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ON THE NUMBER OF OPTIMAL BASE 2 REPRESENTATIONS OF

INTEGERS

PETER J. GRABNER AND CLEMENS HEUBERGER‡

Abstract. We study representations of integers n in binary expansions using the digits 0,±1.
We analyze the average number of such representations of minimal “weight” (= number of
non-zero digits). The asymptotic main term of this average involves a periodically oscillating
function, which is analyzed in some detail. The main tool is the construction of a measure on
[−1, 1], which encodes the number of representations.

1. Introduction

In many public key cryptosystems, raising one or more elements of a given group to large
powers plays an important role (cf. for instance [6, 13]). In practice, the underlying groups are
often chosen to be the multiplicative group of a finite field Fq or the group law of an elliptic curve
(elliptic curve cryptosystems).

Let P be an element of a given group, whose group law will be written additively. What we
need is to form nP for large n ∈ N in a short amount of time. One way to do this is the binary
method (cf. [19]). This method uses the operations of “doubling” and “adding P”. If we write
n in its binary representation, the number of doublings is fixed by ⌊log2 n⌋ and each one in this
representation corresponds to an addition. Thus the cost of the multiplication depends on the
length of the binary representation of n and the number of ones in this representation.

If addition and subtraction are equally costly in the underlying group, it makes sense to work
with signed binary representations, i.e., binary representations with digits {0,±1}. The advantage
of these representations is their redundancy: in general, n has many different signed binary rep-
resentations. Let n be written in a signed binary representation. Then the number of non-zero
digits is called the Hamming weight of this representation. Since each non-zero digit causes a
group addition (1 causes addition of P , −1 causes subtraction of P ), one is interested in finding
a representation of n having minimal Hamming weight. Such a minimal representation was ex-
hibited by Reitwiesner [17]. Since it has no adjacent non-zero digits, this type of representation
is often called non-adjacent form or NAF, for short. On average, only one third of the digits
of a NAF is different from zero. Morain and Olivos [15] first observed that NAFs are useful for
calculating nP for large n quickly.

In this paper we show that in an average sense every integer n has “many” signed binary
representations of minimal weight. We give sharp upper bounds for the number f(n) of such
representations and study the summatory function of f(n). In order to prove that this summatory
function exhibits a periodically fluctuating main term, we develop a new approach to summatory
functions of digital functions. This new approach allows to study sums of digital functions with-
out having “nice” explicit formulæ for these functions. We construct a purely singular continuous
measure, which encodes the distribution of the number of minimal weight expansions after rescal-
ing. This measure is then used to describe the periodic fluctuation in the asymptotic expansion.
Furthermore, we describe a method to compute the Fourier coefficients of the periodic fluctuation
numerically to high precision.
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2. Counting frequencies

We consider binary {0,±1}-expansions ε = (εk, . . . , ε0) of integers. The Hamming weight of ε

is defined as the number of non-zero digits εj . An expansion is said to be optimal or minimal,
if it has minimal Hamming weight amongst all expansions of the same integer. One example of
a minimal expansion is the non-adjacent form introduced by Reitwiesner [17]: this is the unique
binary expansion of an integer which satisfies εjεj+1 = 0. The number of minimal expansions of
an integer n will be denoted by f(n).

Lemma 1 ([11, Remark 20, Figure 16], [10, Theorem 12]). An expansion ε ∈ {0,±1}∗ is optimal
if and only if it is accepted by the automaton in Figure 1 (reading the digits from right to left).
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Figure 1. Automaton recognizing optimal signed binary expansions from right
to left. All states are terminal.

As a first result we give sharp bounds for the counting function f(n). This estimate will also
be useful for the average case analysis in Section 3.

Theorem 1. For all integers ℓ, the number of optimal expansions can be bounded by

(2.1) 1 ≤ f(ℓ) ≤ F⌊log4 |ℓ|⌋+3,

where Fn denotes the Fibonacci sequence F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn. These bounds are
sharp for infinitely many values of ℓ. Less precisely, we have

(2.2) f(n) = O(nlog4 ϕ) with ϕ =
1 +

√
5

2
.

Proof. By definition f(ℓ) ≥ 1. Since f(2s) = 1 this bound is attained for infinitely many ℓ.
The automaton in Figure 1 gives rise to four auxiliary functions aj(n), j = 2, . . . , 5 which count
the number of admissible runs in the automaton representing n and starting in state j. We set
a1(n) = f(n). The least significant digit of an even number is always 0; the least significant digit
of an odd number is ±1. Using this we observe the relations (using 2n + 1 = 2(n + 1) − 1, where
a digit −1 occurs)

aj(2n) =
∑

edge (j,k) labeled with 0

ak(n)

aj(2n + 1) =
∑

edge (j,k) labeled with 1

ak(n) +
∑

edge (j,k) labeled with −1

ak(n + 1).

Explicitly, we get

(2.3)

a1(2n) = a1(n) a1(2n + 1) = a2(n) + a4(n + 1)

a2(2n) = a1(n) a2(2n + 1) = a3(n)

a3(2n) = a2(n) a3(2n + 1) = 0

a4(2n) = a1(n) a4(2n + 1) = a5(n + 1)

a5(2n) = a4(n) a5(2n + 1) = 0.
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We claim that for s ≥ 0 and 0 ≤ ℓ < 4s, there are constants c1, c2, i1, i2 (depending on s and ℓ)
such that for all n,

a1(4
sn + ℓ) = c1ai1(n) + c2ai2(n + 1),

{i1, i2} ∈ {(1, 0), (0, 1), (3, 1), (2, 4), (1, 5)},
min{c1, c2} ≤ Fs,

max{c1, c2} ≤ Fs+1,

where ij = 0 means that cj = 0. Furthermore, for each s, there is an ℓ such that (c1, i1, c2, i2) =
(Fs, 2, Fs+1, 4) and an ℓ such that (c1, i1, c2, i2) = (Fs+1, 2, Fs, 4).

To prove the claim by induction on s, we consider the relations given in Table 1. We remark
here that the table shows that the function f(n) is 2-regular in the sense of Allouche and Shallit
(cf. [1]).

m = 0 m = 1
c1a1(4n + m) c1a1(n) c1a1(n) + c1a5(1 + n)
c2a1(4n + m + 1) c2a1(n) + c2a5(1 + n) c2a2(n) + c2a4(1 + n)
c1a3(4n + m) + c2a1(4n + m + 1) (c1 + c2)a1(n) + c2a5(1 + n) c2a2(n) + c2a4(1 + n)
c1a2(4n + m) + c2a4(4n + m + 1) c1a1(n) (c1 + c2)a2(n) + c2a4(1 + n)
c1a1(4n + m) + c2a5(4n + m + 1) c1a1(n) c1a1(n) + (c1 + c2)a5(1 + n)

m = 2 m = 3
c1a1(4n + m) c1a2(n) + c1a4(1 + n) c1a3(n) + c1a1(1 + n)
c2a1(4n + m + 1) c2a3(n) + c2a1(1 + n) c2a1(1 + n)
c1a3(4n + m) + c2a1(4n + m + 1) (c1 + c2)a3(n) + c2a1(1 + n) c2a1(1 + n)
c1a2(4n + m) + c2a4(4n + m + 1) c1a2(n) + (c1 + c2)a4(1 + n) c2a1(1 + n)
c1a1(4n + m) + c2a5(4n + m + 1) c1a2(n) + c1a4(1 + n) c1a3(n) + (c1 + c2)a1(1 + n)

Table 1. Recurrence relations for aj

We see that if a1(4
sn + ℓ) = c1ai1(n) + c2ai2(n + 1), then we have a1(4

s+1n + m4s + ℓ) =
c′1ai′

1
(n) + c′2ai′

2
(n + 1) with

min{c′1, c′2} ≤ max{c1, c2} ≤ Fs+1,

max{c′1, c′2} ≤ c1 + c2 ≤ Fs + Fs+1 = Fs+2

and such that (i′1, i
′
2) is again one of the pairs considered. Moreover, there are the two pairs where

the inequalities are sharp.
Since aj(0) = 1 for j ∈ {1, 2, 3, 4, 5} and a1(1) = a2(1) = 1 and aj(1) = 0 for j ∈ {3, 4, 5}, the

assertion of the theorem follows by setting n = 0. �

Corollary 1. For an integer n, f(n) can be computed in O(log n) steps.

Proof. The relations (2.3) say that a(n) = (a1(n), . . . , a5(n), a1(n + 1), . . . , a5(n + 1)) can be
computed from a(⌊n/2⌋). �

Corollary 2. For any N there exists n with N/4 ≤ n < N f(n) ≥ F⌊log4 N⌋+2 ≥ 2
3nlog4 ϕ

Proof. The recurrence relations in Table 1 show that in any interval [⌊N/4⌋, N ] there exists an n
such that f(n) = F⌊log4 N⌋+2. �

3. Construction of a measure and average case analysis

This section is devoted to the precise study of the summatory function
∑

n<N f(n), which
describes the average behavior of f(n). In order to exhibit the fluctuating main term of this
sum we introduce a measure µ on [−1, 1], which will turn out to be purely singular continuous
in Section 5. The construction of this measure is similar to the distribution measures of infinite
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Bernoulli convolutions as studied in [4]. There it encodes the number of representations of integers
as sums of Fibonacci numbers.

Let fn(k) denote the number of representations of an integer k of minimal weight and length
at most n. Since any representation of minimal weight is at most 1 digit longer than the usual
binary expansion, fn(k) = f⌊log2 |k|⌋+2(k) = f(k) for n ≥ ⌊log2 |k|⌋ + 2. We define a sequence of
measures by

(3.1) µn =
1

Mn

∑

k∈Z

fn(k)δk2−n ,

where δx denotes the unit point mass concentrated in x and

Mn =
∑

k∈Z

fn(k).

We notice that all points k2−n with fn(k) > 0 lie in the interval [−1, 1].
In order to compute the characteristic function of µn we consider the weighted adjacency matrix

of the automaton in Figure 1:

A(z) =





1 z 0 1
z 0

1 0 z 0 0
0 1 0 0 0
1 0 0 0 1

z
0 0 0 1 0




.

In the matrix A(z) a transition with label d is represented by an entry zd. Then we have (using
the notation e(t) = e2πit)

µ̂n(t) =
1

Mn

∑

k∈Z

fn(k)e
(
k2−nt

)
=

1

Mn
v1A

(
e(t2−n)

)
A
(
e(t2−n+1)

)
· · ·A (e(t/2)) v2

with v1 = (1, 0, 0, 0, 0) and v2 = (1, 1, 1, 1, 1)T .
We notice that

(3.2) Mn = (1, 0, 0, 0, 0)A(1)n(1, 1, 1, 1, 1)T = Cαn + O(|α2|n),

where α and α2 are the largest and second largest roots of the characteristic polynomial of A(1)
given by

(x − 1)(x + 1)(x3 − x2 − 3x + 1),

and C = 1
37 (14α2 + 5α − 22), numerically

α = 2.17009 . . . , α2 = −1.48119 . . . , C = 1.48055 . . . .

We will prove that (µn) weakly tends to a limit measure by showing that µ̂n(t) tends to a limit
µ̂(t).

Lemma 2. The sequence of measures µn defined by (3.1) converges weakly to a probability measure
µ. The characteristic functions satisfy the inequality

(3.3) |µ̂n(t) − µ̂(t)| =

{
O (|t|2−ηn) for |t| ≤ 1

O (|t|η2−ηn) for |t| ≥ 1

with

η =
log α − log |α2|

log 2 + log α − log |α2|
= 0.355251 . . . .

The constants implied by the O-symbol are absolute.

Proof. We study the product

Pn(t) = α−n
n∐

j=1

A
(
e(t2−j)

)
,
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where
∐n

j=1 pj = pnpn−1 · · · p1. We have ‖A(e(t))−A(1)‖ ≤ π
√

8|t|, where ‖ · ‖ denotes the spectral

norm. Since the characteristic polynomial of A(e(−t))T A(e(t)) turns out to be independent of t,
if t is real, we have ‖A(e(t))‖ = α. For |t| ≤ 1 we estimate

‖Pn(t) − Pn(0)‖ ≤ 1

αn

n∑

ℓ=1

αn−ℓ
∑

1≤j1<···<jℓ≤n

ℓ∏

m=1

(
π
√

8|t|
2jm

)

≤
n∑

ℓ=1

(π
√

8)ℓ

αℓℓ!
|t|ℓ



n∑

j=1

2−j




ℓ

≤ exp

(
π
√

8

α
|t|
)

− 1 ≤ 60|t|.

Furthermore, we have for m > n > ℓ and 1 ≤ |t| ≤ 2ℓ

(3.4) ‖Pn(t) − Pm(t)‖ =
∥∥Pn−ℓ(t2

−ℓ)Pℓ(t) − Pm−ℓ(t2
−ℓ)Pℓ(t)

∥∥

≤
∥∥Pn−ℓ(t2

−ℓ) − Pn−ℓ(0)
∥∥+

∥∥Pm−ℓ(t2
−ℓ) − Pm−ℓ(0)

∥∥+ ‖Pn−ℓ(0) − Pm−ℓ(0)‖

≤ 120|t|2−ℓ + 6

( |α2|
α

)n−ℓ

= O
(
|t|η2−ηn

)
.

In the last step we have set ℓ = ⌈(1− η) log2 |t|+ ηn⌉. The inequality is valid for m > n > log2 |t|.
We now assume that |t| ≤ 1 and m > n > ℓ. Then we have

|µ̂n(t) − µ̂m(t)| =

∣∣∣∣
αn

Mn
v1Pn(t)v2 −

αm

Mm
v1Pm(t)v2

∣∣∣∣

=

∣∣∣∣
αn

Mn
v1Pn−ℓ

(
t2−ℓ

)
Pℓ(t)v2 −

αm

Mm
v1Pm−ℓ

(
t2−ℓ

)
Pℓ(t)v2

∣∣∣∣

≤
∣∣∣∣
αn

Mn
v1Pn−ℓ(0)Pℓ(t)v2 −

αm

Mm
v1Pm−ℓ(0)Pℓ(t)v2

∣∣∣∣+ O
(
|t|2−ℓ

)

=

∣∣∣∣
αn

Mn
v1Pn−ℓ(0) (Pℓ(t) − Pℓ(0)) v2 −

αm

Mm
v1Pm−ℓ(0) (Pℓ(t) − Pℓ(0)) v2

∣∣∣∣+ O
(
|t|2−ℓ

)

= |t|O
(

2−ℓ +

( |α2|
α

)n−ℓ
)

,

where we have used αn

Mn
v1Pn(0)v2 = 1 in the fourth line. Setting ℓ = ⌊ηn⌋ gives

|µ̂n(t) − µ̂m(t)| = O
(
|t|2−ηn

)
.

Thus µ̂n(t) converges uniformly on compact subsets of R to a continuous limit µ̂(t), and the
measures µn tend to a measure µ weakly. The two inequalities (3.3) are immediate. �

In the next lemma we prove continuity of the measure µ. Our study of the Fourier expansion of
the periodic main term as well as the remainder term estimate in (3.8) will depend on the modulus
of continuity given here.

Lemma 3. The measure µ satisfies

(3.5) µ([x, y]) = O
(
(y − x)β

)

for β = log2 α − log4 ϕ = 0.770632 . . . > 1
2 .

Proof. We first notice that every interval [x, y] ⊆ [−1, 1] can be covered by an interval [x′, y′], which
is the union of at most two elementary binary intervals, i.e. intervals of the form [a2−n, (a+1)2−n]
with a ∈ Z, n ∈ N, such that

(3.6)
1

5
(y′ − x′) ≤ (y − x) ≤ (y′ − x′).

For a proof just consider the interval
[
2−n⌊x2n⌋, 2−n⌈y2n⌉

]
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with n = −⌊log2(y − x)⌋ − 1.
Thus it suffices to prove (3.5) for elementary binary intervals. We have

µ
(
[a2−n, (a + 1)2−n]

)
= lim

m→∞

1

Mm

∑

a2m−n≤k≤(a+1)2m−n

fm(k) = lim
m→∞

1

Mm

∑

0≤k≤2m−n

fm(a2m−n + k).

Let a2m−n + k =
∑

j≥0 εj2
j be an optimal expansion. Then for some ε ∈ {0,±1}, ∑m−n−1

j=0 εj2
j

and
∑

j≥m−n εj2
j−m+n are optimal expansions of k − ε2m−n and a + ε, respectively. Therefore

we have
∑

0≤k<2m−n

fm(a2m−n + k) ≤
∑

0≤k≤2m−n

ε∈{0,±1}

f(a + ε)f(k − ε2m−n) ≪ (a + 1)log4 ϕ
∑

−2m−n≤k≤2m−n+1

f(k)

by Theorem 1. Since the last sum is bounded by Mm−n+2 we have

µ
(
[a2−n, (a + 1)2−n]

)
≪ (a + 1)log4 ϕ lim

m→∞

Mm−n+2

Mm
≪
(√

ϕ

α

)n

.

Combining this with (3.6) gives (3.5). �

In order to give an error bound for the rate of convergence of the measures µn to the measure
µ, we will use the following version of the Berry-Esseen inequality, which was proved in [7].

Proposition 1. Let µ1 and µ2 be two probability measures with their Fourier transforms defined
by

µ̂k(t) =

∫ ∞

−∞

e2πitx dµk(x), k = 1, 2.

Suppose that (µ̂1(t) − µ̂2(t))t
−1 is integrable on a neighborhood of zero and µ2 satisfies

µ((x, y)) ≤ c|x − y|β

for some 0 < β < 1. Then the following inequality holds for all real x and all T > 0

|µ1((−∞, x)) − µ2((−∞, x))| ≤

∣∣∣∣∣∣

T∫

−T

Ĵ(T−1t)(2πit)−1 (µ̂1(t) − µ̂2(t)) e−2πixt dt

∣∣∣∣∣∣

+

(
c +

1

π2

)
T− 2β

2+β +

∣∣∣∣∣∣
1

2T

T∫

−T

(
1 − |t|

T

)
(µ̂1(t) − µ̂2(t)) e−2πixt dt

∣∣∣∣∣∣
,

where
Ĵ(t) = πt(1 − |t|) cotπt + |t|.

Lemma 4. The measures µn satisfy

(3.7) |µn((x, y)) − µ((x, y))| = O
(
2−θn

)

uniformly for all x, y ∈ R with θ = 2βη
η(β+2)+2β = 0.2168 . . ..

Proof. We apply Proposition 1 to the measures µn and µ. For this purpose we use the inequalities
(3.3) to obtain

|µn((−∞, x)) − µ((−∞, x))|

≪ 2−ηn

1∫

−1

dt + 2−ηn

∫

1≤|t|≤T

|t|η−1 dt + T− 2β

2+β + 2−ηn 1

T

1∫

−1

|t| dt + 2−ηn 1

T

∫

1≤|t|≤T

|t|η dt ≪ 2−θn

by choosing T = 2θ 2+β

2β
n. �

In Section 5 we will prove that µ is purely singular with respect to Lebesgue measure. As a
first step we prove the following lemma.
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Lemma 5. The measure µ is not absolutely continuous with respect to Lebesgue measure.

Proof. We observe that

µ̂(2k) = lim
n→∞

v1
αn

Mn
Pn(2k)v2 = lim

n→∞
v1

αn−k

Mn
Pn−k(1)A(1)kv2.

The matrices Pm(1) converge to a limiting matrix P (1) with rate 120 · 2−m/2 + 6
(

|α2|
α

)m/2

by

(3.4). A numerical computation shows that

P (1) =




0.2350 −0.2552 + 0.04946i −0.01256 − 0.1395i −0.2552 − 0.04946i −0.01256 + 0.1395i

0.1375 −0.1493 + 0.02893i −0.007352 − 0.08165i −0.1493 − 0.02893i −0.007352 + 0.08165i

0.06337 −0.06880 + 0.01333i −0.003388 − 0.03762i −0.06880 − 0.01333i −0.003388 + 0.03762i

0.1375 −0.1493 + 0.02893i −0.007352 − 0.08165i −0.1493 − 0.02893i −0.007352 + 0.08165i

0.06337 −0.06880 + 0.01333i −0.003388 − 0.03762i −0.06880 − 0.01333i −0.003388 + 0.03762i





The matrices α−kA(1)k tend to

B =





0.546474 0.319711 0.147326 0.319711 0.147326
0.319711 0.187045 0.0861923 0.187045 0.0861923
0.147326 0.0861923 0.0397184 0.0861923 0.0397184
0.319711 0.187045 0.0861923 0.187045 0.0861923
0.147326 0.0861923 0.0397184 0.0861923 0.0397184




.

Thus

lim
k→∞

µ̂(2k) =
1

C
v1P (1)Bv2 = −0.0703223 . . .

Thus µ is not absolutely continuous by the Riemann-Lebesgue lemma. �

Now the statement of the asymptotic behavior of the average 1
N

∑
n<N f(n) is a consequence

of the preceding discussion of the properties of µ.

Theorem 2. The average number of representations of n with minimal weight and n < N satisfies

(3.8)
1

N

∑

n<N

f(n) = N log2 α−1Φ(log2 N) + O(N log2 α−1−θ),

where Φ denotes a continuous periodic function of period 1 and θ is given in Lemma 4 ( log2 α−1 =
0.117752540983 . . ., log2 α − 1 − θ = −0.099 . . .). Furthermore, Φ is Hölder continuous with
exponent β = log2 α − log4 ϕ = 0.770632 . . .. The function Φ is differentiable almost everywhere
and singular in the sense that it is not the integral of its derivative.

Proof. By the definition of µn in (3.1) we have for 2k−2 ≤ N < 2k−1

∑

n<N

f(n) =
∑

n<N

fk(n) = Mkµk([0, N2−k)) = Cαkµ([0, N2−k)) + O(|α2|k) + O(αk2−θk).

Setting Φ(x) = Cα2−{x}µ([0, 2{x}−2]) we obtain the desired result. We notice that Φ(0) =
limx→1− Φ(x) by the fact that the measure µ satisfies the relation µ([0, 2x)) = αµ([0, x)) for
0 < x < 1

4 by definition.
The Hölder exponent of Φ follows from Lemma 3. The function Φ is differentiable almost

everywhere as a quotient of an increasing function and a differentiable function. The singularity
of Φ follows from Lemma 5. �

Corollary 3. The periodic function Φ satisfies

0.399148 . . . = Cµ([0,
1

2
]) ≤ Φ(x) ≤ Cα2µ[0,

1

2
] = 1.8797 . . . .

Proof. By the definition of Φ we have

Cα2−{x}µ([0,
1

4
]) ≤ Φ(x) ≤ Cα2−{x}µ([0,

1

2
]).

Using µ([0, 2x)) = αµ([0, x)) we obtain the desired bounds. The computation of µ([0, 1
2 ]) was done

using path arguments in the automaton in Figure 1 (since the bounds are comparably weak, we
do not go into details). �
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Remark 1. Numerically the much stronger estimate

0.9 ≤ Φ(x) ≤ 1.1

seems to hold (cf. Figure 2). The derivation of precise upper and lower bounds for oscillating
functions related to digital functions is usually rather involved (cf. [14]).

4. Dirichlet Series and Fourier coefficients

In order to compute the Fourier coefficients of the periodic function Φ occurring in Theorem 2,
we introduce the Dirichlet generating functions

Ψj(s) =

∞∑

n=1

aj(n)

ns
,

which converge absolutely for ℜ(s) > log2 α by Theorem 2 (cf. [9]).
Using (2.3) we derive

(4.1)

Ψ1(s) = 2−s (Ψ1(s) + Ψ2(s) + Ψ4(s)) + 1 + 2−s
(
H+

2 (s) + H−
4 (s)

)

Ψ2(s) = 2−s (Ψ1(s) + Ψ3(s)) + 1 + 2−sH+
3 (s)

Ψ3(s) = 2−sΨ2(s)

Ψ4(s) = 2−s (Ψ1(s) + Ψ5(s)) + 2−sH−
5 (s)

Ψ5(s) = 2−sΨ4(s),

where

H±
j (s) =

∞∑

n=1

aj(n)

(
1

(n ± 1
2 )s

− 1

ns

)
.

The Dirichlet series H±
j (s) are absolutely convergent for ℜ(s) > log2 α and convergent for

ℜ(s) > log2 α − 1. By general properties of Dirichlet series (cf. [9]) we have the following growth
estimates along vertical lines

(4.2) H±
j (σ + it) = O(|t|log2 α−σ) for log2 α − 1 < σ ≤ log2 α.

From (4.1) we get

(4.3) Ψ1(s) =

∞∑

n=1

f(n)

ns
=

8s + 4s − 2s + (4s − 1)(H+
2 (s) + H−

4 (s)) + 2sH+
3 (s) + 2sH−

5 (s)

8s − 4s − 3 · 2s + 1
,

which provides the analytic continuation of Ψ1(s) to the region ℜ(s) > log2 α− 1 and shows that

the poles of Ψ1(s) in this region lie at s = log2 α + 2kπi
log 2 and s = log2 |α2| + (2k+1)πi

log 2 (k ∈ Z).

We now apply the Mellin-Perron summation formula to obtain

∑

n<N

f(n)
(
1 − n

N

)
=

1

2πi

2+i∞∫

2−i∞

Ψ1(s)
Ns ds

s(s + 1)
.

Shifting the line of integration to ℜ(s) = log2 α − 1
2 , using (4.3), and collecting residues yields

∑

n<N

f(n)
(
1 − n

N

)
= N log2 α

∑

k∈Z

ck

χk + 1
e (k log2 N) +

1

2πi

log2 α− 1
2
+i∞∫

log2 α− 1
2
−i∞

Ψ1(s)
Ns ds

s(s + 1)
,

where

(4.4) ck =
2α2 + 2α − 1 + (α2 − 1)(H+

2 (χk) + H−
4 (χk)) + αH+

3 (χk) + αH−
5 (χk)

(α2 + 6α − 3)χk log 2

and χk = log2 α + 2kπi
log 2 . The integral and the sum converge by the growth estimate (4.2).

We use an argument given in [8] to compute the Fourier coefficients of the periodic function Φ.
First we cite a pseudo-Tauberian argument stated in [5, Proposition 2]
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Proposition 2. Let p be a continuous function and periodic with period 1 and let τ be a complex
number with ℜ(τ) > 0. Then there exists a continuously differentiable function q of period 1 such
that

1

N τ+1

∑

n<N

nτp(log2 n) = q(log2 N) + o(1).

Furthermore,
∫ 1

0

q(u)du =
1

τ + 1

∫ 1

0

p(u)du.

An application of this proposition to p(u) = Φ(u)e(−ℓu) and τ = χℓ shows that the ck in (4.4)
are indeed the Fourier coefficients of Φ.

In order to obtain the convergence of the Fourier series of Φ, we cite Bernstein’s theorem for
Fourier series (see [21, p. 240])

Proposition 3. If f is a real-valued function defined on [0, 1] and satisfies a Hölder condition of
order β > 1/2, namely,

|f(x) − f(y)| ≤ K|x − y|β (x, y ∈ [0, 1]),

for some positive constant K, then the Fourier series of f converges absolutely and uniformly.

We summarize.

Theorem 3. The function Φ defined in (3.8) admits an absolutely and uniformly convergent
Fourier series

Φ(t) =
∑

k∈Z

cke(kt),

where ck is given by (4.4).

In [8] a method for the numerical computation of the Fourier coefficients ck, or more generally for
the computation of the values of Dirichlet generating functions of digital functions was described.
The basic idea is to expand the functions H±

j (s) in terms of function evaluations Ψj(s+k) (k ≥ 1);

this is done by writing (n± 1
2 )−s as a binomial series. Since Ψj(s + k) ≈ aj(1) for k large enough,

the infinite sum can be computed numerically.
We have computed the first seven Fourier coefficients by this method:

c0 =1.00640 74723 03529 37352 02842 85855 81336 33055 57035 48188 . . .

c1 =0.00734 84453 42244 68089 95364 74294 73583 52315 12670 18294 . . .

+ 0.02689 11696 16758 68783 02281 99800 38391 33382 04336 33025 . . . i

c2 = − 0.00430 40242 79775 54322 96219 62111 36973 03149 13327 29671 . . .

− 0.00267 43837 30021 02109 40115 62991 88249 06171 44235 24279 . . . i

c3 = − 0.00127 39427 57534 41610 01651 96139 66214 08173 27366 30382 . . .

+ 0.00109 88363 17314 47930 07972 98256 69412 99603 80485 12526 . . . i

c4 =0.00394 88393 42163 50681 33279 73298 99918 67013 01876 22678 . . .

− 0.00161 07854 95299 29954 46287 08562 73623 84651 87192 47177 . . . i

c5 = − 0.00277 30499 06965 12243 95529 90477 88154 74114 71154 01015 . . .

+ 0.00258 99972 84840 72727 87528 23704 81316 63001 64706 16579 . . . i

c6 = − 0.00003 84537 28840 80211 49042 02548 65870 42924 48539 84912 . . .

− 0.00025 86306 19932 25562 45234 74086 81085 61564 92721 30980 . . . i

In Figure 2, we compare plots of the function Φ and the trigonometric polynomial formed with
the first 7 Fourier coefficients.
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Figure 2. Plot of Φ compared with the trigonometric polynomial formed with
the first seven Fourier coefficients

5. Purity of the measure µ

In this section we study the measure µ introduced in Section 3 in further detail. In particular,
we show that it is purely singular continuous. As it is the case for Bernoulli convolutions (cf. [4])
the measure turns out to be pure as a consequence of the Jessen-Wintner theorem.

Lemma 6 ([12, Theorem 35], [3, Lemma 1.22 (ii)]). Let Q =
∏∞

n=0 Qn be an infinite product
of discrete spaces equipped with a measure ν, which satisfies Kolmogorov’s 0-1-law (i.e. every tail
event has either measure 0 or 1). Furthermore, let Xn be a sequence of random variables defined
on the spaces Qn, such that the series X =

∑∞
n=0 Xn converges ν-almost everywhere. Then the

distribution of X is either purely discrete, or purely singular continuous, or absolutely continuous
with respect to Lebesgue measure.

Remark 2. We notice that in [3] and [12] the additional assumption of mutual independence of
the random variables Xn is made in the statement of the result instead of the 0-1-law. The proofs
however only depend on the 0-1-law.

In the following we will study a measure ν on the space

K =
{
x ∈ {0,±1}N | ∀n ∈ N : (x1, x2, . . . , xn) is an optimal expansion

}
.

We define ν on cylinders

[ε1, . . . , εn] = {x ∈ K | x1 = ε1, . . . , xn = εn}

by

ν([ε1, . . . , εn]) = lim
k→∞

1

Mk
#({(x1, . . . , xk) is optimal} ∩ [ε1, . . . , εn]) .

We notice that the measure µ studied in Section 3 is the image of ν under the map x 7→∑∞
n=1 xn2−n.
In order to give an explicit expression for ν([ε1, . . . , εn]) we introduce the adjacency matrices

Aε associated with transitions with label ε in the automaton in Figure 1:

A0 =





1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0




, A1 =





0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, A−1 =





0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0




.
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We note that A(1) = A0 + A1 + A−1. Then we have

ν([ε1, . . . , εn]) = lim
k→∞

1

Mk
v1A(1)k−nAεn

· · ·Aε1
v2

= v1

(
lim

k→∞

αk

Mk

(
α−1A(1)

)k−n
)

α−nAεn
· · ·Aε1

v2

=
1

C
v1Bα−nAεn

· · ·Aε1
v2,

where B is the matrix introduced in the proof of Lemma 5.
Furthermore, we introduce a measure ̥ on K by defining it on cylinder sets as

̥([ε1, . . . , εn]) := wT α−nAεn
· · ·Aε1

w,

where w is the normalized positive eigenvector of A(1) for the eigenvalue α. Notice that B = w·wT .
By definition we have

‖v1B‖2

C
̥([ε1, . . . , εn]) ≤ ν([ε1, . . . , εn]) ≤ ‖v1B‖2

C minj wj
̥([ε1, . . . , εn])

for all cylinders and therefore C1̥(S) ≤ ν(S) ≤ C2̥(S) for all measurable sets S ⊆ K and
positive constants C1 and C2. Thus the measures ν and ̥ are equivalent.

Lemma 7. The random variables Yn(x1, x2, . . .) = xn on (K, ̥) form a mixing sequence, i. e.

|̥(A ∩ B) − ̥(A)̥(B)| ≤ 6

( |α2|
α

)k

̥(A)̥(B)

for A ∈ σ(Y1, . . . , Yn) and B ∈ σ(Yn+k+1, . . .) for all n, k ∈ N.

Proof. It suffices to prove the lemma for cylinder sets A and B. Then we have

|̥ ({x ∈ K | x1 = ε1, . . . , xn = εn, xn+k+1 = δ1, . . . , xn+k+ℓ = δℓ}) − ̥([ε1, . . . , εn])̥([δ1, . . . , δℓ])|

=
∣∣∣wT α−ℓ−1Aδℓ

· · ·Aδ1

((
α−1A(1)

)k − w · wT
)

α−nAεn
· · ·Aε1

w
∣∣∣

≤ 6

( |α2|
α

)k

̥([ε1, . . . , εn])̥([δ1, . . . , δℓ]).

�

Since mixing sequences of random variables satisfy a 0-1-law (cf. [18, Section V. b, p. 110] or
[20, § 1.7]), and since the measures ν and ̥ are equivalent, ν satisfies the hypotheses of Lemma 6.
Therefore the measure µ is of pure type; since we already know that µ is continuous (Lemma 3)
but not absolutely continuous (Lemma 5) we have proved

Theorem 4. The measure µ is purely singular continuous.

6. Concluding remarks

In [16] and [2] an algorithm for number representation is suggested, which uses a randomized
perturbation of the classical Reitwiesner system (cf. [17]) to prevent differential power attacks on
cryptographic devices. All the algorithms presented there increase the weight of the representation.

Our results show that on average there exists a large number of representations of minimal
weight. Therefore a countermeasure against power attacks which does not increase the costs of
the operation is possible.

Acknowledgement. This research was initiated while the authors were invited to the John Knopf-
macher Centre, University of the Witwatersrand, Johannesburg.



12 P. GRABNER AND C. HEUBERGER

References

1. J.-P. Allouche and J. Shallit, Automatic sequences, theory, applications, generalizations, Cambridge University
Press, Cambridge, 2003.

2. N. Ebeid and A. Hasan, Analysis of dpa countermeasures based on randomizing the binary algorithm, Tech.
Report CORR 2003-14, Centre for Applied Cryptographic Research (CACR), University of Waterloo, 2003,
available at http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-14.ps.

3. P. D. T. A. Elliott, Probabilistic number theory. I, mean-value theorems, Grundlehren der Mathematischen
Wissenschaften, vol. 239, Springer-Verlag, New York, 1979.
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