Skip to main content
Log in

Projective aspects of the AES inversion

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We consider the nonlinear function used in the Advanced Encryption Standard (AES). This nonlinear function is essentially inversion in the finite field GF(28), which is most naturally considered as a projective transformation. Such a viewpoint allows us to demonstrate certain properties of this AES nonlinear function. In particular, we make some comments about the group generated by such transformations, and we give a characterisation for the values in the AES Difference or XOR Table for the AES nonlinear function and comment on the geometry given by this XOR Table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoki K, Vaudenay S (2004) On the use of GF-inversion as a cryptographic primitive. In: Proceedings of the selected areas in cryptography (SAC) 2003. LNCS,vol 3006. Springer Heidelberg, pp 234–347.

  2. Aschbacher M (1986). Finite Group Theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Biham E, Shamir A (1991) Differential cryptanalysis of DES-like cryptosystems. In: Menezes AJ, Vanstone SA (eds) Proceedings of the advances in cryptology—CRYPTO 90. of LNCS, vol. 537. Springer, Heidelberg, pp 1–21

    Google Scholar 

  4. Biham E and Shamir A (1991). Differential cryptanalysis of DES-like cryptosystems. J Cryptology 4: 3–72

    Article  MATH  MathSciNet  Google Scholar 

  5. Canteaut A (1997) Differential cryptanalysis of feistel ciphers and differentially δ-uniform mappings. In: proceedings of the selected areas in cryptography (SAC) 1997, Carleton University, Canada.

  6. Cid C, Murphy S, Robshaw MJB (2005) An algebraic framework for cipher embeddings. In: proceedings of the 10th IMA International conference on coding and cryptography, CASC 2004: 93–103.

  7. Courtois NT (2005) The inverse S-box, non-linear polynomial relations and cryptanalysis of block ciphers. In:Rijmen V, Dobbertin H, Sowa A (eds) Proceedings of the Advanced encryption standard—AES: fourth international conference. LNCS,vol 3373. Springer, Heidelbergh, pp 234–347

    Google Scholar 

  8. Daemen J and Rijmen V (2002). The design of rijndael. Springer-Verlag, Heidelberg

    MATH  Google Scholar 

  9. Games RA (1986). The geometry of m-sequences: three valued cross correlations and quadrics in finite projective geometry. SIAM J Alg Disc Meth 17: 42–52

    MathSciNet  Google Scholar 

  10. Hirschfeld JWP (1998) Projective geometry over finite fields. Oxford Mathematical Monographs, Oxford

  11. Hughes DR and Piper FC (1985). Design theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  12. Jakobsen T and Knudsen L (2001). Attacks on block ciphers of low algebraic degree. J of Cryptol 14: 197–210

    MATH  MathSciNet  Google Scholar 

  13. Jakobsen T, Knudsen LR (1997) The interpolation attack on block ciphers. In: Biham E (ed) Proceedings of the fast software encryption—FSE97. LNCS, vol 1267. Springer, Heidelberg, pp 28–40

    Google Scholar 

  14. Lai X, Massey JL, Murphy S (1991) Markov ciphers and differential cryptanalysis. In: Davies DW (ed) Proceedings of the advances in cryptology—EUROCRYPT 91.LNCS, vol 547. Springer, Heidelberg, pp 17–38

    Google Scholar 

  15. Lidl R and Niederreiter H (1994). Introduction to finite fields and their applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. Murphy S, Paterson K and Wild P (1994). A weak cipher that generates the symmetric group. J Cryptol 7: 61–65

    Article  MATH  MathSciNet  Google Scholar 

  17. Murphy S, Robshaw MJB (2002) Essential algebraic structure within the AES. In: Yung M (ed) Proceedings of the Advances in Cryptology—CRYPTO 2002.LNCS, vol 2442. Springer, Heildelberg, pp 1–16

    Google Scholar 

  18. Nyberg K (1994) Differentially uniform mappings for cryptography. In: Helleseth T (ed) Proceedings of the advances in cryptology—EUROCRYPT 93.LNCS, vol 765. Springer, Heidelberg, pp 55–64

    Google Scholar 

  19. National Institute of Standardsand Technology (2001) Federal Information Processing Standards Publication (FIPS) 197: The Advanced Encryption Standard. 26 November

  20. Paterson K (1999) Imprimitive permutation groups and trapdoors in iterated block ciphers. In: Knudsen LR (ed) Proceedings of the fast software encryption. LNCS, vol 1636. Springer, Heidelberg, pp 201–214

    Google Scholar 

  21. Rotman JJ (1988) Theory of groups. Wm. C. Brown Publishers, Iowa, USA

    Google Scholar 

  22. Stephan W, Hornauer G, Wernsdorf R (1994) Markov ciphers and alternating groups. In:Helleseth T (ed) Proceedings of the Advances in cryptology— EUROCRYPT 93.LNCS. vol 765. Springer, Heidelberg, pp 453–460

    Google Scholar 

  23. Tsuzuku T (1976). Finite groups and finite geometries. Cambridge Unversity Press, Cambridge

    MATH  Google Scholar 

  24. Wernsdorf R (1993) The one-round functions of the DES generate the alternating group. In: Rueppel RA (ed) Proceedings of the advances in cryptology—EUROCRYPT 92. LNCS, vol 658. Springer, Heidelberg, pp 99–112

    Google Scholar 

  25. Wernsdorf R (2001) IDEA, SAFER++ and their permutation groups. Proceedings of the second NESSIE workshop, http://www.cryptonessie.org

  26. Wernsdorf R (2002) The round functions of rijndael generate the alternating group. In: Deamen J, Rijmen V (eds) Proceedings of the fast software encryption—FSE02. LNCS, vol 2365. Springer, Heidelberg, pp 143–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Murphy.

Additional information

Communicated by P. Wild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, WA., Murphy, S. Projective aspects of the AES inversion. Des Codes Crypt 43, 167–179 (2007). https://doi.org/10.1007/s10623-007-9059-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9059-4

Keywords

AMS Classifications

Navigation