameter in the context of this paper.
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months. We measured network-wide energy consumption and network lifetime for
each of the 30 scenarios emitted by the generator. Results are reported in Figs. 32
and 33. Note that, the scenarios result in routing trees of different sizes, and are pre-
sented in order of increasing number of sites that participate in the QEP. The line
specifies the number of sites in the QEP generated for each scenario.

The following can be observed:

1. In Fig. 32, we note that, broadly speaking, the total network energy consumption
increases with the number of sites in the QEP, as one would expect.

2. Scenarios 7, 9, 13, 15, 19, 22 and 23 consume significantly more energy than the
overall trend. These scenarios generally have several of the following properties:
(i) acquiring data at a faster rate (e.g., scenarios 9, 19 and 23 acquire data at a
rate 1171%, 875% and 1121% faster than the average rate across the scenarios
respectively); (ii) having a higher proportion of source nodes in their physical
schema (e.g., scenarios 7, 13 and 15 have 21%, 27% and 41% more sources than
the average across the scenarios respectively); (iii) having more stringent delivery
time requirements (e.g., scenarios 7, 13, 19, 22 result in a buffering factor of one);
and (iv) involving more complex queries (e.g., scenario 7 involves a nested query
with 4 joins with high cardinality inputs). A combination of (ii)—(iv) result in
scenario 7 having such a high energy consumption.

3. The average network-wide energy consumption over the scenarios in Fig. 32 was
1052 kJ and 5764 kJ for the 30 and 200 node networks respectively. The average
per-node energy consumption was 42.4 kJ and 40.0 kJ for the 30 node and 200
node networks (i.e., about 35% and 27% more, respectively, than the energy stock
in 2 AA batteries). This provides some evidence that over widely-varying scenar-
ios, SNEE-generated QEPs do, in many cases, exhibit energy consumption behav-
ior commensurate of approximately 4—-5 months time-to-depletion. This would be
longer if the sensor component could be switched off.

4. Figure 33 shows that the average network lifetime over the scenarios was 107 and
97 days, for the 30 and 200 node network respectively. Unlike total energy con-
sumption, it is observed that increasing the size of the network does not necessarily
lead to a shorter lifetime. It is noted that the scenarios with significantly shorter
lifetimes directly correspond to those identified in Fig. 32 as having demanding
requirements.

6.4 Timing in real sensor node hardware

This section describes the results of experiments aimed at exploring the proposition
that SNEE-generated QEPs are deployable in real motes. Thus, the results reported
here stand in contrast with those in previous sections insofar as those were obtained
via cycle-accurate emulation of hardware in software.

6.4.1 Experimental design

Our experimental design aims to investigate the severity of clock drift experienced by
SNEE-generated QEPs when executing on a real WSN deployment for a given period
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of time. One motivation for this experiment is the strictly-timed nature of SNEE agen-
das. This time-division approach to execution in a wireless communication environ-
ment is thought to lead to lack of robustness due to the presumed unreliability of the
clock component in mote-level hardware [38]. Currently, the generated executables
for real motes only include a start-up protocol to ensure that, in every participating
mote, the code starts within a negligibly small time interval of every other mote. It
follows from the timed nature of the agenda that the negative consequences of clock
drift are aggravated whenever the communication tasks required by the generated
QEP become very frequent. Since SNEE uses buffering, the frequency of communi-
cation is a consequence of the acquisition rate and the buffering factor that is feasible,
given the maximum delivery time expectation and the memory resources available.
We compile and optimize Q* in Fig. 25 for various acquisition rates and buffering
factors. The rationale for using Q* is that it returns all the data it senses at every
agenda evaluation episode. We measure the difference in seconds from a clock read-
ing in the gateway and the clock reading of each other site. We note that differences
in absolute values read are not indicative of clock drift: what characterizes clock drift
is difference that varies over time (i.e., two nodes may be apart in their readings but
if the difference between the readings remains constant over time, no clock drift is
taking place).

6.4.2 Experimental set-up

The experiments over physical hardware were run on a WSN consisting of three
Tmote Sky motes.!> We observe that this is a different platform than the emulated
one used in preceding subsections and provides evidence that, through nesc/TinyOS,
SNEE-generated QEPs run on different concrete hardware platforms. The WSN ran
executables compiled for TinyOS 2.1.0. After some test runs, we fine-tuned the CEM
parameters that are not hardware-specific in order to avoid too stringent requirements
regarding accuracy. The routing tree for the three node WSN had the following edges
of {0:1, 1:2} with the motes located in such a way as to neutralize any hindrance to
radio links. The sensor used was the default light sensor of Tmote Sky motes. To
neutralize the risk of energy depletion, the motes were powered from a PC via a
USB connector, which was also used to install the code on the motes. The acquisition
rates and buffering factors used can be drawn from the legends in the graphs. Each
experimental run lasted 12 hours. We note that we have successfully run the code
in the motes for over 24 hours with an acquisition rate of 1 minute and buffering
factor of 1. It is only due to time constraints that we ran the experiments for 12 hours.
Results are reported in Fig. 34.
The following can be observed:

1. All the plots show a constant offset (albeit with minor fluctuations) from the local
clock time of node 0, thereby indicating that SNEE-generated QEPs do not ex-
perience significant clock drift over a 12-hour period with any of the acquisition
rates and buffering factors used in the experiments reported in Fig. 34.

13This hardware has the following specification: CPU = MSP430 8 MHz, RAM = 10 kB, Program
Memory = 48 kB, Data Flash = 1 MB, Radio = CC2420. Detailed specifications can be found at
http://sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf.
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2.

It is noted that what is of key significance here that the lines are parallel to each
other. The distance between the lines in the graphs (which have a discontinuous
y-axis) is due to the way in which the experiments were run and the fact that as
soon as a node receives a code image it reboots and restarts its local clock to 0.
The code was transferred to nodes sequentially in the order 0, 1, and 2. The graphs
show that it takes approximately 18 seconds to compile and transfer, via the USB
cable, the code image for each mote.

Albeit limited in nature, the experiments on real motes suggest that the timed-
nature of SNEE agendas is not in itself a risk factor over short lifetimes. More
extensive experimentation over larger networks and longer lifetime is required
before the point at which clock drift becomes a point of failure can be identified.

6.5 Summary

In summary, the experimental results reported in this section indicate that:

1.

2.

The decisions made by SNEE lead to QEPs where node components are used in
such a way as to conserve energy and prolong lifetime;

Over specific, as well as randomly-generated, inputs, the QEPs emitted by the
SNEE compiler/optimizer show desirable patterns of behavior regarding energy
consumption and lifetime;

When the QoS expectations regarding acquisition rate and maximum delivery time
are in the range of actual deployments reported in the literature (e.g., [5, 12, 45, 47,
55, 56]), the rate of energy depletion of SNEE-generated QEPs leads to significant
return on investment, given that the cost of bespoke software development has
been all but eliminated;

. While significant challenges remain to be addressed in this respect, the timed ap-

proach used in SNEE-generated QEPs does not lead to impractical levels of brit-
tleness when they are deployed in actual mote-level WSNs. For larger networks
and longer lifetimes, we plan to incorporate a mechanism to keep node clocks
within a negligibly small time interval of each other. One possibility is [23], a
time synchronization protocol (used by TinyDB) which ensures node clocks are
approximately within 10 ms of each other; another would be to adopt a relative
deadline-based approach, as proposed in [36].

7 Conclusions

This paper has described SNEE, a query processor for WSNs that advances on the
state-of-the-art in several significant respects.

1.

We have provided motivation for (in Sect. 3), and a detailed description of (in
Sect. 4), a user-level syntax and a physical algebra for SNEEqI, an expressive
continuous query language over WSNs. SNEEq| demonstrates that queries over
WSNs need not be less expressive than those over pure, push-based streams.

. We have given concrete algorithms for the physical algebraic operators defined

for SNEEqI and we have specified these algorithms in such a way that the task of
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deriving memory, time and energy analytical CEMs for them becomes straightfor-
ward by reduction to a structural traversal of the pseudocode. We have also shown
in detail how to derive such CEMs. The resulting methodology demonstrates that
optimizers for queries over WSNs need not be less ambitious, with respect to
making cost-based decisions, than those for classical queries over robust execu-
tion platforms.

3. We have described a novel approach for the optimization of queries over WSNs.
Our approach is founded on a view of a WSN as a fully-functional, but severely
resource-constrained, distributed computing platform. By adopting this viewpoint,
we can approach the WSN query optimization problem as an extension of the
problem of optimizing queries for distributed execution. In particular, we have
contributed a decomposition of the problem of generating efficient QEPs for dis-
tributed execution over WSNss that gives rise to an extension of the classical query
optimization stack, thereby indicating clearly where the optimization problem dif-
fers in the case of WSN execution.

4. We have provided algorithms that instantiate the components in the optimization
architecture. In doing so, we have shown how the novel optimization subtasks
(viz., routing, fragment placement and fragment scheduling) can be specified,
thereby demonstrating that our framework can be effectively instantiated.

5. We have described SNEE, a concrete implementation of our framework. In order
to bridge from compiled/optimized QEPSs to runtime, mote-level components, we
have described the nesC/TinyOS code-generator we have built, thereby demon-
strating that executables emitted by a query optimizer for WSNs can be parsimo-
nious with respect to how much program memory they need. One would expect
that, as applications of WSNs aim for more expressive functionality, scarce re-
sources will have to be allocated ever more efficiently and emitting executables
with small memory footprints is likely to remain an important concern.

6. We have reported on the empirical performance evaluation of the SNEE frame-
work. The various emulator-based experiments consistently indicate that the sig-
nificant expressiveness of the query language and the ambitious nature of the opti-
mization problems tackled by SNEE, the QEPs that are emitted by the framework
are efficient with respect to energy consumption and network lifetime and scale
well with respect to acquisition rate and network size. Moreover, experimental ev-
idence, perforce more limited in scope, indicates that the QEPs are robust enough
for execution in real motes.

In both ongoing and planned future work, we will implement more SNEEq| features,
we will extend SNEE in three major respects: (a) in making it more responsive to
QoS expectations, (b) in enabling different fragments of the same QEP to execute
inside a WSN or outside it (i.e., either in a centralized manner or over robust network
environments), and (c) in emitting QEPs for in-WSN execution that are more robust
still, so that such QEPs are effective and efficient in WSNs that are significantly larger
than those contemplated in the SNQP literature to-date.
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