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Abstract

In this contribution, we derive a novel parallel formulation of the stan-
dard Itoh-Tsujii algorithm for multiplicative inverse computation over GF(2m).
The main building blocks used by our algorithm are: field multiplication,
field squaring and field square root operators. It achieves its best perfor-
mance when using a special class of irreducible trinomials, namely, P (X) =
Xm + Xk + 1, with m and k odd numbers and when implemented in hard-
ware platforms. Under these conditions, our experimental results show that
our parallel version of the Itoh-Tsujii algorithm yields a speedup of about
30% when compared with the standard version of it. Implemented in a
Virtex 3200E FPGA device, our design is able to compute multiplicative
inversion over GF(2193) after 20 clock cycles in about 0.94µS.
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Binary extension finite fields GF(2m) are extensively used in many modern ap-
plications, such as public and secret key cryptosystems, error-correcting codes,
etc. Perhaps one of the most important applications for this class of finite fields
is elliptic Curve Cryptography (ECC), since high performance ECC implemen-
tations directly rely on the efficiency in the computation of the underlying finite
field arithmetic operations.

Among customary finite field arithmetic operations, namely, addition, sub-
traction, multiplication and inversion of nonzero elements, the computation of the
later is the most time-consuming one. Multiplicative inversion computation of
a nonzero element a ∈ GF(2m) is defined as the process of finding the unique
element a−1 ∈ GF(2m) such that a · a−1 = 1.

Several algorithms for computing the multiplicative inverse in GF(2m) have
been proposed in literature [1–8]. In [4], multiplicative inverse is computed using
an improved modification of the extended Euclidean algorithm called almost in-
verse algorithm. That iterative algorithm can compute the multiplicative inverse
in approximately 2m clock cycles [4]. In [6] an architecture able to compute the
Montgomery multiplicative inverse for both, GF(p), for a prime p, and GF(2m)
on a unified-field hardware platform was proposed.

Based on Fermat’s Little Theorem (FLT) and using an ingenious re-arrangement
of the required field operations, the Itoh-Tsujii Multiplicative Inverse Algorithm
(ITMIA) was presented in [1]. Originally, ITMIA was proposed to be applied
over binary extension fields with normal basis field element representation. Since
its publication however, several improvements and variations of it have been re-
ported [2,3,5,7,8], showing that it can be used with other field element represen-
tations too.

Unfortunately enough, cryptographic designers have historically shown some
resistance to use FLT-related techniques for computing multiplicative inverses
when using polynomial basis representation. This phenomenon is probably due to
three frequent misconceptions:

1. Computing multiplicative inverses by using FLT-related techniques is in-
efficient as those methods require many field multiplication and squaring
operations;

2. ITMIA is a competitive design option only when using normal basis repre-
sentation and;

3. The recursive nature of the ITMIA algorithm makes the parallelization of
that algorithm rather difficult if not impossible, forcing the implementation
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of the ITMIA procedure in a sequential manner.

In this contribution we hope to refute (at least partially) above opinions. First,
we discuss how to combine the ITMIA standard procedure with the notion of
addition chains [9] (it is noticed that this discussion closely follows the approach
presented in [7]). We show that this technique constitutes a competitive option for
computing multiplicative inverses in GF(2m) not only with normal basis but also
with polynomial (canonical) field element representation.

Then, considering a special class of irreducible trinomials, namely, P (X) =
Xm + Xk + 1, with m and k odd numbers, we derive a novel version of the Itoh-
Tsujii algorithm which uses field multiplication, field squaring and field square
root operators as main building blocks. We also show how this version of the
algorithm can be parallelized when implemented in hardware platforms. Our ex-
perimental results show that the parallel version of the Itoh-Tsujii algorithm im-
plementation yields a speedup of about 30% when compared with the standard
version of it.

The rest of this paper is organized as follows. In Section 2 some important
mathematical concepts are reviewed. In particular, we discuss how to calculate
field square and field square root operations efficiently when working in a binary
extension finite field generated by an irreducible trinomial of the form, P (X) =
Xm+Xk +1, with m and k odd numbers. In Section 3, the standard version of the
Itoh-Tsujii algorithm combined with the concept of addition chains is presented.
We give a rigorous complexity analysis of that algorithm. Then, in Section 4,
a novel parallel formulation of the ITMIA procedure is presented, including a
rigorous complexity analysis of this procedure. In Section 5, design details of
our algorithm hardware implementation are discussed in detail. In Section 6 we
summarize the main performance figures of the block designs and we also provide
a comparison with other reported designs found in the open literature. Finally, in
Section 7 some conclusions remarks are drawn.

2 Mathematical Preliminaries

2.1 Binary Field Arithmetic
Let K be a finite field and let P (X) ∈ K[X] be a polynomial with coefficients in
K. P (X) is irreducible over K if whenever P (X) = Q(X)R(X), either Q(X) or
R(X) is an unit in K[X], i.e. it is a constant polynomial.
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Let GF(2) be the prime field of characteristic 2: GF(2) = {0, 1}, addition is
XOR and multiplication is the logical AND. Let P (X) ∈ GF(2)[X] be an irre-
ducible polynomial of degree m > 1, m ∈ N, and let α be a root of P (X) in
a finite extension of GF(2). Then the Galois field GF(2m) is isomorphic to the
finite extension GF(2)[α], it has 2m elements and the powers of α form a basis
of GF(2m) over GF(2). The set {1, α, α2, . . . , αm−1} is called the polynomial
basis of GF(2m) corresponding to α. Thus, for each a ∈ GF(2m) there exists
a polynomial A(X) ∈ GF(2)[X] of degree at most m − 1 such that a = A(α)
and this is the polynomial representation of a. Addition in GF(2m) is performed
by adding corresponding coefficients using polynomial representations. Multipli-
cation corresponds to polynomial multiplication reduced modulus the irreducible
polynomial P (X): If a ∈ GF(2m) is represented by the polynomial A(X) and
b ∈ GF(2m) is represented by the polynomial B(X) then c = ab is represented
by the polynomial C(X) = A(X)B(X) mod P (X). The multiplicative group of
GF(2m) is cyclic. If the irreducible polynomial P (X) is also primitive, then any
of its roots α is a generator of the multiplicative group of GF(2m) and has order
2m − 1. Thus for any nonzero a ∈ GF(2m), if i ≡ j mod (2m − 1) then ai = aj

in GF(2m). Since the field characteristic is 2, the squaring operator is linear:

a = A(α) =
m−1∑
j=0

ajα
j ⇒ a2 =

m−1∑
j=0

ajα
2j = A(α2). (1)

Let us assume that the irreducible polynomial is a trinomial: P (X) = Xm+Xn+
1, with n ≤ m/2. Then, for all i ≥ 0, Xm+i = (Xn + 1)X i mod P (X). Thus
whenever j ≥ m/2, there exists i ≥ 0 such that 2j = m+ i and α2j = (αn +1)αi

in the field GF(2m), consequently the upper half of terms in a2, according to
eq. (1), can be calculated by additions and shift operations only. Namely,

m ≡ 0 mod 2 ⇒ a2 =

m
2
−1∑

j=0

a2jα
j + (αn + 1)

m
2
−1∑

j=0

am
2

+jα
2j (2)

m ≡ 1 mod 2 ⇒ a2 =

m−1
2∑

j=0

a2jα
j + (αn + 1)

m−3
2∑

j=0

am+1
2

+jα
2j+1 (3)

Moreover, considering the polynomial representation of the field element, we can
compute the reduction step C(X) = A(X)2 mod P (X) by adding four terms,
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Figure 1: Reduction scheme.

B1, B2, B3 and B4 as,

C = A′
[0,m−1] + A′

[m,2m−1] + A′
[m,2m−1−n]X

n

+
(
A′

[2m−n,2m−1] + A′
[2m−n,2m−1]X

n
)

= B1 + B2 + B3 + B4 (4)

where A′
[i,j] denotes the list of coefficients in A(X) with indexes ranging from

i to j. The reduction procedure described in eq. (4) is shown schematically in
Fig. 2.1. Notice that for those designs implemented in hardware platforms, the
field squaring computation procedure just outlined can be instrumented by using
XOR logic gates only. Nevertheless, the exact computational complexity of this
arithmetic operation depends on the explicit form of m and the middle coefficient
n. For instance, in the case of the irreducible trinomial P (X) = X193 + X15 + 1,
field squaring operation can be computed as,

ci =



ai/2 i even, i < 15,

ai/2 + ai/2+89 + a178+i/2 i even, 15 < i < 30,

ai/2 + ai/2+89 i even, i ≥ 30,

a(m+i)/2 + a193−(15−i)/2 i odd, i < 15,

a(m+i)/2 i odd, i ≥ 15.

(5)

(5) can be implemented at a cost of 96 two-input XOR gates and two XOR gate
delays, 2Tx.

A straightforward but rather expensive approach for computing the square root
operator is based on Fermat’s little theorem which establishes that for any nonzero
element a ∈ GF(2m), the identity a2m

= a holds in the field GF(2m). Therefore,
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√
a may be computed as

√
a = d = a2m−1 , with a computational cost of m − 1

field squarings [10]. A more efficient algorithm based on a refining of the Fermat’s
little theorem method just outlined was proposed in [11]. That method is based
on the observation that

√
a can be expressed in terms of the square root of the

root element α. In the case that the irreducible polynomial is a trinomial, authors
in [11] showed that the square root operator can be computed with some shift-left
operations and one modular reduction.

In this contribution we outline an alternative method for computing
√

a, which
is also based on the linearity property exhibited by the field squaring operation
defined over binary extension fields. Considering that the squaring map a 7→ a2

is linear, if we denote by A1 and A2 the polynomial representation of a and a2

respectively, there exists a square matrix M2 of order m × m with coefficients
in GF(2) such that A2 = M2A1. The matrix M2 can be calculated from eq’s (2)
and (3). If we are interested in calculating the square root d =

√
a ∈ GF(2m), with

polynomial representation D(α), then we must have M2D = A1, or D = M−1
2 A1

which gives the alternative procedure for square root calculation.
For instance, for P (X) = X193 + X15 + 1, one can solve last matrix equation

based on (5). The following set of equations are then obtained,

di =


a2i i < 8,

a2i + a2i−15 8 ≤ i < 97

a2i−15 + a2i−193 97 ≤ i < 104,

a2i−193 104 ≤ i

(6)

Eq. (6) can be implemented at a cost of 96 two-input XOR gates and one Tx gate
delay.

Let us now briefly examine the problem of field exponentiation computation.
Let a = A(α) ∈ GF(2m) be a nonzero element in the field and let e be an m-bit
positive integer, i.e., m = dlog2(e)e. Then the field exponentiation of the element
a raised to the power e is represented by the polynomial

C(X) = A(X)e mod P (X). (7)

There exist many reported algorithms [9, 12] for the efficient computation of (7),
being the binary exponentiation algorithm the most popular for hardware imple-
mentations. This is probably because of its simplicity and relatively good per-
formance/cost benefit. The binary exponentiation algorithm (as in fact most ex-
ponentiation algorithms) utilizes modular multiplication and squaring as the most
prominent building blocks needed to obtain the desired computation.
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Next Section discusses how field exponentiation can be used for computing
field multiplicative inverses.

3 Itoh-Tsujii Multiplicative Inversion Algorithm
In this Section we describe the Itoh-Tsujii Multiplicative Inversion Algorithm (IT-
MIA). We start deriving a recursive sequence useful for finding multiplicative in-
verses. Then, we briefly discuss the concept of addition chains, which together
with the aforementioned recursive sequence yield an efficient version of the orig-
inal ITMIA procedure as it was presented in [1].

3.1 A Square-Then-Multiply Recursive Sequence of Field Ele-
ments

Since the multiplicative group of the Galois field GF(2m) is cyclic of order 2m−1,
for any nonzero element a ∈ GF(2m) we have a−1 = a2m−2. Clearly,

2m − 2 = 2(2m−1 − 1) = 2
m−2∑
j=0

2j =
m−1∑
j=1

2j.

The right-most component of above equalities allow us to express the multiplica-
tive inverse of a in two ways:

[
a2m−1−1

]2
= a−1 =

m−1∏
j=1

a2j

(8)

Let us consider the sequence
(
βk(a) = a2k−1

)
k∈N

. Then, for instance,

β0(a) = 1 , β1(a) = a,

and from the first equality at (8), [βm−1(a)]2 = a−1.
It is easy to see that for any two integers k, j ≥ 0,

βk+j(a) = βk(a)2j

βj(a). (9)
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Namely

βk+j(a) = a2k+j−1 =
a2k+j

a
=

(
a2k
)2j

a

=

(
a2k

a

)2j

a2j

a
=
(
a2k−1

)2j

a2j−1

= βk(a)2j

βj(a)

In particular, for j = k,

β2k(a) = βk(a)2k

βk(a) = βk(a)2k+1. (10)

Furthermore, we observe that this sequence is periodic of period m:

k2 ≡ k1 mod m ⇒ βk2(a) = βk1(a).

To see this, consider k2 = k1 + nm. Then, by eq. (9) and FLT,

βk2(a) = βk2(a)2nm

βnm(a) = βk2(a)2nm · 1 = βk2(a).

Therefore, the sequence (βk(a))k is completely determined by its values corre-
sponding to the indexes k = 0, . . . ,m− 1.

As a final remark, notice that for any two integers k, j, by eq. (9):

βk(a) = β(k−(m−j))+(m−j)(a) = βk+j−m(a)2m−j

βm−j(a).

Since the sequence of β’s is periodic, and the rising to the power 2m coincides
with the identity in GF(2m), we have

βk(a) = βk+j(a)2−j

βm−j(a). (11)

Eq. (9) allows the calculation of a “current” i(= k + j)-th term as a recursive
function of two previous terms, the k-th and the j-th in the sequence.

3.2 Addition Chains
Let us say that an addition chain for an integer m − 1 consists of a finite se-
quence of integers U = (u0, u1, . . . , ut), and a sequence of integer pairs V =
((k1, j1), . . . , (kt, jt)) such that u0 = 1, ut = m − 1, and whenever 1 ≤ i ≤ t,
ui = uki

+ uji
.
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Example 3.1. Consider the case e = m−1 = 193−1 = 192 = (11000000)2.
Then, a binary addition chain with length t = 8 for that e is,

U = ( 1, 2, 4, 8, 16, 32, 64, 128, 192)
V = ( (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (6, 7))

i.e. the associated sequence is governed by the rule, ui = ui−1 + ui−1 = 2ui−1

for all but the final value which is obtained using ut = ut−1 + ut−2.
Another addition chain, also with length t = 8, is

U = ( 1, 2, 3, 6, 12, 24, 48, 96, 192)
V = ( (0, 0), (0, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7))

i.e. for all i 6= 2 the combinatorial rule is ui = ui−1 + ui−1 = 2ui−1, while
u2 = u0 + u1. �

The concept of addition chains leads us to a natural way to generalize the Itoh-
Tsujii Algorithm, by using an addition chain for m − 1 and relations (8) and (9)
to compute a−1 = [βm−1(a)]2.

3.3 ITMIA Algorithm
Let a be any arbitrary nonzero element in the field GF(2m). Let us consider an
addition chain U of length t for m − 1 and its associated sequence V . Then the
multiplicative inverse a−1 ∈ GF(2m) of a can be found by repeatedly applying
eq’s. (9) and/or (10). Hence, given βu0(a) = a21−1 = a, for each ui, 1 ≤ i ≤ t,
compute [

βui1
(a)
]2ui2

βui2
(a) = βui2

+ui1
(a) = βui

(a) = a2ui−1

A final squaring step yields the required result since,

[βut(a)]2 =
(
a2m−1−1

)2

= (a2m−2) = a−1.

Fig. 2 shows an algorithm that iteratively computes all the βui
(a) coefficients in

the exact order stipulated by the addition chain U as discussed above.
We assess the computational complexity of the algorithm shown in Fig. 2 as

follows. The algorithm performs t iterations (where t is the length of the addition
chain U ) and one field multiplication per iteration. Thus, we conclude that a total
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Input: An irreducible polynomial P (X) of degree m, An
element a ∈ GF(2m), an addition chain U of
length t for m− 1 and its associated sequence V

Output: a−1 ∈ GF(2m)

Procedure ITMIA(P (X), a, {U, V }) {
1. βu0(a) = a;
2. for i from 1 to t do
3. βui

(a) =
[
βui1

(a)
]2ui2 · βui2

(a) mod P (X);
4. return (β2

ut
(a) mod P (X));

}

Figure 2: Multiplicative Inversion Addition-Chain Itoh-Tsujii Algorithm

of t field multiplication computations are required. On the other hand, notice that
at each iteration i, a total of 2ui2 field squarings are performed. Notice also that by
definition, the addition chain guarantees that for each ui, 1 ≤ i ≤ t, the relation
ui2 = ui − ui1 holds. Hence, one can show by induction that the total number of
field squaring operations performed right after the execution of the i-th iteration
is ui − 1. Therefore, at the end of the final iteration t, a total of ut − 1 = m− 2
squaring operations have been performed. This, together with the final squaring
operation, yield a total of m− 1 field squaring computations.

Summarizing, the algorithm of Fig. 2 can find the multiplicative inverse of any
nonzero element of the field using exactly,

#Multiplications = t;

#Squarings = m− 1. (12)

Example 3.2. Let us consider the binary field GF(2193) using the irreducible tri-
nomial P (X) = X193 +X15 +1. Let a ∈ GF(2193) be an arbitrary nonzero field
element. Then, using the addition chain of Example 3.1, the algorithm of Fig. 2
would compute the sequence of βui

(a) coefficients as shown in Table 3.3. Once
again, notice that after having computed the coefficient βu8(a), the only remaining
step is to obtain a−1 which can be achieved as a−1 = β2

u8
(a). �
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Table 1: βi(a) Coefficient Generation for m-1=192

i ui rule
[
βui1

(a)
]2ui2

(a) · βui2
(a) βui

(a) = a2u
i −1

0 1 – – βu0(a) = a21−1

1 2 2ui−1 [βu0(a)]2
u0

(a) · βu0(a) βu1(a) = a22−1

2 3 ui−1 + ui−2 [βu1(a)]2
u0

(a) · βu0(a) βu2(a) = a23−1

3 6 2ui−1 [βu2(a)]2
u2

(a) · βu2(a) βu3(a) = a26−1

4 12 2ui−1 [βu3(a)]2
u3

(a) · βu3(a) βu4(a) = a212−1

5 24 2ui−1 [βu4(a)]2
u4

(a) · βu4(a) βu5(a) = a224−1

6 48 2ui−1 [βu5(a)]2
u5

(a) · βu5(a) βu6(a) = a248−1

7 96 2ui−1 [βu6(a)]2
u6

(a) · βu6(a) βu7(a) = a296−1

8 192 2ui−1 [βu7(a)]2
u7

(a) · βu7(a) βu8(a) = a2192−1

4 A Parallel Version of the Itoh-Tsujii Algorithm
In this Section we reformulate the ITMIA algorithm in terms of square root oper-
ations rather than field squarings. Then, we show how to combine both versions
of the Itoh-Tsujii algorithm in order to obtain a parallel version of it.

4.1 A Square Root-Then-Multiply Recursive Sequence of Field
Elements

For any nonzero a ∈ GF(2m), we have a
1
2 = a2m−1 , and

∀j ≤ m− 1 : a2−j

= a2m−j

(13)

just because 2j(m−1) ≡ 2m−j mod (2m − 1). Using (8) and (13), we obtain

a−1 =
1∏

j=m−1

a2m−j

=
1∏

j=m−1

a2−j

= a
P1

j=m−1 2−j

(observe that all indexes are varying in descending order). Noticing now that,

1∑
j=m−1

2−j =
1−

(
1
2

)m
1−

(
1
2

) − 1 =
2m − 1

2m−1
− 1 =

2m−1 − 1

2m−1
,
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we get,

a−1 = a
2m−1−1

2m−1

In an analogous way as we did in Subection 3.1 for the sequence (βk(a))k∈N, let

us define now the sequence
(
γk(a) = a1−2−k

)
k∈N

. First of all, let us remark that,

from (13), ∀k ∈ N:

γk(a) = a1−2−k

= a ·
[
a2−k

]−1

= a ·
[
a2m−k

]−1

= [βm−k(a)]−1 . (14)

In particular, for k = m− 1,

a−1 = γm−1(a). (15)

As in (9), for any two integers k, j ≥ 0,

γk+j(a) = γk(a)2−j

γj(a). (16)

and, as in (10), for j = k,

γ2k(a) = γk(a)2−k

γk(a) = γk(a)2−k+1 (17)

The sequence (γk(a))k∈N is also periodic with period m. Moreover, for any two
integers k, j, the analogous of (11) would be,

γk(a) = γk+j(a)2j

γm−j(a).

Furthermore, using eq’s. (15), (16) and (13), ∀k ≤ m− 2:

a−1 = γm−1(a) = γm−1−k(a)2−k

γk(a) =
[
βk+1(a)2−k

βm−k(a)
]−1

.

Let us remark also that if k, j are such that k + j = m − j, then, according
with (9) and (14),

βk(a)
(
βj(a)2k

γj(a)
)

=
(
βj(a)2k

βk(a)
)

γj(a)

= βk+j(a) γj(a)

= βm−j(a) γj(a)

= 1
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and consequently βk(a)−1 = βj(a)2k
γj(a). In summary

m ≡ k mod 2 =⇒ βk(a)−1 = βm−k
2

(a)2k

γm−k
2

(a), (18)

which in turn gives

k ≡ 0 mod 2 =⇒ γk(a) = β k
2
(a)2m−k

γ k
2
(a).

Thus, in particular by letting k = 1 in eq. (18) we get,

m ≡ 1 mod 2 =⇒ a−1 = βm−1
2

(a)2γm−1
2

(a) =

[
a2

m−1
2 −1

]2

a1−2−
m−1

2 .

Our modification of Itoh-Tsujii algorithm uses now an addition chain for m−1
2

and
relations (16) and (17) to compute a−1 = γm−1(a). We summarize below what
we consider the main result of this paper,

Theorem 4.1. Let a ∈ GF (2m) be an arbitrary nonzero field element, with m
odd. Then, its multiplicative inverse, a−1, can be found as,

a−1 =
[
β{m−1

2
}(a)

]2
γ{m−1

2
}(a) =

[
a(2

m−1
2 −1)

]2

· a1−2−
(m−1)

2 . (19)

Example 4.2. Consider the binary finite field GF(23), then according to (19) the
multiplicative inverse of an arbitrary nonzero field element would be,

a−1 =
[
β{ 3−1

2
}(a)

]2
γ{ 3−1

2
}(a) =

[
a(2

3−1
2 −1)

]2

· a1−2−
(3−1)

2

= a2 · a1−2−1

= a2 · a ·
[
a2−1

]−1

= a3 ·
[
a23−1

]−1

= a3 ·
[
a4
]−1

= a−1.

Notice that in virtue of (13), the equality a2−1
= a23−1

used above holds. �

In the rest of this Section we describe how to use (19) in real applications,
where binary extension fields GF(2m) with m a large odd integer, are required.

4.2 Square Root ITMIA
Let a be any arbitrary nonzero element in the field GF(2m). Let us consider an
addition chain U of length t for m − 1 and its associated sequence V. Then the
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multiplicative inverse of a, a−1 ∈ GF(2m), can be found by repeatedly applying
eq’s. (16) and (17). Hence, given γu0(a) = a1−2−1

=
√

a, for each ui, 1 ≤ i ≤ t,
compute [

γui1
(a)

]2−ui2

γui2
(a) = γui2

+ui1
(a) = γui

(a) = a1−2−ui

Where γ{ut=m−1} = a1−2−(m−1)
= a−1 gives the required result.

Fig. 3 shows an algorithm that iteratively computes all the γui
(a) coefficients

in the exact order stipulated by the addition chain U as discussed above. We
assess the computational complexity of the algorithm shown in Fig. 3 as follows.
The algorithm performs one field multiplication in each of algorithm’s t iterations,
yielding a total of t field multiplication computations required. Furthermore, at
each iteration i, a total of 2ui2 field square roots are performed. Since by defi-
nition, the addition chain guarantees that for each ui, 1 ≤ i ≤ t, the relation
ui2 = ui−ui1 holds, one can show that the total number of field square root oper-
ations performed right after the execution of the i-th iteration is ui−1. Therefore,
a total of ut − 1 = m − 2 square root operations must be performed. This,
together with the initial square root operation, yield a total of m − 1 field square
root computations.

Summarizing, the algorithm of Fig. 3 can find the inverse of any nonzero ele-
ment of the field using exactly,

#Multiplications = t;

#Square root = m− 1. (20)

Example 4.3. Following with our running example, let us consider the binary field
GF(2193) generated using the irreducible trinomial P (X) = X193 + X15 + 1.
Let a ∈ GF(2193) be an arbitrary nonzero field element. Then, the algorithm of
Fig. 3 would compute the sequence of γui

(a) coefficients as shown in Table 4.2.
The multiplicative inverse is given as γu8 = a−1. �

4.3 Itoh-Tsujii Algorithm: Parallel Version
We can obtain a parallel version of the ITMIA algorithm, by executing in parallel
algorithms of Figures 2 and 3, respectively. Notice that in virtue of (19), we just
need to obtain the coefficients, βut−1 and γut−1 .

14



Input: An irreducible polynomial P (X) of degree m, An
element a ∈ GF(2m), an addition chain U of
length t for m− 1 and its associated sequence V

Output: a−1 ∈ GF(2m)

Procedure SquareRoot ITMIA(P (X), a, {U, V }) {
1. γu0(a) = a1−2−1

=
√

a;
2. for i from 1 to t do

3. γui
(a) =

[
γui1

(a)
]2−ui2 · γui2

(a) mod P (X);
4. return (γut(a) mod P (X));
}

Figure 3: Multiplicative Inversion Addition-Chain Itoh-Tsujii Algorithm

Table 2: γi(a) Coefficient Generation for m-1=192

i ui rule
[
γui1

(a)
]2−ui2

(a) · γui2
(a) γui

(a) = a1−2−ui

0 1 – – γu0(a) = a1−2−1

1 2 2ui−1 [γu0(a)]2
−u0

(a) · γu0(a) γu1(a) = a1−2−2

2 3 ui−1 + ui−2 [γu1(a)]2
−u0

(a) · γu0(a) γu2(a) = a1−2−3

3 6 2ui−1 [γu2(a)]2
−u2

(a) · γu2(a) γu3(a) = a1−2−6

4 12 2ui−1 [γu3(a)]2
−u3

(a) · γu3(a) γu4(a) = a1−2−12

5 24 2ui−1 [γu4(a)]2
−u4

(a) · γu4(a) γu5(a) = a1−2−24

6 48 2ui−1 [γu5(a)]2
−u5

(a) · γu5(a) γu6(a) = a1−2−48

7 96 2ui−1 [γu6(a)]2
−u6

(a) · γu6(a) γu7(a) = a1−2−96

8 192 2ui−1 [γu7(a)]2
−u7

(a) · γu7(a) γu8(a) = a1−2−192
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Example 4.4. Let us consider once again the binary field GF(2193) using the
irreducible trinomial P (X) = X193 +X15 +1. We can reuse coefficients β7 and
β̂7 defined in Tables 3.3 and 4.2, respectively. Then the multiplicative inverse of a
can be found as, a−1 = β2

u7
γu7 . �

Since both coefficients above can be computed in parallel, this version of the
Itoh-Tsujii algorithm will show a significant saving in time performance as it is
discussed in the next Section.

5 Reconfigurable Hardware Architecture for Multi-
plicative Inversion in GF(2193)

In this Section, a description of our proposed architecture in reconfigurable hard-
ware is presented. Field squarer, square root and Multiplier are the three most
prominent building blocks for performing inversion in GF(2m) using the ITMIA
procedures described in the previous Sections. Squaring in GF(2m) is a simple
operation, however, as it was stated in (12), we need to perform m − 1 squar-
ings for m-bit inversion when using the ITMIA procedure of Fig. 2 (similarly,
according to (20) we must perform m − 1 square roots if the algorithm of Fig.
3 is executed). Fortunately, only t field multiplications are needed for computing
multiplicative inversion, which is valuable for the design since field multiplication
in GF(2m) is a costly and extensive time consuming operation.

Throughout the rest of this Section, we assume that the binary extension field
GF(2193) was generated using the irreducible trinomial P (X) = X193 + X15 + 1.

Field Squaring Block

Figure 4: Squarer GF(2193) (a) for X21 (b) for X2n implementation
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Figure 4.a shows our strategy for implementing field squaring trying to use as
few clock cycles as possible. In the case of the binary extension field GF(2193),
field squaring can be obtained using XOR gates only, as it was summarized in (5).

Figure 4.b shows the GF(2193) field squarer block used in this work. Refer-
ring to the addition chain described in Table 3.3, frequent squaring operations in
GF(2193) are,

• [βui
(a)]2

1

(1 time);

• [βui
(a)]2

3

(3 times);

• [βui
(a)]2

6

(6 times) and;

• [βui
(a)]2

12

(12 times).

That is why we took the design decision of cascading 12 field squarer blocks
back to back and then, by the appropriate usage of multiplexer blocks, obtain the
corresponding outputs after 1, 3, 6, and 12 squarer blocks as shown in Figure 4.b.
As an example, the X224 field operation can be accomplished in just two clock
cycles by taking the output after the last squarer block (12 squarers) in the first
clock cycle and then repeating this operation in a second clock cycle so that we
get the required 24 field squarings.

Field Square Root Block
Based on eq. (6), we designed the square root block shown in Figure 5.a. As it can
be seen, this field operation can be obtained by using two-input XOR gates only.
In a similar fashion to the squaring block discussed above, Figure 5.b implements
multiple square root operations trying to save as many clock cycles as possible.
The five inputs of the multiplexer are formed by replicating 1, 1, 1, 3, and 6
square root blocks which can perform 1, 2, 3, 6 and 12 square root operations
respectively, in just one clock cycle.

Field Multiplier
Our strategy for multiplication is based on the binary Karatsuba-Ofman multiplier
which is a variation of normal Karatsuba-Ofman multiplier as it was presented
in [13]. Figure 6 shows a GF(2193) binary Karatsuba-Ofman multiplier which is a
hybrid approach that utilizes Karatsuba-Ofman multiplication with a combination
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Figure 5: Square Root Circuit GF(2193) (a) for X2−1 (b) for X2−n implementation

Figure 6: GF(2193) binary Karatsuba multiplier

of the classical school-method whenever it is useful. In this design, two 193-bit
operands A and B are multiplied by first dividing each operand into two parts:
upper part (say AH and BH of 128 bits each) and lower part (say AL and BL of
65 bits each). For 128-bit multiplications, two Karatsuba-Ofman multipliers were
used. However, for 65 bit multiplication, instead of using three 64-bit Karatsuba-
Ofman multipliers, only one 64-bit Karatsuba-Ofman multiplier, two 64× 2 clas-
sical multiplier (2 multiplexers) and one 1-bit multiplier (only AND gate) were
used. Using this approach, savings are made not only in terms of FPGA resources
but also in achieving a higher parallelism. Therefore, the time delay of the 193-bit
multiplier is equal to the time delay of the biggest multiplier only (time delay of
the 128-bit multiplier block).

General Architecture
The proposed architecture for multiplicative inversion includes a square root, squarer
and multiplier blocks as shown in Figure 7. Referring to algorithms in Figures 2
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Figure 7: General Architecture for Multiplicative Inversion over GF(2193)

and 3, squaring-multiplication and square root-multiplication are the two se-
quences needed for computing multiplicative inverses over GF(2193). Both are
independent and can be processed in parallel provided that hardware resources
meet up design requirements. A direct approach would be to use two multipliers
with squarer and square root blocks operating separately. That would, however,
be more expensive as our multiplier block consumes a large amount of hardware
resources. A more reasonable architecture can be obtained with a single multi-
plier by introducing a multiplexer for squarer and square-root blocks as shown
in Fig. 7. The intermediate results required for next stages of the algorithm are
read/written in a Block select RAM (BRAM).

BRAMs are built-in memory modules available in Virtex and VirtexE series
devices by Xilinx. A dual port BRAM can be configured into two single port
BRAMs, i.e., data can be read/written at two ports simultaneously. This useful
feature was exploited in this design in order to achieve higher parallelism. First
port was configured as a RAM in order to write the multiplier outputs, while the
second one was configured as a ROM, responsible to read the second multiplier
operand (already stored from previous iterations). A single BRAM has a size
of 4K (4096 bits), which is sufficiently large for storing all intermediate results
generated by our algorithm. Additionally, an array of 12 BRAMs was needed for
managing a 193-bit data bus.

The inputs/output of the multiplier for writing/reading to/from BRAM are
governed by an address scheme. Data paths for squaring, square root and then
multiplication are adjusted by providing selection bits for the three multiplexers
MUX1, MUX2, and MUX3. MUX4 is used for switching external data during
the first cycle and then to feedback data until the final calculation of inversion is
obtained. The NSQ and NSR control signals select data path for performing a
number of squaring and square root operations. This is done by providing address
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bits to the multiplexers available inside the SQ BLK and SR BLK blocks.
For instance, NSQ=000 selects the first input of the multiplexer which is con-

nected to the output of a single squarer unit, whereas NSQ=101, selects the fifth
multiplexer input, which is connected to the 12 squarer unit. A total of 17 bits
(4 bits for BRAM port A, 4 bits for BRAM port B, 1 bit for MUX1, 1 bit for
MUX2, 1 bit MUX3, 3 bits for NSQ, 3 bits for NSR) are used for controlling and
synchronizing the whole circuitry. The 17-bit control word for each clock cycle
is filled in the ROM block, and then they are extracted at the rising edge of each
clock cycle. A short description of the control unit is given below.

Figure 8: Design Control Unit

As shown in Fig. 7, Control Unit block orchestrates and synchronizes data
flow for the whole design. A 4- bit counter and a ROM constitute the control
unit. The ROM block is filled with a total of twenty 17-bit control words. Those
control words are used at each one of the 20 clock cycles required for completing
the execution of our algorithm. The address bits for the ROM block are timely
incremented by a 4-bit counter as shown in Figure 8.

Table 3 shows the algorithm dataflow. In the first cycle, the field element a,
whose multiplicative inverse is required, is written into the BRAM. Then, start-
ing at cycle 2, our architecture of Fig. 7 computes both of them, βui

(a) and
γui

(a) for i = 0, 1, · · · , 7 in parallel. At clock 21, a final computation, namely,
γu8(a) = [βu7(a)]2

1

· γu7(a), is performed, which according to theorem 4.1 yields
the required multiplicative inverse, i.e., γu8(a) = a−1.

Notice that the control word that commands all the operations to be performed
in the next rising edge of the master clock, is set at the rising edge of the previous
clock cycle. For example at cycle 8, the control word: 0101‖0011‖000‖011 se-
lects the operations for cycle 9 as follows: address 0101 commands to write data
at port A; address 0011 orders to read data from port B; and address 000 com-
mands to perform a single squaring; and finally the address 011 orders to perform
six square root operations that will be stored in the register t2. The code word
“DC” denotes the Don’t Care condition.
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Finally, let us say that in the very first computation, the first clock cycle is used
for loading the input field element a. If more multiplicative inverse computations
are required, the input data can always be loaded during the last clock cycle of the
previous computation, thus making possible that a single multiplicative inverse
calculation may be accomplished in a total of 20 clock cycles.

Table 3: Algorithm Dataflow

Clock AdrA‖AdrB‖SQR‖SQROOT Write Reg1 Write Reg2
1 0000‖0000‖000‖000 Loading input data
2 0001‖0000‖000‖000 t1 = [βu0(a)]2

1

3 1001‖0001‖000‖000 βu1(a) = t1 · βu0(a) t2 = [γu0(a)]2
−1

4 0010‖0000‖000‖000 t1 = [βu1(a)]2
1

γu1(a) = t2 · γu0(a)
5 1010‖0000‖010‖000 βu2(a) = t1 · βu1(a) t2 = [γu1(a)]2

−1

6 0011‖0010‖000‖010 t1 = [βu2(a)]2
1

γu2(a) = t2 · γu1(a)
7 1011‖1010‖011‖000 βu3(a) = t1 · βu2(a) t2 = [γu2(a)]2

−1

8 0101‖0011‖000‖011 t1 = [βu3(a)]2
6

γu3(a) = t2 · γu2(a)
9 1100‖1011‖100‖000 βu4 = t1 · βu3(a) t2 = [γu3(a)]2

−6

10 0110‖0101‖000‖100 t1 = [βu4(a)]2
12

γu4 = t2 · γu3(a)
11 1101‖1100‖100‖000 βu5(a) = t1 · βu4(a) t2 = [γu4(a)]2

−12

12 DC‖ DC ‖100‖100 t1 = [βu5(a)]2
12

γu5(a) = t2 · γu4(a)
13 0111‖0110‖000‖100 t1 = (t1)2

12
t2 = [γu5(a)]2

−12

14 0111‖1101‖100‖000 βu6(a) = t1 · βu5(a) t2 = (t2)2
−12

15 DC ‖ DC ‖100‖100 t1 = [βu6(a)]2
12

γu6(a) = t2 · γu5(a)
16 DC ‖ DC ‖100‖100 t1 = (t1)2

12
t2 = [γu6(a)]2

−12

17 DC ‖ DC ‖000‖100 t1 = (t1)2
12

t2 = (t2)2
−12

18 1000‖0111‖000‖000 t1 = (t1)2
12

t2 = (t2)2
−12

19 1111‖1110‖000‖000 βu7(a) = t1 · βu6(a) t2 = (t2)2
−12

20 DC ‖1111‖000‖000 t1 = [βu7(a)]2
1

γu7(a) = t2 · γu6(a)
21 INV‖INV‖000‖000 γu8(a) = t1 · γu7(a) = a−1
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6 Comparison and Results
As it was explained in the previous Section, multiplicative inverse computation
over GF(2193) was achieved by integrating three main building blocks, namely,
squaring, square root and multiplication blocks. Table 4 presents a summary of the
implementation results obtained for each individual building block as well as for
the whole system, i.e., inversion over GF(2193). Xilinx Foundation Tool F4.1i was
used for design synthesis, implementation and verification of results. The Binary
Karatsuba-Ofman multiplier block occupied 8753 CLB slices executing one field
multiplication in 43.1ηS. The field Squarer and square root in GF(2193) took a
total of 47 and 46 CLB slices for a single block respectively. The architecture was
implemented in a XCV3200efg1156 (VirtexE device) occupying a total of 11131
(34.3%) CLB Slices and 12 (5 %) BRAMs. One inversion in GF(2193) consumes
0.943µS in 20 clock cycles at a rate of 21.2 MHz (47.16 ηS).

Table 4: Design Implementation Summary
Design Device CLB Timings

(XCV) slices
Squarer block GF(2193) 3200E 47
Square root block GF(2193) 3200E 46
Binary Karatsuba-Ofman 3200E 8753 43.1ηS
Multiplier GF(2193)
Inversion GF(2193) 3200E 11081 0.943µS

12 BRAMs

Table 5 shows the computational cost of several reported designs for the com-
putation of multiplicative inversion over GF(2m) in hardware platforms. Further-
more, we show also that an implementation of the standard Itoh-Tsujii algorithm
using our architecture requires 28 clock cycles, thus computing the multiplicative
inverse in about 1.32µS. This implies that the Itoh-Tsujii parallel version proposed
in this work represents a saving of about 30% when compared with the standard
version.

7 Conclusions
In this paper, a novel derivation of the standard Itoh-Tsujii algorithm that offers
a potential speedup when implemented in hardware platforms was presented. At
first, we combined the standard Itoh-Tsuii algorithm with the concept of addi-
tion chains. Then, we showed that for this version of the Itoh-Tsuii algorithm the
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Table 5: Specifications for inversion in GF(2m)
Reference Field Cycles Freq (MHz) timings

Gutub et. al. [6] GF(2256) 5000 50 100µS
Goodman et. al. [14] GF(2256) 3712 – –
Bednara et. al. [15] GF(2191) – 50 7.8µS
Lutz [16] GF(2163) 259 50 5.18µS
This work (Standard) GF(2193) 28 21.2 1.32µS
This work (Parallel) GF(2193) 20 21.2 0.943µS

multiplicative inverse of an arbitrary nonzero field element in GF(2m) can be com-
puted by performing exactly m− 1 field squarings and t multiplications, where t
is the step-length of the optimal addition-chain for m-1.

Furthermore, we derived a novel version of the Itoh-Tsujii algorithm which
uses field multiplication, field squaring and field square root operators as main
building blocks. We showed how this version of the algorithm can be parallelized
when implemented in hardware platforms. Our method achieves its best perfor-
mance when using a special class of irreducible trinomials, namely, P (X) =
Xm + Xk + 1, with m and k odd numbers. This is because for this special class
of irreducible trinomials, the computation of the field square root operation is
simpler than field squaring.

We implemented the proposed algorithm in a reconfigurable hardware device
for the computation of multiplicative inverses of nonzero field elements in the
finite field GF(2m) generated by the irreducible trinomial P (X) = X193+X15+1.
Our experimental results show that the parallel version of the Itoh-Tsujii algorithm
implementation yields a speedup of about 30% when compared with the standard
version of it.

Since for all practical cryptographic and code applications in binary extension
fields field multiplication is a mandatory operator, our solution does not represent
a significant extra burden in terms of hardware resource requirements.

It is worth to notice that although the theoretical formulae included in this pa-
per were derived assuming polynomial basis representation of the field elements,
the extension of our results to optimal normal basis is straightforward.

Future work of this paper includes finding other classes of trinomials were
the parallel version of the Itoh-Tsujii algorithm presented here might be useful in
terms of performance speedup.
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