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Abstract We present a crowdsourcing system for large-scale production of accurate
wrappers to extract data from data-intensive websites. Our approach is based on super-
vised wrapper inference algorithms which demand the burden of generating training
data to workers recruited on a crowdsourcing platform. Workers are paid for answering
simple queries carefully chosen by the system. We present two algorithms: a single
worker algorithm (alfη) and a multiple workers algorithm (alfred). Both the algo-
rithms deal with the inherent uncertainty of the workers’ responses and use an active
learning approach to select the most informative queries. alfred estimates the work-
ers’ error rate to decide at runtime how many workers should be recruited to achieve
a quality target. The system has been fully implemented and tested: the experimen-
tal evaluation conducted with both synthetic workers and real workers recruited on a
crowdsourcing platform show that our approach is able to produce accurate wrappers
at a low cost, even in presence of workers with a significant error rate.
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1 Introduction

The abundance of data contained in web pages has motivated many research efforts
towards the development of effective methods and tools for generating web wrappers
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to extract information from data intensive websites, i.e., websites that publish large
amounts of data in pages generated by scripts that embed into HTML templates data
from a back-end database.

To alleviate the burden of writing wrappers manually, several inference approaches
have been investigated. Supervised approaches (e.g., [16,24]) infer the wrapper from
a set of training data, typically provided as labeled values. Although they can produce
accurate solutions, they have limited scalability, mainly because of the need of a
human intervention to produce the labeled values. Unsupervised approaches (e.g., [3,
9]) have been proposed as an attempt to “scale-up” the wrapper generation process by
overcoming the need of labeled values. Unfortunately, they have limited applicability
because the quality of the produced wrappers is highly unpredictable, and the inference
process can be hardly controlled towards better solutions.

Crowdsourcing platforms represent an intriguing opportunity to “scale-out” super-
vised wrapper inference approaches. These platforms support the assignment of mini-
tasks to human workers recruited on the Web: since they can involve large numbers of
workers, they allow the production of massive amounts of labeled values, which can
support wrapper inference at large scale.

However, inferring wrappers with the support of workers recruited on crowdsourc-
ing platforms introduces a number of challenges that were not addressed in the liter-
ature:

– the tasks submitted to the platform should be extremely simple, since they are
performed by non-expert workers;

– the number of tasks submitted to the crowd should be minimized to reduce the
wrappers production costs;

– the wrapper inference algorithm should be resilient to labeling errors, since workers
recruited on crowdsourcing platforms might be inaccurate.

This paper presents alfred, a system that addresses the above issues by engaging
crowd workers to supervise the wrapper generation process. alfred progressively
infers a wrapper by posing simple questions, membership queries (MQ), on the con-
tents of a web page. Because of their simplicity, membership queries are suitable for
unskilled workers recruited on crowdsourcing platforms: as they admit only a yes/no
answer, they represent the simplest form of questions to support a learning process [2].
The answers to the queries posed by the system represent labeled values, which are
then used to feed the learning process.

alfred builds on alfη, a supervised wrapper induction algorithm that adopts con-
solidated active learning techniques [34] to select the queries that more quickly bring
to the generation of an accurate wrapper. alfη relies on a probabilistic quality model
that considers the presence of errors in the answers returned by the workers. alfred

(alfη with redundancy) improves the resilience to noisy answers by recruiting sev-
eral workers on the same task. In particular, alfred schedules crowdsourcing tasks
composed of queries to infer wrappers for several attributes, among which a subset
are redundant, i.e., assigned to multiple workers.

alfred exploits the agreement among multiple workers to jointly estimate their
error rates and the quality of the wrappers inferred: the larger the amount of redundancy,
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the better the estimation of the workers error rates and of the wrapper quality, but the
fewer resources are left for the inference process.

Our experimental evaluation shows that during the learning process, alfred adap-
tively schedules the amount of redundant attributes that should be allocated in each
task. For the twofold purpose of minimizing the costs and achieving the target quality,
it engages additional workers for an attribute only when it is necessary to compensate
the noise introduced by the workers.

1.1 Contribution

To the best of our knowledge, alfred represents the first proposal that exploits crowd-
sourcing to address wrapper inference. The paper makes several contributions: (i) we
introduce an algorithm that exploits consolidated active learning techniques [34] and
a bayesian model to infer a wrapper from the noisy labeled values provided by work-
ers recruited on a crowdsourcing platform; (ii) we develop a solution to decide at
runtime how many workers should be recruited to deal with the presence of noisy
answers; (iii) we present techniques to leverage redundant tasks to estimate the work-
ers’ error rates during the learning process; (iv) we report the results of an extensive
experimental activity conducted with both synthetic and real workers recruited from
a crowdsourcing platform.

This paper is an extended version of previous conference and workshop papers [7,8]:
in [7] we studied wrapper inference with a single and infallible worker, while in [8] we
introduced a preliminary development of the inference algorithm in the form presented
in this paper, considering erroneous answers and the possibility of recruiting multiple
workers. The material in Sect. 3 that describes how we generate the extraction rules
and Sect. 6, which investigates how to schedule the tasks to submit to a crowdsourcing
platform, is new. We also provide substantially increased coverage and depth of the
experimental activities reported in Sect. 7, as well as a larger discussion of related
work in Sect. 8.

1.2 Paper outline

The paper is organized as follows: Sect. 2 introduces some preliminary notions to
define the problem, and presents an overview of our solution, which is then developed
in the successive sections. In particular, Sect. 3 describes how we set up the inference
process, generating a set of candidate wrappers and sampling the input pages. Section 4
presents alfη, the active learning algorithm for selecting the correct wrapper with the
support of a worker recruited on a crowdsourcing platform. Section 5 discusses how we
estimate the error rate of the workers introducing redundant tasks. Section 6 presents
alfred, an algorithm to schedule the tasks to submit to the crowdsourcing platform.
Section 7 briefly describes the implementation of a system protype, and then reports
the experimental results. Section 8 discusses related work, and Sect. 9 concludes the
paper.
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2 The ALFRED approach

We focus on data extraction from data-intensive websites whose pages are generated
by scripts that embed data from an underlying database into an HTML template. Let
U = {p1, . . . , pn} be an ordered set of pages generated by the same script. Given an
attribute A of interest published in the pages, its values can be extracted by means
of an extraction rule (or simply rule). The value extracted by a rule r from a page
p, denoted by r(p), is either a string occurrence from the HTML source code of p,
or a special nil value to denote that the rule cannot extract any value from the page.
A rule r applied over the pages in U returns a vector, i.e., an ordered set of values
r(p1), . . . , r(pn), denoted by r(U ), indexed by the pages of U .

We assume the existence of an initial annotated page, p1 ∈ U , i.e., one page where
the value vA of the target attribute A has been marked. The input annotated page may
be supplied either manually, by a user that marks the string occurrence of the value, or
automatically, by looking up in the page values from an available database of known
values for A.

Given such an initial annotated page p1, we generate a set RA of rules, all extracting
vA from p1, i.e., such that ∀r ∈ RA, r(p1) = vA.

Since the pages of U are produced by the same generating script according to a
shared HTML template, ideally the rules in RA should behave identically on every
page. However, web pages usually exhibit variations that prevent these rules to extract
the correct values over the whole set of pages U . For example, to accomodate for
the presence of an optional attribute, scripts can introduce mutually exclusive HTML
fragments corresponding either to the presence or to the absence of its value. Similarly,
advertisements, or other special contents can introduce local variations in the generated
pages. Therefore, despite the regularities in the structure of the HTML code over
pages from data intensive websites, rules that correctly extract an attribute value from
one sample page might not work correctly for other pages in U , as illustrated in the
following example.

Example 1 Suppose that we are interested to extract the Title from the set of fictional
movie pages U = {p1, p2, p3} whose DOM trees are sketched in Fig. 1. Assume
that the initial annotation vTitle = ‘City of God’ is supplied on the sample page p1.
Figure 2 shows a set RTitle = {r1, r2, r3} of candidate rules generated from this initial
annotation. Note that even if all rules extract the initial annotation from p1, r1 is the
only one that correctly extracts the movie title from the other pages, whereas r2 does

Fig. 1 DOM of three sample pages
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Fig. 2 Extraction rules in
RTitle = {r1, r2, r3} with initial
annotation ‘City of God’ and the
corresponding set of values
VTitle that they extract from
pages in U = {p1, p2, p3}
shown in Fig. 1

rules
pages U

p1 p2 p3

RTitle

r1 City of God Inception Oblivion
r2 City of God Inception nil
r3 City of God nil Oblivion

r1 =/html/table/tr[1]/td
r2 =//td[contains(.,“Rating:”)]/../../tr[1]/td
r3 =//td[contains(.,“Director:”)]/../../tr[1]/td

not work on p3 (the page of a movie without user ratings), and r3 does not work on
p2 (a movie without a director).

We say that an extraction rule r is correct for an attribute A if r extracts from every
page p ∈ U either the string occurrence of the value of A published in p, or nil if p
does not publish any value for A. With the notion of correct extraction rule we can
state our problem as follows: given an input collection of pages U , and an annotation
for the attribute A in a page p1 ∈ U , find a correct extraction rule for attribute A.

2.1 Solution overview

We propose an algorithm, alfη, that progressively infers the correct rule by posing
simple questions to human workers recruited on a crowdsourcing platform.

alfη evaluates the candidate rules by posing a sequence of membership queries:
alfη shows a web page and asks the worker whether a given value present in the page
corresponds to the correct value for a target attribute (e.g., “Is the string ‘Inception’

the title of the movie in this page?”). The binary answer (yes/no) provided by the
worker feeds a training sequence, which is used by a Bayesian model to compute
the probability of correctness of the candidate rules. As new queries are posed and
their answers are collected, the training sequence is expanded and the probabilities
are updated, until a termination condition is satisfied.

To reduce the number of queries, we exploit active learning techniques: our algo-
rithm poses its queries by choosing the value, among those extracted by the candidate
rules, about which it is least confident, according to the probability of correctness
gained with the previous answers. Our inference algorithm does not run the infer-
ence task on the whole set of pages, but on a small yet representative sample. In a
preprocessing phase a simple yet principled and effective sampling algorithm, Page-

Sampler, selects the set of sample pages over which the candidate rules exhibit all
their differences.

Our probabilistic model also considers that the worker can respond with wrong
answers. The performances of the algorithm and of the underlying probabilistic model
are strongly affected by a correct estimation of the worker’s error rate: if the error-rate
is overestimated, the algorithm does not trust the worker and ends up posing more
questions than actually needed, thus raising the costs. Conversely, if the error rate
is underestimated, it poses less queries, eventually compromising the quality of the
results. To overcome this issue, we submit the same task to multiple workers and
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extend our approach in order to estimate a worker error rate based on the agreement
with other workers.

Such an approach raises the question of how much redundancy is actually needed to
reach an optimal trade-off between costs and quality. Our solution to this problem con-
sists of an involved algorithm, alfred, that adaptively schedules the tasks submitted
to the crowdsourcing platform in order to decide at runtime the degree of redundancy
needed to obtain reliable results at low costs. alfred submits tasks composed by
several attributes with a partial overlapping: each task contains attributes which are
included also in another task. With the results of the redundant portion of each task,
alfred estimates the error rate of the worker that accomplished the task, and uses
such error rate estimation to compute the probability of correctness of the extraction
rules for the remaining attributes of the task.

3 Generation of the candidate extraction rules

In this section we describe how we generate a set of candidate rules. We consider
extraction rules belonging to a simple fragment of XPath. Given the initial annotated
page, we compute several rules that specify paths starting from a pivot node and leading
to the annotated value.

The process to generate candidate extraction rules is articulated in two steps. First,
we locate nodes that are likely to be part of underlying template. Following the intuition
developed in [3], we classify as part of the template those nodes that occur exactly
once with same root-to-node path (without indices) in a significant percentage (40 %)
of the input pages.1 The rationale is that these properties do not hold by chance; rather,
they are a consequence of the presence of the underlying HTML template used by the
script to create the pages. Notice that according to these heuristics, the document root
<html> and all the tags having an ‘id’ attribute are classified as template node since
they occur exactly once in every page.

In the second step, extraction rules are generated as XPath expressions specifying
a path starting from a template node P, which we call the pivot of the rule, to the leaf
node V containing the annotated value v. This expression is obtained by appending
three components: (i) an expression that matches at most one pivot node P (examples of
these expressions are: /html, //table or //td[@id=’key’]); (ii) the path from P to the first
ancestor node, N, shared by P and V: if P is not an ancestor of V, these expressions are
in the form ../../ … to follow the parent-axis, otherwise it is just the empty string; (iii) a
path descending from the common ancestor node N and reaching only the target textual
node V. Besides the complete sequence of parent to child nodes, several alternative
expressions are generated, each including the presence of the // operator at different
depths in the path (examples of these expressions are /tr[1]/td, /tr[1]//text(), //text()).

Example 2 Figure 2 shows (a subset of) the extraction rules RTitle = {r1, r2, r3}
generated from the initial annotation ‘City of God’ on the sample page p1, whose
DOM tree is shown in Fig. 1.

1 Actually, we do not consider the whole set of pages U , but a much smaller sample set including the initial
annotated page and at most 100 pages randomly chosen from U .
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Assume U = {p1, p2, p3}. Since nodes <html> and <table> appear exactly once
in every page, they are classified as template nodes, as well as nodes ‘Directors:’ and
‘Ratings:’, which occur in two out of three pages. All the other nodes do not fall in
this category, because they either occur once in less than 40 % of pages (e.g., ‘8.7’
occurs in one page out of three), or they occur more than once for page (e.g., <tr>
and <td>).

Rule r1 is pivoted in the document root, rule r2 and r3 are pivoted in the tem-
plate nodes ‘Rating:’ and ‘Director:’, respectively. (Other candidate rules, such as
//table/tr[1]/td pivoted on <table> are not reported for the sake of space).

To avoid an excessive proliferation of rules, we bound the length of the extraction
rules, i.e., the number of XPath steps composing its expression. Namely, we have
empirically observed that producing extraction rules longer than 8 steps does not
produce any benefit.

3.1 Representative sample set

As we discussed in Sect. 2, although the candidate rules are correct for the page
containing the initial annotation, they might not work correctly for other pages in U ,
because of local variations on the HTML structure of the pages. After the candidate
rules have been generated, we perform a procedure for computing a small set of sample
pages that manifest all the variations, observable by the candidate rules, that may occur
in the whole, potentially very large, set of pages U .

Our goal is to find a set I ⊆ U such that |I | � |U | yet I is representative with
respect to a given set of candidate extraction rules RA of all the pages in U .

In our context, the concept of representativeness of a set of pages I ⊂ U with
respect to a set of rules RA can be formalized by introducing the disagreement set of
two extraction rules.

Given a set of pages P , and a set of rules RA, the disagreement set, denoted as
DP (ri , r j ), between two rules ri , r j ∈ RA, is the set of pages in P making observable
their differences: DP (ri , r j ) = {p ∈ P : ri (p) �= r j (p)}, i.e., the subset of pages in
P on which ri and r j extract different values. Two rules ri , r j extract from P the same
values, and hence are indistinguishable for our purposes, if and only if DP (ri , r j ) = ∅.

We say that a subset I ⊆ U is representative of U with respect to a set of rules RA

if and only if:

∀ri , r j ∈ RA, [DI (ri , r j ) = ∅ ⇐⇒ DU (ri , r j ) = ∅].

In other terms, I is representative of U with respect to RA if all the differences amongst
the rules in RA are also observable on I .

Example 3 Consider again our running example in Fig. 2. Let us assume U =
{p1, p1, p3}. The sample I = {p1, p2} is not representative with respect to RA =
{r1, r2, r3} since DU (r1, r3) = {p2} whereas DI (r1, r2) = ∅.

Given the set of input pages U , there exist many representative subsets, including U
itself. As discussed above, our goal is to find a small sample set. Finding the smallest
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one is an instance of the well-known Set Cover problem: a page differentiates the
set of rules that extract distinct values from it.2 Actually we do not need to compute
the optimal sample set: it suffices to approximate it by considering a small but not
necessary minimal set of pages: in any real setting the additional pages included in
the sample set do not make any practical difference.

Listing 1 introduces PageSampler, a greedy sampling algorithm to extract a rep-
resentative set of pages I w.r.t. a set of rules RA from a set of input pages U in
O(|U | · |RA|) time and O(|RA|) space.

Listing 1 PageSampler: Sampling Algorithm
Input: a set of pages U ;
Input: a set of rules R;

Output: a set I ⊆ U that is representative of U w.r.t. R

1: let I = ∅;
2: let n = 0;
3: for p ∈ U do
4: if (|R(I ∪ {p})| > n) then
5: I ← I ∪ {p};
6: n← |R(I )|;
7: end if
8: end for
9: return I ;

PageSampler processes the set of pages U (lines 3–8). It maintains a set of pages
I , initially empty, that is representative of the subset of pages already processed. It
selects as representative only those pages that increase the number of different vectors
extracted by the set of rules RA (line 4). The pages selected according to this crite-
rion make observable new differences between at least two rules that were otherwise
indistinguishable in the subset of pages processed until the previous iteration.

Once the representative sample set is obtained, the set of candidate rules is organized
in classes of equivalence. Distinct rules that produce the same results over the pages
of the representative set are equivalent and are grouped in the same class. In the set of
candidate rules RA, we save only one rule from every class of equivalent rules.3

In the next section, where we illustrate our solution to efficiently crowdsource the
selection of the correct extraction rule from RA, we blur the distinction between the
whole set of pages U and the set of representative pages I computed from U .

2 The problem reduces to finding the smallest set of pages such that the union of the sets of rules differ-
entiated from them equals the set of rules differentiated directly by U .
3 We choose the rule with the shortest path, but other strategies, such as those discussed in [33] could be
applied.
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4 Crowdsourcing wrapper inference

Our inference process evaluates the candidate rules by posing a sequence of queries
to a human worker recruited from a crowdsourcing platform. The worker is shown a
page p and is asked whether a given value vA = r(p), r ∈ RA, extracted from the
candidate rule r is the correct one for the target attribute A in the page p. The binary
answer l, with l ∈ {−,+}, provided by the worker adorns the queried value vA with
either a positive or a negative label, producing a labeled value, denoted by vl

A.

Example 4 Continuing Example 1, the inference process can build a query with the
value r1(p2) = r2(p2) = ‘Inception’: the worker is shown page p2, and is asked to
confirm whether ‘Inception’ is the Title of the movie in that page. A confirmation
corresponds to produce the labeled value Inception+.

The labeled value returned by the worker is appended into a training sequence (t.s.),
denoted L . A Bayesian model is used to compute the probability of correctness of the
candidate rules, given the labeled value just acquired, and the t.s. collected so far. The
process iterates, posing new queries and thus expanding the t.s., until a termination
condition is satisfied.

Listing 2 reports the pseudo-code of the alfη algorithm, which implements the
inference approach. alfη takes as input a set of pages U and a set of candidate rules
RA for the attribute A (computed from an initial annotated page); it poses queries to
the worker and collects its answers into a t.s. L , and it returns a probability distribution
function (p.d.f.) describing the probability of correctness of the rules in RA.

alfη progressively builds a t.s. L by posing queries to a worker. In every iteration
(lines 3–8), the worker is asked to label a new value vA (lines 4–5). Then, for all the
rules r ∈ RA, alfη computes the probability distribution function P(r |vA, L), that
is, the probability that each r ∈ RA is correct, given the last labeled value and the t.s.
L acquired so far (line 6). Finally, the t.s. L is expanded by adding vl

A (line 7).
We now illustrate subprograms chooseQuery(), which implements an active learn-

ing strategy to choose the best value to be queried, and goal(), which implements the
stopping condition for the algorithm. Then, in Sect. 4.1, we present the probabilistic
model.

chooseQuery() is in charge of building the next query, that is, it selects the next
value to be labeled by the worker. The value is picked up from the set of candidate
values for attribute A, denoted VA, which contains all the values extracted from pages
in U by the candidate rules in RA: VA = {r(p), r ∈ RA, p ∈ U }. Our strategy
consists in choosing the value on which rules most disagree, appropriately weighted
according to their probability. This is equivalent to compute the vote entropy for each
v ∈ VA:

H(v) = −[P(v+|L) log P(v+|L)+ P(v−|L) log P(v−|L)]

where: P(v+|L) =∑
r∈Rv

A
P(r |L)
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Listing 2 alfη: Active Learning Algorithm for Wrapper Inference
Input: a set of pages U
Input: the set of candidate rules RA

Parameter η: worker error rate
Parameter λr : target probability of correctness
Parameter λM Q : maximum budget

Ensure: a p.d.f. describing the probability of correctness of the rules in RA

1: let L = ∅;
2: w← engageWorker();
3: while (not goal(L , λr , λM Q)) do
4: vA ← chooseQuery(L);
5: l ← w.getAnswer(vA);
6: compute P(r |vA, L), ∀r ∈ RA with Eq. 1 and Eq. 2 ;
7: L ← L ∪ {vl

A};
8: end while
9: return P(r |L), ∀r ∈ RA;

and P(v−|L) =∑
r∈RA\Rv

A
P(r |L)

are the probabilities that v is respectively either a value to extract or an incorrect value:
Rv

A is the set composed of rules in RA that extract v.
Intuitively, the entropy measures the uncertainty of a value and querying the value

with the highest entropy removes the most uncertain value:

chooseQuery(L){return argmaxv∈VA
H(v); }

It is worth saying that other active learning strategies, such as least confident and
smallest margin, on binary classification tasks as ours are equivalent to the above
maximum entropy policy [34].

The most appropriate termination policy might well depend both on budget con-
straints and on the quality targets. We adopt a simple implementation of goal() that
takes into account both aspects:

goal(L , λr , λM Q) { return (maxr∈RA P(r |L) > λr ) or (|L| > λM Q); }

According to this policy, we stop when the probability of the best rule overcomes
a threshold λr or just run out of a “budget” of λM Q membership queries allocated for
learning the rule with this worker.

4.1 A probabilistic quality model for wrappers

We now present our Bayesian model for estimating the probability P(r |vl
A, L) of each

candidate rule r ∈ RA of being a correct extraction rule of A for the whole set of
input pages U , given a new labeled value vl

A and the t.s. L . Our model considers
noisy workers making independent and random mistakes (that is, providing erroneous
labels) with error rate η.
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The probability of correctness of an extraction rule is computed whenever the
worker provides a new labelled value vl

A, which will expand the current t.s. L . The
posterior probability P(r |vl

A, L) can be obtained starting from the probability P(r |L)

by means of a Bayesian update.
The whole process is triggered by a prior p.d.f. P(r) over the candidate extraction

rules r ∈ RA extracting the initial annotated value of A from the input pages U . We
use a simple uniform prior: P(r) = 1

|RA(U )| .
By applying Bayes’ theorem:

P(r |vl
A, L) = P(vl

A|r, L)P(r |L)

P(vl
A|L)

(1)

where P(vl
A|r, L) is the likelihood of acquiring the labeled value vl

A conditioned to
the correctness of r , once a t.s. L has been observed, and P(vl

A|L) is a normalization
factor that can be expressed as:

∑

ri∈RA

P(vl
A|ri , L)P(ri |L),

to sum up all the probabilities to one.
The p.d.f. P(vl

A|r, L) can be obtained by introducing a probabilistic generative
model to abstract the actual process leading to the generation of every possible t.s.
in presence of a correct rule r . Notice that the labeled values forming the t.s. L will
be labeled as either positive or negative based on the values of A, assumed correctly
extracted by r , but these values are not known in advance.

We adopt a simple generative model of the labeling process that randomly chooses,
without replacement, the next queried value among the set of candidate values, i.e.,
the next value is chosen from the set VA \ L .

To take into account the errors of workers, we assume that a worker makes inde-
pendent random mistakes, as for example in the Classification Noise Process [1], with
an expected error rate η. It follows:

P(vl
A|r, L) =

⎧
⎪⎨

⎪⎩

1−η
|VA\L| , iff vk ∈ V l

A(r)
η

|VA\L| , iff vk ∈ V−l
A (r)

0 , otherwise

(2)

where, given a correct rule r , V l
A(r) denotes the set values that can form new values

labeled l, having observed the t.s. L; −l is the opposite label of l.
It is worth observing that our probabilistic model depends neither on RA nor on

the formalism used to specify the extraction rules, and can be easily extended to other
classes of extraction rules. It assumes that RA contains the correct rule. This is a fairly
reasonable approximation of the reality with large data-intensive websites. Anyway,
if the correct rule did not exist in RA, alfη would approximate it with the rule, within
the set of candidates RA, that most likely justifies the collected answers, taking into
account the worker’s error rate.
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5 Estimating workers error rates with redundancy

Algorithm alfη computes the quality of an extraction rule by using answers provided
by an inaccurate worker. However, its performances are strongly affected by a parame-
ter: the expected error rate of the worker. If the worker accuracy is overestimated, i.e.,
the algorithm expects that the worker performs better than she really does, it poses less
questions and the quality of the results can be compromised. Conversely, if the worker
is underestimated, i.e., the algorithm assumes that the worker performs worse than
she actually does, the cost augments without significant benefits: since the algorithm
does not trust the worker, it does not weight the answers enough, and it ends up posing
more questions than actually needed.

A simple technique for estimating the workers error rate is to rely on the availability
of ground truth information. To check the workers performance, they are asked a num-
ber of control queries which have been already pre-labeled with the correct answers.
However, this solution is expensive, because of the costs of preparing the ground truth,
and because of the costs paid to the workers for answering the control queries rather
than the real ones [27].

An alternative solution to evaluate workers performance without making use of
any ground truth information is based on redundancy: the same tasks are assigned to
several workers, and their error rate estimation relies only on their agreement with
other workers. This approach is based on the assumption that independent workers
make independent errors, which is indeed a realistic assumption with workers recruited
on a crowdsourcing platform.4 On the one hand, redundancy offers the advantage of
eliminating the costs of the ground truth information; on the other hand, it originates
the additional costs of employing multiple workers on the same task.

We now illustrate our approach to estimate error rates of the workers exploiting
redundant tasks. We rely on our probabilistic quality model that is easily extended to
consider training data produced by several workers: it suffices to concatenate the t.s.
obtained by several workers into a single teaching sequence.

We now denote Lw the t.s. produced by a worker w, Lw
A the t.s. produced by the

worker w for the attribute A.5 Also, we generalize the notation L A to indicate the t.s.
obtained by concatenating the t.s. of several workers for the same attribute A, that is,
L A = 
w∈WA Lw

A , where 
 denotes the concatenation over several sequences, and
WA indicates the set of workers that provided labelled values for attribute A.

Given a t.s. L A, we compute the p.d.f. P(r |L A) by using Eq. 1 (and Eq. 2). Such
a p.d.f. can then be used to compute the error rate of a worker w, as the average
number of incorrect answers provided in the t.s. Lw, weighted by the probability of
each answer, as follows:

ηw =
∑

vl
A∈Lw

{
1− P(vA|L A) , iff l = +
P(vA|L A) , iff l = −
|Lw| (3)

4 Notice that this approach can be seen as a special case of the previous one, as a task with ground truth
information can be seen as a redundant task solved by a perfect worker.
5 In Sect. 6 we consider workers producing t.s. for several attributes in a single task.
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where P(vA|L A) is the probability that vA is a correct value to extract for the attribute
A, and, as it has been done before, it is reduced to the sum of the probabilities of the
rules that extract vA; that is: P(vA|L A) =∑

r∈Rv
A

P(r |L A).

6 Adaptively recruiting additional workers

Observe the mutual dependency between Eqs. 1 and 3: the former computes a p.d.f.
for the correctness of the rules, given a teaching sequence and the error rates of the
workers who labeled its values; the latter computes the error rates of each worker,
given the p.d.f. associated with the rules.

We can exploit such mutual dependency to dynamically choose the number of
workers to be recruited for inferring the extraction rule of a single attribute. For every
attribute we can submit a pair of tasks, each posing queries to infer the rules for the
same target attribute. With the t.s. generated from these tasks, we can trigger an iterative
process that interleaves the estimation of the error rates and the computation of the
p.d.f. until a convergence criteria is satisfied, i.e., until these values do not significantly
change anymore.6 At the end of this process, which allows us to jointly estimate the
workers error rates and the p.d.f. over the candidate rules, if a quality criterion is not
satisfied (e.g., the most likely correct rule has a low probability of correctness), other
workers can be recruited on the same attribute, until they produce a t.s. that allows the
selection of the correct extraction rule.

However, on a real crowdsourcing platform it is not convenient to submit too short
tasks composed of just a few membership queries related to a single attribute. As
reported by Ipeirotis in his study on the Amazon Mechanical Turk (AMT) market-
place [20], 90 % of the AMT tasks give a reward of 10c, and the estimated hourly
wage is approximately $5: the typical 10c task requires about 75 s to be fulfilled. On
average, for every attribute alfη poses a number of queries that are answered by an
ordinary worker in around 15 s. Therefore, by following those guidelines, it is fairly
reasonable to submit 10c tasks composed of queries related to 5 attributes.

For the sake of generality, we now present our solution for the composition of
tasks assuming that each task includes N attributes. According to the considerations
discussed above, in our experiments with real crowdsourcing workers, we set N = 5.

To guarantee a reliable estimation of the error rate (and thus of the probability
of correctness of the rules) a straightforward solution is that of assembling tasks
containing N attributes, and submit each task (at least) twice. However, we have
experimentally observed that, due to the simplicity of our membership queries, the
average error rate of real workers is rather low (around 10 %), and thus for a significant
percentage of attributes even one worker suffices to select the correct rule (we report
details on these experiments in Sects. 7.4 and 7.6).

Therefore, instead of redundantly submitting a whole task, we prepare tasks with
a limited overlapping: each task is composed of N attributes, and only a subset of K
redundant attributes is included also in another task. With the results of the redundant

6 In our implementation, we stop when all the error rates do not change, in absolute value, more than
�η = 10−4.
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portion of each task, we estimate the error rate of the worker that accomplished the
task, and then we use such error rate estimation to compute the p.d.f. of the extraction
rules for the remaining non-redundant attributes of the task.

Example 5 Consider given the set of attributes A = {A1, A2, . . . , A10}. Assuming
N = 3 and K = 1, the following tasks would be created: t1 = {A1, A2, A3},
t2 = {A1, A4, A5}, t3 = {A6, A7, A8}, t4 = {A6, A9, A10}. Note that A1 and A6
are submitted twice, in different tasks. A worker produces a sequence covering N
attributes, e.g., w1 produces Lw1 = Lw1

A1

 Lw1

A2

 Lw1

A3
.

Given L A1 = Lw1
A1

Lw2

A1
, we compute the p.d.f. P(r |L A1) of the redundant attribute

A1 and the error rates ηw1 and ηw2 of the involved workers. Similarly, we compute
P(r |L A6), ηw3 and ηw4 .

These error rates are then used to recompute the p.d.f. of any redundant attribute in
the same tasks, such as P(r |L A2), P(r |L A3), P(r |L A4), P(r |L A5), P(r |L A7).

Attributes whose inferred extraction rules do not satisfy a quality criterion are used
to compose new tasks, which are submitted again to the crowdsourcing platform. The
new sequences returned by these tasks feed a new estimation of the error rates of the
workers that elaborated the same attributes, as well as an update of the p.d.f. of all the
involved attributes.

Example 6 Continuing the previous example, suppose that the probability of correct-
ness for attributes A2, A3 and A7 do not reach the target quality. Then, in order to
acquire more labeled values for these attributes, their candidate values will be used
to formulate the queries of a new task t5 = {A2, A3, A7} to be submitted to the
crowdsourcing platform.

The produced t.s. L A2 = Lw1
A2

 Lw5

A2
is used to recompute all the error rates of

the workers directly involved on the attributes of the new task t5, e.g., ηw5 has to be
computed and ηw1 has to be recomputed. Notice also that w2, which worked on A2,
is indirectly involved since its error rate ηw2 depends on P(r |L A2) that depends on
ηw1 . Transitively following these dependencies, it turns out that the error rates of all
the workers need to be recomputed, and hence all the p.d.f. of all attributes in these
five tasks.

Listing 3 illustrates the psedo-code of the alfred algorithm, which implements
the described approach. Here the crowdsourcing platform is modeled as a queue q
abstracting a completion service to which task submissions are performed by means
of a non-blocking operation q.submit All(); completion notifications are provided via
a blocking operation q.take() that removes the next completed task from the queue,
or just waits if none of the submitted task has been fulfilled yet.

Starting from the input set of attributes, a set of tasks are initially submitted to
the crowd (line 2) following the redundancy scheme illustrated above: each task is
composed of queries related to N attributes, with K attributes per task assigned also
to another task. We model the composition of the submitted tasks in attributes by
means of a bipartite graph, denoted G (line 7), whose nodes are either attributes or
tasks, and there is an edge between a task and an attribute if and only if the task
includes queries on the attribute. Figure 3 (right) shows the bipartite graph for the tasks
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Fig. 3 The bipartite graph for the task allocation of Example 5 (left) and Example 6 (right)

described in Example 5. Observe that G is composed by several connected components.
Each connected component includes tasks that are related by some shared redundant
attribute: all the p.d.f. associated with the attributes, and all the error rates of the
workers in the component, are mutually dependent. Given a task t , we denote G(t) the
connected component of G that includes t (line 8).

While the queue is not empty (lines 3–20), i.e., there are tasks yet to be completed
by the crowd, the first ready task t is taken from the queue, and it is added to a set of
completed tasks, C (line 6). If all the task of the connected component G(t) have been
already completed (line 11), the t.s. produced for the attributes of its tasks, A, can
be processed. First the workers’ error rates and the p.d.f. of the associated extraction
rules are computed (line 14) for the redundant attributes (i.e., attributes A such that
|WA| ≥ 2). The estimated error rates are then used to recompute the p.d.f. of the
extraction rules for the remaining (non redundant) attributes of the same connected
component (line 16).

All the attributes that do no reach the quality target7 are added to a set U of unsolved
attributes (line 17): for these attributes the collected t.s. did not lead to the production
of a satisfactory extraction rule, and thus they will be added in a new task, which is

7 We neglect any budget issue at alfred’s level where the goal is to reach the quality target λr ; however
alfη bounds to λM Q the budget per attribute spent for each worker.
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submitted to the crowdsourcing platform (line 19).8 It is worth noting that as all the
unsolved attributes have been already processed at least by one worker, they become
redundant: they might trigger the merging of several connected components of the
graph thus creating a component including a larger number of attributes.

Figure 3 (right) illustrates the graph for the tasks of Example 6: observe that task t5,
which is composed by the unsolved attributes A2, A3, A7, creates a component that
includes all the attributes; before t5 submission, the same attributes were spread in two
separate components.

Listing 3 alfred

Input: a set of attributes {A1, A2, . . . , An};
Parameter λr : target probability of correctness
Parameter λM Q : maximum budget for each worker per attribute
Parameter N : number of attributes per task
Parameter K : number of redundant attributes per task

Ensure: the set of the most probable extraction rules r ∈ RA, ∀A ∈ {A1, A2, . . . , An};
1: let C = ∅; // set of completed tasks
2: q.submit All( createTasks({A1, . . . , An}, N , K , λr , λM Q) ); // create initial tasks
3: while (not q.is Empty()) do
4: let U = ∅; // set of unsolved attributes (already with a t.s. but need more...)
5: let t = q.take(); // removes a fulfilled task from the completion queue
6: C ← C ∪ {t}; // save as completed
7: let G be << the bipartite assignment graph of the submitted tasks >>;
8: let G(t) be << its connected component including t >>;
9: let T ← all the tasks in G(t);
10: let A← all the attributes in G(t);
11: if (T ⊆ C) then
12: // all the tasks of the connected component that includes t have been completed

13: let R← {A ∈ A such that |WA| ≥ 2}; // redundant attributes
14: compute P(r |L A) and ηw with Eq. 1 and Eq. 3, resp., ∀r ∈ RA,∀w ∈WA, ∀A ∈ R;

15: let N ← {A ∈ A such that |WA| = 1}; // non-redundant attributes
16: compute P(r |L A) with Eq. 1 with ηw as computed on line 14, ∀r ∈ RA, ∀A ∈ N ;

17: U ← U ∪ {A ∈ A such that not goal(L A, λr ,+∞)};
18: end if
19: q.submit All( createTasks(U , N , K , λr , λM Q) );
20: end while
21: return {r ∈ RA such that r = argmaxr∈RA

P(r |L A), A ∈ {A1, A2, . . . , An} };

7 Experimental evaluation

We have developed a working prototype that has been used to conduct experiments for
evaluating the proposed approach. In this section, we first describe some details of the
system prototype, then we illustrate the experimental activity that we have conducted.

8 For the sake of simplicity we are assuming that |U | is a multiple of N . Otherwise, the tasks can be
completed by inserting control attributes with known answers to better estimate the workers error rate.
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7.1 System prototype

The prototype takes as input a collection of pages containing data of interest and one
annotated page. Based on the input annotation, the system produces the initial set of
candidate rules, then it generates multiple tasks, each composed by N attributes, with
K redundant attributes per task, and submits them to a crowdsourcing platform.9

The workers recruited on the crowdsourcing platform are redirected to an interactive
web application. Each worker is asked to accomplish a task, consisting of a set of
membership queries actively chosen by alfη and posed to the worker through the
web application. A page is shown to the worker, and the application asks the worker
whether a proposed string occurrence, extracted by a candidate extraction rule and
highlighted on the page, represents a correct value for the target attribute. To prove
the task fulfillment, the worker has to insert into the crowdsourcing platform a code
that the web application returns when she has completed the task.

Presenting HTML pages downloaded from an external server into a web application
is not technically trivial: client side scripts and dependencies on remote resources (e.g.,
images) could prevent the pages to be rendered outside the server originally publishing
them. To overcome these issues, our prototype integrates existing libraries that perform
a server-side simulation of the execution of a browser, running also complex JavaScript
and Ajax logics.10 These libraries produce pure HTML pages, executing the JavaScript
codes and replacing them with the produced outputs. To overcome possible limitations
of the worker’s client, when the web application of our prototype presents a query to
the worker, it uses a jpeg snapshot of the original page.

It is worth observing that even if rendering a modern HTML page is CPU consum-
ing, this task is performed on a very small number of pages, namely those that are
presented to the workers (less than 10 per attribute, as illustrated by our experimental
activity in Sect. 7).

7.2 Experimental evaluation

We now report the experimental evaluation that has been conducted with the prototype.
First, in Sect. 7.3 we describe the dataset used for our experiments. Then, in Sect. 7.4,
we present an experiment conducted with a population of real workers recruited on
the crowdsourcing market. The goal of this experiment was to study how real workers
behave with our particular tasks composed of a sequence of membership queries
over pages from data-intensive websites. In Sect. 7.5, we illustrate experiments for
evaluating alfη with a single noisy worker on tasks related to a single attribute.
In these experiments we used synthetic workers, simulated using the results of the
previous experiment, and following the CNP probabilistic model [1], i.e., assuming
that the workers make random and independent errors with a fixed error rate. We
show the impact of workers error rate on alfη, the algorithm driving the interaction

9 We rely on CrowdFlower, a popular meta-platform that offers services to recruit workers on AMT.
10 We use Selenium (http://docs.seleniumhq.org/projects/webdriver) and Phantomjs (http://phantomjs.
org).
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Table 1 Website and domain of each collection of pages in the first dataset; |U |: number of pages in the
collection; |I |: average number of representative pages over the attributes in the collection; |RA|: average
number of generated rules over the attributes in the collection

Website Domain |U | |I | |RA|
imdb.com Movie 10,000 26.2 99.2

imdb.com Actor 10,000 21.4 298.2

allmusic.com Album 10,000 21.29 81.71

allmusic.com Band 10,000 17.5 72.25

nasdaq.com Stock 6,461 16.89 84.44

allgames.com Game 10,000 39 118.33

allmovies.com Movie 10,000 19.5 62.5

espnfc.com Player 10,000 12 27

espnfc.com Team 10,000 7.5 34

espon.go.com Player 10,000 24.5 56.67

goodreads.com Book 10,000 33.2 69.4

goodreads.com Author 10,000 24 39

with the worker: the results motivate the introduction of our technique to estimate the
workers error rate by submitting redundant tasks. Then we move to alfred, our system
making use of redundant tasks: in Sect. 7.6 we focus on the impact of redundancy by
considering tasks related to a single attribute; in Sect. 7.7, we report the results with
tasks covering N > 1 attributes each, and then study how our algorithm performs in
presence of redundancy confined to only a subset of K (with 0 ≤ K ≤ N ) attributes.
Finally, in Sect. 7.8 we report experiments on alfred with real workers.

7.3 Datasets

We run our system on several collections of web pages taken from two datasets. The
first one consists of 12 collections of pages from 8 websites as detailed in Table 1.
For every website we randomly selected and downloaded a test set of 10,000 pages
(except for nasdaq, which offers only 6,461 pages about stock quotes) and about 5
attributes, for a total of 67 attributes.

The second dataset is a subset of the public swde dataset [19],11 which includes
about 124,000 pages from 80 websites related to 8 different domains (10 sites
per domain, 200–2,000 pages per website). We selected 34 websites (totaling 127
attributes) whose pages were still correctly rendered at the time of the submission to
the crowdsourcing platform (pages from the discarded websites were not correctly
rendered because their images or CSS files were no longer available).

The learning algorithms used in the evaluation were run on a representative sample
set of pages selected by the PageSampler algorithm as summarized in Table 1 (col-
umn |I |) for the first dataset. For the sake of space, we do not detail the same pieces of

11 http://swde.codeplex.com.
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information for the second dataset, but by averaging over all its attributes, we counted
18.39 representative sample pages and 93.07 candidate rules.

Finally, for each attribute of both datasets, we manually crafted a golden extraction
rule, i.e., an XPath expression that extracts the correct values for each target attribute.12

We compared the values extracted by the golden rules against those extracted by the
rules generated by our algorithm. For every generated rule r , let r(U ) denote the set of
values extracted from the set of pages U ; we computed precision (P), recall (R), and
F-measure (F) at the value level w.r.t. the corresponding golden rule rg , as follows:

P = |rg(U ) ∩ r(U )|
|r(U )| ; R = |rg(U ) ∩ r(U )|

|rg(U )| ; F = 2
P · R

P + R
.

In the following, we measure the cost in terms of the number of membership queries,
and measure the output quality in terms of the F-measure value of the produced
extraction rule.

7.4 Modeling real workers

We report on a set of experiments that we conducted on a population of real workers
engaged from CrowdFlower. The goal was to collect statistics about how real workers
behave on our kind of tasks. Namely, we measured their error rates as they work through
our web application, gaining the insights needed for setting up realistic configurations
of the synthetic workers used in other experiments.

We posted on CrowdFlower 485 tasks to generate with alfη the extraction rules
for 125 attributes, randomly selected from our datasets. Each task was paid 10c, and
posed queries to infer the rules for 5 attributes. We collected all the answers and we
checked that the tasks were assigned to distinct workers. We evaluated the correctness
of each answer by means of the golden rules of our datasets, and then computed the
error rate of each worker as the ratio between the number of erroneous answers and
the number of answers.

The observed average error rate of a real worker was η = 10 %, with a standard
deviation ση = 14 %. Interestingly, about 27 % of the workers responded correctly to
all the queries.

The information gathered in this experiment has been used to set up the other
experiments: the average error rate empirically observed η is used to set the parameter
η = η in alfη, and the error rate distribution observed on real workers is used to create
population of synthetic workers with the same error rate distribution, eventually scaled
in the experiments that require populations of synthetic workers with a greater average
error rate.

7.5 alfη evaluation

We evaluated alfη by conducting experiments to analyze its sensitivity to the accuracy
of its parameter η as an estimation of the actual worker error rate, and to examine

12 The datasets are available upon request.
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Fig. 4 alfη (configured with η = η = 10 %) sensitivity to worker error rate η∗: Cost (left) and quality
(right) of the output wrapper based on entropy and random query selection policy

the effectiveness of the active learning strategy adopted by the algorithm. We set up
two experiments on attributes taken from our datasets by setting λr = 90 %, and
λMQ = +∞, respectively: alfη tries to reach the target probability of the best rule
without any bound on the number of queries.

The first experiment aims at studying the effects produced by a generic inaccurate
worker when alfη has been configured to expect a worker with the average error
rate we registered on actual workers, i.e., we set η = η = 10 %. We run alfη with
synthetic workers whose error rate, denoted η∗, increases from 0 to 40 %. To evaluate
the contributions of the active learning algorithm, we have run the same experiment
using a passive learner (Random) that chooses the queries randomly.

Figure 4 reports the results of this experiment (averaged over 25 executions), and
shows that as the actual error rate η∗ of the workers increases, the results degrade:
alfη poses a larger number of queries, but the quality of the output rule, in term of its
F-measure, inexorably decreases. Also, Fig. 4 (left) shows the positive effects of the
active learning approach: the vote entropy strategy allows the system to save several
queries, especially for high error rates, without any remarkable quality loss.

The second experiment aims at empirically evaluating how an incorrect setting of
the parameter η, i.e., the expected worker error rate, influences alfη performances.
We used a synthetic worker with η∗ = η = 10 %, and repeated several inference
processes, configuring alfη with η ranging again from 0 to 40 %.

Figure 5 reports the results (averaged over 25 executions): when the system over-
estimates the accuracy of worker (η < η∗) we observe a reduction of the number of
MQ, but the quality of the output wrapper drops. The system trusts the workers and
terminates quickly, thus posing less queries than actually needed. When the system
underestimates the worker accuracy (η > η∗), some queries are wasted since the sys-
tem does not trust the worker, however there is no loss in the quality of the result. For
example, by setting η = 40 %, i.e., to a much greater value than the actual worker’s
error rate η∗ = 10 %, alfη requires almost twice the queries that it requires when it
is configured with a correct estimation of the the worker’s error rate η = η∗ = 10 %,
but most of these queries are wasted since the F-measure gain is less than 3 %.
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Fig. 5 alfη sensitivity to η, the expected worker error rate parameter, with a noisy worker η∗ = η = 10 %:
Cost (left) and quality (right) of the output wrapper based on entropy and random query selection policy

Table 2 alfred versus alfη with a population of synthetic noisy workers; average and max total number
of workers engaged per attribute (#w); average F-measure of the output wrapper; average and max total
number of queries (#MQ); average difference between actual and estimated worker error rate (|ηw − η∗|);
standard deviation of the output wrapper F-measure (σF )

Average Max

#w F #MQ |ηw − η∗| (%) #w #MQ σF (%)

alfη 1 0.96 9.15 – 1 11 15

alfredno 2.37 1 23.35 – 8 80 0.29

alfred 2.13 1 20.7 0.8 4 40 0.18

alfred
∗ 2.11 1 20.27 0 4 40 0.18

Also in this experiment, the role of the active learning strategy is remarkable: w.r.t.
the passive learner, the system always saves several queries. Moreover, it improves
the quality of the results for small values of η, as those registered with actual workers.

7.6 Impact of redundancy

As discussed in Sect. 5, alfred submits the inference of the same attribute to several
workers. It lazily recruits additional workers, at runtime, to estimate their error rate
while minimizing the costs.

Although in practice it is convenient to assemble tasks composed of queries related
to several attributes (as we discussed in Sect. 6), in this experiment we focus the study
on the solely role of redundancy: we run alfred with tasks composed by a single
redundant attribute, i.e., K = N = 1.

Table 2 reports the results of the experiment averaged over 20 executions in which
alfred recruits workers from a population of synthetic workers with the same error
rates distribution observed over real workers. We compare the algorithm against a
baseline (alfredno) in which the error rate estimation is disabled (we just set ηw = η

without using Eq. 3), and against a bound (alfred
∗) in which an oracle sets ηw = η∗
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Table 3 alfred: percentage of attributes (%attr.) that reach the target quality with 2, 3, and 4 workers;
their average cost as total number of membership queries (#M Q)

#workers

2 3 4

%attr. 89 10 1

#M Q 19.62 30 40

(since the workers are synthetic, their actual error rates are known). Also, in order to
emphasize the impact of the redundancy, we report the performance of alfη, which
does not rely on redundant tasks. Observe that the workers error rate estimation is
precise (|ηw − η∗| = 0.8 % when the learning terminates), and it allows the system
to save queries (20.7 vs 23.35 on average). The average number of queries posed by
alfred to learn the correct rule is very close to the lower bound set by alfred

∗.
Compared to alfη, which employs a single worker, the number of queries is more
than doubled (20.7 vs 9.15). However, notice that alfred always concluded the tasks
with an almost perfect result, and therefore it is much more robust to variations in the
workers error rates as shown by the standard deviation of the F-measure (alfred’s
σF = 0.18 % vs alfη’s σF = 15 %).

Overall, alfred was able to recruit more workers, thus paying their answers, only
when it is necessary to achieve the target quality of the output wrapper. However,
consider Table 3 that aggregates the same results in terms of the number of recruited
workers (#workers) and the number of MQ posed (#MQ) per attribute: in a large
majority of cases (89 %), alfred terminates recruiting only 2 workers, and seldom
3 and 4 workers are necessary (10 and 1 % of total attributes, respectively) with an
average of 2.13 workers engaged and 20.7 queries posed per attribute.

So it is reasonable to conjecture that for a significant portion of the attributes
requiring only 2 workers, similar results can be achieved even with less redundancy
and lower costs.

The experiments presented in the next section investigate and confirm such a con-
jecture, thus motivating the study of a more complex scheme of redundancy than that
discussed here.

7.7 alfred evaluation

We now present our experimental evaluation of alfred in the most general setting: we
consider tasks composed of N attributes, each containing K redundant attributes. The
goal of the experiment is to study how alfred is affected by the amount of redundancy
initially introduced in the tasks, expressed as the value of K . Therefore we run several
experiments with K ranging from 0 to N .

We analyze the cost per attribute versus the ability of alfred to reach the tar-
get quality independently from the noise introduced by the workers, but rather than
focusing on the F-measure value of the output wrapper (which is always very close
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Fig. 6 The effects of the initial redundancy K : (left) average cost: #M Q; (right) standard deviation of
output F-measure: σF

to 1 in our settings), we report its average standard deviation (σF ) over several execu-
tions, which can be considered as a measure of the predictability of the output quality
of the learning process. We run the system with different populations of synthetic
workers, and for each experiment we averaged the results over 100 executions. In the
next section we present experiments with a population of real workers recruited on
CrowdFlower, tuning the initial number of redundant attributes K according to the
experiments with synthetic workers.

Figure 6 reports the results obtained with synthetic workers from two distinct pop-
ulations: the first one is composed of workers with an average error rate η∗ = 10 %,
while the second one is more noisy, with η∗ = 30 %. We also consider two different
quality targets by considering λr = 90 % and λr = 99 %.

Overall alfred achieves high quality (F > 99 %) with a low standard deviation
(σF < 6 %) in all the configurations considered. As shown in Fig. 6 (left), alfred

recognizes and compensates a large amount of errors (when η∗ = 30 %) by augmenting
the number of queries posed with respect to the other population (with η∗ = 10 %).

As regards the behavior of alfred versus the initial amount of redundancy as K
grows, Fig. 6 (left) shows that for the population of less noisy workers (η∗ = 10 %),
the cost increases from an average of around 13 (K = 0) to 17 (K = 5) queries per
attribute, while σF , in Fig. 6 (right), decreases from 6 to 3.5 %. Both trends are less
visible when η∗ = 30 % than when η∗ = 10 %: With a population of noisy workers,
alfred quickly detects that a larger amount of redundancy is needed to achieve the
quality targets, and therefore the initial amount of redundancy is augmented towards
the level reached at the end of the simulation, that depends on the initial values of K
only loosely.

As a particular example of this behavior, consider Fig. 6 (left) when K = 0 and
η∗ = 30 %: this corresponds to an “optimistic” approach, in which the initial tasks
are not redundant at all, and the workers error rates estimations are set with the initial
fixed parameter η = 10 %. Even if alfη is overestimating the workers (the actual
average error rate of the workers in this population is η∗ = 30 %), thus giving them
more trust than they deserve, the redundancy is introduced as soon as alfred detects
that the quality targets are not reached, and it ends up with almost the same amount
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Table 4 alfred (with N = 5, K = 0, λr = 90 %, η = 10 %): percentage of attributes (%attr.) that reach
the target quality with 1, 2, 3, and 4 workers; their average cost as total number of membership queries
(#M Q)

#workers

1 2 3 4

%attr. 58 31 8 3

#M Q 7.2 16.5 26.68 37.21

of redundancy of a “pessimistic” approach in which all the attributes of the tasks are
already redundant at the beginning of the simulation (K = 5).

It is worth observing that the quality target, i.e., the threshold λr , has an impact
on alfred’s effectiveness. As the plots in Fig. 6 show, increasing λr = 90 % to
λr = 99 % pushes alfred to quickly increase the initial redundancy to reach the
stricter quality target, and the initial redundancy K does not have a strong impact on
the results. In settings with really high value of λr , alfred’s sub-task redundancy
does not lead to any saving in the costs.

Conversely, Table 4 has been obtained with K = 0, N = 5, λr = 90 %, and
η = 10 %, and reports the percentage of attributes grouped by number of distinct
workers employed on them. The majority of attributes (about 58 %) were assigned to
only 1 worker (i.e., without redundancy), 31 % of the attributes required 2 workers,
and just 11 % of the attributes needed to be assigned to more than 2 workers. The
number of workers needed for an attribute was 1.57 on average, with 12.7 queries,
with a significant saving compared to the simplistic redundancy scheme that allocates
at least two workers for each attribute.

7.8 alfred on the crowd

We evaluated alfred with real workers recruited on the CrowdFlower crowdsourcing
platform. We chose a configuration for which alfred produces good results in our
simulations with synthetic workers, while producing a significant saving in the costs:
we set N = 5, K = 2 and λr = 90 %.

These experiments have been conducted by randomly selecting 100 attributes from
35 websites within our two datasets. We repeated the experiment 4 times, in four
different days, posting 135 tasks, in total. On average, to generate the extraction rules
for the 100 attributes, around 34 tasks were submitted and executed by the same
number of (distinct) workers. After the first submission of 25 tasks, on average only
other 9 tasks have been created. Only once, a single attribute required 5 workers.

The total cost for inferring the extraction rules of each round of 100 attributes was
on average $3.4, with an average cost per attribute of 3.4c. The tasks for each round
of 100 attributes were completed in 6 h, with an average quality of the output wrapper
F = 99.7 %, and standard deviation σF = 1.8 %. For the whole set of experiments,
workers answered to 5, 151 queries with an average number of around 37 queries per
task. The average error rate observed during this session was η = 10.3 %.
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Table 5 Evaluation of our tasks by the CrowdFlower workers

Overall Instructions clear Test questions fair Ease of job Pay

3.8/5 4.1/5 3.8/5 3.7/5 3.6/5

CrowdFlower also provides feedbacks from the workers about the requester and
the submitted jobs. Table 5 reports the scores that we obtained from the workers that
fulfilled our tasks. Overall, we can conclude that the tasks were considered easy and
fair by the workers, while their answers to simple queries lead to the generation of
accurate wrappers.

8 Related work

Wrapper induction for extracting data from web pages has been subject of many
researches for more than fifteen years [6,13]. Among the first proposals, automatic
wrapper generators (e.g., RoadRunner [9], ExAlg [3]) are based on unsupervised
learning techniques that do not rely on any human intervention. They can scale with
the number of websites, but are generally considered too brittle to guarantee the quality
needed in a production level environment. The first supervised techniques for wrapper
generation (e.g., [24] and Lixto [16]) rely on a user providing feedback in the form of
labeled values guiding the inference towards accurate wrappers. They can not scale
and since they are intolerant towards noise in the labeling, they are not suitable for
non expert users such as those engaged by a crowdsourcing platform.

More recently, a few wrapper inference approaches aiming at scaling at the Web
by improving the automation level have been proposed: the system discussed in [10]
automatically annotates the pages needed by a supervised technique tolerant to noise
in the training data. However, it applies only for domains where it is possible to
automatically obtain a set of annotations, for instance by means of lexical patterns.
Diadem [14] focuses on collections of websites in a vertical domain (e.g., real-estate),
automatizing all the steps to reach the target pages containing the information and
then extracting the structured data of interest. However, it strongly depends on an
ontological description of the domain that has to be manually and carefully crafted
by a domain expert. The latter usually cannot craft the description up-front, without
iterating over a series of failing attempts that include manual problems detection and
correction, over all the processing pipeline.

Similarly, [5,17–19,36] aim at scaling the extraction process on a collection of
websites in a vertical domain, but require a much less sophisticated input, e.g., labeled
examples to bootstrap the extraction process, or not input at all in the case of weir [5],
which however specializes only to websites offering redundant data. All these propos-
als trade off the controllability of the extraction process for the automation level: they
cannot assure the quality of the output for each attribute of every input website that
the feedback, even noisy, of non-expert crowdsourcing workers can help to achieve.

The data extraction technique presented in this paper has been inspired by the
seminal work of Dana Angluin [1,2], who addressed the problem of exactly inferring
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a concept, i.e., a set of elements, by means of membership queries, i.e., question of the
type “is this an element of the target concept?”. Angluin and Laird [1] also studied the
problem of learning from noisy examples, following the CNP probabilistic model [1],
i.e., workers making random and independent errors with a fixed error rate η.

Many researchers have proposed several variations of the learning paradigm to
make it practically feasible in different settings: the learning approaches in which
the inference algorithm chooses the next sample to label are usually defined active.
Active learning techniques [34] have recently gained interest as they can produce
exponential improvements over the number of samples with respect to traditional
supervised approaches [4].

Wrapper induction techniques that rely on active learning approaches have been
already proposed in [21,32]. These studies propose a user interaction that is much
more complicated than ours, since the user has to choose the correct wrapper within a
set of ranked solutions. Also, they do not consider the presence of noise in the training
data.

Our technique for simultaneously estimating the workers error rate, and the prob-
ability of correctness of an extraction rule is an application of the Expectation Max-
imization technique (EM) which has been first formalized in [11] and later widely
adopted and developed [31].

The advent of crowdsourcing platforms raised new challenges. Many works have
studied the problem of learning with noisy observations generated by non expert users
coming from a crowdsourcing platform, e.g., [12,29,35].

Ipeirotis and co-workers [35] show that when labeling is not perfect, selective
acquisition of multiple good labels is crucial and that repeated-labeling can improve
label and model quality. The setting used in our experiments with real workers has
been obtained by tuning a first configuration based on the parameters reported in their
paper.

There have been several attempts to frame the learning from noisy workers [15,22]
within theoretical guaranteed properties. These models mostly focus on the average
behavior of workers and rely on strong and specific assumptions that do not hold in our
setting. For instance, they allocate the same amount of redundancy for every task, and
the tasks are assumed to be of the same difficulty. For other aspects these models are
too generic: they rely on really mild assumptions on the workers error rate distribution,
while our experiments with real workers on our specific type of tasks show that the
workers error rate distribution is clearly characterizable.

Our work also focuses on the adaptive allocation of different amount of redundancy
for each attribute to extract, depending on its specific difficulty and on the error rates
of the recruited workers. In general, the use of redundancy raises the question of
how much redundancy is actually needed to reach an optimal trade-off between costs
and quality. In many situations it has been proved as good as those based on ground
truth (e.g., [25]) for estimating the workers performance, with lower costs. Some
theoretical bounds have been developed for specific (and simple) models (e.g., [23])
in which redundancy is established statically, i.e, before the tasks are assigned, and
in a non-adaptive way, i.e., independently from their difficulty and from the provided
answers. For example, Marcus et al. [30] engage 5 workers per task. Extending the
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theoretical guarantees in an adaptive setting like ours appears tricky, as discussed, for
instance, in [26].

A different setting from ours is also discussed in [28], where it is proposed an
approach for estimating continuous quantities, e.g., the price of an item. Nevertheless
they also focuses on one of the problem that we covered: how many control queries
are needed to correctly evaluate workers’ performance, while minimizing the costs
of getting a correct estimation of the target items? More control items provide a
better evaluation of the workers, but leave fewer resources for the target items that are
of direct interest, and vice versa. Using their terminology, our technique to estimate
workers’ error rate based on workers agreement provides a joint estimator of the worker
reliability; our technique to use the estimations obtained with the former estimator on
other, non-redundant attributes, is reminiscent of their two-stage estimator.

9 Conclusions

We presented wrapper inference algorithms specifically tailored to exploit crowdsourc-
ing solutions. Our approach allows the generation of wrappers by means of training
data obtained by posing simple queries to workers recruited on a crowdsourcing plat-
form. We proposed two algorithms that consider the possibility of noisy answers:
alfη can infer a wrapper with the labeled data produced by a single worker, alfred

can dynamically recruit multiple workers to improve the quality of the solution. We
showed that alfred can produce high quality wrappers at reasonable costs, and that
the quality of the output wrapper is highly predictable.

Our approach focuses on single value attributes. However, many sites offer pages
with multivalued attributes. How to extend our algorithms to handle these pages is left
to future work.
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