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Abstract. We determine the structure of cyclic codes over Z4 for arbitrary even length giving the
generator polynomial for these codes. We determine the number of cyclic codes for a given length.
We describe the duals of the cyclic codes, describe the form of cyclic codes that are self-dual and
give the number of these codes. We end by examining specific cases of cyclic codes, giving all cyclic
self-dual codes of length less than or equal to 14.
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1. Introduction

Cyclic codes are an important class of codes from both a theoretical and a
practical viewpoint. The key to describing the structure of cyclic codes over a
ring R is to view cyclic codes as ideals in the polynomial ring R[X]/〈Xn − 1〉,
where n is the length of the code. For this purpose, it is useful to obtain the
divisors of Xn −1, but this becomes difficult when the characteristic of the ring
is not relatively prime to the length of the code, i.e., the repeated-root case,
because then Xn −1 does not factor uniquely over the ring. For codes over Z4,
this case corresponds to the case when the length is even.

In [1], Abualrub and Oehmke determine the generators for cyclic codes over
Z4 for lengths of the form 2k and in [2], Blackford determines the generators
for cyclic codes over Z4 for lengths of the form 2n where n is odd. The case for
odd n follows from results in [3] and also appears in more detail in [7]. In this
paper, we shall complete the classification by examining cyclic codes over Z4 of
length N = 2kn, where n is odd. Our results will generalize the results of Refs.
1 and 2. Moreover, allowing k = 0, we get the results given in [7] for the odd
case. From this perspective we see that our work in fact can handle all lengths.

∗The research of the second named author is partially supported by research Grants MOE-ARF
R-146-000-029-112 and DSTA R-394-000-011-422.
†Corresponding author.
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We shall build an isomorphism between the standard polynomial ring and
another polynomial ring and show that cyclic codes in the former correspond to
constacyclic codes in the latter. Using the Discrete Fourier Transform, we give
the structure of the second polynomial ring as the direct sum of rings and show
that the ideal corresponding to a cyclic code can be described as the direct sum
of ideals under this decomposition. We use this to find all generators of cyclic
codes and determine the structure and size of their dual codes.

We begin with some definitions. A code over a ring R of length n is a non-
empty subset of Rn. If the code is a submodule, then we say that the code
is linear. All codes in this work are assumed to be linear unless otherwise
specified. The ambient space is equipped with the standard inner-product, i.e.,
[v,w] =∑viwi , where v = (v1, . . . , vn) and w = (w1, . . . ,wn), and the dual is
defined by C⊥ = {w | [w,v] = 0 for all v ∈ C}. If (c0, c1, . . . , cn−1) ∈ C implies
that (cn−1, c0, c1, . . . , cn−2)∈C, then we say that the code is cyclic. We use the
natural connection of cyclic codes to polynomial rings, where (c0, c1, . . . , cn−1)

is viewed as c0 + c1X + · · · + cn−1X
n−1 and the code C is an ideal in the ring

R[X]/〈Xn − 1〉. A code over a ring is constacyclic if, for some unit a, we have
(c0, c1, . . . , cn−1)∈C implies that (acn−1, c0, c1, . . . , cn−2)∈C.

If C is a code of length n over a finite chain ring R of characteristic 4 with
unique maximal ideal m, then we can define the torsion and residue codes over
the residue field F :=R/m of characteristic 2 by

Tor(C)={v ∈Fn | 2v ∈C} (1)

and

Res(C)={v ∈Fn | there exists u such that v +2u ∈C}. (2)

(Here, the residue field F =R/m is identified with the Teichmüller set of R.)
We can describe the generator matrices of these codes over Z4. A linear code

over Z4 has a generator matrix that is permutation-equivalent to
(

Ik1 A A′

0 2Ik2 2A′′

)

, (3)

where Ik is the identity matrix of size k, A and A′′ are matrices with entries
from {0,1}, and A′ is a matrix with entries from Z4. A code of this form is said
to be of type {k1, k2}. It contains 4k12k2 elements.

The code over F2 with generator matrix
(
Ik1 A A′ ) , (4)

where A′ is the reduction modulo 2 of A′, is the residue code. The code over F2
with generator matrix
(

Ik1 A A′
0 Ik2 A′′

)

, (5)

is the torsion code.
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Notice that |Tor(C)||Res(C)| = 2k1 2k1+k2 = 4k1 2k2 = |C|. This same equality
holds for another ring we describe later (see Lemma 2.4). We shall use this fact
to determine the cardinality of codes by determining the torsion and residue
codes from the generators.

2. Rings

We shall describe a ring and relate this ring to the standard description of cyclic
codes over Z4 to find the generator polynomials. We assume throughout the rest
of this paper that n is an odd integer and N = 2kn will denote the length of a
cyclic code over Z4.

Define the ring R=Z4[u]/〈u2k −1〉. We have a module isomorphism �:Rn →
(Z4)

2kn defined by

�
(
a0,0 +a0,1u+a0,2u

2 +···+a0,2k−1u
2k−1,...,

an−1,0 +an−1,1u+an−1,2u
2 +···+an−1,2k−1u

2k−1
)

=(a0,0,a1,0,a2,0,a3,0,...,an−1,0,a0,1,a1,1,a2,1,...,a0,2k−1,

a1,2k−1,... ,an−1,2k−1).

We have that

�

⎛

⎝u

⎛

⎝
2k−1∑

j=0

an−1,j u
j

⎞

⎠ ,

2k−1∑

j=0

a0,j u
j ,

2k−1∑

j=0

a1,j u
j , . . . ,

2k−1∑

j=0

an−2,j u
j

⎞

⎠

= (an−1,2k−1, a0,0, a1,0, . . . , an−2,2k−1).

This gives that a cyclic shift in (Z4)
2kn corresponds to a constacyclic shift in Rn

by u.
This gives the following theorem.

Theorem 2.1. Cyclic codes over Z4 of length N =2kn correspond to constacyclic
codes over R modulo Xn −u via the map �, i.e., the following diagram commutes,
where φi are the canonical maps between polynomials and codewords.

R[X]/〈Xn −u〉 −−−−−−→
�

Z4[X]/〈X2kn −1〉⏐
⏐
�φ1

⏐
⏐
�φ2

Rn −−−−−−→
�

(Z4)
2kn

A helpful way to regard a cyclic code over Z4 is to use its spectral decom-
position, obtained via the Discrete Fourier Transform (see Theorem 3.2). This
interpretation allows for easier description of these codes as well as their enu-
meration. To this end, rings of the type given in (7) are needed.

For a positive integer m, we define the following Galois ring:

GR(4,m)=Z4[X]/〈hm(X)〉, (6)
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where hm(X) is a monic basic irreducible polynomial in Z4[X] of degree m that
divides X2m−1 − 1. This ring is local with maximal ideal 〈2〉 and residue field
F2m . The polynomial hm is chosen so that ξ =X +〈h(X)〉 is a primitive (2m −
1)st root of unity. The Teichmüller set of representatives is a complete set of
coset representatives of the ring modulo 2 and is Tm = {0,1, ξ, ξ2, . . . , ξ2m−2}.
Each z∈GR(4,m) has a unique 2-adic expansion z= z0 + 2z1, with z0, z1 ∈Tm,
and we define zf = z2

0 +2z2
1, where zf denotes the Frobenius image of z.

Define the ring

R4(u,m)=GR(4,m)[u]/〈u2k −1〉. (7)

(In the latter parts of this paper, the rings GR(4,m) and R4(u,m) are used
in two different ways with slight modifications in the notations – GR(4,M) and
R4(u,M), where M is the order of 2 modulo n, and GR(4,mα) and R4(u,mα),
where mα is the size of the 2-cyclotomic coset modulo n containing α. The
notations GR(4,m) and R4(u,m) are reserved for the general context.)

We begin with a simple observation that proves to be rather useful through-
out this paper.

Lemma 2.2. In R4(u,m), we have (u−1)2k =2(u−1)2k−1
.

Proof. The proof is similar to that for [1] Lemma 1. It is easy to show, by
induction, that (u− 1)2e + 1 =u2e + 2(u− 1)2e−1

, for all positive integers e. Set-
ting e=k yields the lemma.

Lemma 2.3. Let S =R4(u,m).

(i) Every element z∈S is uniquely written as

z = (z0,0+2z0,1)+ (z1,0+2z1,1)(u−1)+· · ·+ (z2k−1,0 +2z2k−1,1)(u−1)2k−1

=
2k−1∑

i=0

(zi,0 +2zi,1)(u−1)i , zi,j ∈Tm.
(8)

(ii) An element z∈S, written as in (8), is a unit if and only if z0,0 �=0.

(iii) S is a local ring with maximal ideal 〈2, u−1〉 and residue field F2m .

(iv) The ideals of S are

• 〈0〉,
• 〈1〉,
• 〈2(u−1)i

〉
, where 0≤ i ≤2k −1,

•
〈
(u−1)i +2

∑i−1
j=0 sj (u−1)j

〉
, where 1≤ i ≤2k −1 and sj ∈Tm for all j ,

•
〈
2(u−1)�, (u−1)i +2

∑�−1
j=0 sj (u−1)j

〉
, where 1≤ i ≤2k −1, �<i and sj ∈

Tm for all j .
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Proof.

(i) This statement is obvious. We choose to expand in (u−1) rather than in u

to make what follows clearer and to make the computations easier.

(ii) If z∈S is a unit, then z mod 2 is clearly a unit in F2m [u]/〈(u−1)2k 〉, which
is equivalent to z0,0 �=0.
Conversely, for an element z = x + 2y ∈ S, suppose z mod 2 is a unit in
F2m [u]/〈(u − 1)2k 〉. Then there exists x′ ∈ S such that x′x ≡ 1 mod 2, i.e.,
x′x =1+2µ, for some µ∈S. Then

(x +2y)(x′ +2(−µ−x′y)x′)=xx′ +2(yx′ +xx′(−µ−x′y))

=1+2(yx′ −µ−x′y +µ)=1,

so x′ +2(−µ−x′y)x′ is an inverse of z, i.e., z is a unit in S.

(iii) We have that S/〈2, u − 1〉 ∼= F2m a field, so 〈2, u − 1〉 is maximal. To show
this ideal is the unique maximal ideal, we shall show that any element not
in the ideal 〈2, u−1〉 is a unit.
If z=∑2k−1

i=0 (zi,0 + 2zi,1)(u− 1)i �∈ 〈2, u− 1〉, then z0,0 �= 0 and therefore z is
a unit by (ii).

(iv) We have the trivial ideals 〈0〉 and S =〈1〉.
Let I be an ideal of S, distinct from 〈0〉 and 〈1〉.
If I ⊆〈2〉, any element in I can be written in the form:

2s0 +2s1(u−1)+· · ·+2s2k−1(u−1)2k−1, where sj ∈Tm.

Let s ∈ I be an element with the smallest i with si �= 0. For all t ∈ I , t =
2(u − 1)i(ti + ti+1(u − 1) + . . . t2k−1(u − 1)2k−1−i ), where tj ∈ Tm. Therefore, I ⊆〈
2(u−1)i

〉
.

Since s = 2(u− 1)i(si + si+1(u− 1)+ . . . s2k−1(u− 1)2k−1−i ), where sj ∈Tm and
si �= 0, this means that (si + si+1(u− 1)+ . . . s2k−1(u− 1)2k−1−i ) is invertible and
hence 2(u − 1)i ∈ I , which implies I = 〈2(u−1)i

〉
. Hence all ideals contained in

〈2〉 are of the form
〈
2(u−1)i

〉
, 0≤ i ≤2k −1.

Now assume I is not contained in 〈2〉. Let I ={v |v ≡w mod 2,w ∈ I }. Then
I is an ideal in F2m [u]/〈(u−1)2k 〉. Since I is not contained in 〈2〉, I is not the
zero ideal 〈0〉.

The nonzero ideals in F2m [u]/〈(u − 1)2k 〉, distinct from 〈1〉, are of the form
〈(u−1)i〉, 1 ≤ i ≤ 2k − 1. Therefore I = 〈(u−1)i

〉
with 1 ≤ i ≤ 2k − 1. Hence there

exists an element (u−1)i +2s ∈I , for some s ∈S. Without any loss of generality,
we may write

(u−1)i +2s = (u−1)i +2
2k−1∑

j=0

sj (u−1)j , where sj ∈Tm.



132 DOUGHERTY AND LING

Since 2(u−1)i =2((u−1)i +2s)∈ I , it follows that 2sj (u−1)j ∈ I for all i ≤ j ≤
2k −1. Therefore

(u−1)i +2
i−1∑

j=0

sj (u−1)j ∈ I.

Now we divide into two subcases.
Subcase I:

I =
〈

(u−1)i +2
i−1∑

j=0

sj (u−1)j

〉

.

This is the fourth type of ideals in the list of Lemma 2.3(iv).
Subcase II:
〈

(u−1)i +2
i−1∑

j=0

sj (u−1)j

〉

⊂ I.

Let g = (u − 1)i + 2
∑i−1

j=0 sj (u − 1)j . Let r ∈ I \
〈
(u−1)i +2

∑i−1
j=0 sj (u−1)j

〉
.

There exists r ′ such that, expressing elements of S in the form of (8), z := r −
r ′g ∈ I can be written as

z= (z0,0 +2z0,1)+ (z1,0 +2z1,1)(u−1)+· · ·+ (zi−1,0 +2zi−1,1)(u−1)i−1.

Denoting the image of z in F2m [u]/〈(u−1)2k 〉 by z, we have z∈ 〈(u−1)i
〉
, so

z0,0 = z1,0 =· · ·= zi−1,0 =0.

Thus we have

z=2(u−1)λ(zλ,1 + zλ+1,1(u−1)+· · ·+ zi−1,1(u−1)i−1−λ) with zλ,1 �=0

(9)

for some λ < i. Since zλ,1 �= 0, (ii) shows that zλ,1 + zλ+1,1(u − 1) + · · · +
zi−1,1(u − 1)i−1−λ is a unit. Consequently, 2(u − 1)λ ∈ I . For each r ∈ I \〈
(u−1)i +2

∑i−1
j=0 sj (u−1)j

〉
, we obtain such a λ. Let � be the smallest of these λ.

Then
〈

(u−1)i +2
i−1∑

j=0

sj (u−1)j ,2(u−1)�

〉

⊆ I.

By (9) and the definition of �, for every r ∈ I , there exists some r ′ ∈ I such that
r − r ′g ∈ 〈2(u−1)�

〉
(when r ∈

〈
(u−1)i +2

∑i−1
j=0 sj (u−1)j

〉
, there exists r ′ such

that r − r ′g =0∈ 〈2(u−1)�
〉
), so

r ∈
〈

(u−1)i +2
i−1∑

j=0

sj (u−1)j ,2(u−1)�

〉

.
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Therefore,

I =
〈

(u−1)i +2
i−1∑

j=0

sj (u−1)j ,2(u−1)�

〉

.

Since 2(u − 1)� ∈ I , it follows that, for � ≤ j ≤ i − 1, we have 2sj (u − 1)j ∈ I .
Therefore, it follows that:

I =
〈

(u−1)i +2
�−1∑

j=0

sj (u−1)j ,2(u−1)�

〉

.

As a corollary to Lemma 2.3, when k = 1, we get the ideals as given in [2],
Lemma 1. If m=n=1, then S =Z4[X]/〈X2k −1〉 and we get the ideals given in
[1]. If N is odd then N =20n, i.e. N =n and k=0. The ring R is then Z4[u]/〈u−
1〉=Z4 and R[X]/〈Xn −u〉 is isomorphic to Z4[X]/〈Xn −1〉. Now Xn −1 factors
uniquely, since n is odd, over Z4 into a product

∏|J |−1
i=0 fi =Xn −1 of basic irre-

ducible polynomials, where J denotes a complete set of representatives of the 2-
cyclotomic cosets modulo n. Since u=1, the only ideals in R4(1,m)=GR(4,m)

are 〈0〉, 〈1〉 and 〈2〉. This is Lemma 3 in [7].
We also note that an ideal of the type

〈
(u−1)i +2

∑i−1
j=0 sj (u−1)j

〉
, where

0≤ i ≤2k −1 and sj ∈Tm for all j , can be written in the form
〈
(u−1)i +2(u−1)t

h(u)
〉
, where 0 ≤ t ≤ i − 1 and h(u) is either 0 or a unit. Furthermore, we may

write h(u)=∑j hj (u− 1)j , where hj ∈Tm for all j . In particular, when h(u) is
a unit, then one of the following must hold:

(i) h(u)=1;

(ii) h(u)=1+ (u−1)τ h̃(u), where τ ≥1 and h̃(u) is a unit;

(iii) h(u)=∑i−t−1
j=0 hj (u−1)j , with h0 ∈Tm\{0,1}.

Suppose that T is the smallest integer such that 2(u−1)T ∈
〈
(u−1)i+2

∑i−1
j=0 sj

(u − 1)j
〉
. For an ideal of the type

〈
2(u−1)�, (u−1)i +2

∑i−1
j=0 sj (u−1)j

〉
, we

may assume, without loss of generality, that �<T . Otherwise, this ideal is actu-
ally
〈
(u−1)i +2

∑i−1
j=0 sj (u−1)j

〉
.

Notice that ideals in the ring S may be viewed equivalently as cyclic codes of
length 2k over GR(4,m). Hence, they have residue and torsion codes as given
in (1) and (2).

Lemma 2.4. Let C be an ideal in S (or equivalently, a cyclic code of length 2k

over GR(4,m)). Then we have that |Res(C)||Tor(C)|= |C|.

Proof. Consider the (clearly surjective) reduction mod 2 map C → Res(C).
The kernel of this map is {c ∈ C | c = 2v for some v}. By identifying F2m with
the Teichmüller set Tm in GR(4,m), it follows that there is a natural bijection
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between this kernel and Tor(C). Hence, by the First Isomorphism Theorem of
finite groups, we have |Tor(C)|= |C|/|Res(C)|.

Proposition 2.5. For the ideals in S, the corresponding residue and torsion codes
are given as follows:

(i) If C =〈0〉, then Res(C)=〈0〉 and Tor(C)=〈0〉.
(ii) If C =〈1〉, then Res(C)=〈1〉 and Tor(C)=〈1〉.

(iii) If C = 〈2(u−1)i
〉

(0≤ i ≤2k −1), then Res(C)=〈0〉 and Tor(C)= 〈(u−1)i
〉
.

(iv) If C = 〈(u−1)i +2(u−1)th(u)
〉

(1 ≤ i ≤ 2k − 1, 0 ≤ t ≤ i − 1), then Res(C) =〈
(u−1)i

〉
and Tor(C)= 〈(u−1)T

〉
, where

T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min{2k−1, i} if h(u)=0,

i if h(u)=1 and 2k−1 − i + t =0,

min{i,2k−1 + τ } if h(u)=1+ (u−1)τ h̃(u) and 2k−1 − i+ t =0,

2k−1 if h(u)=∑j hj (u−1)j with h0 �=0,1
and 2k−1 − i + t =0,

min{2k−1, i,2k − i + t} if 2k−1 − i + t �=0 and h(u) �=0.

(v) If C = 〈2(u−1)�, (u−1)i +2(u−1)th(u)
〉
, where �<T with T as in (iv), then

Res(C)= 〈(u−1)i
〉

and Tor(C)= 〈(u−1)�
〉
.

Proof. The statements on the residue codes are obvious, and so are the state-
ments on the torsion codes in (i)–(iii).

(iv) Let Tor(C)= 〈(u−1)T
〉
, so T is the smallest integer such that 2(u−1)T ∈

C.
Note first that 2(u−1)i =2

(
(u−1)i +2(u−1)th(u)

)∈C, so

T ≤ i. (10)

By definition of T , there exists

g(u)=
2k−1∑

j=0

gj (u−1)j +2
2k−1∑

j=0

g′
j (u−1)j (11)

so that

2(u−1)T = ((u−1)i +2(u−1)th(u))g(u). (12)

Reducing (12) modulo 2 and using (11), it follows that gj = 0 for 0 ≤ j ≤ 2k −
i −1. Hence, by Lemma 2.2,
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2(u−1)T =2(u−1)2k−1
i−1∑

j=0

gj+2k−i (u−1)j +2(u−1)i
2k−i−1∑

j=0

g′
j (u−1)j

+2(u−1)2k−i+t h(u)

i−1∑

j=0

gj+2k−i (u−1)j . (13)

In particular, noting that i ≥2k−1 when 2k−1 − i + t =0, we have

T ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min{2k−1,i} if h(u)=0,

i if h(u)=1 and 2k−1 −i+t =0,

min{i,2k−1 +τ } if h(u)=1+(u−1)τ h̃(u) and 2k−1 −i+t=0,

2k−1 if h(u)=∑j hj (u−1)j with h0 �=0,1
and 2k−1 −i+t =0,

min{2k−1,i,2k −i+t} if 2k−1 −i+t �=0 and h(u) �=0. (14)

If h(u) = 0, then in fact C = 〈(u−1)i
〉

and 2(u − 1)2k−1 = (u − 1)2k ∈ C, so T ≤
2k−1. Together with (10) and (14), we obtain T =min{2k−1, i}.

If h(u)=1 and 2k−1 − i + t =0, (10) and (14) immediately yield T = i.
If h(u)=1+ (u−1)τ h̃(u) and 2k−1 − i + t =0, we have
(
(u−1)i +2(u−1)th(u)

)
(u−1)2k−i =2(u−1)2k−1+τ h̃(u).

Since h̃(u) is a unit, it follows that 2(u−1)2k−1+τ ∈C, so T ≤2k−1 +τ . Therefore,
T =min{i,2k−1 + τ } follows from (10) and (14).

If h(u)=∑j hj (u−1)j with h0 �=0,1 and 2k−1 − i + t =0, we have
(
(u−1)i +2(u−1)th(u)

)
(u−1)2k−i =2(u−1)2k−1

(1+h(u)).

Note that the constant term of 1+h(u) is 1+h0, which is a unit. Hence, 2(u−1)2k−1

∈C, i.e., T ≤2k−1. Together with (14), we obtain T =2k−1.
Finally, assume 2k−1 − i + t �=0 and h(u) �=0 (and is hence a unit). We have
(
(u−1)i +2(u−1)th(u)

)
(u−1)2k−i =2(u−1)2k−1 +2(u−1)2k−i+t h(u),

so 2(u − 1)min{2k−1,2k−i+t} ∈ C. Therefore, T ≤ min{2k−1,2k − i + t}. Using (10)
and (14) again, we obtain T =min{2k−1, i,2k − i + t}.

(v) Since �<T , with T as in (iv), it is clear that Tor(C)= 〈(u−1)�
〉
.

Remark 1.
(i) As remarked earlier, in Proposition 2.5(v), if � ≥ T , then we have C =〈

2(u−1)�, (u−1)i +2(u−1)th(u)
〉 = 〈(u−1)i +2(u−1)th(u)

〉
, so it is cov-

ered by (iv).

(ii) In Proposition 2.5(iv), we may assume without loss of generality that t +
deg(h)<T , i.e., deg(h)≤T − t −1. Similarly, in Proposition 2.5(v), we may
assume that deg(h)≤�− t −1.
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(iii) For Proposition 2.5(iv), it is not difficult to see that the possible values of
T are given as follows:

– for 1≤ i ≤2k−1, we have T = i;

– for 2k−1 <i <2k−1 + t (t >0), we have T =2k−1;

– for i =2k−1 + t (t >0), we have 2k−1 ≤T ≤2k−1 + t = i;

– for i >2k−1 + t , we have T =2k−1 or 2k − i + t .

Theorem 2.6. The number of distinct ideals in S =R4(u,m) is

5+ (2m)2k−1 + (5 ·2m −1)(2m)
(2m)2k−1−1 −1

(2m −1)2
−4 · 2k−1 −1

2m −1
.

Proof. We shall count the number of distinct ideals of each type in Proposi-
tion 2.5.

Clearly, 〈0〉 and 〈1〉 account for two distinct ideals.
There are obviously 2k distinct ideals of the type

〈
2(u−1)i

〉
.

To count the number of distinct ideals of the type
〈
(u−1)i +2(u−1)th(u)

〉
,

with 1≤ i ≤2k −1, we further divide into subcases.
If h(u)=0, then the ideals are of the form

〈
(u−1)i

〉
with 1≤ i ≤2k −1. There

are 2k −1 ideals of this form.
If h(u)= 1 and 2k−1 − i + t = 0, then the ideals are of the form 〈(u− 1)i + 2

(u−1)i−2k−1〉, with 2k−1 ≤ i ≤2k −1. Hence, there are 2k−1 ideals of this kind.
Next consider the case where h(u) = 1 + (u − 1)τ h̃(u) (where h̃(u) is a unit)

and 2k−1 − i + t =0. In this case, we have 2k−1 ≤ i ≤2k −1. Clearly, in order for
the ideals to be distinct, we should also have t +τ <i, so 1≤τ ≤2k−1 −1. Writ-
ing h̃(u)=∑j h̃j (u−1)j , it is easy to see that the fact that h̃(u) is a unit implies
h̃0 �= 0, while, in order for the ideals to be distinct, we should also assume t +
τ + j ≤ T − 1, with T as in Proposition 2.5(iv). In other words, j ≤ 2k−1 − i +
T − τ −1. Hence, the number of ideals of this form is given by

2k−1∑

i=2k−1

⎧
⎨

⎩

i−2k−1
∑

τ=1

(2m)2k−i−1(2m −1)+
2k−1−1∑

τ=i−2k−1+1

(2m)2k−1−τ−1(2m −1)

⎫
⎬

⎭

=2(2m −1)

{
(2m)2k−1 −1
(2m −1)2

− 2k−1

2m −1

}

.

Now let h(u) =∑j hj (u − 1)j be a unit such that h0 �= 0,1, and suppose
2k−1 − i + t = 0. Once again, we have 2k−1 ≤ i ≤ 2k − 1. In order not to double
count any of the ideals, we need j + i − 2k−1 <T = 2k−1, i.e., j < 2k − i. Hence,
noting that h0 �=0,1, the number of distinct ideals of this form is given by

2k−1∑

i=2k−1

(2m)2k−i−1(2m −2)= (2m −2)
(2m)2k−1 −1

2m −1
.



CYCLIC CODES OVER Z4 OF EVEN LENGTH 137

If 2k−1 + t �= i and h(u) �= 0, recall that T = min{2k−1, i,2k − i + t}. In order to
account only for distinct ideals, we need j + t <T , i.e., 0≤ j ≤T − t −1. Conse-
quently, the number of distinct ideals of this kind is

2k−1−1∑

i=1

i−1∑

t=0

(2m)i−t−1(2m −1)+
2k−1∑

i=2k−1

⎧
⎨

⎩

i−2k−1−1∑

t=0

(2m)2k−i−1(2m −1)

+
2k−1−1∑

t=i−2k−1+1

(2m)2k−1−t−1(2m −1)

⎫
⎬

⎭
=3

{
(2m)2k−1 −1

2m −1
−2k−1

}

.

Therefore, the number of distinct ideals of the type
〈
(u−1)i +2(u−1)th(u)

〉
,

with 1≤ i ≤2k −1, is

2k −1+2k−1 +2(2m −1)

{
(2m)2k−1 −1
(2m −1)2

− 2k−1

2m −1

}

+ (2m −2)
(2m)2k−1 −1

2m −1

+3

{
(2m)2k−1 −1

2m −1
−2k−1

}

=4 · (2m)2k−1 −1
2m −1

+ (2m)2k−1 −2k −2.

Finally, we consider ideals of the type
〈
2(u−1)�, (u−1)i +2(u−1)th(u)

〉
, which

are not of the type
〈
(u−1)i +2(u−1)th(u)

〉
(i.e., not principal). This condition

means that � < T , where T is as in Proposition 2.5(iv). Once again, we divide
into several subcases.

When h(u)=0, the ideals are of the form
〈
2(u−1)�, (u−1)i

〉
with 0≤�<T =

min{2k−1, i}. Hence, the number of distinct ideals of this kind is

2k−1
∑

i=1

i +
2k−1∑

i=2k−1+1

2k−1 = (2k−1 −1)2k−1

2
+22(k−1).

If h(u) �=0, then we need to assume t <�. Indeed, if �≤ t , then by subtracting
a suitable multiple of 2(u−1)� from (u−1)i +2(u−1)th(u), we see that such an
ideal is also of the form

〈
2(u−1)�, (u−1)i

〉
, which has already been accounted

for above.
If h(u)=1 and 2k−1 − i + t =0, we have i ≥2k−1 and T = i, it follows that the

number of distinct ideals of this type is

2k−1∑

i=2k−1

(T − t −1)=
2k−1∑

i=2k−1

(
2k−1 −1

)
=2k−1(2k−1 −1).

Next consider the case where h(u) = 1 + (u − 1)τ h̃(u) and 2k−1 − i + t = 0.
Note that, if t +τ ≥�, then, by subtracting a suitable multiple of 2(u−1)� from
(u− 1)i + 2(u− 1)th(u), we see that the ideal

〈
2(u−1)�, (u−1)i +2(u−1)th(u)

〉

is also of the form
〈
2(u−1)�, (u−1)i +2(u−1)t

〉
, which is already accounted
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for in the previous case. Hence, we assume further that t +τ <�, i.e., i −2k−1 <

�<T . In order not to double count any ideal, writing h̃j (u)=∑j h̃j (u−1)j , we
need t + τ + j <�, i.e., 0 ≤ j ≤ �− τ − i + 2k−1 − 1. The total number of distinct
ideals of this kind is then given by

2k−1∑

i=2k−1

⎧
⎨

⎩

i−2k−1
∑

τ=1

2k−1+τ−1∑

�=i−2k−1+τ+1

(2m −1)(2m)�−1−τ−i+2k−1

+
2k−1−1∑

τ=i−2k−1+1

i−1∑

�=i−2k−1+τ+1

(2m −1)(2m)�−1−τ−i+2k−1

⎫
⎬

⎭

=2

{
(2m)2k−1 −1
(2m −1)2

− 2k−1

2m −1

}

−2k−1(2k−1 −1).

Next, let h(u) =∑j hj (u − 1)j be a unit such that h0 �= 0,1, and suppose
2k−1 − i + t = 0. Once again, we have 2k−1 ≤ i ≤ 2k − 1. If we write h(u) =∑

j hj (u − 1)j , in order not to double count any ideal of this type, we need
t + j ≤ � − 1, i.e., 0 ≤ j ≤ � − i + 2k−1 − 1. Hence, the number of distinct ideals
of this type is given by

2k−1∑

i=2k−1

2k−1−1∑

�=i−2k−1+1

(2m −2)(2m)�−i+2k−1−1 = (2m −2)

{
(2m)2k−1 −1
(2m −1)2

− 2k−1

2m −1

}

.

Finally, assume that i �= t +2k−1 and h(u) �=0. In order to avoid double count-
ing, with h(u)=∑j hj (u−1)j , we need t +j ≤�−1, i.e., 0≤j ≤�− t −1. Hence,
the total number of ideals of this kind is

2k−1−1∑

i=1

i−1∑

t=0

(
(2m)i−t−1 −1

)
+

2k−1∑

i=2k−1

⎧
⎨

⎩

i−2k−1−1∑

t=0

(
(2m)2k−i−1 −1

)

+
2k−1−1∑

t=i−2k−1+1

(
(2m)2k−1−t−1 −1

)
⎫
⎬

⎭

=3

{
(2m)2k−1 −1
(2m −1)2

− 2k−1

2m −1
− (2k−1 −1)2k−1

2

}

.

Therefore, the number of distinct ideals of the type 〈2(u−1)�, (u−1)i +2(u−1)t

h(u)〉, which are not of the type 〈(u−1)i +2(u−1)th(u)〉 (i.e., not principal), is
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given by

(2k−1 −1)2k−1

2
+22(k−1) +2k−1(2k−1 −1)+2

{
(2m)2k−1 −1
(2m −1)2

− 2k−1

2m −1

}

−2k−1(2k−1 −1)+ (2m −2)

{
(2m)2k−1 −1
(2m −1)2

− 2k−1

2m −1

}

+3

{
(2m)2k−1 −1
(2m −1)2

− 2k−1

2m −1
− (2k−1 −1)2k−1

2

}

= (2m +3)

{
(2m)2k−1 −1
(2m −1)2

− 2k−1

2m −1

}

+2k−1.

The total number of ideals in S =R4(u,m) now follows by summing the number
of ideals for each type.

3. Discrete Fourier Transform

Let M be the order of 2 modulo n and let ζ denote a primitive nth root of
unity in GR(4,M).

Definition 1. Let c=(c0,0, c1,0,. . . ,cn−1,0, c0,1, c1,1, . . . ,c0,2k−1, c1,2k−1, . . ., cn−1,

2k −1) ∈ (Z4)
2kn, with c(X) =∑n−1

i=0
∑2k−1

j=0 ci,jX
i+jn the corresponding polyno-

mial. The Discrete Fourier Transform of c(X) is the vector

(̂c0, ĉ1, . . . , ĉn−1)∈R4(u,M)n

with

ĉh = c(un′
ζ h)=

n−1∑

i=0

2k−1∑

j=0

ci,j u
n′i+j ζ hi (15)

for 0≤h<n, where nn′ ≡1 mod 2k.

Define the Mattson–Solomon polynomial of c to be

ĉ(Z)=
n−1∑

h=0

ĉn−hZ
h. (16)

(Here, we have identified ĉ0 with ĉn.)

Lemma 3.1 (Inversion formula) . Let c ∈ (Z4)
2kn with ĉ(Z) its Mattson–Solomon

polynomial as defined above. Then

c =�[(1, u−n′
, u−2n′

, . . . , u−(n−1)n′
)∗ 1

n
(̂c(1), ĉ(ζ ), . . . , ĉ(ζ n−1))], (17)

where ∗ indicates componentwise multiplication.
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Proof. Let 0≤ t ≤n−1. Then

ĉ(ζ t )=
n−1∑

h=0

ĉhζ
−ht

=
n−1∑

h=0

(

n−1∑

i=0

2k−1∑

j=0

ci,j u
n′i+j ζ hi)ζ−ht

=
n−1∑

i=0

2k−1∑

j=0

ci,j u
n′i+j

n−1∑

h=0

ζ h(i−t)

= (nun′t )
2k−1∑

j=0

ct,j u
j .

The rest follows from a straightforward computation from the definition of the
map �.

Let J denote a complete set of representatives of the 2-cyclotomic cosets
modulo n and, for each α ∈J , let mα denote the size of the 2-cyclotomic coset
containing α.

The following theorem is proved in [2] in a less general form but the proof
is the same. This theorem allows us to describe cyclic codes which are ideals
in Z4[X]/〈X2kn − 1〉 in terms of ideals of R4(u,mα) which we have previously
described.

Theorem 3.2. The map γ : Z4[X]/〈X2kn − 1〉→⊕α∈J R4(u,mα) is a ring isomor-
phism, where γ (c(X))= [̂cα]α∈J for c(X)∈Z4[X]/〈X2kn −1〉.

Since a cyclic code of length 2kn over Z4 can be regarded as an ideal in
Z4[X]/〈X2kn −1〉, we have the following corollary.

Corollary 3.3. If C is a cyclic code of length 2kn over Z4, then C is isomorphic
to ⊕α∈J Cα, where, for each α ∈J , Cα is an ideal in R4(u,mα).

For every α ∈J , let Nα denote the number of distinct ideals in R4(u,mα), as
given in Theorem 2.6. Then, the following enumeration result follows immedi-
ately from Theorem 3.2.

Corollary 3.4. The number of distinct cyclic codes over Z4 of length N =2kn (n

odd) is
∏

α∈J Nα.

If N =2k, then J ={0}. In this case m0 =1, then the number of cyclic codes of
length 2k is 5+22k−1 + (9)(2)(22k−1−1 −1)−4(2k−1 −1)=10 ·22k−1 −4 ·2k−1 −9.

When k = 1, then the number of ideals in R4(u,mα) is 5 + 2mα . Hence the
number of cyclic codes of length 2n is

∏
α∈J (5+2mα) (cf. [2, Corollary 1]).
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Example 3.1. (i) Consider cyclic codes of length 16 over Z4. Here, k = 4 and
n=1, so J is {0}. From Theorem 2.6, it follows that there are 2519 cyclic
codes of length 16 over Z4.

(ii) Consider cyclic codes of length 28 over Z4. Here, k=2 and n=7, so J can
be taken to be {0,1,6}. From Theorem 2.6, it is easy to check that N0 =23
and N1 =N6 =113, so there are 23 ·113 ·113=293687 cyclic codes of length
28 over Z4.

4. Polynomial Representation

Recall that ζ is a primitive nth root of unity in GR(4,M). Since n is odd, the
polynomial Xn −1∈Z4[X] factors uniquely into the product of |J | monic basic
irreducible polynomials. For each 0 ≤ α ≤ n − 1, ζ α is the root of exactly one
such polynomial — we shall call this polynomial the minimal polynomial of ζ α.
(If α and β belong to the same 2-cyclotomic coset modulo n, then ζ α and ζ β

share the same minimal polynomial.) Note that fα(un′
ζ α)∈GR(4,M)[u]/〈u2k −

1〉=R4(u,M).

Lemma 4.1. Let fα be the minimal polynomial of ζ α in Z4[X] and let n′ be as
defined before. Then

(i) fα(un′
ζ α) �≡0 mod 2.

(ii) fα(un′
ζ α)≡0 mod 〈(u−1)〉 and fα(un′

ζ α) �≡0 mod
〈
(u−1)2

〉
.

(iii) fα((un′
ζ α)2k

)=0.

(iv) If g(X)∈Z4[X] is a monic polynomial such that g =f i
α +2e, where deg(e)<

deg(f i
α), then g(un′

ζ α)≡ 0 mod
〈
(u−1)i +2

∑i−1
j=0 sj (u−1)j

〉
for some ideal

〈
(u−1)i +2

∑i−1
j=0 sj (u−1)j

〉
.

(v) For 0≤β ≤n−1, if fα �=fβ , then fα(un′
ζ β) is a unit.

Proof. (i) Write fα(X)=∑2k−1
j=0 Xjfα,j (X), where each fα,j (X) is a polynomial

such that the exponents of all its terms are congruent to 0 mod 2k. Hence, the
exponents in Xjfα,j (X) are congruent to j mod 2k. Observe that, since fα(X) is
not a constant polynomial, we cannot have fα(X)=fα,0(X), for otherwise, this
polynomial becomes reducible modulo 2. Then

fα(un′
ζ α)=fα,0(ζ

α)+
2k−1∑

j=1

un′j ζ jαfα,j (ζ
α).

If fα(un′
ζ α) ≡ 0 mod 2, by comparing the terms without u, it follows that

fα,0(X) is a polynomial with ζ α as a solution. Reducing modulo 2, we have
fα,0(X) ≡ gα,0(X)2k

mod 2, for some gα,0(X) whose degree is strictly less than
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deg(fα). It follows that gα,0(X) has ζ α as a root, which is a contradiction.
Therefore, fα(un′

ζ α) �≡0 mod 2.
(ii) Since fα(un′

ζ α)≡fα(ζ α) mod 〈u−1〉, we have fα(un′
ζ α)≡0 mod 〈u−1〉.

If fα(un′
ζ α)∈ 〈(u−1)2

〉
, then, reducing modulo 2, we see that

0≡fα(un′
ζ α)≡

∑

j even

ζ jαfα,j (ζ
α)+u

∑

j odd

ζ jαfα,j (ζ
α) mod 〈2, u2 −1〉.

In particular,
∑

j even

ζ jαfα,j (ζ
α)≡0 mod 2. (18)

Now, observe that, since all the exponents of X are even in
∑

j even Xjfα,j (X),
it follows that:

∑

j even

Xjfα,j (X)≡ (g(X))2 mod 2,

for some polynomial g(X), and deg(g) < deg(fα). Therefore, by (18), it fol-
lows that g(ζα) ≡ 0 mod 2, which contradicts the minimality of fα. Hence,
fα(un′

ζ α) �∈ 〈(u−1)2
〉
.

(iii) Since α ·2k lies in the same 2-cyclotomic coset as α, it follows that (ζ α)2k

is also a root of fα. Hence, fα((un′
ζ α)2k

)=fα((ζ α)2k
)=0.

(iv) Note that g(un′
ζ α)=
(
fα(un′

ζ α)
)i +2e(un′

ζ α).

By (i), there is some w �∈ 〈u−1〉 such that fα(un′
ζ α)=w(u−1).

We claim that w is a unit.
From Lemma 2.3, R4(u,M) is local with maximal ideal 〈2, u− 1〉. Hence, if

w is not a unit, then w∈〈2, u−1〉, so there exist x, y ∈R4(u,M) such that w=
2x + (u−1)y. Then fα(un′

ζ α)=2x(u−1)+y(u−1)2, implying that fα(un′
ζ α)≡

0 mod 〈2, u2 −1〉. We have seen in the proof of (ii) that this leads to a contra-
diction.

Hence, we have
(
fα(un′

ζ α)
)i =wi(u− 1)i , w a unit. Now, there exist s′

j ∈Tm

(0≤ j ≤2k −1) such that

g(un′
ζ α)=
(
fα(un′

ζ α)
)i +2e(un′

ζ α)

=wi(u−1)i +2

⎛

⎝
2k−1∑

j=0

s′
j (u−1)j

⎞

⎠ .

Since w is a unit, this is an element of
〈
(u−1)i +2

∑i−1
j=0 sj (u−1)j

〉
, where

sj =w−i s′
j .

(v) Suppose, on the contrary, that fα(un′
ζ β)∈〈2, u−1〉. Then we have

fα(un′
ζ β)≡fα(ζ β)≡0 mod 〈2, u−1〉.

This means that fα =fβ , which contradicts the assumption.



CYCLIC CODES OVER Z4 OF EVEN LENGTH 143

Theorem 4.2. Let n be odd and let C be an ideal in Z4[X]/〈X2kn − 1〉. Then C

is of the form:

〈

p(X2k

)

2k−1∏

i=0

qi(X
2k

)

2k−1∏

i=1

(
∏

T

˜ri,T (X)i

)
2k−1∏

i=1

(
i−1∏

�=0

˜si,�(X)i

)

,

2p(X2k

)

2k−1∏

i=0

qi(X)i
2k−1∏

i=1

(
∏

T

ri,T (X)T

)
2k−1∏

i=1

(
i−1∏

�=0

si,�(X)�

)〉

, (19)

where

Xn −1=p(X)

⎛

⎝
2k−1∏

i=0

qi(X)

⎞

⎠

⎛

⎝
2k−1∏

i=1

(
∏

T

ri,T (X)

)⎞

⎠

⎛

⎝
2k−1∏

i=1

(
i−1∏

�=0

si,�(X)

)⎞

⎠y(X),

and ˜ri,T (X) and ˜si,�(X) are lifts of ri,T (X) and si,�(X), respectively, i.e., ˜ri,T (X)≡
ri,T (X) mod 2 and ˜si,�(X)≡ si,�(X) mod 2. (Here, for each i, the product

∏
T is

taken over all possible corresponding values of T as in Remark 1(iii).)

Proof. By Theorem 3.2, C is isomorphic to a direct sum of ideals ⊕α∈J Cα of
the ring ⊕α∈J R4(u,mα).

The polynomials are given by the following rules:

• fα|p if Cα =〈0〉,
• fα|y if Cα =〈1〉,
• fα|qi if Cα = 〈2(u−1)i

〉
, i =0, . . . ,2k −1,

• fα|ri,T if Cα = 〈(u−1)i +2(u−1)th(u)
〉

with Tor(Cα)=〈(u− 1)T 〉, where T is
as in Proposition 2.5(iv),

• fα|si,� if Cα = 〈2(u−1)�, (u−1)i +2(u−1)th(u)
〉
, �<T with T as in Proposi-

tion 2.5(iv).

For �≥T , we set si,�(X)=1= ˜si,�(X).

Remark 2. Note that the exact forms of the lifts ˜ri,T (X) and ˜si,�(X) vary
according to the code C and depend on the local components Cα.

Theorem 4.3. If C is given with generators as in Theorem 4.2, then

|C|= (4deg(t))2k ∏

0≤i≤2k−1

(2deg(qi ))2k−i
∏

1≤i≤2k−1

(
∏

T

(2deg(ri,T ))2·2k−i−T

)

×
∏

1≤i≤2k−1

⎛

⎝
∏

0≤�≤i−1

(2deg(si,�))2·2k−�−i

⎞

⎠ .
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Proof. This theorem follows from Theorem 4.2, Proposition 2.5 and the obser-
vation that, for

〈
(u−1)j

〉⊆F2mα [u]/〈(u− 1)2k 〉, we have | 〈(u−1)j
〉 |= (2mα)2k−j .

5. Duals

Recall from Theorem 2.1 that cyclic codes in (Z4)
2kn correspond to constacyclic

codes over R=Z4[u]/〈u2k −1〉 via the map �. In fact, this identification is the
same as the one given in [5], Section 3 (the φ there is our �−1).

Let ¯ : R → R denote the “conjugation” map defined by
∑2k−1

i=0 aiui =
∑2k−1

i=0 aiu
−i . (Note that u−i = u2k−i in R.) This map is also extended to

R4(u,m) in the obvious way. For any subset E of R or R4(u,m), we also
denote by E the image of E under the conjugation map. On Rn, we define
the Hermitian inner product as follows: for d = (d0, . . . , dn−1) ∈ Rn and d′ =
(d ′

0, . . . , d ′
n−1)∈Rn,

〈d,d′〉=
n−1∑

j=0

djd
′
j . (20)

The following lemma is essentially ([5], Proposition 3.2) translated into our
present context:

Lemma 5.1. Let notation be as above, let σ denote the cyclic shift in (Z4)
2kn and

let · denote the Euclidean inner product in (Z4)
2kn. Then 〈d,d′〉=0 if and only if

σnj (�(d)) ·�(d′)=0 for all 0≤ j ≤2k −1.

Let C and C′ be constacyclic codes over R of length n. By [5], Corollary 3.3
(see also [4, Corollary 3.3]), C and C′ are duals of each other (under the Her-
mitian inner product) if and only if �(C) and �(C′) are duals of each other
(under the Euclidean inner product).

We now consider how the Hermitian inner product in Rn is related to the
coefficients of the Discrete Fourier Transforms.

Let d= (d0, . . . , dn−1)∈Rn and d′ = (d ′
0, . . . , d ′

n−1)∈Rn, and suppose that, for
0≤ t ≤n−1,

dt =
2k−1∑

j=0

ct,j u
j and d ′

t =
2k−1∑

j=0

c′
t,j u

j .

Then �(d)= c and �(d′)= c′, where

c = (c0,0, c1,0, . . . , cn−1,0, c0,1, c1,1, . . . , c0,2k−1, c1,2k−1, . . . , cn−1,2k−1)∈ (Z4)
2kn

and

c′ = (c′
0,0, c

′
1,0, . . . , c′

n−1,0, c
′
0,1, c

′
1,1, . . . , c′

0,2k−1, c
′
1,2k−1, . . . , c′

n−1,2k−1)∈ (Z4)
2kn.
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Let ĉ(Z) =∑n−1
h=0 ĉn−hZ

h and ĉ′(Z) =∑n−1
h=0 ĉ′

n−hZ
h be the Mattson–Solomon

polynomials of c and c′, respectively. Then, by Lemma 3.1,

n−1∑

t=0

dtd
′
t =

1
n2

n−1∑

t=0

ĉ(ζ t )̂c′(ζ t )

= 1
n2

n−1∑

t=0

⎛

⎝
n−1∑

j=0

ĉj ζ
−j t

⎞

⎠

⎛

⎝
n−1∑

i=0

ĉ′
iζ

−it

⎞

⎠

= 1
n2

n−1∑

j=0

ĉj

n−1∑

i=0

ĉ′
i

n−1∑

t=0

ζ−(i+j)t

= 1
n

n−1∑

i=0

ĉi ĉ
′
n−i . (21)

Definition 2. For an ideal C of S = R4(u,m), the annihilator A(C) of C is
defined to be the ideal

A(C)={g(u) |g(u)f (u)=0 for all f (u)∈C}.

For every α ∈J , let α′ denote the representative in J of the coset containing n−α.

Lemma 5.2. Let C,D be cyclic codes over Z4 of length 2kn and let C =⊕α∈J Cα

and D =⊕α∈J Dα, where Dα =A(Cα′). Then, D ⊆C⊥.

Proof. This lemma follows from (21) and Lemma 5.1.

Theorem 5.3. The annihilator A(C) of the ideal C in S =R4(u,m) is of the fol-
lowing form (notation as in Proposition 2.5):

Case C A(C)

1. 〈0〉 〈1〉
2. 〈1〉 〈0〉
3. 〈2〉 〈2〉
4.

〈
2(u−1)i

〉
(1≤ i ≤2k −1)

〈
2, (u−1)2k−i

〉

5.
〈
(u−1)i

〉
(1≤ i ≤2k−1)

〈
(u−1)2k−i +2(u−1)2k−1−i

〉

6.
〈
(u−1)i

〉
(2k−1 +1≤ i ≤2k −1)

〈
2(u−1)2k−i , (u−1)2k−1 +2

〉

7.
〈
(u−1)i +2(u−1)i−2k−1

〉 〈
(u−1)2k−i

〉

(2k−1 ≤ i ≤2k −1)
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8.
〈
(u−1)i+2(u−1)i−2k−1

(1+(u−1)τ h̃(u))
〉 〈

(u−1)2k−i +2(u−1)2k−1+τ−i h̃(u)
〉

(2k−1 ≤ i ≤2k−1 + τ, τ ≥1)

9.
〈
(u−1)i+2(u−1)i−2k−1

(1+(u−1)τ h̃(u))
〉 〈

2(u−1)2k−i , (u−1)2k−1−τ +2h̃(u)
〉

(2k−1 + τ < i ≤2k −1, τ ≥1)

10.
〈
(u−1)2k−1 +2h(u)

〉
(h0 �=0,1)

〈
(u−1)2k−1 +2(1+h(u))

〉

11.
〈
(u−1)i +2(u−1)i−2k−1

h(u)
〉 〈

2(u−1)2k−i , (u−1)2k−1 +2(1+h(u))
〉

(2k−1 +1≤ i ≤2k −1, h0 �=0,1)

12.
〈
(u−1)i +2(u−1)th(u)

〉 〈
(u−1)2k−i+2(u−1)2k−1−i (1+(u−1)2k−1−i+t h(u))

〉

(2k−1 − i + t �=0, i ≤2k−1, h(u) �=0)

13.
〈
(u−1)i +2(u−1)th(u)

〉 〈
2(u−1)2k−i ,(u−1)2k−1+2(1+(u−1)2k−1−i+t h(u))

〉

(2k−1 − i + t �=0,
2k−1 <i <2k−1 + t, h(u) �=0)

14.
〈
(u−1)i +2(u−1)th(u)

〉 〈
2(u−1)2k−i ,(u−1)i−t+2(h(u)+(u−1)i−t−2k−1

)
〉

(2k−1 − i + t �=0,2k−1 + t < i,
t >0, h(u) �=0)

15.
〈
(u−1)i +2h(u)

〉 〈
(u−1)i +2(h(u)+ (u−1)i−2k−1

)
〉

(2k−1 <i, h(u) �=0)

16.
〈
2, (u−1)i

〉
(1≤ i ≤2k −1)

〈
2(u−1)2k−i

〉

17.
〈
2(u−1)�, (u−1)2k−1 +2

〉 〈
(u−1)2k−�

〉

(1≤�≤2k−1 −1)

18.
〈
2(u−1)�,(u−1)2k−1+2(1+(u−1)τ h̃(u)

〉 〈
(u−1)2k−� +2(u−1)2k−1−�+τ h̃(u)

〉

(1≤�≤2k−1 −1, 1≤ τ ≤�−1)

19.
〈
2(u−1)�, (u−1)2k−1 +2h(u)

〉 〈
(u−1)2k−� +2(u−1)2k−1−�(1+h(u))

〉

(1≤�≤2k−1 −1, h0 �=0,1)

20.
〈
2(u−1)�, (u−1)i +2h(u)

〉 〈
(u−1)2k−�+2(u−1)2k−�−i (h(u)+(u−1)i−2k−1

)
〉

(2k−1 +1≤ i ≤2k −1, h(u) �=0,
1≤�≤2k − i −1)

21.
〈
2(u−1)�, (u−1)i +2h(u)

〉 〈
(u−1)2k−�+2(u−1)2k−1−�(1+(u−1)2k−1−ih(u))

〉

(1≤ i ≤2k−1 −1, h(u) �=0
1≤�≤ i −1)

22.
〈
2(u−1)�, (u−1)i

〉 〈
2(u−1)2k−i , (u−1)2k−�

(1≤ i ≤2k −1 , +2(u−1)2k−1−�
〉

i −2k−1 +1≤�≤min{i,2k−1}−1)

23.
〈
2(u−1)�, (u−1)i

〉 〈
2(u−1)2k−i , (u−1)2k−�

〉

(2k−1 +1≤ i ≤2k −1, 1≤�≤ i −2k−1)
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Case C A(C)

24.
〈
2(u−1)�, (u−1)i +2(u−1)i−2k−1

〉 〈
2(u−1)2k−i , (u−1)2k−�

〉

(2k−1 +1≤ i ≤2k −1, i −2k−1 <�<i)

25.
〈
2(u−1)�,

〈

2(u−1)2
k−i , (u−1)2

k−�+2(u−1)2
k−1−�+τ h̃(u)

〉

(u−1)i +2(u−1)i−2k−1
(1+ (u−1)τ h̃(u))

〉

(2k−1 +1≤ i ≤2k −1,
i −2k−1 <�<min{i,2k−1 + τ })

26.
〈
2(u−1)�, (u−1)i +2(u−1)i−2k−1

h(u)
〉 〈

2(u−1)2k−i ,

(2k−1 +1≤ i ≤2k −1, i −2k−1 <�<2k−1, (u−1)2k−�+2(u−1)2k−1−�(1+h(u))
〉

h0 �=0,1)

27.
〈
2(u−1)�, (u−1)i +2(u−1)th(u)

〉 〈
2(u−1)2k−i ,

(2k−1 + t < i <2k−1 +�, h(u) �=0, (u−1)2k−�+2(u−1)2k−�−i+t ((u−1)i−t−2k−1

0<t <�<2k − i + t) +h(u))
〉

28.
〈
2(u−1)�, (u−1)i +2(u−1)th(u)

〉 〈
2(u−1)2k−i ,(u−1)2k−�+2(u−1)2k−�−i+t h(u)

〉

(2k−1 +�≤ i, h(u) �=0,
0<t <�<2k − i + t)

29.
〈
2(u−1)�, (u−1)i +2(u−1)th(u)

〉 〈
2(u−1)2k−i ,

(1≤ i ≤2k−1 + t −1, h(u) �=0 , (u−1)2k−�+2(u−1)2k−1−�(1+(u−1)2k−1

0<t <�<min{2k−1, i,2k}) −i+t h(u))
〉

Proof. For each C, let D denote the corresponding ideal in the right-most
column. A simple verification shows that D ⊆ A(C) and that |D| = (4m)2k

/|C|.
An argument similar to the one for Lemma 5.2 (with C a cyclic code of length
2k over GR(4,m)) proves that A(C)⊆C⊥, so (cf. [6, Theorem 3.10(iii)])

(4m)2k

/|C|= |D|≤ |A(C)|= |A(C)|≤ |C⊥|= (4m)2k

/|C|.
Therefore, D =A(C) and A(C)=C⊥.

The following description of the dual code now follows from Lemma 5.2 and
the proof of Theorem 5.3.

Corollary 5.4. Let C be a cyclic code over Z4 of length 2kn and let C =
⊕α∈J Cα. Then C⊥ =⊕α∈J A(Cα′).

Therefore, to understand self-dual codes, it is first necessary to identify the
ideals C ⊆R4(u,m) such that C =A(C).

Proposition 5.5. With notation as in Theorem 5.3, if C = A(C), then C must
belong to one of the following types:
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• 〈2〉 (Case 3);
• 〈(u−1)i +2h(u)

〉
, (2k−1 <i, h(u) �=0) (Case 15);

•
〈
2(u−1)2k−i , (u−1)i

〉
, (3 ·2k−2 ≤ i ≤2k −1) (Case 23);

•
〈
2(u−1)2k−i , (u−1)i +2(u−1)th(u)

〉
, (2k−1 + t < i, h(u) �= 0, 0 < t < 2k − i)

(Cases 27 & 28).

Remark 3. For Cases 15, 27 and 28, additional conditions on the coefficients of
h(u) may be necessary in order for C =A(C).

Proof. First, we eliminate the other cases. It is clear that C in Cases 1 and 2 cannot
satisfy C =A(C). For Cases 4,6,7,9,11,13,14,16–21, C and A(C) are clearly of differ-
ent types (e.g., in all cases except for Case 7, one ideal is principal while the other is
not).

Some other cases are eliminated by showing an element is in C, if we assume
C = A(C), while it really should not. This approach works for Cases 5, 8, 10
and 12. We illustrate with Case 8 (one of the more involved among these cases).
Note that Res(C)=Res(A(C)) implies that i =2k−1. Now write h(u)=∑hj (u−
1)j . By Proposition 2.5, Tor(C)=〈(u−1)2k−1〉 in this case. The assumption C =
A(C) implies that

C =
〈
(u−1)2k−1 +2

(
1+
∑

hj (u−1)j+τ
)〉

=
〈
(u−1)2k−1 +2(u−1)τ

(∑
hj (u−1)ju2k−1−τ−j

)〉
,

which implies that

2
(

1+
∑

hj (u−1)j+τ
)

+2(u−1)τ
(∑

hj (u−1)ju2k−1−τ−j
)

∈C.

This means that

(
1+
∑

hj (u−1)j+τ
)

+ (u−1)τ
(∑

hj (u−1)ju2k−1−τ−j
)

∈Tor(C)=〈(u−1)2k−1〉,

which cannot be true since τ ≥ 1. Cases 5, 10 and 12 can be eliminated in a
similar fashion.

The remaining cases to eliminate, i.e., Cases 22, 24, 25, 26 and 29, can be
proved by showing that the assumption C = A(C) leads to a contradiction to
some of the conditions on i, � and t . E.g., consider Case 25. With h̃(u) =∑

h̃j (u−1)j , the assumption C =A(C) means that

〈
2(u−1)�, (u−1)i +2(u−1)i−2k−1

(1+ (u−1)τ
∑

h̃j (u−1)j )
〉

=
〈
2(u−1)2k−i , (u−1)2k−� +2(u−1)2k−1−�+τ (

∑
h̃j (u−1)ju2k−1−τ−j )

〉
,
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which implies that i +�=2k and (hence)

2(u−1)i−2k−1
(

1+ (u−1)τ
∑

h̃j (u−1)j
)

+2(u−1)i−2k−1+τ
(∑

h̃j (u−1)ju2k−1−τ−j
)

∈C,

so

(u−1)i−2k−1
(

1+ (u−1)τ
∑

h̃j (u−1)j + (u−1)τ
∑

h̃j (u−1)ju2k−1−τ−j
)

∈Tor(C)=
〈
(u−1)�

〉
.

This means that i − 2k−1 ≥ �, but this case assumes that i − 2k−1 <�. Cases 22,
24, 26 and 29 may be dealt with in a similar way.

Consequently, only cases 3, 15, 23, 27 and 28 remain plausible for C. The
additional constraint for Case 23 in the statement of the Proposition follows
because i +�=2k and �≤ i −2k−1.

Note that this proposition is not an “if and only if” result, for C simply
being one of these cases does not ensure that C =A(C).

Corollary 5.6. For k∈{1,2,3,4} and C an ideal in R4(u,m), we have C =A(C)

if and only if C is

(i) (k =1) 〈2〉;
(ii) (k =2) 〈2〉, 〈(u−1)3 +2h0〉 (h0 ∈Tm \ {0}), or 〈2(u−1), (u−1)3〉;

(iii) (k=3) 〈2〉, 〈(u−1)5 +2(1+h1(u−1)+h2(u−1)2)〉, 〈(u−1)6 +2(h0 +h1(u−
1))〉, 〈(u−1)7 +2h0〉, 〈2(u−1), (u−1)7〉, 〈2(u−1)2, (u−1)6〉, or 〈2(u−1)2,

(u−1)6 +2(u−1)h0〉 (h0 ∈Tm \ {0}, h1, h2 ∈Tm);

(iv) (k = 4) 〈2〉, 〈(u − 1)15 + 2h0〉, 〈(u − 1)14 + 2(h0 + h1(u − 1))〉, 〈(u − 1)12 +
2(h0 + h2(u − 1)2 + h3(u − 1)3)〉, 〈(u − 1)10 + 2(h0 + (1 + h0)(u − 1) + h2(u −
1)2 + h4(u − 1)4 + h5(u − 1)5)〉, 〈2(u − 1)4, (u − 1)12〉, 〈2(u − 1)3, (u − 1)13〉,
〈2(u−1)2, (u−1)14〉, 〈2(u−1), (u−1)15〉, 〈2(u−1)6, (u−1)10 +2(u−1)(1+
h1(u−1)+h3(u−1)3 +h4(u−1)4)〉, 〈2(u−1)5, (u−1)11 +2(u−1)(h0 + (1+
h0)(u − 1) + h2(u − 1)2 + h3(u − 1)3)〉, 〈2(u − 1)5, (u − 1)11 + 2(u − 1)2(1 +
h1(u − 1) + h2(u − 1)2)〉, 〈2(u − 1)2, (u − 1)14 + 2(u − 1)h0〉, 〈2(u − 1)3, (u −
1)13 + 2(u − 1)(h0 + h1(u − 1))〉, 〈2(u − 1)3, (u − 1)13 + 2(u − 1)2h0〉, 〈2(u −
1)4, (u − 1)12 + 2(u − 1)2(h0 + h1(u − 1))〉, or 〈2(u − 1)4, (u − 1)12 + 2(u −
1)3h0〉 (h0 ∈Tm \ {0}, h1, h2, h3, h4, h5 ∈Tm).

Proof. By Proposition 5.5, it suffices to deduce the additional conditions sat-
isfied by the coefficients of h(u) in Cases 15, 27 and 28.

When k =1, it is clear that Cases 15, 23, 27 and 28 do not exist.
When k =2, Cases 27 and 28 cannot exist because the conditions imply that

i = 3 and t = 0, contradicting the assumption that t > 0. For Case 15, the con-
dition on i shows that i = 3 (so Tor(C) = 〈(u − 1)〉 and hence we may assume
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h(u)=h0 where h0 ∈Tm\{0}), and therefore C =A(C) if and only if

〈(u−1)3 +2h0〉=〈(u−1)3 +2(u3h0 +u2(u−1))〉,

which is equivalent to

2(h0 +u3h0 +u2(u−1))∈C,

i.e.,

h0 +u3h0 +u2(u−1)∈Tor(C)=〈(u−1)〉.

This last condition is true for all h0 ∈Tm \ {0}. This completes the case k =2.
Now consider the case k=3. A necessary condition for Case 15 is 5≤ i ≤7 (so

Tor(C) = 〈(u − 1)8−i〉 and hence we may assume that h(u) =∑7−i
j=0 hj (u − 1)j ).

Noting that ue = (1+ (u−1))e =∑e
m=0
(

e
m

)
(u−1)m, the same kind of argument

as in the case k = 2 shows that C = A(C) if and only if C = 〈(u − 1)5 + 2(1 +
h1(u− 1)+h2(u− 1)2)〉, 〈(u− 1)6 + 2(h0 +h1(u− 1))〉 or 〈(u− 1)7 + 2h0〉, where
h0 ∈Tm\{0} and h1, h2 ∈Tm.

For Cases 27 and 28, writing �=2k − i, we see that the conditions imply that
0 <t < 2 (i.e., t = 1), so i > 5 and �< 3. However, Case 27 can only exist if �≥
t +2=3 (see the conditions in Theorem 5.3). As for Case 28, t =1 must imply
�= 2, so i = 6. Arguing as in the case k = 2, we see that C =A(C) if and only
if C =〈2(u−1)2, (u−1)6 +2(u−1)h0〉.

Finally, let k =4. The condition in Case 15 means that i ≥9. Using the same
approach as for k =3, it is easy to see that, when i =9, 11 or 13, we must have
h0 = 0 (this can be seen by considering the coefficient of (u − 1) in h(u) +
uih(u−1) + u8(u − 1)i−8). The conditions on the coefficients of h(u) when i =
10,12,14,15 can also be obtained using the same consideration.

For Case 27, we must have i < 12 and 4 > i − 8 > t , so only t = 1 and 2 are
feasible. If t = 1, then i ∈ {10,11}; while t = 2 implies that i = 11. An argument
similar to the one in the case k =3 yields the desired ideals.

As for Case 28, the conditions imply that i ≥12 and 0<t <16− i. Therefore,
the only possibilities are: i = 14 and t = 1; i = 13 and i = 1,2; and i = 12 and
t = 1,2,3. Applying the same argument as above, the conditions for the coeffi-
cients of h(u) are obtained, except that the case i =12 and t =1 yields the con-
dition h0 =0 and is thus inadmissible.

This completes the proof of the corollary.

Corollary 5.7. For 1 ≤ k ≤ 4, the number of ideals C ⊆ R4(u,m) such that
C =A(C) is

(i) 1 (when k =1);

(ii) 2m +1 (when k =2);

(iii) 2 · (2m)2 +2m +1 (when k =3); and

(iv) (2m)4 +2 · (2m)3 + (2m)2 +2m +2 (when k =4).
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For α ∈J , recall that Nα denotes the number of ideals in R4(u,mα). Let Mα

denote the number of ideals C in R4(u,mα) such that C =A(C) (when 1≤k≤4,
this value is given in Corollary 5.7).

Let J̃ denote the subset of J consisting of those α such that α = α′, where
α′ ∈ J is the representative of the cyclotomic coset containing n − α. We also
further partition J\J̃ into two parts K,K ′ of equal size such that α ∈K if and
only if α′ belongs to K ′.

The following enumeration of self-dual cyclic codes over Z4 follows immedi-
ately from Corollary 5.4.

Proposition 5.8. The number of self-dual cyclic codes over Z4 of length 2kn is
given by

∏
α∈K Nα

∏
α∈J̃

Mα.

Example 5.1. For cyclic codes of length 28 over Z4, we have k = 2 and n = 7.
Note that J̃ ={0} and that we may take K ={1} and K ′ ={6}. By Corollary 5.7,
Proposition 5.8 and Theorem 2.6, there are 3 ·113=339 self-dual cyclic codes of
length 28.

As a corollary, we also retrieve [2, Corollary 2].

Corollary 5.9. If there exists e such that −1≡2e mod n, then there is only one
cyclic self-dual code of length 2n where n is odd, namely 2(Z4)

2n.

Proof. If N = 2n, then k = 1. We have that Z4[X]/〈X2kn − 1〉∼=⊕α∈J R4(u,mα).
The condition that −1 ≡ 2e mod n for some e implies that α =α′ for all α ∈J ,
i.e., J = J̃ . Since k =1, the only self-dual ideal in each R4(u,mα) is 〈2〉. There-
fore there is only one cyclic self-dual code and it is ⊕α∈J 〈2〉=2(Z4)

2n.

6. Examples

We shall give examples of cyclic codes for lengths less than or equal to 14.

N =2.

If N =2, then n=1, k =1, J ={0}, and m0 =1. There are seven ideals for this
case. We shall list them together with the vectors that generate the code over
Z4:

〈0〉↔ (0 0
)
, 〈1〉↔

(
1 0
0 1

)

, 〈2〉↔
(

2 0
0 2

)

,

〈2(u−1)〉↔ ( 2 2
)
, 〈(u−1)〉↔ ( 1 3

)
, 〈(u−1)+2〉↔ ( 1 1

)
,

〈(u−1),2〉↔
(

1 3
0 2

)

.

There is only one cyclic self-dual code of length 2, namely 〈2〉.
N =4.
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If N =4, then n=1, k =2, J ={0}, and m0 =1. There are 23 ideals for this case.
There are three cyclic self-dual codes of this length. We shall list them:

〈2〉↔2(Z4)
4,

〈(u−1)3 +2〉↔
⎛

⎝
1 1 3 1
0 2 2 0
0 0 2 2

⎞

⎠ ,

〈2(u−1), (u−1)3〉↔
⎛

⎝
1 1 3 3
0 2 0 2
0 0 2 2

⎞

⎠ .

N =6.

If N = 6, then n= 3, k = 1, J ={0,1}, m0 = 1 and m1 = 2. We have Z4[X]/〈X6 −
1〉∼=R4(u,1)⊕R4(u,2). There are 7 ·9=63 ideals in this case. There is only one
cyclic self-dual code, namely 〈2〉⊕〈2〉↔2(Z4)

6.

N =8.

If N =8, then n=1, k =3, J ={0}, and m0 =1. There are 135 ideals in this case.
There are 11 cyclic self-dual codes of length 8. They are: 〈2〉, 〈(u− 1)5 + 2〉,

〈(u− 1)5 + 2(1 + (u− 1))〉, 〈(u− 1)5 + 2(1 + (u− 1)2)〉, 〈(u− 1)5 + 2(1 + (u− 1)+
(u−1)2)〉, 〈(u−1)6 +2〉, 〈(u−1)6 +2(1+ (u−1))〉, 〈(u−1)7 +2〉, 〈2(u−1)2, (u−
1)6〉, 〈2(u−1), (u−1)7〉 and

〈
2(u−1)2, (u−1)6 +2(u−1)

〉
. (The list given in Ref.

1, Section IV is incorrect.)

N =10.

If N = 10, then n= 5, k = 1, J ={0,1}, m0 = 1 and m1 = 4. There are 7 · 21 = 84
ideals in this case. There is only 1 cyclic self-dual code, namely 〈2〉 ⊕ 〈2〉 ↔
2(Z4)

10.

N =12.

If N =12, then n=3, k =2, J ={0,1}, m0 =1 and m1 =2. We have Z4[X]/〈X12 −
1〉 ∼= R4(u,1) ⊕ R4(u,2). We have seen that R4(u,1) has 23 distinct ideals and
R4(u,2) has 45 distinct ideals making 1035 distinct cyclic codes of length 12
over Z4.

Corollary 5.6 gives the possible self-dual ideals in the rings. There are three
self-dual ideals in R4(u,1) and they are:

〈2〉, 〈(u−1)3 +2〉, 〈2(u−1), (u−1)3〉.
There are five self-dual ideals in R4(u,2) and they are:

〈2〉, 〈(u−1)3 +2〉, 〈(u−1)3 +2ξ〉, 〈(u−1)3 +2ξ2〉, 〈2(u−1), (u−1)3〉,
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where T2 ={0,1, ξ, ξ2} is the Teichmüller set of GR(4,2).
Hence there are 15 self-dual codes of the form C0 ⊕C1, where C0 is an ideal

in the first list and C1 is an ideal in the second list.

N =14.

If N = 14, then n = 7, k = 1, J = {0,1,6}, m0 = 1, m1 = 3 and m6 = 3. There are
7 · 13 · 13 = 1183 ideals in this case. There is only one ideal C0 in R4(u,1) such
that C0 =A(C0), while there are 13 distinct ideals C1 in R4(u,3). Any self-dual
code in Z4[X]/〈X14 −1〉 is of the form C0 ⊕C1 ⊕A(C1), so there are altogether
13 self-dual codes of length 14.

7. Conclusion

We have determined the structure of cyclic codes over Z4 for arbitrary even
lengths, giving the generator polynomial for these codes. The number of cyclic
codes for a given length is also obtained. A spectral description of these codes
has been given, which enabled us to describe the duals of the cyclic codes and
the form of cyclic codes that are self-dual, as well as to enumerate self-dual
cyclic codes over Z4. All cyclic self-dual codes of length less than or equal to
14 were also studied.

A natural open problem is to study the structure of cyclic codes of arbitrary
lengths over Zpe , where p is a prime and e≥2 is a positive integer.
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