Skip to main content
Log in

On the geometry of the exceptional group G 2(q), q even

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We study some geometry of the exceptional group G 2(q), q even, in terms of symplectic geometric configurations in the projective space PG(5,q). Using the spin representation of Sp 6(q), we obtain an alternative description of the Split Cayley hexagon H(q) related to G 2(q). We also give another geometric proof of the maximality of G 2(q), q even, in PSp 6(q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aschbacher M (1984). On the maximal subgroups of the finite classical groups. Invent. Math. 76: 469–514

    Article  MATH  MathSciNet  Google Scholar 

  • Brouwer AE, The composition factors of the Weyl modules with fundamental weights for the symplectic group (unpublished).

  • Cooperstein BN (1981). Maximal subgroups of G 2(2n). J Algebra 70: 23–36

    Article  MATH  MathSciNet  Google Scholar 

  • Cossidente A and King OH (2007). On twisted tensor product group embeddings and the spin representation of symplectic groups. Adv Geom 7: 55–64

    Article  MATH  MathSciNet  Google Scholar 

  • Dickson LE (1901). Linear groups with an exposition of the Galois field theory. Teubner, Leipzig

    MATH  Google Scholar 

  • Dye RH (1977). Partitions and their stabilizers for line complexes and quadrics. Ann Mat Pura Appl 114: 173–194

    Article  MATH  MathSciNet  Google Scholar 

  • Dye RH (1978). On the Arf invariant. J Algebra 53: 36–39

    Article  MATH  MathSciNet  Google Scholar 

  • Dye RH (1979). Interrelations of symplectic and orthogonal groups in characteristic two. J Algebra 59: 202–221

    Article  MATH  MathSciNet  Google Scholar 

  • Dye RH (1986). Maximal subgroups of finite orthogonal groups stabilizing spreads of lines. J London Math Soc 33(2): 279–293

    Article  MATH  MathSciNet  Google Scholar 

  • Dye RH (1988). A quick geometrical proof that G 2(K) is maximal in PΩ7(K). Geom Dedicata 26: 361–364

    Article  MATH  MathSciNet  Google Scholar 

  • Gow R (1997). Contraction of exterior powers in characteristic 2 and the spin module. Geom Dedicata 64: 283–295

    Article  MATH  MathSciNet  Google Scholar 

  • Hirschfeld JWP (1985). Finite projective spaces of three dimensions. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Hirschfeld JWP and Thas JA (1991). General Galois geometries. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Huppert B (1967). Endliche Gruppen I. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Kantor WM (1979). Subgroups of classical groups generated by long root elements. Trans. Am. Math Soc 248: 347–379

    Article  MATH  MathSciNet  Google Scholar 

  • King OH (1983). Imprimitive maximal subgroups of the orthogonal, special orthogonal, unitary and special unitary groups. Math Z 182: 193–203

    Article  MATH  MathSciNet  Google Scholar 

  • King OH (1984). Imprimitive maximal subgroups of the symplectic, orthogonal and unitary groups. Geom Dedicata 15: 339–353

    Article  MATH  MathSciNet  Google Scholar 

  • King OH (2005) The subgroup structure of finite classical groups in terms of geometric configurations. Surveys in combinatorics, 2005. LMS Lecture Note Series 327. Cambridge University Press, Cambridge

  • Kleidman PB (1987) The maximal subgroups of the low-dimensional classical groups, Ph.D. Thesis. Cambridge

  • Kleidman PB, Liebeck M (1990) The Subgroup structure of the finite classical groups. LMS Lecture Note Series 129. Cambridge University Press, Cambridge

  • Liebeck MW (1987). The affine permutation groups of rank three. Proc London Math Soc 54: 477–516

    Article  MATH  MathSciNet  Google Scholar 

  • Liebeck MW, Praeger CE, Saxl J (1990) The maximal factorizations of the finite simple groups and their automorphism groups. Mem. Amer. Math. Soc. vol. 432, Providence, Rhode Island

  • Taylor DE (1992). The geometry of the classical groups. Heldermann Verlag, Berlin

    MATH  Google Scholar 

  • Tits J (1959) Sur la trialité et certains groupes qui s’en déduisent. Publ. Mat. de l’Inst des hautes et́udes scientifiques, No. 2, pp 37–60

  • Van Maldeghem H (1998) Generalized polygons. Monographs in Mathematics, vol 93. Birkhäuser Verlag, Basel

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver H. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossidente, A., King, O.H. On the geometry of the exceptional group G 2(q), q even. Des. Codes Cryptogr. 47, 145–157 (2008). https://doi.org/10.1007/s10623-007-9107-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9107-0

Keywords

AMS Classification

Navigation