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Abstract The blooming of different cloud data management infrastructures, special-
ized for different kinds of data and tasks, has led to a wide diversification of DBMS
interfaces and the loss of a common programming paradigm. In this paper, we present
the design of a cloud multidatastore query language (CloudMdsQL), and its query
engine. CloudMdsQL is a functional SQL-like language, capable of querying multi-
ple heterogeneous data stores (relational and NoSQL) within a single query that may
contain embedded invocations to each data store’s native query interface. The query
engine has a fully distributed architecture, which provides important opportunities for
optimization. The major innovation is that a CloudMdsQL query can exploit the full
power of local data stores, by simply allowing some local data store native queries (e.g.
a breadth-first search query against a graph database) to be called as functions, and at
the same time be optimized, e.g. by pushing down select predicates, using bind join,
performing join ordering, or planning intermediate data shipping. Our experimental
validation, with three data stores (graph, document and relational) and representative
queries, shows that CloudMdsQL satisfies the five important requirements for a cloud
multidatastore query language.
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1 Introduction

Amajor trend in cloud computing and datamanagement is the understanding that there
is “no one size fits all” solution. Thus, there has been a blooming of different cloud
data management infrastructures, referred to as NoSQL [20], specialized for different
kinds of data and tasks and able to perform orders of magnitude better than traditional
relational DBMS. Examples of new data management technologies include: graph
databases (e.g. Sparksee [18], Neo4j), key-value data stores (e.g. HBase, Cassandra,
HyperTable), array data stores (e.g. SciDB), analytical cloud databases (e.g. Green-
plum and Vertica), analytical cloud frameworks (e.g. Hadoop Map-Reduce, Cloudera
Impala), document databases (e.g. MongoDB, CouchBase), and data stream manage-
ment systems (e.g. StreamCloud [9,10], Storm). This has resulted in a rich offering
of services that can be used to build cloud data-intensive applications that can scale
and exhibit high performance. However, this has also led to a wide diversification of
DBMS interfaces and the loss of a common programming paradigm.

This makes it very hard for a user to integrate her data sitting in specialized data
stores, e.g. relational, documents and graph databases. For example, consider a user
who, given a relational data store with authors, a document store with reviews, and a
graph database with author friendships, wants to find out about conflicts of interests in
the reviewing of some papers. The main solution today would be to write a program
(e.g. in Java) that accesses the three data stores through their APIs and integrates the
data (in memory). This solution is obviously labor-intensive, complex and not easily
extensible (e.g. to deal with a new data store).

The CoherentPaaS project [5] addresses this problem, by providing a rich Platform
as a Service (PaaS) with different “one size” systems optimized for particular tasks,
data andworkloads. However, unlike in the current cloud landscape, it provides a com-
mon programming model and language to query multiple data stores. The platform is
designed to allow different subsets of enterprise data to bematerializedwithin different
data models, so that each subset is handled in the most efficient way according to its
most common data access patterns. On the other hand, an application can still access
a data store directly, without using our query engine. This constitutes a multidatastore
system with high levels of heterogeneity and local autonomy. In this paper, we focus
on the problem of querying heterogeneous cloud data stores (in read-only mode) with
a common language.

The problem of accessing heterogeneous data sources, i.e. managed by different
data management systems such as relational DBMS or XML DBMS, has long been
studied in the context of multidatabase systems [21] (also called data integration
systems in the context of the web [7]). However, the state-of-the-art solutions for
multidatabase systems (see Sect. 2) do not directly apply to solve our problem. First,
our common language is not for querying data sources on the web, which could be in
very high numbers. A query should be on a few cloud data stores (perhaps less than
10) and the user needs to have access rights to each data store. Second, the data stores
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may have very different languages, ranging from very simple get/put in key-value
stores, to full SQL or SPARQL languages. And no single language can capture all
the others efficiently, e.g. SQL cannot express graph path traversal (of course, we can
represent a graphwith two relations Edges andNodes, but this requires translating path
traversals into expensive joins). Even a graph query language, which is very general,
cannot capture an array data model easily. Third, NoSQL databases can be without
schema, which makes it (almost) impossible to derive a global schema. Finally, and
very important, what the user needs is the ability to express powerful queries to exploit
the full power of the different data store languages, e.g. directly express a path traversal
in a graph database. For this, we need a new query language.

We can translate these observations into five main requirements for our common
language:

1. To integrate fully-functional queries against different NoSQL and SQL databases
using each database’s native query mechanism;

2. To allow nested queries to be arbitrarily chained together in sequences, so the
result of one query (for one database) may be used as the input of another (for
another database);

3. To be schema independent, so that databases without or with different schemas
can be easily integrated;

4. To allow data-metadata transformations, e.g. to convert attributes or relations into
data and vice versa [24];

5. To be easily optimizable so that efficient query optimization, introduced in state-
of-the-art multidatabase systems, can be reused (e.g. exploiting bind joins [11] or
shipping the smallest intermediate results).

In this paper, we present the design of a Cloud multidatastore query language
(CloudMdsQL), and its query engine, which addresses these requirements. While the
latter four have already been identified as requirements and introduced in multidata-
base mediator/wrapper architectures, CloudMdsQL contributes to satisfying also the
first one. The language is capable of querying multiple heterogeneous databases (e.g.
relational and NoSQL) within a single query containing nested subqueries, each of
which refers to a particular data store and may contain embedded invocations to the
data store’s native query interface.

The design of the query engine takes advantage of the fact that it operates in a
cloud platform. Unlike the traditional mediator/wrapper architectural model where
mediator and wrappers are centralized, we propose a fully distributed architecture that
yields important optimization opportunities, e.g. minimizing data transfers between
nodes. This allows us to reuse query decomposition and optimization techniques from
distributed query processing [21]. Thus, the major innovation is that a CloudMdsQL
query can exploit the full power of local data stores, by simply allowing some local
data store native queries (e.g. a breadth-first search query against a graph database) to
be called as functions, and at the same time be optimized based on a simple cost model,
e.g. by pushing down select predicates, using bind join, performing join ordering, or
planning intermediate data shipping.

The rest of this paper is organized as follows. Section 2 discusses related work in
more details. Section 3 introduces CloudMdsQL’s basic concepts, including its data
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model and language constructs. Section 4 presents the architecture of the query engine
and its main components. Section 5 presents the language in more details. Section 6
reveals the query processing steps. Section 7 gives an example walkthrough. Section 8
presents an experimental validation, with three data stores: Sparksee (graph database),
MongoDB(documents database) andDerby (relational database). Section9 concludes.

2 Related work

Accessing heterogeneous data sources has been addressed by multidatabase systems
[21] and data integration systems for the Web [7]. The typical solution is to pro-
vide a common data model and query language to transparently access data sources,
thus hiding data source heterogeneity and distribution. The dominant state-of-the-art
architecturalmodel is themediator/wrapper architecture. In this architecture, each data
source has an associatedwrapper that exports information about the source schema and
data, andmapping functions that give the translation between source data and schemas
and the mediator’s data and schema. The mediator centralizes the information pro-
vided by the wrappers in a unified view (called mediated schema) of all available data,
transforms queries expressed in a common language into queries for the data sources
using the wrappers, and integrates the queries’ results.

The mediator/wrapper architecture has several advantages. First, the specialized
components of the architecture allow the various concerns of different kinds of users
to be handled separately. Second, mediators typically specialize in a related set of
data sources with “similar” data, and thus export schemas and semantics related to
a particular domain. The specialization of the components leads to a flexible and
extensible distributed system. In particular, it allows seamless integration of different
data stored in very different data sources, ranging from full-fledged relational databases
to simple files. The authors of [22] propose distributed mediator architecture with a
flexible interface between mediators and data sources that efficiently handles different
query languages anddifferent data source functionality.Thewrapper interfaceprovides
themediator awareness of the capabilities of each data source according to the common
data model.

The common data model and query language used by the mediator have a major
impact on the effectiveness of data source integration. The two dominant solutions
today, withmajor product offerings, are relational/SQL andXML/Xquery, each having
its own advantages. The relationalmodel provides a simple data representation (tables)
for mapping the data sources, but with rigid schema support. The major advantage of a
relational solution is that SQL is familiar to users and developers, with SQLAPIs used
by many tools, e.g. in business intelligence. Furthermore, recent extensions of SQL
such as SQL/XML include support for XML data types. On the other hand, the XML
model provides a tree-based representation that is appropriate for Web data, which are
typically semi-structured, and flexible schema capabilities. As a particular case, XML
can represent relational tables, but at the expense of more complex parsing. XQuery
is now a complete query language for XML, including update capabilities, but more
complex than SQL. As a generalization for Web linked data, there is also current work
based on RDF/SPARQL [12]. There is still much debate on relational versus XML, but

123



Distrib Parallel Databases (2016) 34:463–503 467

in the cloud, relational-like data sources, e.g. NoSQL key-value stores such as Google
Bigtable and Hadoop Hbase, are becoming very popular, thus making a relational-like
model attractive.

The main requirements for a common query language (and data model) are sup-
port for nested queries, schema independence and data-metadata transformation [24].
Nested queries allow queries to be arbitrarily chained together in sequences, so the
result of one query (for one data store) may be used as the input of another (for another
data store). Schema independence allows the user to formulate queries that are robust
in front of schema evolution. Data-metadata transformation is important to deal with
heterogeneous schemas by transforming data into metadata and conversely, e.g. data
into attribute or relation names, attribute names into relation names, relation names
into data. These requirements are not supported by query languages designed for cen-
tralized databases, e.g. SQL and XQuery. Therefore, federated query languages need
major extensions of their centralized counterpart.

We now discuss briefly two kinds of such extensions of major interest: relational
languages and functional SQL-like languages. In [24], the authors propose an extended
relational model for data and metadata integration, the Federated Relational Data
Model, with a relational algebra, Federated Interoperable Relational Algebra (FIRA)
and an SQL-like query language that is equivalent to FIRA, Federated Interoperable
Structured Query Language (FISQL). FIRA and FISQL support the requirements
discussed above, and the equivalence between FISQL and FIRA provides the basis
for distributed query optimization. FISQL and FIRA appear as the best extensions of
SQL-like languages for data and metadata integration. In particular, it allows nested
queries. But as with SQL, it is not possible to express some complex control on how
queries are nested, e.g. using programming language statements such as IF THEN
ELSE, or WHILE. Note that, to express control over multiple SQL statements, SQL
developers typically rely on an imperative language such as Java in the client layer
or a stored procedure dialect such as PLSQL in the database layer. Another major
limitation of the relational language approach is that it does not allow exploiting the
full power of the local data source repositories. For instance, mapping an SQL-like
query to a graph database query will not exploit the graph DBMS capabilities, e.g.
generating a breadth-first search query.

Database programming languages (DBPLs) have been proposed to solve the infa-
mous impedance mismatch between programming language and query language. In
particular, functional DBPLs such as FAD [6] can represent all query building blocks
as functions and function results can be used as input to subsequent functions, thus
making it easy to deal with nested queries with complex control. The first SQL-like
functional DBPL is Functional SQL [23]. More recently, FunSQL [2] has been pro-
posed for the cloud, to allow shipping the code of an application to its data. Another
popular functional DBPL is LINQ [19], whose goal is to reconcile object-oriented pro-
gramming, with relations and XML. LINQ allows any .NET programming language
to manipulate general query operators (as functions) with two domain-specific APIs
that work over XML (XLinq) and relational data (DLinq) respectively. The operators
over relational data provide a simple object-relational mapping that makes it easy
to specify wrappers to the underlying RDBMS. More recently, in the context of the
cloud, Spark SQL [1] has been proposed as an Apache Spark module to provide tight
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integration between relational and procedural processing through a declarative API
that integrates relational operators with procedural Spark code, taking advantage of
massive parallelism. Similarly to LINQ, Spark SQL can map to relations arbitrary
Java objects as well as different data sources. In addition, it includes a flexible and
extensible optimizer that supports operator pushdowns to data sources, according to
their capabilities.

Recently, multistore systems have been introduced to provide integrated access to
a number of RDBMS and NoSQL data stores through a common query engine. The
BigIntegrator system [26] integrates data from cloud-based NoSQL, such as Google’s
Bigtable, and relational databases. The system relies on mapping a limited set of
relational operations to native queries expressed in GQL (Google Bigtable query lan-
guage). With GQL, the task is achievable because it represents a subset of SQL.
However, unlike CloudMdsQL, it only works for Bigtable-like systems and cannot
integrate data from other families of NoSQL systems, e.g. document or graph data-
bases. Estocada [4] is a self-tuning multistore platform that uses view-based rewriting
for providing access to datasets in native format while automatically placing fragments
of the datasets across heterogeneous stores. Since these approaches do not directly sup-
port native queries, they do not preserve the expressivity of an arbitrary data store’s
query language.

Tightly-coupled multistore systems have been introduced with the goal of integrat-
ingHadoopMapReduce for big data analysis with traditional RDMSwithNoSQLdata
stores.Majormultistore products such as IBMBigInsights,Microsoft HDInsight, Ora-
cle Bigdata Appliance, typically rely on database connectors (e.g. JDBC drivers) and
multidatabase techniques to integrate diverse data. Odyssey [13] and MISO [16] go
one step further by addressing materialization of data across NoSQL and relational
data stores and physical tuning, aiming at optimal data materialization. With MISO
for instance, an application queries the execution layer with an SQL-like API, then
the relational store retrieves data from both its data warehouse and the Hadoop store
via materialized views. JEN [25] is another multistore system that allows joining data
from two data stores, HDFS and RDBMS, with parallel join algorithms, in particular,
an efficient zigzag join algorithm, and techniques to minimize data movement. As the
data size grows, executing the join on the HDFS side appears to be more efficient.
These systems are characterized by the absence of data store autonomy and the limited
capability of integrating diverse set of data models, which distinguishes them from
CloudMdsQL.

To summarize, a functional language has several advantages for accessing heteroge-
neous data sources. First, nested queries and complex control can be easily supported.
Second and more important, the full power of the local data source repositories could
be exploited, by simply allowing local data source queries, e.g. a breadth-first search
query, to be called as native functions. However, DBPLs are also full-fledge program-
ming languages, aimed to develop complex data-intensive applications. This generality
makes them hard to optimize [14]. But for accessing heterogeneous data stores in the
cloud, we do not need a full-fledge DBPL. Therefore, CloudMdsQL is a functional
SQL-like languagewithminimal capabilities to access heterogeneous cloud data stores
in the most efficient way, e.g. by exploiting the full power of the local data stores.
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3 Basic concepts

The common querying model targets integration of data from several sources based
on a diverse set of data models, mediating the data through a common data model.
Consequently, the common query language and its data model are designed to achieve
such data integration accordingly.

3.1 Data model

CloudMdsQL sticks to the relational data model, because of its intuitive data repre-
sentation, wide acceptance and ability to integrate datasets by applying joins, unions
and other relational algebra operations. To be robust against schema evolution and
driven by the fact that NoSQL data stores can be schema-less, CloudMdsQL keeps its
common data model schema-less, while at the same time it is designed to ensure that
all the datasets retrieved from the data stores match the common data model.

3.1.1 Operators

The common data model supports basic relational operators (projection, selection,
joins, aggregation, sorting, set operations). In addition, in order to satisfy the common
language requirements, the datamodel includes another two operators as follows. First,
to support data and data-metadata transformations, CloudMdsQL introduces a Python
operator that can perform user-defined operations over intermediate relations and/or
generate synthetic data by executing embedded code of the programming language
Python. Second, the requirement for running optimal nested queries from heteroge-
neous data stores implies the usage of the bind join method [11], which uses the data
retrieved from one data store to rewrite the query to another data store, so that from
the latter are retrieved only the tuples that match the join criteria.

3.1.2 Data types

The CloudMdsQL data model supports a minimal set of data types, enough to capture
data types supported by the datamodels ofmost data stores: scalar data types—integer,
float, string, binary, timestamp; composite data types—array, dictionary (associative
array); null values. Standard operations over the above data types are also available:
arithmetic operations, concatenation and substring, aswell as operations for addressing
elements of composite types (e.g. array[index] and dictionary[‘key’]). Type construc-
tors for the composite data types follow the well-known JSON-style constructors: an
array is expressed as a comma separated list of values, surrounded by brackets; a dic-
tionary is expressed as a comma separated list of key:value pairs, surrounded by curly
braces.

3.2 Language concepts

The CloudMdsQL language itself is SQL-based with the extended capabilities for
embedding native queries to data stores and embedding procedural language con-
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structs. The involvement of the latter is necessitated by the requirement for performing
data and data-metadata transformations and conversions of arbitrary datasets to rela-
tions in order to comply with the common data model. To support such procedural
programmability, CloudMdsQL queries can contain embedded constructs of the pro-
gramming language Python, the choice of which is justified by its richness of data
types, native support for iteration with generator functions, ease of use, richness in
standard libraries and wide usage.

An important concept in CloudMdsQL is the notion of “table expression”, inspired
from XML table views [8,17], which is generally an expression that returns a table
(i.e. a structure, compliant with the common data model). A table expression is used
to represent a nested query and usually addresses a particular data store. Three kinds
of table expressions are distinguished:

• Native table expressions, using a data store’s native query mechanism;
• SQL table expressions, which are regular nested SELECT statements;
• Embedded blocks of Python statements that produce relations.

A table expression is usually assigned a name and a signature, thus turning it into
a “named table expression”, which can be used in the FROM clause of the query like
a regular relation. Named table expression’s signature defines the names and types of
the columns of the returned relation. Thus, each CloudMdsQL query is executed in the
context of an ad-hoc schema, formed by all named table expressions within the query.
This approach fills the gap produced by the lack of a global schema and allows the
query compiler to perform semantic analysis of the query. A named table expression
is usually defined as a query against a particular data store and contains references
to the data store’s data structures. However, the expression can also instantiate other
named table expressions, defined against other data stores, thus chaining data as per
the requirement for nesting queries.

For example, the following simple CloudMdsQL query contains two subqueries,
defined by the named table expressions T1 and T2, and addressed respectively against
the data stores DB1 (an SQL database) and DB2 (a MongoDB database):

T1(x int, y int)@DB1 = ( SELECT x, y FROM A )
T2(x int, z string)@DB2 = {*

db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} )
*}
SELECT T1.x, T2.z
FROM T1, T2
WHERE T1.x = T2.x AND T1.y <= 3

The purpose of this query is to perform relational algebra operations (expressed
in the main SELECT statement) on two datasets retrieved from a relational and a
document database. The two subqueries are sent independently for execution against
their data stores in order the retrieved relations to be joined by the common query
engine. The SQL table expression T1 is defined by an SQL subquery, while T2 is a
native expression using aMongoDB query that retrieves from the document collection
B the attributes x and z of those documents for which x < 10. The subquery of
expression T1 is subject to rewriting by pushing into it the filter condition y <= 3,
specified in the main SELECT statement, thus reducing the amount of the retrieved
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data by increasing the subquery selectivity. The so retrieved datasets are then converted
to relations following their corresponding signatures, so that the main CloudMdsQL
SELECT statement can be processed with semantic correctness.

4 Query engine architecture

Although the focus of this paper is on the design of the CloudMdsQL language, we
still need to show how queries can be optimized and processed in a cloud environment.
Thus, in this section, we introduce the architecture of the query engine, with its main
components, and briefly introduce query processing, which will be more detailed in
Sects. 6 and 7. We ignore fault tolerance, which is out of the scope of this paper.

4.1 Overview

The design of the query engine takes advantage of the fact that it operates in a cloud
platform, with full control over where the system components can be installed. This
is quite different from web data integration systems for instance, where both mediator
and data sourcewrappers can only be installed at one ormore servers that communicate
with the data sources through the network. In our context, the query engine is part of a
more general platform (CoherentPaaS) that allows deployment over one or more data
centers. For simplicity in this paper, we consider the case of a single data center, i.e.
a computer cluster.

The architecture of the query engine is fully distributed (see Fig. 1), so that
query engine nodes can directly communicate with each other, by exchanging code
(query plans) and data. Thus, the query engine does not follow the traditional medi-

Fig. 1 Architecture of the query engine
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ator/wrapper architectural model where mediator and wrappers are centralized. This
distributed architecture yields important optimization opportunities, e.g. minimizing
data transfers by moving the smallest intermediate data for subsequent processing by
one particular node.

Each query engine node consists of two parts—master and worker—and is col-
located at each data store node in a computer cluster. Each master or worker has a
communication processor that supports send and receive operators to exchange data
and commands between nodes. To ease readability in Fig. 1, we separate master and
worker, which makes it clear that for a given query, there will be one master in charge
of query planning and one or more workers in charge of query execution. To illustrate
query processing with a simple example, let us consider a query Q on two data stores
in a cluster with two nodes (e.g. the query introduced in Sect. 3.2). Then a possible
scenario for processing Q, where the node id is written in subscript, is the following:

• At client, send Q to Master1.
• At Master1, produce a query plan P (see Fig. 2) for Q and send it to Worker2,
which will control the execution of P.

• At Worker2, send part of P, say P1, to Worker1, and start executing the other part
of P, say P2, by querying DataStore2.

• At Worker1, execute P1 by querying DataStore1, and send result to Worker2.
• At Worker2, complete the execution of P2 (by integrating local data with data
received from Worker1), and send the final result to the client.

This simple example shows that query execution can be fully distributed among the
two nodes and the result sent from where it is produced directly to the client, without
the need for an intermediate node.

4.2 Master

Since there are multiple masters (one at each cluster node), the client chooses one of
them to send a query to. Although load balancing is not crucial as masters do not carry

Fig. 2 A simple query plan
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heavy loads, we can still do it using a random pick or a simple round robin process at
the client side to distribute queries across masters.

A master takes as input a query and produces a query plan, which it sends to one
chosen query engine node for execution. The query planner performs query analysis
and optimization, and produces a query plan serialized in a JSON-based intermediate
format that can be easily transferred across query engine nodes. Each operation in the
plan carries the identifier of the query engine node that is in charge of performing it.
Thus, the topmost operation determines the first worker, to which the master should
send the query plan. As for declarative query languages (e.g. SQL), a query plan can
be abstracted as a tree of CloudMdsQL operators and communication (send/receive)
operators to exchange data and commands between query engine nodes. This allows
us to reuse query decomposition and optimization techniques from distributed query
processing [21], which we adapt to our fully distributed architecture. In particular, we
strive to:

• Minimize local execution time in the data stores, by pushing down select operations
in the data store subqueries and exploiting bind join by query rewriting;

• Minimize communication cost and network traffic by reducing data transfers
between workers.

To compare alternative rewritings of a query, the queryplanner uses a simple catalog,
which is replicated at all nodes in primary copy mode. The catalog provides basic
information about data store collections such as cardinalities, attribute selectivities
and indexes, and a simple cost model. Such information can be given with the help
of the data store administrators. The query language provides a possibility for the
user to define cost and selectivity functions whenever they cannot be derived from
the catalog, mostly in the case of using native subqueries. The search space explored
for optimization is the set of all possible rewritings of the initial query, by pushing
down select operations, expressing bind joins, join ordering, and intermediate data
shipping. Unlike in traditional query optimization where many different permutations
are possible, this search space is not very large, so we can use a simple exhaustive
search strategy.

4.3 Worker

Workers collaborate to execute a query plan, produced by a master, against the under-
lying data stores involved in the query. As illustrated in Sect. 4.2, there is a particular
worker, selected by the query planner, which becomes in charge of controlling the
execution of the query plan. This worker can subcontract parts of the query plan to
other workers and integrate the intermediate results to produce the final result.

Each worker node acts as a lightweight runtime database processor atop a data store
and is composed of three generic modules (i.e. same code library)—query execution
controller, operator engine, and table storage—and onewrappermodule that is specific
to a data store. These modules provide the following capabilities:

• Query execution controller: initiates and controls the execution of a query plan
(received from a master or worker) by interacting with the operator engine for
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local execution or with one or more workers (through communication processors)
in case part of the query plan needs to be subcontracted. In the latter case, the query
execution controller will synchronize the execution of the operator(s) that require
the intermediate results produced by the distant workers, once they are received
back.

• Operator engine: executes the query plan operators on data retrieved from the
wrapper, from another worker, or from the table storage. These operators include
CloudMdsQL operators to execute table expressions in the query and communica-
tion (send/receive) operators to exchange data with other workers. Some operators
are simply passed on to the wrapper for producing intermediate results from the
data store. The operator engine may write intermediate relations to the table stor-
age.

• Table storage: provides efficient, uniform storage (main memory and disk) for
intermediate and result data in the form of tables. Storage of intermediate data
is necessary in particular cases, e.g. when an intermediate relation needs to be
consumed by more than one operator or when it participates in a blocking opera-
tion such as aggregation, sorting or nested-loop join. In other cases, intermediate
relations are directly pulled by the consuming operator.

• Wrapper: interacts with its data store through its native API to retrieve data, trans-
forms the result in the form of table, andwrites the result in table storage or delivers
it to the operator engine. To query its data store, each wrapper is invoked by the
operator engine through generic interface methods, which it maps to data store
specific API calls. Wrappers are discussed in more detail in Sect. 6.4.

5 Query language

The major innovation of CloudMdsQL refers to the involvement of native subqueries
and the way both SQL and native subqueries interoperate with each other to provide
the desired coherence across all data stores. In this section we provide details about
how multiple diverse data stores can be queried through CloudMdsQL by means of
nested table expressions.

Named table expressions are definitions of temporary (at query level) tables rep-
resenting nested subqueries against data stores and their signatures define the names
and types of the attributes of the returned relations. Within a single CloudMdsQL
query, all named table expressions form an ad-hoc schema, in the context of which
the main SELECT statement of the query is processed and its semantic correctness is
verified. Embedded Python constructs that can be used to define Python named table
expressions necessitate the involvement of special conventions, the usage of which
provides the required query expressivity and ability for nesting subqueries.

5.1 Named table expressions

Named table expressions are defined in the header of a CloudMdsQL query, preceding
the main SELECT statement, and are instantiated in the FROM clause and/or from the
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definitions of other named expressions. The basic syntax of a named table expression
is the following:

<expr-name>(<colname> <type>, …)[@<datastore>] = <expr-def>

The declaration consists of the name of the expression, followed by its signature,
which specifies the names and types of the attributes of the result relation, reference to
theunderlyingdata store,which the subquery is addressed to, and expressiondefinition.
An SQL expression definition should be surrounded by parentheses, which implies
that the compiler processes it and transforms it to a subquery plan, part of the global
execution plan, and therefore is subject to analysis, optimization and/or rewriting. A
native/Python expression definitionmust be surrounded by native expression brackets,
which is the following pair of opening / closing bracket symbols:{*…*}. Named table
expressions are classified according to theway they interface the underlying data stores
and/or intermediate relations, as follows.

Native named table expressions represent subqueries to data stores using their
native query mechanism. They are executed in the context of a particular connection
to a data store. The expression definition is a native query or code that should contain
invocations to the native interface of the data store and produce a relation with the
declared signature. The code is surrounded by native expression brackets, which gives
information to the query engine not to process the contained expression but pass it as
a black box to the corresponding wrapper. However, a native expression can still use
as input intermediate data retrieved by other named table expressions, thus providing
full capability for nesting queries. The query engine allows this by exposing the query
execution context to the wrappers, like it does for Python expressions (see below).

SQL named table expressions are expressed as regular SELECT statements. They
are quite different fromnative expressions, since they are compiled and analyzed by the
query planner, as opposed to native expressions which are considered as black boxes
and are not subject to analysis. An SQL expression against a data store contains in its
FROMclause references to the data store tables.However, to provide support for nested
querying, each SQL expression can also instantiate other named table expressions
from the context of the current CloudMdsQL query (nested SQL queries are more
detailed in Sect. 5.2.1). Furthermore, each data store subquery, expressed as an SQL
expression, is subject to rewriting, whenever selection pushdowns or bind joins take
place.

To illustrate the usage of native and SQL table expressions and give a basic notion
of how they are handled by the query planner, let us come back to the example, intro-
duced in Sect. 3.2. The CloudMdsQL query below contains an SQL named table
expression T1 and a native named table expression T2. The query plan after decom-
position shows that the SQL expression T1 is decomposed to a sub-plan assigned to
the data store db1, while the sub-plan for db2 contains only a single node, corre-
sponding to the definition of the native expression T2. Thus, the sub-plan for db1
may be modified by the planner, e.g. by pushing operations into it, as it is shown
with the plan after selection pushdown. All the query processing steps are detailed in
Sect. 6.
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Python named table expressions do not reference a data store and their expression
definitions are surrounded by native expression brackets. When processing a Python
table expression, the query compiler generates a task for Python operator, associated
with the expression code, which is executed by the operator engine using an embed-
ded Python interpreter. Such expressions can be used to perform data and metadata
transformations over intermediate relations and/or generate synthetic data. CloudMd-
sQL provides powerful tools for interoperability between embedded Python code and
the context of a query execution. First, the usage of the keyword yield within the
Python code of an expression appends tuples to the expression’s result set according
to its signature. Second, a special Python object named CloudMdsQL that represents
the context, in which the Python expression is executed, can be invoked from the
Python code, thus providing access to data retrieved from data stores by other table
expressions. This approach allows for a Python expression to use as input the result of
other subqueries and thus provides ability for nesting subqueries as explained in more
detail in the following subsection.

Fromquery engine’s point of view, the difference betweenPython andnative expres-
sions is that Python expressions are processed by a Python operator, which is part of the
operator engine, while native expressions are delivered to the corresponding wrappers
to process them. From CloudMdsQL programmer’s point of view, the common point
between Python and native expressions is that if a data store provides a PythonAPI, the
native expressions against it can also be written in Python and can also make use of the
interoperability tools mentioned above, so that while writing a native expression, the
programmer can benefit from the same high expressivity and data integration ability
that is available in Python expressions. To provide this programmability, the wrap-
per implementation can reuse the CloudMdsQL framework for embedding Python
expressions. However, if the data store does not provide Python query interface, it is
the wrapper implementer’s responsibility to provide mechanism to yield tuples and
expose the CloudMdsQL object using native language’s concepts.

Enhanced features of CloudMdsQL include parameterizing and storing of named
expressions. In a parameterized named expression the names and types of the para-
meters are declared in the signature following the WITHPARAMS keyword. Each
parameter is then referenced inside the expression by a named placeholder (e.g. the
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parameter name prefixed by a dollar sign). Parameterized expressions need to be
instantiated from other expressions or in a FROM clause by passing actual parame-
ter values. CloudMdsQL also provides aCREATE NAMED EXPRESSION command
that allows an expression to be given a global name and stored in a global catalog in
order to be referenced in several queries, similarly to SQL views and stored proce-
dures/functions.

5.2 Nested queries

As stated in the language requirements, CloudMdsQL must provide a mechanism for
nesting queries—i.e. a named table expression must be able to instantiate other named
table expressions, available in the execution context of the same query, and use their
result sets as input. This is achievable in all types of expressions: in native/Python
expressions by invoking the CloudMdsQL object, and in SQL expressions by simply
referencing named table instantiations directly in the FROM clause, often in combi-
nation with references to the data store’s tables.

5.2.1 Within SQL expressions

An SQL expression against a data store contains references to data store tables, but
may also refer to named table expressions in its FROM clause. If the SQL expression
contains such mixed references, its corresponding subquery plan is split by the query
compiler into two sub-plans. The first one contains only references to data store tables
and is identified as a subquery plan that will be passed to the wrapper. The other one
references only the root node of the first sub-tree and instantiations of other named
table expressions from the context of the CloudMdsQL query and will be executed
by the query engine as part of the common execution plan. This is illustrated with the
following example:

Original query Rewritten equivalent query
T1(x int, y int)@DB2 = {*

db.B.find( {$lt: {x, 10}},
{x:1, y:1, _id:0} )

*}
T2(x int, y int, z string)@DB1 = (

SELECT A.x, T1.y, B.z
FROM A JOIN B  ON A.id = B.id

JOIN T1 ON A.x = T1.x
)
SELECT x, y, z FROM T2

T1(x int, y int)@DB2 = {*
db.B.find( {$lt: {x, 10}},

{x:1, y:1, _id:0} )
*}
T2(x int, z string)@DB1 = (

SELECT A.x, B.z
FROM A JOIN B ON A.id = B.id

)
SELECT T2.x, T1.y, T2.z
FROM T2 JOIN T1 ON T2.x = T1.x

Here the query planner, upon parsing the original query and building the subquery
plan for T2, detects the usage of the named table T1, plans the join with T1 as the
outermost operation within the sub-plan, and pulls it into the common plan, thus
transforming the whole query plan to correspond to the rewritten equivalent query
above. In somemore complex cases, the planner may not be able to place as outermost
all the operations that involve named table expressions; in such cases, the planner will
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split the sub-plan in order to be able to pull such operations from the sub-plan, which
may result in building more than one sub-plans that originate from a single subquery.

Another nested query scenario is when a named table is referred in a sub-select
statement within the subquery, thus making the result set of the named table an input
to the subquery, as in the following example:

T1(x int, y int)@DB2 ={* db.B.find({$lt: {x, 10}}, {x:1, y:1, _id:0}) *}
T2(x int, z string)@DB1 = (

SELECT A.x, B.z FROM A JOIN B ON A.id = B.id
WHERE A.x IN (SELECT x FROM T1 WHERE y > 0)

)
SELECT x, z FROM T2

To process the subquery T2, the query engine must first retrieve the table T1,
evaluate the sub-select SELECT x FROM T1 WHERE y > 0, and then transform it
to a list of the distinct values of T1.x to replace the sub-select with that list of values.
This is similar to the processing of bind joins, which is explained in detail in Sect. 6.2.

5.2.2 Within native expressions

This subsection focuses on the capability of nesting subqueries within native/Python
expressions. CloudMdsQL introduces two approaches that allow the programmer to
write expression definitions that iterate through data retrieved by other subqueries—
table iteration and join iteration.

With table iteration, the Python code of a table expression can iterate through
the result set of another table expression by requesting a forward iterator through the
CloudMdsQL object, instantiating the iterated table by its name. Because of the for-
ward iteration pattern and due to the pipelining fashion of the query execution, the
Python expressionwill start consuming tuples once a few tuples of the iterated table are
available, without having to wait for the entire table to be retrieved. To build a relevant
and adequate query execution plan, the query compiler needs to identify all depen-
dencies between table expression, i.e. for each named expression, the engine needs
to know which other named table expressions it iterates through. For native/Python
expressions, since a black-box approach is used, the query engine does not perform
any processing of the code; therefore the referenced inside the expression tables must
be explicitly specified in the expression’s signature. CloudMdsQL provides an addi-
tional REFERENCING clause, by which the programmer specifies that the expression
definition performs iterations through a named table instantiation.

For example, let us consider the following query, assuming that DB1 is a relational
databasewith a tableperson, containing names and addresses of persons, andDB2 is
a graph databasewith PythonAPI providing the functionGetShortestDistance,
which finds the shortest distance between two cities. Now we want to query both
databases to retrieve persons who work in department Herault, the cities where they
live and work and what is the distance between their home and work cities.

123



Distrib Parallel Databases (2016) 34:463–503 479

person_herault(name string, h_city string, w_city string)@DB1 = (
SELECT name, home_city, work_city
FROM person p
WHERE work_dept = 'Herault'

)
person_distance(name string, h_city string, w_city string, distance int

REFERENCING person_herault)@DB2 =
{*

for (n, hc, wc) in CloudMdsQL.person_herault:
yield ( n, hc, wc, GetShortestDistance(hc, wc) )

*}
SELECT name, h_city, w_city, distance FROM person_distance;

The execution flow of the above query is quite straightforward. It contains special-
ized subqueries which are chained in a strict way – first the table person_herault
is retrieved for persons who work in Herault; then its dataset is used as input to
the other subquery, the result of which is the table person_distance that con-
tains one more column retrieved from the graph database by calling its function
GetShortestDistance; and finally a projection in the main SELECT state-
ment defines the format of the result table. This approach provides good functionality
because it allows arbitrary chaining of data across subqueries. But it tends to involve
less flexible queries, because it does not allow selection pushdown, and hence requires
specialized subqueries like person_herault, where the filter condition must be
specified in the subquery.

The join iteration approach is applicable for any native/Python table expression
that is one of the sides of an equijoin. The query execution requires that the other side of
the join (we will call it “the outer relation”) is evaluated first, so that the native/Python
expression can generate its tuples by iterating through the values of the join attribute(s)
of the outer relation. Thus, only tuples that match the join criteria are generated. This
approach also allows for a native/Python subquery to use as input the result set of
another subquery, but in a different way – in combination with a join operation. For
example, the results from the above query can be retrieved using join iteration by the
following query:

person(name string, h_city string, w_city string, w_dept string)@DB1 = (
SELECT name, home_city, work_city, work_dept
FROM person p

)
distance(city_1 string, city_2 string, distance int

JOINED ON city_1, city_2)@DB2 =
{*

for (c1, c2) in CloudMdsQL.Outer:
yield ( c1, c2, GetShortestDistance(c1, c2) )

*}
SELECT p.name, p.h_city, p.w_city, d.distance
FROM person p JOIN distance d

ON p.h_city = d.city_1 AND p.w_city = d.city_2
WHERE p.w_dept = 'Herault';

The first thing to notice here is that the subqueries are more generic – the table
expression person represents a projection over relational data without filters; the
table expression distance defines a relation where each tuple consists of a pair
of cities and the distance between them. And the whole query is more manipula-
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ble, because the filter condition w_dept = ‘Herault’ is specified in the main
SELECT statement, but it can be pushed down into the subquery. Thus, if the two
named table expressions are stored in the global catalog, they can be reused in a wider
range of queries.

The JOINED ON clause in the signature of the Python expression declares that
whenever the table distance participates in an equijoin with another relation on the
attributes specified in the clause, the expression will generate its tuples by iterating
through the values of the join attributes of the outer relation. The REFERENCING
clause is used to specify the alias, which will be used by the Python code to access
the outer relation. The query is processed as follows. First, the subquery against DB1
is rewritten by adding the condition work_dept = ‘Herault’ and removing
work_dept from the projection (it is not needed for the execution of the common
query plan). Then, the subquery is executed and the query engine starts retrieving from
DB1 tuples that form the result set of the outer relation. Then, the wrapper of DB2
starts the execution of the Python code that queries the graph database. It consumes
a projection on the attributes h_city and w_city of the outer relation, iterating
through it via the special iterator object CloudMdsQL.Outer, and generates the
tuples of its own result set.

To handle join iteration, the operator engine pipelines the join attribute values of
the outer relation to the iterator object, which allows for the native/Python expression
to start immediately iterating through them as soon as a few tuples are available,
without having to wait for the entire outer relation to be retrieved. Once a tuple is
generated by the native/Python expression, the operator engine immediately joins it
with its corresponding tuple from the outer relation, thus performing the join on-the-fly
with minimal cost. During the join execution, a hash map is maintained, where each
already iterated join attribute value is mapped to zero or more tuples generated by the
native/Python expression. Thus, the iteration is performed over a set of distinct values
of the join attribute(s) of the outer relation, which saves from duplicate invocations of
native API functions that can be expensive (e.g. GetShortestDistance).

5.3 CloudMdsQL SELECT statement

SELECT queries in CloudMdsQL retrieve data from several data stores using embed-
ded subqueries (for each data store) and integrate the data to build the result dataset.
The CloudMdsQL SELECT statement looks like a typical SQL SELECT statement
but supplements it with a header containing definitions of named table expressions:

[<named-table-expr> ...]
SELECT <column_list>
<from_clause>
[<where_clause>]
[<group_clause>]
[<having_clause>]
[<order_clause>]
[<limit_clause>]
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Some of the clauses haveCloudMdsQL specifics. [< named − table − expr >

...] is an optional list of named table expressions as per the corresponding syntaxes
described above. Names of table expressions must be unique within both the local (in
the same query) and global (stored named expressions) context. The generic syntax
of a named table expression definition is presented below.

<expr-name>(<colname> <type>, …
[WITHPARAMS <paramname> <type>, …]
[REFERENCING <tablename>, …]
[JOINED ON <colname>, …]
[CARDINALITY = <cardinality_function>]
[SELECTIVITY(<colname>, …) = <selectivity_function>]

)[@<datastore>] = <expr-def>

Its signature may contain certain optional clauses, as follows. The WITHPARAMS
clause specifies the names and types of the parameters, if any. The REFERENCING
clause specifies the names of other named table expressions that are used within a
native named table expression. The JOINED ON clause specifies the names of the
columns of the table expression on which a join iteration method will be performed.
The CARDINALITY clause specifies a user-defined cost function that can be used by
the optimizer to estimate the expected cardinality of the named expression’s result set.
The function is expressed as an arithmetic expression that may refer to the cardinal-
ities of the referenced named tables, e.g. card(T1), and/or any of the named table
expression’s parameters. Similarly, a SELECTIVITY function may also be defined,
which can give an estimate of the expected selectivity of an equality condition on the
specified columns.

< from_clause > is a regular SQL FROM clause containing references to
named table expressions—global or ad-hoc, parameterized or not. If a table refers
to a parameterized expression, parameter values should be specified in parentheses.
The FROMclausemay contain JOIN expressions, specifying explicit join ordering and
conditions. The JOIN keyword may be followed or preceded by execution directive
in parentheses, which will override optimizer’s decisions and will explicitly make the
query engine perform a concrete method (e.g. bind join, hash, merge or nested-loop).

In the < where_clause > there can be specified a filter predicate expression.
The query compiler will transform it to normal conjunctive form, thus determining the
exact selection operations to be performed as part of the execution plan. The optimizer
will then find the most appropriate place of each selection operation and push it down
as much as possible in the execution plan tree. This optimization can finally result in
rewriting subqueries to data stores by adding filter conditions, if the optimizer finds
an opportunity to increase the selectivity of the subquery. However, only subqueries
defined with SQL named table expressions can benefit from such an optimization.

6 Query processing

In this section, we briefly describe in more detail the different steps of CloudMdsQL
query processing, according to the query engine architecture (see Sect. 4), i.e. query
decomposition, optimization and execution. We also discuss the details of interfacing
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data stores through wrappers. We end with a use case example showing the different
query processing steps.

6.1 Query decomposition

Duringquery decomposition, the query planner compiles the query andbuilds a prelim-
inary query execution plan (QEP). A query plan in its simplest form is a tree structure,
representing relational operations, where the leaf nodes are references to tables, results
from the execution of the subqueries against data stores. At this step, the planner also
prepares a set of native queries whichwill be passed to the correspondingwrappers and
hence to the underlying data stores (this process will be explained later). Each node of
the query plan represents a relational operation and an intermediate relation, resulting
from the operation. For more complex queries, since the language allows a single
named table expression to be used as operand to several operations (e.g. referenced in
other named table expressions and also in the main SELECT statement), it is possible
for an intermediate relation to be the input of more than one operator, therefore the
query plan appears to be a directed acyclic graph rather than a tree structure. If cyclic
references exist, they will be discovered by the query engine at decomposition time
and the query will be rejected.

While building the execution strategy, the planner identifies a forest of sub-trees
within the query plan, each of which is associated to a certain data store. Each of these
sub-plans is meant to be delivered to the corresponding wrapper, which has to translate
it to a native query and execute it against its data store (for SQL subqueries, this process
is more detailed in Sect. 6.4.1). The rest of the query execution plan is the part that
will be handled by the query engine. So nowwe outline two main subsets of the global
execution plan: (1) a forest of sub-trees that will be executed locally by each data store
and (2) a common query plan that will be executed by the query engine with leaf nodes
consuming the relations returned by each wrapper as result of sub-plan execution. At
query decomposition step, the boundary between the two subsets is preliminary and
may be modified during the query optimization step by pushing operations from the
common plan to sub-plans to improve the overall execution efficiency or by pulling
operations from sub-plans to the common plan in case a data store is not capable of
handling them.

The next step of the decomposition is the semantic analysis of the query.Within only
the common query plan, all table and column names are verified against the query’s ad-
hoc schema.On the other hand, since the query engine is agnostic to the underlying data
stores’ schemas, it does not perform semantic analysis of sub-plans, presuming that
this will be done by the data stores upon handling each subquery’s native equivalent.
In fact, all the sub-plans are kept as abstract syntax trees and are never transformed
into execution plans. Thus, the query engine is exempt from gathering full metadata
from data stores, except those metadata needed by the optimizer, e.g. the availability
of indexes and some statistics.

6.2 Query optimization

At query optimization step, the query planner generates different alternatives to the
preliminary query plan and compares their costs using the cost model and the cost and
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metadata information, provided by the catalog or by the user. The cost information
includes cardinalities and attribute selectivities of either a whole subquery or a partic-
ular data store table. To provide as much cost information as possible, each wrapper
implementation should consider the cost-estimating capability of its data store and
expose cost functions following one or more of the methods below:

• For a relational data store, if the data store can efficiently estimate the cost of a
subquery and the size of its result set (like EXPLAIN on prepared statements), the
query planner may benefit from this to directly ask a data store through its wrapper
to estimate the cost of a subquery.

• If the data store is not capable of estimating the cost of a subquery, but keeps data-
base statistics (such as cardinalities, number of distinct values per column, etc.),
the wrapper implementation should make use of all available database statistics to
provide implementations of the desired cost functions.

• If none of the above methods are applicable, but the data store supports aggregate
queries like COUNT(*), MIN and MAX, the wrapper should contribute to the
catalog information by periodically running in background probing queries [27],
thus synthesizing and keeping statistics such as the number of tuples in a table, the
number of distinct values of an attribute, and the min/max values of an attribute.

• However, because of the lack of cost models in some NoSQL data stores and the
limited (or lack of) capability to build database statistics, the CloudMdsQL query
engine gives the wrapper developer the possibility to define custom cost functions
that give default cost information in case it cannot be retrieved using the above
methods. As a subject to future work, we will implement other state-of-the-art
techniques for heterogeneous cost modeling [21], such as the dynamic approach,
which takes into account frequently changing execution environment factors to
dynamically adjust cost information.

• Finally, the user may also provide user-defined cost functions, which is partic-
ularly useful in the case of native queries. For example, the native named table
expression below defines a simple cardinality function, which gives information
that the estimated cardinality of the returned table will be equal to the cardinality
of the Outer relation, over which the native expression performs iteration.

distance(city_1 string, city_2 string, distance int
JOINED ON city_1, city_2
CARDINALITY = card(Outer) )@DB2 =

{*
for (c1, c2) in CloudMdsQL.Outer:

yield ( c1, c2, GetShortestDistance(c1, c2) )
*}

With this cost information, the query optimizer executes its search strategy to trans-
form the preliminary execution plan into an optimized one. Notice that, when building
its search space, the optimizer considers all sub-plans that are assigned to data stores
just as atomic leaf nodes, meaning that the operations within the sub-plans are not sub-
ject to reordering. The search space explored for optimization is the set of all possible
rewritings of the initial query, by pushing down select operations, expressing bind
joins, join ordering, and intermediate data shipping. The result from the optimization

123



484 Distrib Parallel Databases (2016) 34:463–503

step is an optimized query execution plan, where, besides the possibly modified order
of common plan operations, additional information may be assigned to each operation
as follows. Each binary operation (join or union) carries the identifier of the query
engine node that is in charge of performing it, thus determining which intermediate
relation will be shipped. Each equijoin operation carries also the join method to be
performed—hash, nested-loop, merge, or bind join.

Bind join [11] is an efficientmethod for performing semi-joins across heterogeneous
data stores that uses subquery rewriting to push the join conditions. The approach to
perform a bind join is the following: the left-hand side relation is retrieved, during
which the tuples are stored in an intermediate storage and the distinct values of the join
attribute(s) are kept in a list of values, which will be passed as a filter to the right-hand
side subquery. For example, let us consider the following CloudMdsQL query:

A(id int, x int)@DB1 = (SELECT a.id, a.x FROM a)
B(id int, y int)@DB2 = (SELECT b.id, b.y FROM b)
SELECT a.x, b.y FROM b JOIN a ON b.id = a.id

Let us assume that the query planner has decided to use the bind join method and
that the join condition will be bound to the right-hand side of the join operation.
First, the relation B is retrieved from the corresponding data store using its query
mechanism. Then, the distinct values of B.id are used as a filter condition in the
query that retrieves the relation A from its data store. Assuming that the distinct values
of B.id are b1 . . .bn, the query to retrieve the right-hand side relation of the bind
join uses the following SQL approach (or its equivalent according to the data store’s
query language):

SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn)

Thus, only the rows from A that match the join criteria are retrieved. In order to
perform this operation, the final subquery to retrieve relation A must be composed by
the query engine during runtime. Therefore, for each right-hand side of a bind join, the
query compiler prepares an “almost ready” native query sentence, with placeholders
for including the bind join condition, which will be added later by the query engine
during runtime.

In order to estimate the expected performance gain of a bind join, the query opti-
mizer takes into account the availability and type of indexes on the join attributes of
the right-hand side relation in the data store. Whenever such information is available
from the data store, the wrapper should be able to provide it. Failing to do so will
prevent the planner from planning bind join, as bind joins are beneficial only in case
the join attributes are indexed.

Subquery rewriting can be planned by the optimizer in several occasions: (a) selec-
tion pushdowns, which result in pushing filter conditions from the common plan to
sub-trees; (b) usage of bind joins which implies adding filter conditions to the sub-
query in order to allow the retrieval of only those tuples that match the join criteria;
(c) taking advantage of sort-merge joins which requires adding sorting operations to
subqueries in order to guarantee that the retrieved relations are sorted by their join
attributes. The first rewriting approach is considered always efficient, i.e. whenever
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the data store is capable of handling it, the optimizer will plan selection pushdown.
However, bind joins or merge joins will be planned either if explicitly specified by
CloudMdsQL directives or as a result of optimization decision, of course taking into
account data store’s capabilities as well.

6.3 Query execution

The QEP is passed to the first worker node for execution. The query execution con-
troller is responsible for interpreting it and controlling its execution by passing native
queries to the corresponding wrappers and instructing them to deliver the retrieved
datasets to the operator engine and providing the operator engine the sequence of
operators it must apply to the retrieved datasets.

The execution plan is received by the query execution controller in the form of a
JSON document that contains sufficient information to configure and run efficiently
each of the CloudMdsQL operations. The first step of the query execution controller
is to identify the sub-plans within the plan that are associated to the collocated with
the worker data store. Each sub-plan is sent to its corresponding data store wrapper
to be translated into a native query. Then, the query execution controller identifies the
parts of the common query plan associated with other worker nodes and sends them
to their corresponding query execution controllers. For the rest of the query plan, the
query execution controller looks for all named tables and temporary results involved in
the execution plan, identifies the dependencies and configures their behavior. Finally,
the query operator must be aware of parameterized operations that can return distinct
results depending on the different input parameters.

Whenever possible, relations are just pipelined as a stream of volatile tuples from
one operator to another, while in other cases the results are cached inside the table
storage for later use. The table storage is used to store an intermediate relation, anytime
the relation cannot be directly pipelined to its consuming operator, which happens in
particular cases:

• If a named table expression is used more than once within the query and thus
appears an operand to more than one operator;

• If the intermediate relation is an operand to a blocking operation, such as sorting
or grouping;

• If the intermediate relation is the inner side of a nested-loop or hash join.

The table storage strives to use resources efficiently—it keeps an intermediate
relation in-memory unless its size becomes so big that it must be spilled to disk.
The query planner takes care not to plan for storing large tables, e.g. whenever an
intermediate relation with big expected cardinality is involved in a hash or nested-
loop join, the query planner will assign it to the outer side of the join, thus trying to
keep large tables in the pipeline stream rather than storing them, in order to avoid table
storage overflows.

The operator engine is then responsible for executing the operators in the order
specified by the query execution controller.When a native call is required, the operator
invokes thewrapper and opens a streamof external data that is ingested into the pipeline
and, optionally, cached into the table storage. When the operator requires an existing
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named table, it is retrieved from the table storage and pipelined into the query execution
flow. Data is never directly provided from operators to the wrapper: when necessary,
the operator informs which named tables are required to solve the operation inside the
data store. There is also a specific operator for CloudMdsQL that executes a Python
program and pipelines the result in the form of tuples.

This iterator approach obtains tuples as soon as they are generated unless there exists
a blocking operation. The resulting tuples are stored as a temporary named table into
the table storage. This final table can be retrieved by the application with a forward
sequential tuple iterator that supports rewinding and repositioning into marked rows.
When the named table is no longer required it is automatically removed from the table
storage.

6.4 Interfacing data stores

Wrappers are implemented as plugins to the query engine. In order for a data store
to be accessed through the query engine, the wrapper developer must implement
the corresponding wrapper following a common interface that is used by the query
processor to interact with all wrappers. Whenever a CloudMdsQL query is processed,
the query engine prepares a set of native subqueries (or subquery plans) that need
to be executed against the data stores. The engine then passes each subquery to the
corresponding wrapper, which is responsible for the following:

• The execution of native subqueries against the data store, for which there are two
possibilities: (1) Server-side execution: The wrapper passes the query to the data
store for remote execution (e.g. SQL); (2) Client-side execution: The wrapper
executes the query locally, accessing the data store through a client library and
API (e.g. Sparksee and its Python API);

• To guarantee that the retrieved data matches the number and types of columns,
specified in the signature of the expected dataset in the CloudMdsQL query;

• To deliver the tuples of the retrieved datasets to the operator engine;
• To be able to instantiate other named table expressions, hence to access interme-
diate relations from the operator engine (table storage) during execution.

To add support for a new data store to the query engine, the database administrator
must implement a newwrapper.Whether the new data storewill be subqueried through
CloudMdsQLwith SQL or native expressions depends on the data store’s native query
mechanism. If the new data store is an RDBMS or a mapping between the data store’s
query interface and SQL statements exist, the data store can be queried with SQL
expressions and its wrapper should be implemented to handle subquery plans by
translating them to native queries (see Sects. 6.4.1 and 6.4.2). Otherwise, the data
store must be queried with native expressions and the wrapper implementation should
handle only native queries (see Sect. 6.4.3).

6.4.1 Querying SQL compatible NoSQL data stores

Since the data model of some NoSQL data stores (e.g. key-value or document data-
bases) can be considered as a subset of the relational model, in most cases it is possible
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to map simple SQL commands to native queries, without compromising the function-
ality. In fact, SQL-like languages are already commonly used with data stores based
on the BigTable data model, e.g. CQL for Cassandra. For such data stores, the recom-
mendedapproach for subqueryingwithinCloudMdsQL is to useSQL table expressions
against the data store, even though the data store does not natively support SQL.

Whenever an SQL table expression is used as a nested query against a data store,
it is considered as a sub-select statement and hence is transformed into a sub-tree in
the query execution plan. Thus, each SQL table expression can be subject to further
transformations and may be possibly rewritten by the optimizer before submitted for
execution to the data store. This allows the CloudMdsQL engine to perform opti-
mizations of the global query execution plan (like pushing selections, projections,
aggregations, and joins down the tree into sub-plans) or take advantage of bind joins,
etc. However, besides pushing down operations, the query optimizer does not perform
further optimization (such as operation reordering) on a sub-plan, because it will only
be used for building the corresponding native query, which normally is supposed to
be optimized by the data store’s optimizer. Each sub-plan is then delivered to the cor-
responding wrapper, which interprets and transforms it to a native query in order to
execute it against the data store using its native query mechanism.

6.4.2 SQL capabilities

In order to build executable subquery plans, the query planner must be aware of the
capabilities of the corresponding data store to perform operations supported by the
common data model. Therefore, the wrapper implementer must identify the subset of
the common algebra that is supported by the data store. Thus the query planner can
take the decision which parts of the global query plan can be handled locally by the
data stores and which part should remain in the common query plan (see Sect. 6.1).
For example, a MongoDB data store can perform selection operations—analogous to
the document collection method find()—but is not able to perform joins. Being aware
of that, the query planner can push selection operations down to the subquery plan,
but will assign any join operation between MongoDB document collections to the
common query plan.

The method to handle data source capabilities, proposed in [22], requires that the
query engine serializes the subquery plan (or single operations from it) to a sentence
of a specific language, that should be matched against a pattern, provided by the
corresponding wrapper—if the validation succeeds, then the data store is capable of
executing the subquery. Thus the query planner can determine the boundary between
the common query plan the sub-plan that will be handled by the data store.

InCloudMdsQL, a similar approach is proposedwhichmakes use of JSON schemas
[15] as an instrument for the wrapper to express its data store’s capabilities. To test the
executability of a sub-plan (or a single operation) against a data store, the query planner
serializes it to a JSON document that has to be validated against the JSON schema
exposed by the wrapper. Below is an example of a capability JSON schema for a
key-value data store that is capable only of performing selection operations involving
comparisons on the ‘key’ attribute (only certain elements of the schema object are
shown):
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{
"properties": {

"op": { "type": "string", "pattern": "SELECT" },
"tableref": { "type": "string" },
"filter": { "$ref": "#/definitions/expression" }

},
"definitions": {

"expression": { "oneOf": [
{ "$ref": "#/definitions/comparison" },
{ "$ref": "#/definitions/function" }

] },
"comparison": { "properties": {

"comp": { "type": "string", "pattern": "=|<|>|<=|>=|<>" },
"lhs": { "properties": {

"colref": { "type": "string", "pattern": "key" },
},
"rhs": { "type": "string" }

} },
"function": { "properties": {

"func": { "type": "string", "pattern": "AND|OR" },
"lhs": { "$ref": "#/definitions/expression" },
"rhs": { "$ref": "#/definitions/expression" }

} }
}

}

Now let us consider the following subquery that is composed of two conjunctive
selection conditions, each of which is tested against the capability specification. The
result of the validation shows that condition #1 can be handled by a selection operation
in the key-value data store and therefore it will be left in the subquery, while condition
#2 doesn’t pass the validation, and therefore will be pulled up in the common plan to
be processed by to common query engine.

SELECT key, value FROM tbl WHERE key BETWEEN 10 AND 20 AND value > key

Condition #1: key BETWEEN 10 AND 20
Validation: success

Condition #2: value > key
Validation: failure

{
"op": "SELECT",
"tableref": "tbl",
"filter": {

"func": "AND",
"lhs": { "comp": ">=",

"lhs": {"colref": "key"},
"rhs": "10" },

"rhs": { "comp": "<=",
"lhs": {"colref": "key"},
"rhs": "20" }

}
}

{
"op": "SELECT",
"tableref": "tbl",
"filter": {

"comp": ">",
"lhs": {"colref": "value"},
"rhs": {"colref": "key"}

}
}

6.4.3 Using native queries

In a CloudMdsQL query, to write native named table expression subqueries against
SQL incompatible data stores, embedded blocks of native query invocations are used.
In such occasions, the wrapper is thin—it just takes the subquery as is and executes it
against the data store without having to analyze the subquery or synthesize it from a
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query plan. Thus the wrapper provides transparency allowing CloudMdsQL queries to
take the most of each data store’s native query mechanism. When the data store does
not have a text-based native query language but offers only an API, the wrapper is
expected to expose such API through an embedded scripting language. This language
must fulfill the following two requirements:

• Each query must produce a relation according to the common data model; the
corresponding wrapper is then responsible to convert the data set to match the
declared signature, if needed.

• In order to fulfill the requirement for nested tables support, the language should
provide a mechanism to instantiate and use data retrieved by other named table
expressions.

In this paper we use Python as an example of embedded language used by a wrapper.
The requirements above are satisfied by the yield keyword and CloudMdsQL
object, similarly to what happens in Python named table expressions.

7 Use case example

To illustrate the details of CloudMdsQL query processing, we consider three databases
(briefly referred to as DB1, DB2 and DB3) as follows:

DB1 is a relational (e.g. Derby) database storing information about scientists in the
following table:
Scientists:

Name Affiliation Country
Ricardo UPM Spain
Martin CWI Netherlands
Patrick INRIA France
Boyan INRIA France
Larri UPC Spain
Rui INESC Portugal

DB2 is a document (e.g. MongoDB) database containing the following collections
of publications and reviews:

Publications(
{id:1, title:'Snapshot Isolation', author:'Ricardo', date:'2012-11-10'},
{id:5, title:'Principles of DDBS', author:'Patrick', date:'2011-02-18'},
{id:8, title:'Fuzzy DBs',          author:'Boyan',   date:'2012-06-29'},
{id:9, title:'Graph DBs',          author:'Larri',   date:'2013-01-06'}
)

Reviews (
{pub_id:1, reviewer: 'Martin',  date: '2012-11-18', review: '…text…'},
{pub_id:5, reviewer: 'Rui',     date: '2013-02-28', review: '…text…'},
{pub_id:5, reviewer: 'Ricardo', date: '2013-02-24', review: '…text…'},
{pub_id:8, reviewer: 'Rui',     date: '2012-12-02', review: '…text…'},
{pub_id:9, reviewer: 'Patrick', date: '2013-01-19', review: '…text…'}

)
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DB3 is a graph database (e.g. Sparksee) representing a social network with nodes
representing persons and ‘friend-of’ links between them:

We now reveal step by step how the following CloudMdsQL query is processed by
the engine. The query involves all the three databases and aims to discover ‘conflicts of
interest in publications from Inria reviewed in 2013’ (a conflict of interest about a pub-
lication is assumed to exist if the author and reviewer are friends or friends-of-friends
in the social network). The subquery against DB3 uses the Sparksee Python API and
user-defined functions and in particular, a function FindShortestPathByName
defined over a graph object, which seeks the shortest path between two nodes by per-
forming breadth-first search, referring the nodes by their ‘name’ attributes and limited
to a maximal length of the sought path.

scientists( name string, affiliation string )@DB1 = ( 
SELECT name, affiliation
FROM scientists

) 
pubs_revs( id int, title string, author string, reviewer string,

review_date timestamp )@DB2 =
( 

SELECT p.id, p.title, p.author, r.reviewer, r.date
FROM publications p, reviews r
WHERE p.id = r.pub_id

) 
friendships( person1 string, person2 string, level int

JOINED ON person1, person2
WITHPARAMS maxlevel int
CARDINALITY = card(Outer)/2 )@DB3 =

{*
for (p1, p2) in CloudMdsQL.Outer:

sp = graph.FindShortestPathByName( p1, p2, $maxlevel )
if sp.exists():

yield (p1, p2, sp.get_cost())
*}
friendship_levels( level int, friendship string

WITHPARAMS maxlevel int
CARDINALITY = maxlevel ) =

{*
for i in range(0, $maxlevel):

yield (i + 1, 'friend' + '-of-friend' * i)
*}

SELECT pr.id, pr.title, pr.author, pr.reviewer, l.friendship
FROM scientists s, pubs_revs pr, 

friendships(2) f, friendship_levels(2) l
WHERE s.name = pr.author

AND pr.author = f.person1 AND pr.reviewer = f.person2
AND f.level = l.level
AND pr.review_date BETWEEN '2013-01-01' AND '2013-12-31'
AND s.affiliation = 'INRIA';
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Fig. 3 Preliminary execution plan

This query contains two SQL subqueries—one against a relational database and
the other against a document database. The parameterized native named table expres-
sion friendships against the graph database defines a relation that represents
the level of friendship between two persons (expressed by the length of the short-
est path between them). The parameter maxlevel indicates a maximal value for
the length of the sought path; the expression is invoked with actual value of the
parameter maxlevel=2, meaning that only relationships of type direct-friend or
friend-of-friend will be found. The parameterized Python named table expression
friendship_levels generates synthetic data containing textual representations
of friendship levels between 1 and maxlevel. Both the native and Python expres-
sions provide cardinality functions that will be used by the query planner to compare
different query execution plans. Themain select statement specifies the join operations
to integrate data retrieved from the three data stores. Upon query decomposition the
query planner prepares the preliminary execution plan shown on Fig. 3.

In this notation the rectangles denote the boundary between the common QEP and
the sub-plans that are delivered to the wrappers for execution against data stores. Each
operator is denoted by a circle with the operator symbol inside. The operator symbols
N and Py correspond to the native expression and Python operator respectively. In
subscript to each operation, additional information is specified, such as the name of the
expression for native/Python operations, and the filter/join condition for selection/join
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Fig. 4 Optimized execution plan

operations. In superscript, the columns of the corresponding intermediate relation are
specified.

In the next step, the query planner verifies the executability of sub-plans against the
capability specifications provided by each wrapper. First, it finds out that the Mon-
goDB data store DB2 is not capable of performing the join between publications
and reviews, therefore, it splits the sub-tree against DB2 into two sub-trees, aim-
ing at independent retrieval of the two relations, and pulls the join operation in the
common execution plan to be executed by the common query engine. Next, the opti-
mizer seeks for opportunities for selection pushdowns, coordinating them as well
with data store’s capabilities. Thus, the selection s.affiliation = ‘INRIA’
is pushed into the sub-tree for DB1 and the selection pr.review_date BETWEEN
‘2013-01-01’ AND ‘2013-12-31’ is pushed into the sub-tree for DB2 that
has to retrieve data from reviews. Doing this, the optimizer determines that the
columns s.affiliation and pr.review_date are no longer referenced in the
common execution plan, so they are simply removed from the corresponding projec-
tions on scientists and reviews from DB1 and DB2.

We assume that the Derby and MongoDB wrappers export the needed by the query
optimizermetadata to the query engine’s catalog. Taking also into account the cardinal-
ities estimated by the user-defined cost functions of the native and Python expressions,
the query planner searches for an optimal QEP, considering the usage of bind joins,
join ordering, and the worker nodes in charge of each operation (which defines the
way of shipping intermediate data). At the end of the optimization step, the prelimi-
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nary plan is transformed into the plan on Fig. 4 that is passed to the query execution
controller of node3.

Each join operation in the QEP is supplemented with the identifier of the node that
is in charge of executing it. The enumeration of the nodes is according to the indexes
of the collocated data stores as we named them, i.e. node1 is collocated with DB1,
etc. The join between scientists and publications is marked with the label
bind, which means that a bind join method will be performed.

The QEP is executed by performing the following steps, including the sequence of
queries executed against the three data stores:

1. The Derby wrapper at node1 sends the following SQL statement to retrieve
data from the scientists table in the Derby database DB1, retrieves the cor-
responding intermediate relation, and transfers it to the operator engine of node2:

SELECT name
FROM scientists
WHERE affiliation = 'INRIA'

Name
Patrick
Boyan

While retrieving the above tuples to the operator engine, the latter stores them in
its temporary table storage and builds a set of distinct values of the column name,
necessary for the next step.

2.TheMongoDBwrapper at node2 prepares a native query to send to theMongoDB
database DB2 to retrieve those tuples from publications that match the bind
join criteria. It takes into account the bind join condition derived from the already
retrieved data from DB1 and generates a MongoDB query whose SQL equivalent
would be the following:

SELECT id, title, author FROM publications
WHERE author IN ('Patrick', 'Boyan')

However, the wrapper for DB2 does not generate an SQL statement, instead it
generates directly the corresponding MongoDB native query:

db.publications.find(
{ author: {$in:['Patrick', 'Boyan']} },
{ id: 1, title: 1, author: 1, _id: 0 }

)

Upon receiving the result dataset (a MongoDB document collection), the wrapper
converts each document to a tuple, according to the signature of the named table
expression pubs_revs, and then pipelines the tuples to the operator engine, which
performs the actual join operation using the already retrieved result set from step 1.
The result of the bind join is the contents of the following intermediate relation:

id Title Author
5 Principles of DDBS Patrick
8 Fuzzy DBs Boyan
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Since this relation will be consumed by only one operator, the operator engine does
not need to store it in the table storage; therefore the tuples are simply pipelined as
input to the operation described in step 4.

3. Independently from steps 1 and 2, thewrapper prepares anotherMongoDBquery
for DB2 that, taking into account the pushed down selection, retrieves reviews
made in 2013. The generated native query (preceded by its SQL equivalent) and
the result intermediate relation are as follows:

SELECT pub_id, reviewer FROM reviews
WHERE date BETWEEN '2013-01-01' AND '2013-12-31'

db.reviews.find(
{ date: {$gte:'2013-01-01', $lte:'2013-12-31'} },
{ pub_id: 1, reviewer: 1, _id: 0 }

)

Pub_id Reviewer
5 Rui
5 Ricardo
9 Patrick

4.The intermediate relations from steps 2 and 3 are joined by the operator engine at
node2 to result in another intermediate relation, which is transferred to the operator
engine of node3 to be pipelined to the next join operator:

id Title Author Reviewer
5 Principles of DDBS Patrick Rui
5 Principles of DDBS Patrick Ricardo

5. The query engine sends to the wrapper of DB3 the Python code to be executed
against the graph database. It also provides an entry point to the intermediate data,
represented by the special Python object CloudMdsQL. The wrapper of DB3
has preliminarily initialized the object graph, needed to reference the database’s
graph data. The Python code of the named table expression friendships uses
the iterator Outer to iterate through a projection on the join attribute columns of
the other side of the join, in which the named table participates, namely the tuples
pipelined from the intermediate relation of step 4. For each tuple it tests if there
exists a path with maximal length maxlevel=2 between the author and reviewer
in the graph database. The produced tuples are as follows:

Person1 Person2 Level
Patrick Ricardo 2

As the above tuples are generated by the Python expression friendships, they
are immediately joined with their corresponding tuples of the relation from step 4 to
produce the next intermediate relation:

id Title Author Reviewer Level
5 Principles of DDBS Patrick Ricardo 2
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6. Independently from all of the above steps, the operator engine at node3 executes
the Python code of the expression friendship_levels, instantiated with
parameter value maxlevel=2 to produce the relation:

Level Friendship
1 friend
2 friend-of-friend

Essentially, the involvement of this Python operator is not needed for the purpose of
the query, because the textual representation of a level of friendship can be generated
directlywithin the code of the native expressionfriendships. However,we include
it in the example in order to demonstrate a wider range of CloudMdsQL operators.

7. Finally, the root join operation is performed, taking as input the pipelined tuples
of the intermediate relation from step 5 and matching them to the one from step
6, to produce the final result:

id Title Author Reviewer Friendship
5 Principles of DDBS Patrick Ricardo friend-of-friend

This use case example demonstrates that the proposed query engine achieves its
objectives by fulfilling the five requirements as follows:

1. It preserves the expressivity of the local query languages by embedding native
queries, as it was demonstrated with the named table expression friendships.

2. It allows nested queries to be chained and nesting is allowed in both SQL and
native expressions, as it was demonstrated in two scenarios. First, the subquery
against the MongoDB database DB2 uses as input the result from the subquery
to the relational database DB1. Second, the subquery against the Sparksee graph
database DB3 iterates through data retrieved from the other two databases.

3. The proper functioning of the query engine does not depend on the data stores’
schemas; it simply converts the data retrieved from data stores to match the ad-hoc
schema defined by the named table expressions’ signatures.

4. It allows data-metadata transformations as it was demonstrated with the named
table expression friendships: metadata (the length of a path in the graph
database) is converted to data (the level of friendship). It also allows data to be
synthesized as with the Python table expression friendship_levels.

5. It allows for optimizing the query execution by rewriting subqueries according to
the bind join condition and the pushed down selections and planning for optimal
join execution order and intermediate data transfer.

8 Experimental validation

The goal of our experimental validation is to show the ability of the query engine to
optimize CloudMdsQL queries, as optimizability is one of the objectives of the query
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language. Notice that our experiments are not intended for benchmarking the query
engine; their purpose is to illustrate the impact of each optimization technique on the
overall efficiency of the query execution. To achieve this,we have implemented the first
prototype of our query engine, aiming at implementing all the proposed optimization
techniques, while giving less importance to the efficiency of the operator engine. In this
section, we first describe the current implementation of the query engine prototype.
Then, we introduce the datasets, based on the use case example in Sect. 7. Finally, we
present our experimental results.

8.1 Prototype

For the current implementation of the query engine, we modified the open source
Derby database to accept CloudMdsQL queries and transform the corresponding exe-
cution plan into Derby SQL operations.We developed the query planner and the query
execution controller and linked them to the Derby core, which we use as the operator
engine. The main reasons to choose Derby database to implement the operator engine
are because Derby:

• Allows extending the set of SQL operations by means of CREATE FUNCTION
statements. This type of statements creates an alias, which an optional set of
parameters, to invoke a specific Java component as part of an execution plan.

• Has all the relational algebra operations fully implemented and tested.
• Has a complete implementation of the JDBC API.
• Allows extending the set of SQL types by means of CREATE TYPE statements.
It allows working with dictionaries and arrays.

Having a way to extend the available Derby SQL operations allows designing the
resolution of the named table expressions. In fact, the query engine requires three
different components to resolve the result sets retrieved from the named table expres-
sions:

• WrapperFunction: To send the partial execution plan to a specific data store
using the wrappers interfaces and retrieve the results.

• PythonFunction: To process intermediate result sets using Python code.
• NestedFunction: To process nested CloudMdsQL queries.

Named table expressions admit parameters using the keyword WITHPARAMS.
However, the current implementation of the CREATE FUNCTION statement is
designed to bind each parameter declared in the statement with a specific Java method
parameter. In fact, it is not designed to work with Java methods that can be called
with a variable number of parameters, which is a feature introduced since Java 6. To
solve this gap, we have modified the internal validation of the CREATE FUNCTION
statement and how to invoke Java methods with a variable number of parameters dur-
ing the evaluation of the execution plan. For example, imagine that the user declares
a table named expression T1 that returns 2 columns (x and y) and has a parameter
called a as follows:

T1( x int, y string  WITHPARAMS a string )@db1 =
( SELECT x, y FROM tbl WHERE id = $a ) 
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The query execution controller will produce dynamically the following CREATE
FUNCTION statement:

CREATE FUNCTION T1 ( a VARCHAR( 50 ) )
RETURNS TABLE ( x INT, y VARCHAR( 50 ) )
LANGUAGE JAVA
PARAMETER STYLE DERBY_JDBC_RESULT_SET 
READS SQL DATA

'WrapperFunction.execute'EXTERNAL NAME

It is linked to the following Java component, which will use the wrapper interfaces
to establish a communication with the data store db1:

public class WrapperFunction {
public static ResultSet execute(

String namedExprName, 
Long queryId, 
Object... args /*dynamic args*/) throws Exception {

//Code to invoke the wrappers
}

}

Therefore, after accepting the execution plan, which is produced in JSON format,
the query execution controller parses it, identifies the sub-plans within the plan that are
associated to a named table expression and dynamically executes as many CREATE
FUNCTION statements as named table expressions exist with a unique name. As a
second step, the execution engine evaluateswhich named expressions are queriedmore
than once and must be cached into the temporary table storage, which will be always
queried and updated from the specified Java functions to reduce the query execution
time. Finally, the last step consists of translating all operation nodes that appear in the
execution plan into a Derby specific SQL execution plan. In fact, this is the same result
that Derby originally produces when parses an SQL query. Once the SQL execution
plan is valid, the Derby core (which acts as the operator engine) produces a dynamic
byte code that resolves the query that can be executed as many times as the application
needs.

Derby implements the JDBC interface and an application can send queries though
the Statement class. So, when the user has processed the query result and closed the
statement, the query execution controller drops the previously created functions and
cleans the temporary table storage.

The rest of the query engine components are developed as follows:

• The query planner is implemented in C++ and uses the Boost.Spirit framework
for parsing context-free grammars, following the recursive descent approach.

• The wrappers are Java classes implementing a common interface used by the
operator engine to interact with them.

We use three data stores—Sparksee (a graph database with Python API), Derby (a
relational database accessed through its Java Database Connectivity (JDBC) driver)
andMongoDB (a document database with a Java API). To be able to embed subqueries
against these data stores, we developed wrappers for each of them as follows:

• The wrapper for Sparksee accepts as raw text the Python code that needs to be
executed against the graph database using its Python client API in the environment
of a Python interpreter embedded within the wrapper.
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• The wrapper for Derby executes SQL statements against the relational database
using its JDBC driver. It exports an explain() function that the query planner
invokes to get an estimation of the cost of a subquery. It can also be queried by the
query planner about the existence of certain indexes on table columns and their
types. The query planner may then cache this metadata information in the catalog.

• Thewrapper forMongoDB is implemented as awrapper to anSQLcompatible data
store, i.e. it performs native MongoDB query invocations according to their SQL
equivalent. The wrapper maintains the catalog information by running probing
queries such as db.collection.count() to keep actual database statistics,
e.g. cardinalities of document collections. Similarly to the Derby wrapper, it also
provides information about available indexes on document attributes.

8.2 Datasets

We performed our experimental evaluation in the context of the use case example,
presented in Sect. 7. For this purpose, we generated data to populate the Derby
table scientists, the MongoDB document collections publications and
reviews, and the Sparksee graph database with scientists and friendship relation-
ships between them. All data is uniformly distributed and consistent. The datasets
have the following characteristics:

• Table scientists contains 10k rows, distributed over 1000 distinct affilia-
tions, thus setting to 0.1% the selectivity of an arbitrary equality condition on the
affiliation attribute.

• Collection publications contains 1M documents, with uniform distribution
of values of the author attribute, making 100 publications per scientist. The total
size of the collection is 1GB.

• Collection reviews contains 4M documents, making 4 reviews per publication.
The date attribute contains values between 2012-01-01 and 2014-12-31. This
sets to 33% the selectivity of the predicateyear(date) = 2013. Thereview
attribute contains long string values. The total size of the collection is 20GB.

• The graph database contains one node per scientist and 500k edges between them.
This data is generated to assure that for each publication, 2 out of 4 reviewers are
friends or friend-of-friends to the author.

• The catalog contains sufficient information, collected through the Derby and
MongoDB wrappers, about the above specified cardinalities and selectivities.
It also contains information about the presence of indexes on the attributes
scientists.affiliation, publications.id, publications.
author, reviews.pub_id, reviews.reviewer, and reviews.
date.

8.3 Experiments

We loaded the generated datasets in 4 data stores, each running on a separate node in a
cluster, as follows: Apache Derby at node1 stores the scientists table, MongoDB
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at node2 andnode3 stores respectively the publications and reviews document
collections, and the Sparksee graph database at node4. The data store identifiers that
we use within our queries are respectively DB1, DB2, DB3, and DB4. Each node in
the cluster runs on a quad-core CPU at 2.4GHz, 32 GB main memory, 1.5Gbps HDD
throughput, and the network bandwidth is 1Gbps.

To demonstrate in detail all the optimization techniques and their impact on the
query execution, we prepared 5 different queries. For each of them, we chose 3 alter-
native QEPs to run and compare their execution times, with different join orders,
intermediate data transfer, and subquery rewritings. The execution times for the dif-
ferent QEPs are illustrated in each query’s corresponding graphical chart.

All the queries use the following common named table expressions, which we
created as stored expressions:

CREATE NAMED EXPRESSION
scient( name string, affiliation string )@DB1 = (

SELECT name, affiliation FROM scientists
);
CREATE NAMED EXPRESSION
pubs( id int, title string, author string )@DB2 = (

SELECT id, title, author FROM publications
);
CREATE NAMED EXPRESSION
revs( pub_id int, reviewer string, date timestamp, review string )@DB3 =
(

SELECT pub_id, reviewer, date, review FROM reviews
);
CREATE NAMED EXPRESSION
friends( name string, friend string JOINED ON name

CARDINALITY = 100*card(Outer) )@DB4 =
{*

for n in CloudMdsQL.Outer:
for f in graph.GetNeighboursByName( n ):

yield ( n, f.getName() )
*};
CREATE NAMED EXPRESSION
friendships( person1 string, person2 string, friendship string

JOINED ON person1, person2 WITHPARAMS maxlevel int
CARDINALITY = card(Outer) )@DB4 =

{*
for (p1, p2) in CloudMdsQL.Outer:

sp = graph.FindShortestPathByName( p1, p2, $maxlevel )
if sp.exists():

yield ( p1, p2, 'friend' + '-of-friend' * (sp.get_cost()-1) )
*};

Thus, each of the queries is expressed as a single SELECT statement that uses the
above named table expressions. For each of the queries we describe the alternative

QEPs with a text notation, using the special symbols �� for joins, ⧒ for bind joins
(where the join condition is bound to the right side of the join), σ () for selections, and
@ in subscript to denote the node at which the operation is performed. If a selection
is marked with @QE in subscript, then it is performed by the query engine, otherwise
it is pushed down to be executed by the data store. The operation order is specified
explicitly using parentheses. The relations within the QEP are referred with their first
letter in capital, e.g. R stands for reviews.
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Query 1 involves 2 tables and focuses on selection pushdowns and bind joins. The
selectivity of the WHERE clause predicate is approximately 0.1%, which explains
the benefit of the pushed down selection in QEP12 that reduces significantly the data
retrieved from the reviews document collection in DB3. Using a bind join in QEP13
reduces to 0.4% the data retrieved from the publications collection.

SELECT p.id, p.title, p.author,
r.reviewer, r.review

FROM pubs p JOIN revs r ON p.id = r.pub_id
WHERE r.date = '2013-05-01'

The alternative query plans are:
QEP11: σσ@QE(R) ⨝@3 P
QEP12: σ(R) ⨝@3 P

QEP13: σ(R) ⧒@3 P

Query 2 involves 3 tables and focuses on the importance of choosing the optimal
data shipping direction. All the plans involve the retrieval and transfer of a selec-
tion (6GB) on the reviews collection and the entire publications collection
(1GB).QEP21 retrieves both tables remotely.QEP22 retrievesP locally andR remotely.
QEP23 retrievesR locally and σ(S) �� P (only 1MB) remotely. Although bind joins are
applicable in all QEPs, we do not use them in order to focus on shipping of unfiltered
data.
SELECT p.id, p.title, p.author, r.reviewer, r.review
FROM pubs p JOIN revs r ON p.id = r.pub_id

JOIN scient s ON s.name = p.author
WHERE r.date BETWEEN '2013-01-01' AND '2013-12-31' 

AND s.affiliation = 'affiliation1' 

The alternative query plans are:
QEP21: (σσ(S) ⨝@1 P) ⨝@1 σ(R)
QEP22: (σ(S) ⨝@2 P) ⨝@2 σ(R)
QEP23: (σ(S) ⨝@2 P) ⨝@3 σ(R)

Query 3 involves 3 tables, of which the table scientists is used twice. To dis-
tinguish them, in the description of QEPs we use the symbols Sa and Sr. Because
of the use of bind joins, this query handles much less data and executes much faster
compared to the previous queries. The query focuses on different join orders, the effect
of which comes mostly from the different selectivities of the bind join conditions.

SELECT p.id, p.title, p.author, r.reviewer, r.review, sr.affiliation
FROM pubs p JOIN revs r ON p.id = r.pub_id

JOIN scient sa ON sa.name = p.author
JOIN scient sr ON sr.name = r.reviewer

WHERE sa.affiliation = 'affiliation1' AND
sr.affiliation IN ('affiliation2', 'affiliation3') 

The alternative query plans are:
QEP31: ((σσ(Sr) ⧒@3 R) ⧒@3 P) ⨝@3 σ(Sa)
QEP32: ((σ(Sa) ⧒@2 P) ⧒@3 R) ⨝@3 σ(Sr)
QEP33: (σ(Sa) ⧒@2 P) ⨝@3 (σ(Sr) ⧒@3 R)
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Query4 includes thefriendships subquery against the graphdatabase and focuses
on the involvement of native named table expressions, using join iteration, and the
usage of expensive native operations, such as breadth-first search. As the QEPs corre-
spond to the ones for Query 3, the execution times depend on the join orders, but also
on the number of distinct values of the relation to be joined with the friendships
expression, which determines how many times breadth-first search is invoked.

SELECT p.id, p.title, p.author, r.reviewer,
r.review, f.friendship

FROM pubs p JOIN revs r ON p.id = r.pub_id
JOIN scient sa ON sa.name = p.author
JOIN scient sr ON sr.name = r.reviewer
JOIN friendships(2) f ON p.author = f.person1

AND r.reviewer = f.person2 
WHERE sa.affiliation = 'affiliation1' AND

sr.affiliation IN ('affiliation2', 'affiliation3') 

The alternative query plans are:
QEP41: (((σσ(Sr) ⧒@3 R) ⧒@3 P) ⨝@3 F) ⨝@3 σ(Sa)
QEP42: (((σ(Sa) ⧒@2 P) ⧒@3 R) ⨝@3 F) ⨝@3 σ(Sr)
QEP43: ((σ(Sa) ⧒@2 P) ⨝@3 (σ(Sr) ⧒@3 R))⨝@3 F

Query 5 resembles Query 4, but uses the friends native subquery that invokes
another native operation that yields many output tuples for a single input tuple. Like
for Query 4, the join order determines when the native expression is invoked and the
number of its input tuples.

SELECT p.id, p.title, p.author, r.reviewer,
r.review, f.friend

FROM pubs p JOIN revs r ON p.id = r.pub_id
JOIN scient sa ON sa.name = p.author
JOIN scient sr ON sr.name = r.reviewer
JOIN friends f ON r.reviewer = f.name

WHERE sa.affiliation = 'affiliation1' AND
sr.affiliation IN ('affiliation2', 'affiliation3') 

The alternative query plans are:
QEP51: (((σσ(Sr) ⧒@3 R) ⧒@3 P) ⨝@3 F) ⨝@3 σ(Sa)
QEP52: (((σ(Sa) ⧒@2 P) ⧒@3 R) ⨝@3 F) ⨝@3 σ(Sr)
QEP53: ((σ(Sa) ⧒@2 P) ⨝@3 (σ(Sr) ⧒@3 R))⨝@3 F

9 Conclusion

In this paper, we proposed CloudMdsQL, a common language for querying and inte-
grating data from heterogeneous cloud data stores and its query engine. By combining
the expressivity of functional languages and the manipulability of declarative rela-
tional languages, it stands in “the golden mean” between the two major categories of
query languages with respect to the problem of unifying a diverse set of data manage-
ment systems. CloudMdsQL satisfies all the legacy requirements for a common query
language, namely: support of nested queries across data stores, data-metadata trans-
formations, schema independence, and optimizability. In addition, it allows embedded
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invocations to each data store’s native query interface, in order to exploit the full power
of data stores’ query mechanism.

The architecture of CloudMdsQL query engine is fully distributed, so that query
engine nodes can directly communicate with each other, by exchanging code (query
plans) and data. Thus, the query engine does not follow the traditional media-
tor/wrapper architectural model where mediator and wrappers are centralized. This
distributed architecture yields important optimization opportunities, e.g. minimizing
data transfers by moving the smallest intermediate data for subsequent processing by
one particular node. The wrappers are designed to be transparent, making the het-
erogeneity explicit in the query in favor of preserving the expressivity of local data
stores’ query languages. CloudMdsQL sticks to the relational data model, because of
its intuitive data representation, wide acceptance and ability to integrate datasets by
applying joins, unions and other relational algebra operations.

To validate the common query language concepts, we presented the way Cloud-
MdsQL query engine, implemented according to the specified design, achieves
its objectives. In our validation setup, we integrated three database management
systems—Sparksee (a graph database with Python API), Derby (a relational data-
base accessed through its JDBC driver) and MongoDB (a document database with
a Java API). By executing representative CloudMdsQL queries and revealing what
the query engine does to process them, we showed that the common query language
satisfies the five important requirements for a cloud multidatabase query language. In
particular, it allows nested queries to be chained and nesting is allowed in both SQL
and native expressions. Furthermore, it allows for optimizing the query execution by
rewriting queries according to bind joins and pushed down selections, planning opti-
mal join execution orders, and performing optimal shipping of intermediate data. Our
experimental evaluation illustrates the impact of the used optimization techniques on
the overall query execution performance.

CloudMdsQL has been extended to deal with distributed processing frameworks
such as Hadoop MapReduce and Apache Spark [3]. It takes full advantage of the
functionality of the underlying data processing frameworks by enabling the ad hoc
usage of user defined map/filter/reduce operators in combination with traditional SQL
statements, yet allowing for optimization by pushing down predicates and bind join
conditions inside the map/filter/reduce chain to be applied as early as possible.
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