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Abstract We propose a simple and efficient deterministic extractor for an ordinary elliptic
curve E , defined over F2n , where n = 2� and � is a positive integer. Our extractor, for a given
point P on E , outputs the first F2� -coefficient of the abscissa of the point P . We also propose
a deterministic extractor for the main subgroup G of E , where E has minimal 2-torsion. We
show that if a point P is chosen uniformly at random in G, the bits extracted from the point
P are indistinguishable from a uniformly random bit-string of length �.
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1 Introduction

A deterministic extractor for an elliptic curve is a function that converts a random point on
the curve to a bit-string statistically close to uniformly random. In this paper, we propose a
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172 R.R. Farashahi et al.

simple and efficient deterministic extractor for an ordinary elliptic curve E defined over F2n ,
where n = 2� and � is an arbitrary positive integer. Our extractor, ext, for a given point
P on E , outputs the first F2� -coefficient of the abscissa of the point P . Similarly one could
define an extractor that, for a given point P on the curve E , outputs a F2� -linear combination
of F2� -coordinates of the abscissa of P . Provided that the point P is chosen uniformly at
random in E , the bits extracted from the point P are indistinguishable from a uniformly
random bit-string of length �.

The problem of converting random points of an elliptic curve into random bits has several
cryptographic applications. One such application is a class of key exchange protocols and
key derivation functions based on elliptic curves (e.g., the well-known Elliptic Curve Dif-
fie-Hellman protocol). By the end of the Elliptic Curve Diffie-Hellman protocol, the parties
agree on a common secret element of the group, which is indistinguishable from a uni-
formly random element under the decisional Diffie-Hellman assumption (denoted by DDH).
However the binary representation of the common secret element is distinguishable from a
uniformly random bit-string of the same length. Hence one has to convert this group element
into a random-looking bit-string. This can be done using a deterministic extractor. Another
application of extractors is the design of cryptographically secure pseudorandom generators.
An efficient pseudorandom generator based on elliptic curves is proposed by Barker and
Kelsey [1]. Unfortunately, their generator (called Dual Elliptic Curve generator) is insecure
the reason being that random bits are extracted from random points of the elliptic curve in
an improper way [4,8,29]. Replacing the extractor used by Barker and Kelsey with one of
our extractors yields a pseudorandom generator which is provably secure under the DDH
assumption and the x-logarithm assumption [4].

Note that the number of points of any ordinary elliptic curve defined over a finite field with
characteristic two is even. Therefore, DDH problem in the corresponding group is easy and
thus the group is not suitable for many cryptographic applications. In the case that the order
of E equals 2m for odd m, we propose a deterministic extractor Ext for the subgroup G of
order m. In particular, m can be chosen to be prime, so the DDH problem in the subgroup is
assumed to be intractable. The extractor Ext is a modified version of the extractor ext.

Sequences of x-coordinates of pseudorandom points on elliptic curves have been stud-
ied in [17,22,23,33]. Kaliski [19] shows that if a point is taken uniformly at random from
the union of an elliptic curve and its quadratic twist then the x-coordinate of this point is
uniformly distributed in the finite field. On the other hand, the x-coordinate of a uniformly
random point on an elliptic curve can be easily distinguished from uniformly random field
element since only about 50% of all field elements are x-coordinates of points of the curve.
Our extractors provide only part of the x-coordinate and thereby avoid the obvious problem;
the proof shows that actual uniformity is achieved. Our approach is somewhat similar to the
basic idea of pseudorandom generators proposed by Gong et al. [12] and Beelen and Doumen
[2] in that they use a function that maps the set of points on an elliptic curve to a set of smaller
cardinality. In the former case, this function outputs the trace map of the x-coordinate of the
point on a binary curve. So each point gives rise only to one bit. The latter studied more
general functions so that some more bits per point can be obtained. Our aim is to extract as
many bits as possible while keeping the output distribution statistically close to uniform.

At the moment, several deterministic randomness extractors for elliptic curves are known.
One of the extractors is proposed by Gürel [13]. Given a point P on the elliptic curve
E(Fp2) defined over a quadratic extension of a prime field, it extracts half of the bits of the
abscissa of P . Provided that the point P is chosen uniformly at random, the statistical distance
between the extracted bits and uniformly random bits is shown to be negligible [13]. Then,
Farashahi and Pellikaan [7] define the similar extractor, yet more general, for hyperellip-
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Extractors for binary elliptic curves 173

tic curves defined over a quadratic extension of Fq , where q is a power of an odd prime.
Furthermore, their result for elliptic curves improve the result of [13]. Another extractor for
elliptic curves over prime fields is proposed by Gürel in the same paper. However, the latter
extracts essentially less than half of the bits of the abscissa of P . One more extractor for
elliptic curves over prime fields is the TAU technique of Chevassut et al. [5]. This technique
allows to extract almost all the bits of the abscissa of a point of the union of an elliptic curve
and its quadratic twist. Note that both techniques mentioned above can be applied only for
elliptic curves over odd prime fields and their extensions, although in many cases elliptic
curves over binary fields can be implemented more efficiently in hardware (see, e.g., [14]).
Till now, the problem of constructing an efficient deterministic extractor for elliptic curves
over binary fields remained open.

2 Preliminaries

Let us define the notations and recall the basic definitions that are used throughout the paper.
Notation. Denote by N0 the set of nonnegative integers and by R0 the set of nonnegative

real numbers. A field is denoted by F and its algebraic closure by F. Denote by F
∗ the set of

nonzero elements of F. The finite field with q elements is denoted by Fq , and its algebraic
closure by Fq . Let C be a curve defined over Fq , then the set of Fq -rational points on C is
denoted by C(Fq). The cardinality of a finite set S is denoted by #S. We make a distinction
between a variable x and a specific value x in F.

2.1 Finite field notation

Let n = 2�, where � is an arbitrary positive integer. Consider F2n as a quadratic extension
of F2� . Then F2n is a two-dimensional vector space over F2� . Let {α1, α2} be a basis of F2n

over F2� . So every element x in F2n can be represented in the form x = x1α1 + x2α2, where
x1 and x2 are in F2� . We recall that {α1, α2} is a basis of F2n over F2� if and only if

D =
∣
∣
∣
∣

α1 α2

α2�

1 α2�

2

∣
∣
∣
∣
�= 0.

Let φ : F2� −→ F2� be the Frobenius map defined by φ(x) = x2�
. Let

Tr : F2n −→ F2�

be the trace function. Then Tr(x) = x + φ(x), for x ∈ F2n . Let

N : F2n −→ F2�

be the norm function. Then N(x) = xφ(x), for x ∈ F2n . For more information we refer
to [24].

Lemma 1 Let x ∈ F2n . Then y2 + y = x, for some y ∈ F2n , if and only if z2 + z = Tr(x),
for some z ∈ F2� .

Proof Assume y2 + y = x , for some y ∈ F2n . Let z = Tr(y). Hence z2 + z = Tr(x). Now
assume that z2 + z = Tr(x), for some z ∈ F2� . Then

TrF2n /F2(x) = TrF2� /F2(Tr(x)) = TrF2� /F2(z
2 + z) = 0.

Therefore x = y2 + y, for some y ∈ F2n (see Theorem 2.25 [24]). ��
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2.2 Binary elliptic curve

Let E be an ordinary elliptic curve defined over F2n . Define the set of F2n -rational points on
E as

E(F2n ) = {(x, y) ∈ F2n × F2n : y2 + xy = f (x)} ∪ {OE },
where f (x) = x3 +ax2 +b, such that a and b are in F2n and OE denotes the point at infinity.
Note that b �= 0, since the curve is nonsingular.

The reason why we consider ordinary elliptic curves is that solving the discrete logarithm
(DL) problem in the group of points of a supersingular elliptic curve is easier than that in a
ordinary elliptic curve (see [28]).

2.3 The Newton Polygon and the genus

Definition 1 Let F be a field. Let

F(x, y) =
∑

(i, j)∈I
ai, j xi y j

be a bivariate polynomial, where I is a finite subset of N
2
0 and ai, j ∈ F

∗ for all (i, j) ∈ I.
Denote by �(F) the convex hull of the points (i, j) ∈ I in R

2
0. The set �(F) is called the

Newton Polygon of F and the boundary of F is denoted by ∂�(F).

In the following theorem we recall Baker’s formula that gives an upper bound for the
genus of an irreducible plane curve.

Theorem 1 Let C be an irreducible curve defined by the equation F(x, y) = 0 over an
algebraic closed field. Then the genus of the nonsingular model of C satisfies

g ≤ 1 + area �(F) − 1

2

{

∂�(F)
⋂

N
2
0

}

.

The right hand side of the above is equal to the number of integral points in the interior of
�(F).

Proof See [3] or [21]. ��
2.4 The number of points on a singular curve

Let C be an absolutely irreducible projective plane curve of degree d defined over the finite
field Fq . In case that C is a nonsingular curve with genus g, then the Hasse-Weil bound gives
the following well-known estimate for the number of Fq -rational points on C.

∣
∣#C(Fq) − (q + 1)

∣
∣ ≤ 2g

√
q.

The sharper estimate by Serre is
∣
∣#C(Fq) − (q + 1)

∣
∣ ≤ g[2√

q ].
In case that C is a singular curve, denote by C̃, the nonsingular projective model of C. Then
there is a morphism ϕ: C̃ −→ C, that is a local isomorphism on the nonsingular points on C,
and is called the resolution or normalization of C (see [9,15]). If P is a Fp-rational point on
C, we define ϑP as the number of Fp-rational points on C̃, laying over P in the map ϕ. Then

#C̃(Fq) − #C(Fq) =
∑

P∈C(Fp)

(ϑP − 1).
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Let Cs(Fp) be the set of singular points of C(Fq). Since for a nonsingular points P , we have
ϑP = 1, then

#C̃(Fq) − #C(Fq) =
∑

P∈Cs (Fp)

(ϑP − 1).

2.5 Deterministic extractor

In our analysis we use the notion of a deterministic extractor, so let us recall it briefly. For
general definition of extractors we refer to [32,36].

Definition 2 Let X and Y be S-valued random variables, where S is a finite set. Then the
statistical distance �(X, Y ) of X and Y is

�(X, Y ) = 1
2

∑

s∈S | Pr[X = s] − Pr[Y = s] | .
Let US denote a random variable uniformly distributed on S. We say that a random variable
X on S is δ-uniform, if �(X, US) ≤ δ.

Note that if the random variable X is δ-uniform, then no algorithm can distinguish X from
US with advantage larger than δ, that is, for all algorithms D : S −→ {0, 1}

| Pr[D(X) = 1] − Pr[D(US) = 1]| ≤ δ.

See [25].

Definition 3 Let S be a finite set. Let Uk be a random variable uniformly distributed on
{0, 1}k . Consider the function Ext : S −→ {0, 1}k . We say that Ext is a δ-deterministic
extractor for S if Ext(US) is δ-uniform on {0, 1}k .

3 Trace surface

The elliptic curve E is defined by the equation y2 + xy = f (x). The Artin-Schreier form of
E is defined by the equation y2 + y = g(x), where

g(x) = f (x)

x2 = x + a + b

x2 .

Let F2� (x1, x2) be the field of fractions of the polynomial ring F2� [x1, x2]. We extend the
Frobenius map φ from F2� to F2� (x1, x2), such that φ(xi ) = xi , for i = 1, 2. We define the
rational function F by

F(x1, x2) = g(x1α1 + x2α2) + φ(g(x1α1 + x2α2)). (1)

Then

F(x1, x2) = Tr(α1)x1 + Tr(α2)x2 + Tr(a) + D2(s2x1 + s1x2)
2

H2(x1, x2)
,

where

H(x1, x2) = (x1α1 + x2α2)φ(x1α1 + x2α2)

= N(α1)x2
1 + N(α2)x2

2 + Dx1x2 (2)
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and
√

b = s1α1 + s2α2. Let

F(x1, x2) = (Tr(α1)x1 + Tr(α2)x2 + Tr(a))H2(x1, x2) + (D(s2x1 + s1x2))
2. (3)

Definition 4 Let the affine surface T over F2� be defined by the equation

z2 + H(x1, x2)z = F(x1, x2).

Remark 1 Let P = (x, y) ∈ E(F2n ), where x = x1α1 + x2α2, x1, x2 ∈ F2� . If x = 0, we
have (0, 0, 0) ∈ T (F2� ). Assume x �= 0. So (

y
x )2 + y

x = g(x). Let w = Tr( y
x ). From Eq. 1

we have

w2 + w = Tr(g(x)) = F(x1, x2).

Let z = wN (x) = wH(x1, x2). Then

z2 + H(x1, x2)z = H2(x1, x2)(w
2 + w) = H2(x1, x2)F(x1, x2) = F(x1, x2).

Hence (x1, x2, z) ∈ T (F2� ).

Lemma 2 We define the projection map πE : E(F2n ) \ {OE } −→ A
2(F2� ) by

πE (x, y) = (x1, x2),

where x = x1α1+x2α2. Assume that π−1
E (x1, x2) �= ∅. If x1 = x2 = 0, then #π−1

E (x1, x2)= 1,
otherwise #π−1

E (x1, x2) = 2.

Proof Let P = (x, y) ∈ π−1
E (x1, x2), where x = x1α1 + x2α2. Clearly π−1

E (0, 0) =
{(0,

√
b)}. If x �= 0, then −P = (x, x + y) ∈ π−1

E (x0, x1) and −P �= P . Since P,−P are
the only points on E(F2n ), with the fixed first coordinate x , then π−1

E (x0, x1) = {P,−P}.
��

Lemma 3 We define the projection map πT : T (F2� ) −→ A
2(F2� ) by

πT (x1, x2, z) = (x1, x2).

Assume π−1
T (x1, x2) �= ∅. If x1 = x2 = 0, then #π−1

T (x1, x2)= 1, otherwise #π−1
T (x1, x2) = 2.

Proof Let (x1, x2, z) ∈ π−1
T (x1, x2). Let x = x1α1+x2α2. We recall that H(x1, x2) = N(x).

So H(x1, x2) = 0 if and only if x1 = x2 = 0. Clearly π−1
T (0, 0) = {(0, 0, 0)}. So assume

(x1, x2) �= (0, 0). Thus H(x1, x2) �= 0. Then (x1, x2, z) and (x1, x2, z + H(x1, x2)) are the
only points on T , with the first and second coordinates equal x1 and x2. Therefore in this
case π−1

T (x1, x2) = {(x1, x2, z), (x1, x2, z + H(x1, x2))}. ��
Proposition 1 For all (x1, x2) ∈ A

2(Fq),

#π−1
E (x1, x2) = #π−1

T (x1, x2).

Proof First assume that π−1
E (x1, x2) �= ∅. Then there exists a point (x, y) on E(F2n ), such

that x = x1α1 + x2α2. If x = 0, let z = 0, otherwise let z = Tr( y
x )N(x). Then Remark 1

shows that (x1, x2, z) ∈ T (F2� ). Therefore (x1, x2, z) ∈ π−1
T (x1, x2) and π−1

T (x1, x2) �= ∅.
Second assume that π−1

T (x1, x2) �= ∅. So there exists a point (x1, x2, z) on T (Fq). Thus
z2+H(x1, x2)z = F(x1, x2). Let x = x1α1+x2α2. If x = 0, let y = √

b. So (x, y) ∈ E(F2n ).
Now assume x �= 0. Hence H(x1, x2) �= 0, since H(x1, x2) = N(x). Let w = z

H(x1,x2)
.
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From Remark 1 we have, w2 +w = Tr(g(x)). Lemma 1 implies that there exist u ∈ F2n such
that u2 + u = g(x). Let y = xu. Then (x, y) ∈ E(F2n ). That means (x, y) ∈ π−1

E (x1, x2)

and π−1
E (x1, x2) �= ∅.

Hence π−1
E (x1, x2) �= ∅ if and only if π−1

T (x1, x2) �= ∅. Furthermore Lemmas 2 and 3
conclude the proof of this proposition. ��
Remark 2 In fact, from Proposition 1, one can show that

#E(F2n ) = #T (F2� ) + 1.

4 The extractor for the elliptic curve E

In this section we introduce a new extractor for the ordinary elliptic curve E defined over
F2n . This extractor, for a given random point on E , outputs the first F2� -coordinate of the
abscissa of the point. Then, we show that the output of this extractor, for a given uniformly
random point of E , is statistically close to a uniform random variable in F2� .

4.1 The extractor

We recall that F2n is the quadratic extension of F2� . So every element x in F2n is represented
in the form x = x1α1 + x2α2, where x1 and x2 are in F2� . In particular

√
b = s1α1 + s2α2.

Definition 5 The extractor ext is defined as a function

ext : E(F2n ) −→ F2�

ext(x, y) = x1,

ext(OE ) = 0.

Remark 3 Similarly one could define an extractor that, for a given point P on the curve, out-
puts a F2� -linear combination of F2� -coordinates of the x-coordinate of P . The analysis of
this extractor is exactly the same as our extractor ext, since one could interchange the basis
{α1, α2} with a suitable one. So without loss of generality we consider the extractor ext.

The following theorem gives tight estimates for #ext−1(x1), for all x1 ∈ F2� . The result of
this theorem is used to analyse the extract ext.

Theorem 2 For all x1 ∈ F
∗
2� ,

∣
∣
∣#ext−1(x1) − 2�

∣
∣
∣ ≤

{

[ 4
√

2� ] if Tr(α2) �= 0,

[ 2
√

2� ] + 1 otherwise.

and

∣
∣
∣#ext−1(0) − (2� + 1)

∣
∣
∣ ≤

⎧

⎨

⎩

[ 2
√

2� ] if Tr(α2) �= 0 and s1 �= 0,

2� − 1 if Tr(α2) = s1 = 0,

1 otherwise.

For the proof of this theorem we need several propositions and lemmas. Consider the
affine variety T over F2� , by Definition 4. Fix the element x1 in F2� . Then the points of T
that have the first coordinate equal to x1 form a curve which we call Tx1 .
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178 R.R. Farashahi et al.

Let x1 ∈ F2� . We define the affine curve Tx1 by the equation

Tx1(x2, z) = z2 + Hx1(x2)z + Fx1(x2) = 0, (4)

where Fx1(x2) = F(x1, x2) and Hx1(x2) = H(x1, x2).

Proposition 2 For all x1 in F
∗
2� ,

#ext−1(x1) = #Tx1(F2� )

and

#ext−1(0) = 1 + #T0(F2� ).

Proof Let x1 ∈ F
∗
2� . Consider the projection maps πC and πA from Lemmas 2 and 3. Then

#Tx1(F2� ) =
∑

x2∈F2�

#π−1
T (x1, x2)

and

#ext−1(x1) =
∑

x2∈F2�

#π−1
E (x1, x2).

Proposition 1 shows that #π−1
E (x1, x2) = #π−1

T (x1, x2), for all x1, x2 ∈ F2� . Furthermore
OE ∈ ext−1(0). So the proof of this proposition is completed. ��

The goal is now to estimate #Tx1(F2� ), for all x1 ∈ F2� . First we discus this problem for all
x1 ∈ F

∗
2� . In Propositions 3 and 4 we show that Tx1 is an absolutely irreducible nonsingular

curve, for all x1 ∈ F
∗
2� . Then in Proposition 5 we give the bounds for #Tx1(F2� ), for all

x1 ∈ F
∗
2� .

Proposition 3 The affine curve Tx1 is absolutely irreducible, for all x1 ∈ F
∗
2� .

Proof The affine curve Tx1 , for x1 ∈ F
∗
2� , is defined by the Eq. 4. So we consider the poly-

nomial

Tx1(x2, z) = z2 + Hx1(x2)z + Fx1(x2).

First suppose Tr(α2) �= 0. Then the leading terms of Hx1 and Fx1 are respectively N(α2)x2
2

and Tr(α2)(N(α2))
2x5

2. Hence deg(Hx1) = 2 and deg(Fx1) = 5. Clearly Tx1 is absolutely
irreducible.

Now suppose Tr(α2) = 0. Then

Fx1(x2) = (Tr(α1)x1 + Tr(a))H2
x1

(x2) + (D(s1x2 + s2x1))
2.

Let

Rx1(x2, z) = z2 + Hx1(x2)z + (D(s1x2 + s2x1))
2.

Then Tx1 is absolutely irreducible if and only if Rx1 is so. Suppose Rx1 is reducible. So there
exists a bivariate polynomial M in F2� [x2, z], which is a factor of Rx1 . We can consider

M(x2, z) = z + m(x2) = z + m1x2 + m0.

We substitute z by m in the equation of Rx1 . Then we have the reminder

r(x2) = r3x3
2 + r2x2

2 + r1x2 + r0.
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Since r(x2) = 0, so we obtain the following equations.
⎧

⎪⎪⎨

⎪⎪⎩

r3 = m1N(α2) = 0
r2 = m2

1 + Dm1x1 + m0N(α2) + (Ds1)
2 = 0

r1 = m1x2
1 N(α1) + Dm0x1 = 0

r0 = m2
0 + m0x2

1 N(α1) + (Ds2x1)
2 = 0.

Hence m1 = 0. Since x1 �= 0, so m0 = 0. Then s1 = s2 = 0. Thus b = 0, which is
impossible. ��
Proposition 4 The affine curve Tx1 is nonsingular, for all x1 ∈ F

∗
2� .

Proof Suppose the affine curve Tx1 , for x1 ∈ F
∗
2� , is singular. Then the following system of

equations has a solution (x2, z) ∈ F2� × F2� .
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Tx1(x2, z) = z2 + Hx1(x2)z + Fx1(x2) = 0

∂Tx1

∂x2
(x2, z) = H ′

x1
(x2)z + F ′

x1
(x2) = 0

∂Tx1

∂z
(x2, z) = Hx1(x2) = 0,

(5)

where H ′
x1

(x2) and F ′
x1

(x2) are respectively the derivatives of Hx1(x2) and Fx1(x2) with
respect to x2. We recall that Hx1(x2) = H(x1, x2) and Fx1(x2) = F(x1, x2). Then from the
system (5) and Eq. 3 we obtain

z = D(s2x1 + s1x2).

Because H ′
x1

(x2) = Dx1 and F ′
x1

(x2) = 0, from the second equation we have Dx1z = 0.
Since x1 �= 0, so z = 0. Thus s2x1 + s1x2 = 0. Then

s2
1 H(x1, x2) = x2

1 H(s1, s2) = x2
1 N(

√
b).

Hence N(
√

b) = 0, since x1 �= 0. Therefore b = 0, which is a contradiction, because E is
nonsingular. So the affine curve Tx1 is nonsingular. ��
Proposition 5 For all x1 ∈ F

∗
2� ,

∣
∣
∣#Tx1(F2� ) − 2�

∣
∣
∣ ≤

{

[ 4
√

2� ] if Tr(α2) �= 0,

[ 2
√

2� ] + 1 otherwise.

Proof The affine curve Tx1 is absolutely irreducible and nonsingular by Propositions 3 and
4, for x1 ∈ F

∗
2� . Let T̃x1 be the nonsingular projective model of Tx1 .

First suppose Tr(α2) �= 0. Then T̃x1 is an imaginary hyperelliptic curve of genus 2. Since
T̃x1 has exactly one point at infinity, therefore

#Tx1(F2� ) = #T̃x1(F2� ) − 1.

Now suppose Tr(α2) = 0. If Tr(α1)x1 + Tr(a) �= 0, then deg(Fx1) = 4. By means of the
Newton polygon of Tx1 we see that the genus of the nonsingular model of Tx1 is at most 1 (see
Subsect. 2.3). The projective model of Tx1 has only one point at infinity which is a singular
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point. The number of F2� -rational points on T̃x1 , which are lying over the point at infinity in
the resolution map, is at most 2 (see Subsect. 2.4). Hence

∣
∣#Tx1(F2� ) − #T̃x1(F2� ) + 1

∣
∣ ≤ 1.

If Tr(α1)x1 + Tr(a) = 0, then deg(Fx1) ≤ 2. The projective model of Tx1 has two points at
infinity which are nonsingular points. The genus of the projective model of Tx1 is 1, since
the degree of Tx1 is 3. Hence

#Tx1(F2� ) = #T̃x1(F2� ) − 2.

By means of Hasse-Weil’s Theorem for T̃x1 , we obtain the estimates for #Tx1(F2� ), which
concludes the proof of this proposition. ��

Now we consider the case that x1 = 0. The curve T0 is defined by the equation

T0(x2, z) = z2 + N(α2)x2
2z + F0(x2) = 0,

where F0(x2) = (Tr(α2)x2 + Tr(a))(N(α2))
2x4

2 + (Ds1x2)
2. Let w = z

x2
. By means of this

transformation, we define the affine curve T̂0 by the equation

T̂0(x2, w) = w2 + N(α2)x2w + F̂0(x2) = 0, (6)

where F̂0(x2) = (Tr(α2)x2 + Tr(a))(N(α2))
2x2

2 + (Ds1)
2.

Lemma 4 #T̂0(F2� ) = #T0(F2� ).

Proof Let x ∈ F
∗
2� . It is easy to see that (x, z) ∈ T0(F2� ) if and only if (x, z

x ) ∈ T̂0(F2� ).
Furthermore, the points (0, 0) and (0, Ds1) are the only points with x-coordinate equals 0
respectively on T0 and T̂0. ��

We discuss the irreducibility and nonsingularity of T̂0 in Propositions 6 and 7. Then in
Proposition 8 we give the bounds for #T̂0(F2� ).

Proposition 6 The curve T̂0 is reducible if and only if Tr(α2) = s1 = 0.

Proof The affine curve T̂0 is defined by the Eq. 6. If Tr(α2) �= 0, then deg(F̂0) = 3 and
clearly T̂0 is absolutely irreducible. Now assume Tr(α2) = 0. Let

R̂0(x2, w) = w2 + N(α2)x2w + (Ds1)
2.

Then T̂0 is absolutely irreducible if and only if R̂0 is so. Furthermore R̂0 is absolutely irre-
ducible if and only if s1 �= 0. ��
Proposition 7 The affine curve T̂0 is singular if and only if s1 = 0.

Proof It is easy to see that the affine curve T̂0 has a singular point P if and only if P = (0, 0)

and s1 = 0. ��
Proposition 8 The number of F2� -rational points on the affine curve T̂0 satisfies

∣
∣
∣#T̂0(F2� ) − 2�

∣
∣
∣ ≤

⎧

⎨

⎩

[ 2
√

2� ] if Tr(α2) �= 0 and s1 �= 0,

2� − 1 if Tr(α2) = s1 = 0,

1 otherwise.
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Proof Let T̃0 be the nonsingular projective model of T̂0. First suppose s1 �= 0. From
Propositions 6 and 7, the curve T̂0 is absolutely irreducible and nonsingular. If Tr(α2) �= 0,
the curve T̃0 is an elliptic curve. Hence

#T̂0(F2� ) = #T̃0(F2� ) − 1.

If Tr(α2) = 0, the curve T̃0 has genus 0. Also it has two points at infinity. So

#T̂0(F2� ) = #T̃0(F2� ) − 2.

Now suppose s1 = 0. If Tr(α2) �= 0, from Proposition 6, the curve T̂0 is absolutely irre-
ducible. But it has the singular point (0, 0). Hence the genus of the curve T̃0 equals 0. The
number of F2� -rational points on T̃0, which are lying over the point (0, 0) in the resolution
map, is 0 or 2. Furthermore the point at infinity is ramified. Hence

#T̂0(F2� ) = #T̃0(F2� ) ± 2.

Then, from Hasse-Weil’s Theorem for the curve T̃0, we obtain the estimates for #T̂0(F2� ). If
Tr(α2) = 0, from Proposition 6, the curve T̂0 is reducible. So we have a trivial bound for
#T̂0(F2� ). ��

Proof of Theorem 2. Propositions 2 and 5 show the proof of Theorem 2, for x1 ∈ F
∗
2� .

Furthermore, Propositions 2, 8 and Lemma 4 show the proof of this theorem, for x1 = 0.
��

4.2 Analysis of the extractor

In this subsection we show that provided the point P is chosen uniformly at random in E(F2n ),
the element extracted from the point P by ext is indistinguishable from a uniformly random
element in F2� .

Let X be a F2� -valued random variable that is defined as

X = ext(P), for P ∈R E(F2n ).

Proposition 9 The random variables X is statistically close to the uniform random variable
UF2�

.

�(X, UF2�
) = O

(
1√
2�

)

.

Proof Let z ∈ F2� . Then, for the uniform random variable UF2�
in F2� , we have Pr[UF2�

=
z] = 1/2�. And for the F2� -valued random variable X ,

Pr[X = z] = #ext−1(z)

#E(F2n )
.

Then

�(X, UF2�
) = 1

2

∑

z∈F2�

∣
∣
∣Pr[X = z] − Pr[UF2�

= z]
∣
∣
∣

= 1

2

∑

z∈F2�

∣
∣
∣
∣

#ext−1(z)

#E(F2n )
− 1

2�

∣
∣
∣
∣
.
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Hasse-Weil’s Theorem gives the bound for #E(F2n ) and Theorem 2 gives the bound for the
cardinality of ext−1(z), for all z ∈ F2� . Let g = 2 if Tr(α2) �= 0, otherwise let g = 1. In
fact g is the maximum genus of curves Tx1 , for all x1 ∈ F2n (see proof of Proposition 5).
First assume s1 �= 0 or Tr(α2) �= 0. Then

�(X, UF2�
) = 1

2�+1#E(F2n )

∑

z∈F2�

∣
∣
∣2�#ext−1(z) − #E(F2n )

∣
∣
∣

≤ 2�+1
√

2�g + (4 − g)2� − 1

2(2� − 1)2 = g + ε(�)√
2�

,

where ε(�) = (4−g)2�
√

2�+2�+2g−√
2�−2g

2(2�−1)2 . Indeed ε(�) < 1, for � ≥ 3.

Now assume Tr(α2) = s1 = 0. Theorem 2 gives a trivial bound for #ext−1(0). Then

�(X, UF2�
) =

∣
∣2�#ext−1(0) − #E(F2n )

∣
∣

2�+1#E(F2n )
+

∑

z∈F
∗
2�

∣
∣2�#ext−1(z) − #E(F2n )

∣
∣

2�+1#E(F2n )
.

≤ (22� + 2�+1 − 1) + (2� − 1)(2�+1
√

2� + 3 · 2� − 1)

(2� − 1)2

= 2�
√

2� + 2�+1 − √
2� − 1

(2� − 1)2 = 1 + ε(�)√
2�

= g + ε(�)√
2�

,

where ε(�) = 2�+1
√

2�+2�−√
2�−1

(2�−1)2 . Furthermore ε(�) < 1, for � ≥ 4. ��

Corollary 1 The extractor ext is an 3√
2�

-deterministic for E(F2n ), for n ≥ 8.

Proof See proof of Proposition 9. ��

5 The extractor for a subgroup

In this section we introduce two extractors for the main subgroup of the elliptic curve E
defined over F2n , where E has minimal 2-torsion.

Let #E(F2n ) = 2dm, where m is odd. If d = 1, then E is said to have minimal 2-torsion.
Note that E has minimal 2-torsion if and only if TrF2n /F2(a) = 1. That means half of the
elliptic curves defined over F2n , have minimal 2-torsion. For more information see [20,30].

Assume that E has minimal 2-torsion. Hence #E(F2n ) = 2m. Let G be the subgroup of
E of odd order m. E has the point P0 = (0,

√
b) of order 2. The point P = (x, y) is in the

subgroup G if and only if P = 2Q, for some point Q ∈ E(F2n ). Indeed for the point P in
E, P ∈ G if and only if TrF2n /F2(x) = TrF2n /F2(a) = 1 (see [31,35]).

Let β be a bit distinguishing P = (x, y) from −P = (x, x + y) satisfying

β: E(F2n ) −→ {0, 1}
β(P) = 0, if P = −P,

β(P) +β(−P) = 1, if P �= −P.

Note that if P ∈ G and P �= OE , then −P �= P , since the order of G is odd. For example the
function β can be defined as the least significant bit of y/x , if we consider the polynomial
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basis for F2n over F2. Furthermore the point P = (x, y) can be represented by (x, λ), where
λ = x + y/x , is the slope of the doubling. If we represent P = (x, y), by (x, λ), then
−P = (x, x + y) is represented by (x, λ + 1). Hence the function β can be defined as the
least significant bit of λ. Another way to define the function β is to define an order on the
representation of elements in F2n . Every element in F2n is represented by a bit string. Hence
this order, for instance, can be the lexicographical order. Then this order distinguishes y from
x + y or P from −P .

We define the extractor Ext, as a modified version of the extractor ext presented in
Sect. 4. Recall that ext: E(F2n ) −→ F2� is defined by

ext(x, y) = x1,

ext(OE ) = 0.

We defined the extractor Ext as follows.

Ext : G −→ F2�

Ext(P) = ext(P + β(P)P0).

Let P = (x, y) ∈ G. If β(P) = 0, then Ext(P) = ext(P). If β(P) = 1, then Ext(P) =
ext(P + P0). It is easy to see that the abscissa of the point P + P0 is

√
b

x . Hence

Ext(P) =
{

x1, if β(P) = 0

(
√

b
x )1, if β(P) = 1.

The following proposition gives some bounds for #Ext−1(z), for z ∈ F2� .

Proposition 10 Let z be a fixed element of F2� . Then

#ext−1(z) = 2#Ext−1(z).

Proof Define the subset Sz of ext−1(z) as

Sz = {P ∈ ext−1(z) : β(P) = 0, for P ∈ G and β(P + P0) = 1, for P �∈ G}.
Let P ∈ Sz . Hence ext(P) = z. If P ∈ G, then β(P) = 0. So Ext(P) = ext(P) = z.
Thus P ∈ Ext−1(z). And if P �∈ G, then P + P0 ∈ G and β(P + P0) = 1. Hence

Ext(P + P0) = ext(P + P0 + β(P + P0)P0) = ext(P) = z.

Thus P + P0 ∈ Ext−1(z). Let the function π : Sz −→ Ext−1(z) be defined as

π(P) =
{

P, if P ∈ G
P + P0, if P �∈ G

It is easy to see that the function π is injective. Let P ∈ Ext−1(z). Hence P ∈ G and
Ext(P) = ext(P + β(P)P0) = z. If β(P) = 0, then P ∈ ext−1(z). So P ∈ Sz and
π(P) = P . If β(P) = 1, then P + P0 ∈ ext−1(z). Since P + P0 �∈ G and β(P) = 1, then
P + P0 ∈ Sz and π(P + P0) = P . So the function π is surjective and then it is bijective.
Therefore #Sz = #Ext−1(z).

The points P and −P have the same x-coordinate. So by the definition of ext, in Sect. 4,
ext(P) = ext(−P). That means P ∈ ext−1(z) if and only if −P ∈ ext−1(z). For every
pair P and −P in ext−1(z)\ {OE , P0}, exactly one of them is in Sz . And in case that z = 0,
both points OE and P0 are in ext−1(0), but only OE ∈ Sz . Hence #ext−1(z) = 2#Sz ,
which concludes the proof of Proposition 10. ��
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Proposition 11 Ext is an 3√
2�

-deterministic extractor for G, for n ≥ 8.

Proof We recall that X is a F2� -valued random variable defined by

X = ext(P), for P ∈R E(F2n ).

Let XG be a F2� -valued random variable that is defined by

XG = Ext(P), for P ∈R G.

Let z ∈ F2� . Then by Proposition 10 we have

Pr[XG = z] = #Ext−1(z)

#G
= 2#Ext−1(z)

2#G
= #ext−1(z)

#E(F2n )
= Pr[X = z].

The rest of the proof follows from Corollary 1. ��

6 Concluding remarks

In this section we suggest suitable parameters for the elliptic curves used by our extractors.
Also we discuss some implementation issues and open problems.

6.1 Parameters of the elliptic curves

The reason why elliptic curves are used in cryptography is that the discrete logarithm (DL)
problem in the group of points of an elliptic curve is believed to be intractable for rela-
tively small security parameter. The most efficient methods for solving the DL problem for
ordinary elliptic curve have exponential running time. For supersingular elliptic curves there
exist subexponential methods, (see [28]) so supersingular elliptic curves should be avoided.

In many cases, it is recommended to use elliptic curves over F2n , where n is a prime
number. Recall that in this paper we consider elliptic curves over E(F2n ), where n = 2�. To
the best of our knowledge, the DL problem for the latter curves is as hard as the one for the
former curves provided that the GGHS attack is infeasible, that is, � is a prime number and
� �= 127 (for more details see [6,10,11,16,26,27]).

The finite fields F2178 , F2226 , F21018 and F21186 are suggested for elliptic curve cryptogra-
phy in [6]. For these fields the GGHS attack is infeasible. Furthermore by ghost bit bases
technique, the arithmetic operations in these fields can be performed more efficiently than in
prime extension of F2 of the same size (see [18,34]).

The Extractor Ext is defined in the subgroup G of E(F2n ). For many cryptographic
applications m, the order of G, should be prime. Recall that E has minimal 2-torsion. Hence,
#E(F2n ) = 2m.

6.2 Experimental results

Our experiments with MAGMA for #ext−1(z), where z ∈ F2� , show that the bounds in
Theorem 2 are tight.

Also the experiments suggest the following conjecture. Let E(F2n ) be an elliptic curve,
where n is a positive integer. In particular n can be prime. Let P = (x, y) ∈ E(F2n ). Let x ∈
F2n be represented by the bit-string (x1, x2, . . . , xn). Consider the extractor ext for E(F2n )

as a functionext : E(F2n ) −→ {0, 1}k , where 1 ≤ k ≤ n, such that the output of ext for the
point P is the k bits of the bit-string of x in fixed positions. For example ext can be defined
as ext(P) = (x1, x2, . . . , xk). Let X be a {0, 1}k-valued random variable that is defined as

123



Extractors for binary elliptic curves 185

X = ext(P), for P ∈R E(F2n ).

Conjecture 1 The random variable X is g√
2n−k

-uniform on {0, 1}k , where g is constant.

That is

�(X, Uk) ≤ g√
2n−k

.

We leave the proof of this conjecture as an open problem. Similar to the definition of extrac-
tors Ext in Sect. 5, one can define an extractor for the main subgroup G of E(F2n ), where
E has minimal minimal 2-torsion.

6.3 Conclusion

We introduce a deterministic extractor ext for the ordinary elliptic curve E defined over
F2n , where n = 2� and � is a positive integer. The extractor ext for a given point P on
E outputs the first F2� -coordinate of the abscissa of P . The main part of the analysis of
this extractor is to estimate #ext−1(z), for all z ∈ F2� . That is to find the bound for the
number of F2� -rational points on the curves Tz on the trace surface T . Theorem 2 gives tight
estimates for #ext−1(z). By means of the extractor ext, we construct the extractor Ext
for the main subgroup G of E , where E has minimal 2-torsion. We note that the order of
G is odd. In particular if the order of G is prime, then the DDH problem in G is assumed
to be intractable, which is crucial for many cryptographic applications. The analysis of the
extractor Ext shows that if the point P is chosen uniformly at random in G, then the bits
extracted from P are statistically close to a uniformly random bit string of length �.
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