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Abstract We investigate properties of finite transitive permutation groups (G, �) in which
all proper subgroups of G act intransitively on �. In particular, we are interested in reduction
theorems for minimally transitive representations of solvable groups.
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1 Introduction

A finite permutation group (G, �) is minimally transitive if G is transitive on � while all
proper subgroups of G are intransitive on �. Evidently, any transitive permutation group
contains minimally transitive subgroups acting on the same set and so this concept occurs
naturally in reduction arguments. Closely related is the notion of minimally irreducible linear
groups, namely those linear groups which act irreducibly on a vector space V while all proper
subgroups leave some proper subspace of V invariant.

Solvable minimally transitive groups were first considered by Suprunenko [8] and Kopyl-
ova [3] who studied the groups of degree pq with p and q primes. More recently Luc-
chini [4] studied minimal generating sets in minimally transitive groups, in connection
with the asymptotic properties of permutation groups considered in Pyber [7]. In Ngo [6]
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non-regular metabelian minimally transitive groups are investigated, and Miller–Praeger [5]
mention such groups in the context of vertex transitive graphs which are not Cayley graphs.
A list of minimally transitive groups up to degree 30 is available in Hulpke [2], see also
Conway et al. [1].

In this paper we consider solvable groups. Here in particular it happens frequently that a
group action is not faithful. Therefore we study more generally arbitrary minimally transitive
representations which may or may not be faithful. This language requires technical detail
which could detract from the main matter; wherever possible we therefore try to stay close
to the language of permutation groups which may appear more natural.

Any transitive permutation group contains minimally transitive subgroups and therefore
it would be unreasonable to expect full classifications in general. However, under suitable
restrictions some general results can be expected. For instance, for nilpotent groups there is
a simple description of all their minimally transitive representations.

For a faithful action the primes dividing the order of a solvable group must divide the
degree, see Theorem 3.1. In Sects. 2 and 3 we prove some reduction theorems for subgroups
and factor groups. In particular, a construction is given to reduce a general minimally tran-
sitive action to the case where the degree contains only two primes. A good result is also
available for actions of square-free degree, extending the work of Suprunenko and Kopylova.

2 Minimally transitive groups

Let G ⊆ Sym � be a transitive permutation group on a finite set �. Then G is minimally
transitive on � if every proper subgroup of G is intransitive on �. In the following we con-
sider more generally an abstract finite group G together with all its transitive actions, faithful
or not. Thus if A ⊂ G is a subgroup of G let G act on the cosets G : A of A in G. The kernel
of this action is the core KG:A := ⋂

g∈G Ag of A in G.

Thus G acts minimally transitively on G : A if and only if every subgroup H with
KG:A ⊆ H ⊂ G acts intransitively on G : A. It will be convenient to call such a subgroup
A an mt-stabilizer in G; we denote this as A ⊂m G. Therefore A ⊂m G if and only if the
following holds: Whenever H ⊆ G is transitive on G : A then H KG:A = G. Evidently, if A
is an arbitrary subgroup of G then G/KG:A always acts faithfully on G : A and hence is a
permutation group on G : A. This permutation group then is minimally transitive if and only
if A is an mt-stabilizer. For instance, if A = 1 then G is regular on G : A and so 1 ⊂m G. For
another example suppose that |G| = pq with distinct primes and Sylow subgroups A � G
and B /� G. Then KG:A = A and A ⊂m G while KG:B = 1 and B �⊂m G.

2.1 Preliminaries

We begin by listing general properties of groups with minimally transitive action. For the
remainder let G be a finite group and let A be a subgroup of G. The property of being an
mt-stabilizer in G is quite special as it relates to the subgroup as well as its embedding in G.

Let L(G) denote the lattice of all subgroups of G. We will begin by describing some general
properties of groups in L(G) which are mt-stabilizers in G. The next lemma is technical but
essential; the first part we use later on without further mention.

Lemma 2.1 (i) Let A ⊆ G. Then A ⊂m G if and only if AH = G for a subgroup H ⊆ G
implies that H KG:A = G.
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(ii) Let A ⊂m G and let B ⊆ A. Then (a): B ⊂m G or (b): KG:B �= KG:A, BKG:A ⊂m G
and there exists a subgroup H ⊆ G with H KG:B �= H KG:A = G. In particular, if
A ⊂m G and KG:A ⊆ B ⊆ A then B ⊂m G.

Proof

(i) Suppose that A ⊆ G and that also H ⊆ G. Then H is transitive on G : A if and only
if AH = G. Therefore by definition, if A ⊂m G and if AH = G then H KG:A = G.

Conversely, if AH = G implies that H KG:A = G then H being transitive on G : A
means that AH = G and so H KG:A = G. Hence A ⊂m G.

(ii) Assume that A ⊂m G and B ⊆ A, and suppose that B �⊂m G. Then there exists some H
such that G = B H KG:B but G �= H KG:B . As KG:B � KG:A we have G = AH KG:A.

If H KG:A �= G then A �⊂m G. Therefore H KG:A = G and so KG:A �= KG:B . Next
we compute the core K̄ of BKG:A in G. Evidently, KG:A ⊆ K̄ ⊆ BKG:A ⊆ A so that
K̄ = KG:A. If BKG:A �⊂m G then there exists a subgroup H̄ such that (BKG:A)H̄ = G
but H̄ K̄ �= G. But then A(KG:A H̄) = G and H̄ KG:A �= G, a contradiction. If
KG:A ⊆ B ⊆ A then KG:B = KG:A and hence the second alternative can not happen.

�
When dealing with the set of all mt-stabilizers in the subgroup lattice of G the following

is a useful notion: If (L, ≤) is any partially ordered set then a subset M of L is an order
ideal in L if X ∈ M and Y ≤ X with Y ∈ L implies that Y ∈ M.

Remark 2.2 From the last part of the lemma we deduce that the core-free mt-stabilizers in
G form an order ideal in the subgroup lattice L(G).

It is therefore often sufficient to know the ‘top’ mt-stabilizers, that is those which are
maximal subject to being an mt-stabilizer. For instance, if G is simple then the mt-stabilizers
form an order ideal and this is described completely by its top elements. We may also ask
when such top elements are maximal subgroups of G. Evidently, A is maximal in G precisely
when G acts primitively on G : A. More generally, G acts quasi-primitively on G : A if and
only if any subgroup N �= KG:A with KG:A ⊆ N � G acts transitively on G : A. In particular,
a transitive permutation group is quasi-primitive if all its normal subgroups �= 1 are transitive.

Proposition 2.3 Let G be quasi-primitive on G : A. If A ⊂m G then G/KG:A is simple.
Equivalently, if (G,�) is a quasi-primitive minimally transitive permutation group then G
is simple.

Proof Suppose that A ⊂m G. If G � N ⊃ KG:A then N is transitive on G : A as G is
quasi-primitive on G : A. Hence N = G as A ⊂m G. �

2.2 A reduction theorem

When studying minimal transitivity it is obviously useful to reduce a minimally transitive
action A ⊂m G to one of a smaller group or to one of smaller degree. Minimal transitivity
lends itself to good reduction arguments of this kind for normal subgroups. For this let G be
an arbitary finite group with an mt-stabilizer A ⊂m G of index n in G. Let H be a normal
subgroup of G with KG:A ⊂ H and KG:A �= H �= G. Then H is not transitive on � := G : A
and the orbits of H on � are a system of imprimitivity for G. So these are of the shape
�1, . . . , �n∗ with |�i | = s and n∗ := n

s . Let therefore �∗ := {�i | i = 1, . . . , n∗ }.
Let �1 be such that it contains the coset 1A and let B be the set-stabilizer of �1. In other

words, B = AH and in particular H ⊆ KG:B . Now note that B ⊂m G. For if M ⊆ G satisfies
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B M = G then AH M = G. As A ⊂m G we have G = M H KG:A. But by choice, KG:A ⊆ H
so that G = M H. As H ⊆ KG:B we get G = M KG:B and so B ⊂m G. Equivalently, G acts
minimally transitively on �∗. Therefore we have the following:

Theorem 2.4 Let A ⊂m G and suppose H �= G is normal in G with KG:A ⊂ H �= KG:A.

Then A �= AH ⊂m G.

It is worth to formulate this statement in terms of permutation groups. In conjunction with
Proposition 2.3 we have:

Theorem 2.5 Let G be a minimally transitive permutation group on �. If G is quasi-prim-
itive on � then G is simple. Otherwise, if H is a proper normal subgroup of G then G acts
minimally transitively on the set of H-orbits.

In other words, a minimally transitive permutation group is either simple or otherwise
induces a minimally transitive action on the orbits of any normal subgroup. Another kind of
reduction occurs for the action of quotient groups, and this will be used later.

Lemma 2.6 Let N be a normal subgroup of G and let N ⊆ A ⊆ G. Then A/N ⊂m G/N if
and only if A ⊂m G.

Proof If N ⊆ A ⊆ G then KG/N :A/N = KG:A/N . Suppose that A/N ⊂m G/N but A �⊂m G.

So there exist H ⊆ G with G = AH and G �= H KG:A. Consider G/N = A/N · H KG:A/N
and evaluate H KG:A/N · KG/N :A/N = H KG:A/N · KG:A/N = H KG:A/N �= G/N , a
contradiction. Conversely, suppose that A ⊂m G but that A/N �⊂m G/N . So there is a sub-
group N ⊆ H ⊆ G with G/N = A/N · H/N and H/N · KG:A/N = H KG:A/N �= G/N .

So G = AH with H KG:A �= G, a contradiction. �

3 Solvable groups

For the remainder of the paper we shall restrict ourselves to minimally transitive representa-
tions of solvable groups. If n is an integer let π(n) be the set of primes dividing n. Similarly,
π(G) and π(G : H) are the prime divisors in |G| and |G : H |, respectively. Also, |n|p is the
highest p-power dividing n.

The following theorem states the basic relation between π(G) and the degree of any
faithful minimally transitive action when G is solvable. For nilpotent groups it completely
characterizes all minimally transitive actions.

Theorem 3.1 (i) Let A ⊂m G such that G/KG:A is solvable. Then π(G : A)=π(G/KG:A).

In particular, for a solvable minimally transitive permutation group G of degree n we
have π(G) = π(n).

(ii) Let A ⊂ G. If A/KG:A is contained in the Frattini subgroup of G/KG:A then A ⊂m G.

Conversely, if G/KG:A is nilpotent and A ⊂m G then A/KG:A is contained in the
Frattini subgroup of G/KG:A.

(iii) If A ⊂m G and |G : A| = pi for some prime p then G/KG:A is a p-group and A/KG:A
is contained in the Frattini subgroup of G/KG:A.

Proof

(i) Let H be a Hall π(G : A)-subgroup of G. Then AH = G as the left hand side has order
|G|. As A ⊂m G therefore H KG:A = G. As KG:A ⊆ A therefore π(G : A) = π(G :
KG:A).
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(ii) Suppose that A �⊂m G. Then there exists some maximal subgroup H ′ ⊇ KG:A with
G = AH ′ and H ′ �= G. If in addition A/KG:A is contained in the Frattini subgroup of
G/KG:A we have A ⊆ H ′, a contradiction. Conversely, if G/KG:A is nilpotent and if
H ⊇ KG:A is a maximal subgroup of G then H is normal in G. Therefore AH ⊇ KG:A
is a group and if A ⊂m G then AH �= G, and hence A ⊆ H. (iii) This follows from (i)
and (ii). �

The next result is a general splitting principle reducing representations of non-nilpotent
groups to representations of subgroups, generally involving fewer primes. We denote the
Fitting subgroup of X by F(X).

Theorem 3.2 Let G be a solvable group, suppose that A ⊂m G is core-free and that A is
contained in F = F(G). Let π∗ := π(G : F) and let Q be a Hall π∗-subgroup of G. Suppose
that P is a normal Sylow p-subgroup of G, let AP := A ∩ P and AQ := A ∩ Q. Then p
does not belong to π∗. Furthermore, AQ × AP is core-free in Q∗ P and AQ × AP ⊂m Q∗ P
for any conjugate Q∗ of Q.

Conversely, let P1, P2, . . . , Pt be the normal Sylow pi-subgroups of G.Suppose there exist
a subgroup AQ of F ∩ Q and subgroups APi ⊆ Pi such that AQ × APi ⊂m Q∗ Pi is core-free
in Q∗ Pi , for all conjugates Q∗ of Q and all i = 1, . . . , t. Then AQ × AP1 ×· · ·× APt ⊂m G
is core-free in G.

For instance, in the simplest case when π∗ = {q} we may take p to be any prime in
π(n)\{q} where n = |G : A|. Then Q ∩ F is the Sylow q-subgroup of F so that AQ is the Sy-
low q-subgroup of A. Similarly, AP is the Sylow p-subgroup of A and hence AQ×AP ⊂m Q P
is minimally transitive of degree |n|q |n|p. Note, for at least one choice of p the group Q P is
not nilpotent, and evidently, groups of this type are at the basis of any induction in this case.

Proof Evidently, as P is a normal Sylow subgroup of G we have P ⊆ F and so p does not
belong to π∗. Put K := K Q P:(AQ×AP ). Then K is centralized by every Sylow r-subgroup of
G for r �= p not dividing the order of Q. Further, it is normalized by Q P and hence K ⊆ A
is a normal subgroup of G. As A is core-free, K is trivial. Now, suppose AQ × AP �⊂m Q P.

Then there exists a subgroup Y ⊆ Q P such that (AQ × AP )Y = Q P but Y �= Q P. Let
S be the direct product of all Sylow r-subgroups of F for r �= p not dividing the order
of Q. This group is characteristic in F and so normal in G. Therefore, Y S is a group and
A(Y S) = (AY )S ⊇ (Q P)S = Q F = G. However, Y S �= G. This is a contradiction,
since A ⊂m G. Finally note that Q ∩ F is normal in F. Thus if Q is replaced by Q f then
AQ f × AP ⊂m Q f P. But as A ⊆ F we have A ∩ Q = A ∩ Q f .

Conversely, let A = AQ × AP1 . . . × APt . Since AQ × APi are core-free in Q Pi also A
is core-free in G. To show that A ⊂m G suppose that this is not the case. Let therefore Y be
a subgroup such that G = AY but Y �= G. Thus Y = Y ∗(Y1 × . . . × Yt ) for Yi := Y ∩ Pi

and Y ∗ a Hall π∗-subgroup of Y. Therefore Y ∗ ⊆ Q f for some f ∈ F.

Further, G = (P1 × . . . × Pt )Q f and since Y = (Y1 × . . . × Yt )Y ∗ we have G = AY =
(AQ × AP1 . . .× APt )(Y1 × . . .×Yt )Y ∗. As AQ is a π∗-subgroup of F it centralizes all terms
other than Y ∗. Similarly, Yi centralizes all terms APj with i �= j. Therefore we can rewrite this
as (P1×. . .×Pt )Q f = (AP1 Y1)×. . .×(APt Yt )(AQY ∗). For order reasons we have AQY ∗ =
Q f and APi Yi = Pi for i = 1, . . . , t. As Y �= G we have Y ∩ Q f Pr = Y ∗Yr �= Q f Pr for
at least one r, say r = 1. Now consider (AP1 × AQ)(Y ∗Y1) = (AP1 Y1)(AQY ∗) = P1 Q f

This is a contradiction, since AP1 × AQ ⊂m P1 Q f . �
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3.1 Representations of square-free degree:

Next we turn to representations of square-free degree. Here we get precise information on
the Fitting subgroup.

Theorem 3.3 For a solvable group G suppose that A ⊂m G is core-free and has square-free
index n in G. Let F be the Fitting group of G. Then |F | is coprime to |G : F | and all Sylow
subgroups of F are elementary abelian. In particular, G is nilpotent if and only if G is cyclic
of order n, with A = 1.

Let π∗ = π(n) \ π(F) and let n∗ be the product of the primes in π∗. If C is a Hall
π∗-subgroup of A and if Q is a Hall π∗-subgroup of G containing C then |Q :C | = n∗ and
the action of Q on Q :C is permutationally equivalent to the action of G on G : AF.

Proof If n = p1 p2 . . . pt with pairwise distinct primes pi then π(G) = {p1, p2, . . . , pt }
by Theorem 3.1. Let N �= 1 be a p-subgroup of G, say p = p1, which is normal in G.

We claim that N is a Sylow subgroup of G. To prove this note that N has m := n
p orbits

�1, . . . , �s, . . . , �m on � := G : A, all of length |�s | = |N : N ∩ A| = p.

Let S be a Sylow p-subgroup of AN . As AN is the setwise stabilizer of the orbit �s that
contains 1A we have that p does not divide |G : AN |. Hence S is a Sylow p-subgroup of G. If
Q is a Hall p′-subgroup of G then SQ = G so that in particular G = (AN )Q = A(N Q) for
order reasons. As A ⊂m G we have (N Q)KG:A = G but as A is core-free we have N Q = G.

Therefore N = S is a Sylow subgroup of G. For any p ∈ π(F) let now N be the unique
Sylow p-subgroup of F. Thus N is normal in G and hence is a Sylow p-subgroup of G. It
follows that |F | is co-prime to |G : F |. By the same argument N is characteristically simple
and hence elementary abelian. Evidently, if G = F is nilpotent then G is abelian, hence
regular on � and so cyclic of order n = |�|.

As |F | is co-prime to |G : F | we may assume for the remainder that Q is a π∗-subgroup
of G complementing F, with the further property that Q ∩ A = C is a π∗-subgroup of A.

Then G = Q F with Q ∩ F = 1 and AF = C F with C ∩ F = 1 implies that the action of
G on the n∗ cosets of AF in G is permutationally equivalent to the action of Q on the cosets
of C. Hence C ⊂m Q by Theorem 2.4. �

Some comments are in order: (1) While the theorem could be formulated for permutation
groups the resulting action of G on the cosets of AN is not faithful, and the same may be
true for the action of Q on the cosets of C.

(2) As G is solvable there is at least one normal p-subgroup N , as in the proof, and for
this p it is the unique normal p-subgroup. This subgroup is elementary abelian, and G acts
irreducibly on it.
(3) The basis of induction for square free degrees occurs when n is the product of two distinct
primes. A complete analysis of the possibilities for G can be found in Suprunenko [8] and
Kopylova [3]. For the reader’s benefit we collect their results here.

Theorem 3.4 (Suprunenko [8]) The permutation group G is minimally transitive of degree
pq, where q < p are prime numbers with q not dividing (p−1), if and only if G is isomorphic
to one of the following

(i) the cyclic group of order pq,

(ii) a minimal non-abelian group G = P Q, where |Q| = q and P is normal in G, with
|P| = pm where m is the exponent of p mod q, or

(iii) a minimal non-abelian group G = P Q with Q is normal, |P| = p and |Q| = qr where
r is the exponent of q mod p.
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The remaining case where qr with r > 0 is the highest power of q dividing (p − 1) is
analyzed in Kopylova [3]. Here a similar description is obtained and it is shown that G is (i)
a group of order qt p with 0 < t ≤ r ; (ii) a group of order qr+1 pq or (iii) a group of order
pql where l is the exponent of q mod p.

3.2 Representations of degree involving two primes:

From the discussion so far it is clear that {p, q}-groups and their minimally transitive rep-
resentations play a special role. So let A ⊂m G be core-free with π(G) = {p, q}. From
Theorem 2.4 it is clear that any normal subgroup N in G gives rise to a minimally transitive
representation AN/N ⊂m G/N of degree ≤ |G : A|. Our first observation is the following

Lemma 3.5 Let G be solvable and let A ⊂m G be core-free in G. Suppose that the prime q
divides |G : A| to the first power only. Let N be a q-group which is normal in G. Then N is
elementary abelian and is a Sylow subgroup, with G acting irreducibly on N .

Proof Let Q be a Sylow q-subgroup containing N and let P be a q ′-complement in G = P Q.

Note that the N-orbits on G : A are blocks of imprimitivity, all of equal size q and AN is
the stabilizer of the orbit containing 1A. Therefore q and |G : AN | are co-prime so that AN
contains some Sylow q-subgroups of G. From this we have (AN )P = G, for order reasons.
Since A ⊂m G and A(N P) = G we have that (N P)KG:A = G but KG:A = 1 means
N P = G. This says that N is a Sylow q-subgroup of G and hence N = Q. Next replace N
by a minimal normal subgroup of G. This group is elementary abelian. By the same argument
N has to be Sylow q-subgroup of G. �

The lemma suggests that the natural choice for a normal subgroup is indeed the Fitting
subgroup of G. We follow through with this process when A has index pi q. In this case,
if either Sylow subgroup S of G is normal then AS ⊂m G gives a minimally transitive
representation of a nilpotent group, and this situation is known from Theorem 3.1.

Otherwise none of the Sylow subgroups are normal and by Lemma 3.5 F1 = F(G) is
a p-group. By Theorem 2.4 we have AF1 ⊂m G and if K ⊇ F1 is the core of AF1 in G
then AF1/K ⊂m G/K is minimally transitive, faithful of degree p j q for j < i and with
|G/K |p < |G|p. If F2 is the pre-image of F(G/F) in G then F2/F1 is a q-group. Thus,
if F2 is not contained in K then Lemma 3.5 shows that F2 K/K is a normal Sylow q-sub-
group of G/K . In this case we are reduced to the nilpotent case. Otherwise K ⊇ F2 so
that |G/K |q < |G|q . The process stops when the group becomes nilpotent or when it is of
Suprunenko–Kopylova type.
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