
Efficient Computation of Roots in Finite Fields

PAULO S. L. M. BARRETO∗ (pbarreto@larc.usp.br)
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Abstract. We present an algorithm to compute r-th roots in Fqm with complexity
O((log m + r log q)m2 log2 q) for certain choices of m and q. This compares well to
previously known algorithms, which need O(rm3 log3 q) steps.
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1. Introduction

Calculation of roots in finite fields Fqm (where q = pd for some prime
p and some d > 0) is a classical problem in computational algebra
and number theory. Besides its intrinsic interest, it plays an essential
role in cryptosystems based on elliptic curves and other Abelian vari-
eties, where plain exponentiation (fundamental for more conventional
cryptosystems) is not relevant.

A typical application of root extraction is point compression in ellip-
tic curves. In general, a point (x, y) on a curve E(Fqm) is compressed as
(x, β) where β ∈ Z2 is a single bit from y; the full y value is recovered
from (x, β) by solving for y the curve equation y2 = P (x), which
involves computing a square root

√
P (x). Under certain circumstances

it may be more convenient to compress (x, y) as (α, y) where α ∈ Z3 is
a single trit from x; the full x value is recovered by solving the curve
equation for x rather than y. This is the case when taking a cubic
root is more efficient than taking a square root, for instance, when
the curve equation is y2 = x3 + c over Fqm for some c (in this case,
our new algorithm is most suitable for odd m and a Fermat prime
q). A similar situation arises in the operation of hashing onto elliptic
curves, as needed by a large number of cryptosystems, notably pairing-
based schemes [4, 5, 10, 12]. The method usually consists of mapping
messages onto (x, β) or (α, y) pairs as above by applying a conventional
hash function, then solving the curve equation to get a complete point.
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Higher order roots appear in analogous settings over hyperelliptic and
superelliptic curves [6].

Taking r-th roots in a finite field Fqm is most commonly computed
by means of the Adleman-Manders-Miller algorithm [1] (see also [2,
section 7.3]), which extends Tonelli’s square root algorithm. The com-
plexity of the Adleman-Manders-Miller algorithm is O(rm4 log4 q) steps
in general, but for certain special fields Fq this drops to O(rm3 log3 q)
steps if r is fixed and small. Cipolla’s square-root algorithm attains
complexity O(m3 log3 q) for any finite field Fqm , but does not seem to
admit of a simple generalization for higher order roots.

Computing generic powers, on the other hand, is a problem for which
many efficient algorithms are known. Particularly efficient algorithms
are described in [7], with complexity O(m2 log log m log q) if q is a small
prime. Other specialized improved algorithms for exponentiation are
given in [13]. It is natural to ask if similar methods could be used
for root calculation since one can compute r

√
x as xv with v ≡ r−1

(mod qm − 1) when (r, qm − 1) = 1, and what can be done when r is
not invertible modulo (qm−1) as in this case not all field elements have
r-th roots.

Our contribution in this paper is to show, for a large family of
prime powers q and extension degrees m, how to take advantage of the
periodic structure of v written in base q to compute r-th roots in Fqm .
The complexity of the resulting scheme is O((log m + r log q)m2 log2 q)
due to a divide-and-conquer strategy; we conjecture that algorithms
even more efficient are possible using more complex addition chains.
Furthermore, we explore extensions of this strategy that work, under
certain circumstances, when (r, qm − 1) 6= 1.

The basic idea of the new algorithm stems from the Itoh-Tsujii [9]
algorithm for computing multiplicative inverses and was already used
in [3] to efficiently compute square roots. The Itoh-Tsujii algorithm is
described in depth in [8], where the reader will also find a discussion
of implementation aspects; that discussion applies equally well to our
algorithm.

2. The New Algorithm

Our new algorithm computes r-th roots in Fqm provided that q, m, r
satisfy certain constraints. Our fundamental strategy is to seek a simple
expression for v ≡ r−1 (mod qm − 1) so as to reduce the complexity
of computing r

√
x as xv in Fq.

Efficiently taking roots that are powers of the characteristic p in
Fqm is straightforward. Notice that, since raising to a power of p is a
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linear bijection in characteristic p, the complexity of such operation is
no larger than that of multiplication, namely, O(m2 log2 q), and under
certain circumstances can be much smaller [11, chapter 6].

For certain primes q > 2 and odd m, efficient computation of square
roots has been described in a previous work [3], and generalizing that
method to roots that are higher powers of 2 is immediate. It is possi-
ble to compute roots by using exponent periodicity for more general
q, m, r. This is established by the results below. First we state as a
separate lemma the divide-and-conquer strategy to using periodicity in
the algorithm.

LEMMA 1. Let Fqm be a finite field of characteristic p and let s be a
power of p. Define the map φn : Fqm → Fqm, y 7→ y1+s+···+sn

for n ∈ N∗.
We can compute φn(y) with O(log n) multiplications and raisings to
powers of p.

Proof. If n = 2k + 1, then y1+s+···+sn
= y1+s+···+sk

(y1+s+···+sk
)sk+1

and if n = 2k then y1+s+···+sn
= y1+s+···+sk−1

(y(y1+s+···+sk−1
)s)sk

. The
result follows by iterating this procedure, halving the value of n each
time; this can be done at most max(blg nc, 1) times, taking no more
than 2 multiplications and 2 raisings to powers of s at each step. 2

We will show that we can reduce root extraction to an operation of
the form x 7→ xaφn(xb) for small a, b and apply the above lemma.

2.1. Taking roots by inverting the exponent

We first tackle root extraction in the case (r, q − 1) = 1. The periodic
structure of r−1 (mod qm−1) leads to an efficient r-th root algorithm,
as established by the following considerations.

LEMMA 2. Given q and r with (q(q − 1), r) = 1, let k > 1 be the
order of q modulo r. For any m > 0, (m, k) = 1, let u, 1 6 u < r
satisfy u(qm − 1) ≡ −1 (mod r) and v = bqmu/rc. Then rv ≡ 1
(mod qm − 1). In addition, v = a + b

∑n−1
j=0 qjk, a, b < q2k, n = bm/kc.

Proof. Note that (qm− 1, qk − 1) = q− 1 since m and k are coprime.
As r divides qk−1 but is coprime to q−1 we conclude that qm−1 and
r are coprime, and u therefore is well-defined. Thus u(qm− 1) = vr− 1
for some integer v and since qmu/r = v + (u − 1)/r we have that
v = bqmu/rc and from the equation u(qm − 1) = vr − 1 it follows that
rv ≡ 1 (mod qm − 1).
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Finally, let z = u(qk − 1)/r. Then z is an integer and z < qk − 1.
Now,

qmu/r = qmz/(qk − 1) = qm−kz
∞∑

j=0

q−jk = qm−kz
n−1∑
j=0

q−jk + α,

say. Thus v = zqm−nk ∑n−1
j=0 qjk+bαc and we take a = bαc, b = zqm−nk,

which completes the proof. 2

Remark 1. To compute u one can replace m by its least residue mod-
ulo k since qk ≡ 1 (mod r). Also u/r has a periodic expansion in base
q of period k and therefore v = bqmu/rc also has a periodic expansion
in base q with the same period for all m in a fixed residue class modulo
k.

THEOREM 1. Let q be a prime power, let r > 1 be such that (q(q −
1), r) = 1 and let k > 1 be the order of q modulo r. For any m > 0,
(m, k) = 1, the complexity of taking r-th roots in Fqm is O((log m +
r log q)m2 log2 q).

Proof. By Lemma 2, r−1 ≡ a + b
∑n−1

j=0 qjk (mod qm − 1) for
some a, b < q2k depending only on m (mod k) and n = bm/kc. By
Lemma 1, raising to the power

∑n−1
j=0 qjk takes O(log n) multiplications

and raisings to powers of p. The remaining work essentially consists of
raising to the powers a and b, each operation taking O(k log q) multipli-
cations due to the bound on the exponents. The total computation cost
is therefore O(log m + r log q) operations of complexity O(m2 log2 q),
from which the claimed overall complexity follows. 2

Remark 2. The complexity simplifies to O(rm2 log3 q) if r log q ∼>

log m, and to O(m2 log m log2 q) if r log q ∼< log m. In either case
it compares well to the O(rm3 log3 q) complexity of the Adleman-
Manders-Miller algorithm at its best.

2.2. Taking r-th roots when r is not invertible

We now deal with root extraction when r | (q−1). The analogous result
to Lemma 2 above is the following. Note that not every element of Fqm

is a r-th power, so we need to work in the subgroup of order (qm−1)/r
of F∗qm .

LEMMA 3. Given q and r with r | (q − 1) and ((q − 1)/r, r) = 1,
for any m > 0, (m, r) = 1, let u, 1 6 u < r satisfy u(qm − 1)/r ≡
−1 (mod r) and v = dqmu/r2e. Then rv ≡ 1 (mod (qm − 1)/r). In
addition, v = a + b

∑n−1
j=0 qjr, a, b < q2r, n = bm/rc.
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Proof. Note that, since (qm−1)/r ≡ m(q−1)/r (mod r), (qm−1)/r
and r are coprime and u therefore is well-defined. Thus u(qm − 1)/r =
vr − 1 for some integer v and since qmu/r2 = v − (r − u)/r2 we have
that v = dqmu/r2e. From the equation u(qm − 1)/r = vr − 1 it follows
that rv ≡ 1 (mod (qm − 1)/r). The rest of the proof is identical to
that of Lemma 2. 2

Remark 3. To compute u one can replace m by its least residue mod-
ulo r since (qm−1)/r ≡ m(q−1)/r (mod r). Also u/r2 has a periodic
expansion in base q of period r and therefore v = dqmu/r2e also has a
periodic expansion in base q with the same period for all m in a fixed
residue class modulo r.

THEOREM 2. Let q be a prime power and let r > 1 be such that
r | (q − 1) and ((q − 1)/r, r) = 1. For any m > 0, (m, r) = 1, given
x ∈ Fqm one can compute the r-th root of x in Fqm, or show it does not
exist, in O(r(log m + log log q)m2 log2 q) steps.

Proof. By Lemma 3, r−1 ≡ v = a + b
∑n−1

j=0 qjr (mod (qm − 1)/r)
for some a, b < q2r depending only on m (mod r) and n = bm/rc. By
Lemma 1, raising to the power

∑n−1
j=0 qjr takes O(log n) multiplications

and raisings to powers of p. The remaining work essentially consists of
raising to the powers a and b, each operation taking O(r log q) multipli-
cations due to the bound on the exponents. The cost of raising to v is
therefore O(log m+ r log q) operations of complexity O(m2 log2 q). But
given x ∈ Fqm we must still check that y = xv is a correct root, and
to this end we compute yr with cost O(log rm2 log2 q). If x is an r-th
power, then necessarily yr = x and we are done, otherwise yr is not
equal to x and we are done too. The total computation cost is therefore
O(r(log m + log log q)m2 log2 q) as claimed. 2

2.3. An example

As an example consider cube roots in characteristic two. Let F2m be a
finite field. If m is odd then we are in the situation of Lemma 2 with
q = 2 and 1/3 ≡

∑(m−1)/2
j=0 4j (mod 2m − 1).

If m is even and not divisible by 3, then we are in the situation of
Lemma 3 with q = 4 and we need to distinguish two cases. For m ≡ 2
(mod 6) we have 1/3 ≡ 1+56

∑(m−8)/6
j=0 64j (mod (2m−1)/3) and for

m ≡ 4 (mod 6) we have 1/3 ≡ 2 + 112
∑(m−10)/6

j=0 64j (mod (2m −
1)/3). For 6 | m we can apply Theorem 2 with q = 64 and r = 9
to obtain a method for extracting 9-th roots if m is not divisible by
9. To convert this to a method of extracting cube roots we need to
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introduce randomization as in the Adleman-Manders-Miller algorithm.
Given x choose a random z and try to extract the 9-th root y of xz3.
If successful output y3/z as a cube root of x, otherwise try a different
z. If a number of these steps fail, declare x not to be a cube.

3. Conclusion

This contribution described an efficient algorithm to compute r-roots
in certain finite fields Fqm . Whenever applicable, our technique bene-
fits from the periodic structure of either r−1 (mod qm − 1) or r−1

(mod (qm − 1)/r), which is handled by a divide-and-conquer tech-
nique. The computational complexity of new algorithm improves upon
previously known methods like the Adleman-Manders-Miller algorithm.
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