Skip to main content
Log in

A kernel discriminant analysis for spatially dependent data

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

We propose a novel supervised classification algorithm for spatially dependent data, built as an extension of kernel discriminant analysis, that we named Spatial Kernel Discriminant Analysis (SKDA). Our algorithm is based on a kernel estimate of the spatial probability density function, which integrates a second kernel to take into account spatial dependency of data. In fact, classical data mining algorithms assume that data samples are independent and identically distributed. However, this assumption is not verified when dealing with spatial data characterized by spatial autocorrelation phenomenon. To make an accurate analysis, it is necessary to exploit this rich source of information and to capture this property. We have applied our algorithm to a relevant domain, which consist of the classification of remotely sensed hyperspectral images. In order to assess the efficiency of our proposed method, we conducted experiments on two remotely sensed images datasets (Indian Pines and Pavia University) with different characteristics and scenarios. The experimental results show that our method is competitive and achieves higher classification accuracy compared to other contextual classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmed, M.S., N’diaye, M., Attouch, M.K., Dabo-Niang, S.: k-nearest neighbors prediction and classification for spatial data. arXiv preprint arXiv:1806.00385 (2018)

  2. Appice, A., Guccione, P., Malerba, D.: A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data. Pattern Recogn. 63, 229–245 (2017). https://doi.org/10.1016/j.patcog.2016.10.010

    Article  Google Scholar 

  3. Baumgardner, M.F., Biehl, L.L., Landgrebe, D.A.: 220 band aviris hyperspectral image data set: June 12, 1992 indian pine test site (2015). https://doi.org/10.4231/R7RX991C. https://purr.purdue.edu/publications/1947/1

  4. Bel, L., Allard, D., Laurent, J.M., Cheddadi, R., Bar-Hen, A.: CART algorithm for spatial data: application to environmental and ecological data. Comput. Stat. Data Anal. 53(8), 3082–3093 (2009). https://doi.org/10.1016/j.csda.2008.09.012

    Article  MathSciNet  MATH  Google Scholar 

  5. Benediktsson, J.A., Ghamisi, P.: Spectral–spatial classification of hyperspectral remote sensing images. Artech House (2015)

  6. Bogorny, V., Valiati, J., Camargo, S., Engel, P., Kuijpers, B., Alvares, L.O.: Mining maximal generalized frequent geographic patterns with knowledge constraints. In: null, pp. 813–817. IEEE (2006)

  7. Boumeddane, S., Hamdad, L., Dabo-Niang, S., Haddadou, H.: Spatial kernel discriminant analysis: Applied for hyperspectral image classification. In: Proceedings of the 11th International Conference on Agents and Artificial Intelligence, ICAART 2019, Volume 2, Prague, Czech Republic, February 19–21, 2019, pp. 184–191 (2019). https://doi.org/10.5220/0007372401840191

  8. Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016). https://doi.org/10.1109/TGRS.2016.2584107

    Article  Google Scholar 

  9. Cheng, T., Wang, J., Haworth, J., Heydecker, B., Chow, A.: A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling. Geogr. Anal. 46(1), 75–97 (2014)

    Article  Google Scholar 

  10. Dabo-Niang, S., Hamdad, L., Ternynck, C., Yao, A.F.: A kernel spatial density estimation allowing for the analysis of spatial clustering: application to monsoon asia drought atlas data. Stoch. Environ. Res. Risk Assess. 28(8), 2075–2099 (2014)

    Article  Google Scholar 

  11. Dabo-Niang, S., Ternynck, C., Yao, A.F.: A new spatial regression estimator in the multivariate context. Comptes Rendus Mathematique 353(7), 635–639 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dabo-Niang, S., Ternynck, C., Yao, A.F.: Nonparametric prediction of spatial multivariate data. J. Nonparametr. Stat. 28(2), 428–458 (2016)

    Article  MathSciNet  Google Scholar 

  13. Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral–spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013). https://doi.org/10.1109/JPROC.2012.2197589

    Article  Google Scholar 

  14. Ghamisi, P., Benediktsson, J.A., Cavallaro, G., Plaza, A.: Automatic framework for spectral–spatial classification based on supervised feature extraction and morphological attribute profiles. IEEE J Sel. Topics Appl. Earth Observ. Remote Sens. 7(6), 2147–2160 (2014). https://doi.org/10.1109/JSTARS.2014.2298876

    Article  Google Scholar 

  15. Ghamisi, P., Chen, Y., Zhu, X.X.: A self-improving convolution neural network for the classification of hyperspectral data. IEEE Geosci. Remote Sens. Lett. 13(10), 1537–1541 (2016). https://doi.org/10.1109/LGRS.2016.2595108

    Article  Google Scholar 

  16. Ghamisi, P., Plaza, J., Chen, Y., Li, J., Plaza, A.J.: Advanced spectral classifiers for hyperspectral images: a review. IEEE Geosci. Remote Sens. Mag. 5(1), 8–32 (2017)

    Article  Google Scholar 

  17. Gramacki, A.: Nonparametric Kernel Density Estimation and Its Computational Aspects. Springer, New York (2018)

    Book  Google Scholar 

  18. Hang, R., Liu, Q., Hong, D., Ghamisi, P.: Cascaded recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(8), 5384–5394 (2019). https://doi.org/10.1109/TGRS.2019.2899129

    Article  Google Scholar 

  19. He, L., Li, J., Plaza, A., Li, Y.: Discriminative low-rank gabor filtering for spectral–spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(3), 1381–1395 (2017). https://doi.org/10.1109/TGRS.2016.2623742

    Article  Google Scholar 

  20. Hu, W., Huang, Y., Li, W., Zhang, F., Li, H.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 258619:1–258619:12 (2015). https://doi.org/10.1155/2015/258619

    Article  Google Scholar 

  21. Kang, X., Li, S., Benediktsson, J.A.: Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52(5), 2666–2677 (2014). https://doi.org/10.1109/TGRS.2013.2264508

    Article  Google Scholar 

  22. Kobos, M., Mandziuk, J.: Classification based on combination of kernel density estimators. In: Artificial Neural Networks—ICANN 2009, 19th International Conference, Limassol, Cyprus, September 14–17, 2009, Proceedings, Part II, pp. 125–134 (2009). https://doi.org/10.1007/978-3-642-04277-5_13

  23. Lee, J., Li, S.: Extending moran’s index for measuring spatiotemporal clustering of geographic events. Geogr. Anal. 49(1), 36–57 (2017)

    Article  Google Scholar 

  24. LeSage, J.P., Pace, R.K.: Spatial dependence in data mining. In: Data mining for scientific and engineering applications, pp. 439–460. Springer (2001)

  25. Li, Y., Zhang, H., Xue, X., Jiang, Y., Shen, Q.: Deep learning for remote sensing image classification: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. (2018). https://doi.org/10.1002/widm.1264

    Article  Google Scholar 

  26. Miller, H.J.: Tobler’s first law and spatial analysis. Ann. Assoc. Am. Geogr. 94(2), 284–289 (2004)

    Article  Google Scholar 

  27. Mou, L., Ghamisi, P., Zhu, X.X.: Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017). https://doi.org/10.1109/TGRS.2016.2636241

    Article  Google Scholar 

  28. Mou, L., Ghamisi, P., Zhu, X.X.: Unsupervised spectral-spatial feature learning via deep residual conv-deconv network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(1), 391–406 (2018). https://doi.org/10.1109/TGRS.2017.2748160

    Article  Google Scholar 

  29. Mukhopadhyay, S., Ghosh, A.K.: Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis. Comput. Stat. Data Anal. 55(7), 2344–2353 (2011). https://doi.org/10.1016/j.csda.2011.02.001

    Article  MathSciNet  MATH  Google Scholar 

  30. N’diaye, M., Dabo-Niang, S., Ngom, P., Thiam, N., Fall, M., Brehmer, P.: Nonparametric prediction for spatial dependent functional data: application to demersal coastal fish off Senegal, pp. 31–49 (2020)

  31. O’Sullivan, D.: Geographically weighted regression: the analysis of spatially varying relationships, by as fotheringham c. brunsdon, and m. charlton. Geogr. Anal. 35(3), 272–275 (2003)

    Google Scholar 

  32. Pu, H., Chen, Z., Wang, B., Jiang, G.: A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 52(11), 7008–7022 (2014). https://doi.org/10.1109/TGRS.2014.2306687

    Article  Google Scholar 

  33. Shekhar, S., Evans, M.R., Kang, J.M., Mohan, P.: Identifying patterns in spatial information: a survey of methods. Wiley Interdisc. Rew.: Data Mining Knowl. Discov. 1(3), 193–214 (2011). https://doi.org/10.1002/widm.25

    Article  Google Scholar 

  34. Shekhar, S., Jiang, Z., Ali, R.Y., Eftelioglu, E., Tang, X., Gunturi, V.M.V., Zhou, X.: Spatiotemporal data mining: a computational perspective. ISPRS Int. J. Geo-Inf. 4(4), 2306–2338 (2015). https://doi.org/10.3390/ijgi4042306

    Article  Google Scholar 

  35. Stojanova, D., Ceci, M., Appice, A., Malerba, D., Dzeroski, S.: Dealing with spatial autocorrelation when learning predictive clustering trees. Ecol. Inf. 13, 22–39 (2013). https://doi.org/10.1016/j.ecoinf.2012.10.006

    Article  Google Scholar 

  36. Ternynck, C.: Spatial regression estimation for functional data with spatial dependency. J. Soc. Française Stat. 155(2), 138–160 (2014)

    MathSciNet  MATH  Google Scholar 

  37. van der Walt, C.M., Barnard, E.: Variable kernel density estimation in high-dimensional feature spaces. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4–9, 2017, San Francisco, pp. 2674–2680 (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14737

  38. Wang, Y., Zhang, Y., Song, H.: A spectral-texture Kernel-based classification method for hyperspectral images. Remote Sens. 8(11), 919 (2016). https://doi.org/10.3390/rs8110919

    Article  Google Scholar 

  39. Zhao, M., Li, X.: An application of spatial decision tree for classification of air pollution index. In: Proceedings of the 2011 19th International Conference on Geoinformatics, pp. 1–6. IEEE (2011)

Download references

Acknowledgements

The authors would like to thank Dr Pedram Ghamisi for kindly providing us the standard training and test sets for Indian Pines and Pavia University datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumia Boumeddane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumeddane, S., Hamdad, L., Haddadou, H. et al. A kernel discriminant analysis for spatially dependent data. Distrib Parallel Databases 39, 583–606 (2021). https://doi.org/10.1007/s10619-020-07309-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-020-07309-8

Keywords

Navigation