Skip to main content
Log in

Blocking Sets in PG(r, q n)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \(\mathcal S\) be a Desarguesian (n – 1)-spread of a hyperplane Σ of PG(rn, q). Let Ω and \({\bar B}\) be, respectively, an (n – 2)-dimensional subspace of an element of \(\mathcal S \) and a minimal blocking set of an ((r – 1)n + 1)-dimensional subspace of PG(rn, q) skew to Ω. Denote by K the cone with vertex Ω and base \({\bar B}\) , and consider the point set B defined by

$$B=\left(K\setminus\Sigma\right)\cup \{X\in \mathcal S\, : \, X\cap K\neq \emptyset\}$$

in the Barlotti–Cofman representation of PG(r, q n) in PG(rn, q) associated to the (n – 1)-spread \(\mathcal S\) . Generalizing the constructions of Mazzocca and Polverino (J Algebraic Combin, 24(1):61–81, 2006), under suitable assumptions on \({\bar B}\) , we prove that B is a minimal blocking set in PG(r, q n). In this way, we achieve new classes of minimal blocking sets and we find new sizes of minimal blocking sets in finite projective spaces of non-prime order. In particular, for q a power of 3, we exhibit examples of r-dimensional minimal blocking sets of size q n+2 + 1 in PG(r, q n), 3 ≤ r ≤ 6 and n ≥ 3, and of size q 4 + 1 in PG(r, q 2), 4 ≤ r ≤ 6; actually, in the second case, these blocking sets turn out to be the union of q 3 Baer sublines through a point. Moreover, for q an even power of 3, we construct examples of minimal blocking sets of PG(4, q) of size at least q 2 + 2. From these constructions, we also get maximal partial ovoids of the hermitian variety H(4, q 2) of size q 4 + 1, for any q a power of 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. André J (1954). Über nicht-Desarguessche Ebenen mit transitiver translationsgruppe. Math Z 60: 156–186

    Article  MATH  MathSciNet  Google Scholar 

  2. Bader L, Marino G, Polverino O, Trombetti R Spreads of PG(3, q) and ovoids of polar spaces. Forum Math to appear

  3. Ball S (2004). On ovoids of O(5, q). Adv Geom 4(1): 1–7

    Article  MATH  MathSciNet  Google Scholar 

  4. Ball S, Govaerts P and Storme L (2006). On ovoids of parabolic quadrics. Des Codes Cryptogr 38(1): 131–145

    Article  MathSciNet  Google Scholar 

  5. Barlotti A and Cofman J (1974). Finite sperner spaces constructed from projective and affine spaces. Abh Math Semin Univ Hamb 40: 231–241

    Article  MATH  MathSciNet  Google Scholar 

  6. Beutelspacher A (1980). Blocking sets and partial spreads in finite projective spaces. Geom Dedicata 9: 425–449

    Article  MATH  MathSciNet  Google Scholar 

  7. Bruck RH and Bose RC (1964). The construction of translation planes from projective spaces. J Algebra 1: 85–102

    Article  MATH  MathSciNet  Google Scholar 

  8. Bruck RH and Bose RC (1966). Linear representations of projective planes in projective spaces. J Algebra 4: 117–172

    Article  MATH  MathSciNet  Google Scholar 

  9. Bruen AA (1970). Baer subplanes and blocking sets. Bull Am Math Soc 76: 342–344

    Article  MATH  MathSciNet  Google Scholar 

  10. Bruen AA and Thas JA (1982). Hyperplane coverings and blocking sets. Math Z 181: 407–409

    Article  MATH  MathSciNet  Google Scholar 

  11. Gunawardena A and Moorhouse GE (1997). The non-existence of ovoids in O 9(q). Eur J Combin 18: 171–173

    Article  MATH  MathSciNet  Google Scholar 

  12. Heim U (1997). Proper blocking sets in projective spaces. Discrete Math 174: 167–176

    Article  MATH  MathSciNet  Google Scholar 

  13. Kantor WM (1982). Ovoids and translation planes. Can J Math 34: 1195–1207

    MATH  MathSciNet  Google Scholar 

  14. Lunardon G (2006). Blocking sets and semifields. J Combin Theory A 113: 1172–1188

    Article  MATH  MathSciNet  Google Scholar 

  15. Mazzocca F and Polverino O (2006). Blocking sets in PG(2, q n) from cones of PG(2n, q). J Algebraic Combin 24(1): 61–81

    Article  MATH  MathSciNet  Google Scholar 

  16. Penttila T and Williams B (2000). Ovoids of parabolic spaces. Geom Dedicata 82(1–3): 1–19

    Article  MATH  MathSciNet  Google Scholar 

  17. Segre B (1964). Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann Mat Pura Appl 64: 1–76

    Article  MATH  MathSciNet  Google Scholar 

  18. Storme L and Weiner Zs (2000). Minimal blocking sets in PG(n, q), n ≥ 3. Des Codes Cryptogr 21: 235–251

    Article  MATH  MathSciNet  Google Scholar 

  19. Szőnyi T, Cossidente A, Gács A, Mengyán C, Siciliano A and Weiner Zs (2005). On large minimal blocking sets in PG(2, q). J Comb Designs 13: 25–41

    Article  Google Scholar 

  20. Tallini G (1991). Blocking sets with respect to planes in PG(3, q) and maximal spreads of a non-singular quadric in PG(4, q). Mitt Math Semin Giessen 201: 97–107

    MathSciNet  Google Scholar 

  21. Thas JA (1981). Ovoids and spreads of finite classical polar spaces. Geom Dedicata 174: 135–143

    Article  MathSciNet  Google Scholar 

  22. Thas JA and Payne SE (1994). Spreads and ovoids in finite generalized quadrangles. Geom Dedicata 52(3): 227–253

    Article  MATH  MathSciNet  Google Scholar 

  23. Tits J (1962). Ovoides et groupes de Suzuki. Arch Math 13: 187–198

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mazzocca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzocca, F., Polverino, O. & Storme, L. Blocking Sets in PG(r, q n). Des. Codes Cryptogr. 44, 97–113 (2007). https://doi.org/10.1007/s10623-007-9068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9068-3

Keywords

AMS Classifications

Navigation